WO2022141274A1 - 玻璃、强化玻璃及其制备方法和电子产品 - Google Patents

玻璃、强化玻璃及其制备方法和电子产品 Download PDF

Info

Publication number
WO2022141274A1
WO2022141274A1 PCT/CN2020/141725 CN2020141725W WO2022141274A1 WO 2022141274 A1 WO2022141274 A1 WO 2022141274A1 CN 2020141725 W CN2020141725 W CN 2020141725W WO 2022141274 A1 WO2022141274 A1 WO 2022141274A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mass percentage
mgo
sio
zro
Prior art date
Application number
PCT/CN2020/141725
Other languages
English (en)
French (fr)
Inventor
平文亮
周翔磊
肖子凡
刘红刚
陈志鸿
王明忠
何进
刘志林
汤重
Original Assignee
清远南玻节能新材料有限公司
中国南玻集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清远南玻节能新材料有限公司, 中国南玻集团股份有限公司 filed Critical 清远南玻节能新材料有限公司
Priority to PCT/CN2020/141725 priority Critical patent/WO2022141274A1/zh
Publication of WO2022141274A1 publication Critical patent/WO2022141274A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to the field of glass, in particular to a glass, a strengthened glass, a preparation method thereof, and an electronic product.
  • Sheet glass is a component used to protect a display panel of a display device such as a portable phone, a PDA, a digital camera, a flat panel display (FPD), and the like without affecting its display effect.
  • a display panel of a display device such as a portable phone, a PDA, a digital camera, a flat panel display (FPD), and the like.
  • FPD flat panel display
  • the thin plate glass is further chemically strengthened to obtain tempered glass to improve the mechanical properties of the glass.
  • Such tempered glass is chemically strengthened, for example, by ion exchange treatment.
  • the ion exchange treatment is usually a method of immersing glass in molten salt containing potassium and/or sodium at a temperature of about 350°C to 550°C, so that sodium ions, lithium ions and ion exchange salts on the surface of the glass are separated.
  • the exchange of potassium or sodium ions forms a compressive stress layer on the glass surface.
  • glass of various compositions has been developed as a glass material for producing tempered glass.
  • the current glass cover market is mainly dominated by (boron) aluminosilicate glass and lithium (boron) aluminosilicate glass, such as Corning's Gorilla glass, NEG's T2X-1, Asahi Glass' Longji glass and domestic Xuhong's panda glass and CSG's KK3 glass, etc.
  • (boron) aluminosilicate glass and lithium (boron) aluminosilicate glass such as Corning's Gorilla glass, NEG's T2X-1, Asahi Glass' Longji glass and domestic Xuhong's panda glass and CSG's KK3 glass, etc.
  • the traditional glass has been strengthened, although it has a certain strength, it has the ability to withstand the drop of 180-grit sandpaper from a height of more than 160cm in the drop test of the whole machine on the rough ground.
  • the surface hardness of glass is low, and it is prone to scratches, so it still cannot play
  • a tempered glass In addition, a tempered glass, a preparation method and an electronic product are also provided.
  • the mass percentage of the SiO 2 is 52% to 63%; and/or the mass percentage of the Al 2 O 3 is 23.1% to 32.5%; and/or , the mass percentage of the Na 2 O is 2% to 5.9%; and/or the mass percentage of the ZrO 2 is 0.5% to 1.7%.
  • the mass percentage of the SiO 2 is 53.5% to 62%; and/or the mass percentage of the Al 2 O 3 is 24% to 30%; and/or the Li 2 O and/or the mass percentage of the Na 2 O is 2% to 4.7%; and/or the mass percentage of the ZrO 2 is 0.5% to 1.5%.
  • the mass percentage of the Al 2 O 3 is 26.5% to 30%; and/or the mass percentage of the Na 2 O is 2.5% to 4.7%.
  • the mass percentage of K 2 O is 0.01%-2.5%; and/or the mass percentage of B 2 O 3 is 0.7%-3.7%; and/or Or, the mass percentage of the MgO is 1% to 4%.
  • the mass percentage of the K 2 O is 0.1% to 2%; and/or the mass percentage of the B 2 O 3 is 1% to 2.5%; and/or the mass percentage of the MgO The mass percentage is 1% to 3%.
  • a preparation method of tempered glass comprising the following steps: firstly, the glass is strengthened in a first mixed molten salt at 390°C to 460°C for 1h to 3h, and then in a first mixed molten salt at a temperature of 380°C to 420°C for 1 h to 3 hours.
  • the tempering treatment is carried out during 1 h to 4 h to prepare tempered glass, and the glass is the above-mentioned glass.
  • the mass percentage of sodium nitrate in the first mixed molten salt, is 40%-70%, and the mass percentage of potassium nitrate is 30%-60%; and/or, in the second mixed molten salt In the mixed molten salt, the mass percentage of sodium nitrate is 3% to 15%, and the mass percentage of potassium nitrate is 85% to 97%.
  • a tempered glass is prepared by the above-mentioned preparation method of tempered glass.
  • An electronic product includes protective glass, the protective glass is the above tempered glass.
  • the above glass has a surface Vickers hardness of more than 700HV after tempering treatment by adjusting the composition and ratio, giving the glass excellent scratch resistance, and the glass has a four-point bending strength of more than 740MPa and more than 170cm. High resistance to 180 grit sandpaper drops. Therefore, the above glass has high surface hardness, mechanical strength and drop resistance after chemical strengthening.
  • the glass of one embodiment in terms of mass percentage, comprises: SiO 2 50%-63%, Al 2 O 3 23.1%-33%, Li 2 O 4%-7%, Na 2 O 1.5%-5.9%, K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 ⁇ 2%.
  • SiO 2 is an important glass-forming oxide, and is an essential component for forming a glass skeleton. SiO 2 can improve the strength and chemical stability of the glass, and can make the glass obtain a higher strain point and a lower thermal expansion coefficient. If the mass percentage of SiO 2 is less than 50%, the main network structure of the glass is poor, the mechanical properties are not good, and the weather resistance is deteriorated ; Consumption increases, and it is easy to cause frequent defects such as bubbles and stones. At the same time, the proportion of silicon-oxygen skeleton structure is high, and the network gap is small, which is not conducive to chemically enhanced ion exchange and affects the efficiency of chemical enhancement. Therefore, in this embodiment, the mass percentage of SiO 2 is 50% to 63%.
  • the mass percentage of SiO 2 is 50%, 52%, 53%
  • the mass percentage of SiO 2 is 52% to 63%, and more preferably, the mass percentage of SiO 2 is 53.5% to 62%. Further, the mass percentage of SiO 2 is 53.5% to 56%. Further preferably, the mass percentage of SiO 2 is 53.5% to 54.6%.
  • Al 2 O 3 can participate in the glass network and act as a network generator, and Al 2 O 3 can also reduce the crystallization tendency of the glass and improve the chemical stability, thermal stability, mechanical strength and hardness of the glass. Al 2 O 3 is also a necessary component to improve the tensile modulus of glass, but it will increase the viscosity of the glass. If there is too much Al 2 O 3 , it will be difficult to obtain glass with long material properties, making it difficult to shape the glass.
  • Al 3+ in glass tends to form an aluminum-oxygen tetrahedral network [AlO 4 ], which is much larger than the silicon-oxygen tetrahedral [SiO 4 ] network, leaving larger voids as channels for ion diffusion, so
  • AlO 4 aluminum-oxygen tetrahedral network
  • SiO 4 silicon-oxygen tetrahedral
  • the high Al 2 O 3 content in the glass can promote the migration and replacement rate of alkali metal ions.
  • the higher the Al 2 O 3 content the larger the gap of the framework network, which is more conducive to ion exchange.
  • the thermal expansion coefficient does not depend on its content.
  • the higher the content of Al 2 O 3 the higher the high temperature viscosity of the glass, the higher the melting temperature during the production process, the higher the energy consumption, and the less conducive to the control of defects such as bubbles and stones.
  • the Al 2 O 3 content is low, the voids in the network space become smaller, which is not conducive to ion migration and seriously affects the efficiency of chemical enhancement.
  • the mass percentage of Al 2 O 3 is 23.1% to 33%.
  • the mass percentage of Al 2 O 3 is 23.1%, 23.5%, 24%, 25%, 28%, 30%, 32% or 33%.
  • the mass percentage of Al 2 O 3 is 23.1% to 32.5%. More preferably, the mass percentage of Al 2 O 3 is 24%-30%. Further, the mass percentage of Al 2 O 3 is 25.5% to 30%. Further, the mass percentage of Al 2 O 3 is 26.5% to 30%.
  • B 2 O 3 is one of the important components of boro-aluminosilicate glass, which belongs to the forming body oxide, which can reduce the thermal expansion coefficient of aluminosilicate glass and improve the thermal stability and chemical stability of aluminosilicate glass. If the content of B 2 O 3 is too high, boron volatilization will be serious at high temperature due to its effect of reducing the viscosity. At the same time, if the content of B 2 O 3 is too high, the molding temperature will be narrowed, which will be difficult for boro-aluminosilicate glass in tube forming. It is difficult to control the wall thickness and pipe diameter precision.
  • the mass percentage of B 2 O 3 is 0.4% to 6%.
  • the mass percentage of B 2 O 3 is 0.4%, 0.7%, 1%, 2%, 2.5%, 3%, 3.7%, 4%, 5% or 6%.
  • the mass percentage of B 2 O 3 is 0.7% to 3.7%, and more preferably, the mass percentage of B 2 O 3 is 1% to 2.5%. Further preferably, the mass percentage of B 2 O 3 is 1% to 1.9%.
  • Li 2 O is an ideal flux and the main component for ion exchange. Due to the polarization characteristics of Li + , it can effectively reduce the high temperature viscosity at high temperature, and the radius of Li + is small, so it can be filled in the air of the glass body to balance free oxygen. Appropriate Li 2 O can significantly enhance the mechanical strength and surface of the glass body. hardness and chemical resistance, etc.
  • the mixed molten salt of NaNO 3 and KNO 3 is used for ion exchange. Through the ion exchange of Li + in the glass and Na + in the molten salt, the depth of the compressive stress layer can be increased in a short time, so that the glass has Better impact resistance.
  • the mass percentage of Li 2 O is 4% to 7%.
  • the mass percentage of Li 2 O is 4%, 4.5%, 5%, 5.5%, 6%, 6.5% or 7%.
  • the mass percentage of Li 2 O is 4.5% to 6%.
  • Na 2 O is the outer body oxide of boroaluminosilicate glass network, which can provide free oxygen to break Si-O bond, thereby reducing the viscosity and melting temperature of aluminosilicate glass. If the content of Na 2 O is too high, the thermal expansion coefficient will be increased, the chemical stability will be reduced, and the volatilization of Na 2 O will increase, resulting in non-uniform composition of aluminosilicate glass. The content of Na 2 O is too low, which is not conducive to the melting and forming of glass, and is not conducive to the chemical exchange of Na ions and K ions, and is not conducive to the formation of a compressive stress layer on the surface of the glass, which cannot enhance the mechanical strength of the glass.
  • the mass percentage of Na 2 O is 1.5% to 5.9%.
  • the mass percentage of Na 2 O is 1.5%, 2%, 3%, 4%, 4.7%, 5%, 5.5% or 5.9%.
  • the mass percentage of Na 2 O is 2% to 5.9%, and more preferably, the mass percentage of Na 2 O is 2% to 4.7%. Further preferably, the mass percentage of Na 2 O is 2.5% to 4.7%.
  • K 2 O and Na 2 O are both alkali metal oxides and have similar functions in glass structure. Substituting a small amount of K 2 O for Na 2 O can exert the "mixed alkali effect" and improve a series of properties of glass. Components for improving melting properties and for increasing ion exchange rates in chemical strengthening to achieve desired surface compressive stress and stress layer depth. When the content of K 2 O is too high, the weather resistance of the glass decreases.
  • the mass percentage of K 2 O is set to be 0.01% to 3% by analyzing the alkali metal content in the glass. In one embodiment, the mass percentage of K 2 O is 0.01%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5% or 3%. Preferably, the mass percentage of K 2 O is 0.01% to 2.5%. More preferably, the mass percentage of K 2 O is 0.1% to 2%. Further preferably, the mass percentage of K 2 O is 0.1% to 1.1%.
  • MgO is a kind of external network oxide. MgO helps to reduce the melting point of glass. At high temperature, it can reduce the viscosity of glass, promote the melting and clarification of glass, improve uniformity and increase hydrolysis resistance. MgO can also stabilize the glass, improve the durability of the glass, prevent the glass from crystallizing, inhibit the movement of alkali metal ions in the glass, and also improve the elastic modulus of the glass. MgO can enhance the stability of the glass network space at low temperature, and can reduce the thermal expansion coefficient of the glass to a certain extent, but it has a hindering effect on ion exchange.
  • the mass percentage of MgO is 1% to 5%. In one embodiment, the mass percentage of MgO is 1%, 2%, 3%, 4% or 5%. Preferably, the mass percentage of MgO is 1% to 4%. More preferably, the mass percentage of MgO is 1% to 3%.
  • the mass percentage of CaO is 0 to 3%.
  • the mass percentage of CaO is 0-1%. More preferably, the mass percentage of CaO is 0-0.6%.
  • ZnO belongs to the ranks of divalent metal oxides, and also has the effect of alkaline earth metal oxides.
  • adding some ZnO materials can effectively reduce the melting temperature of the glass, reduce the transition temperature T g of the glass, and also The alkali resistance of the glass substrate can be improved.
  • ZnO is often in two ligands, [ZnO 6 ] and [ZnO 4 ], and [ZnO 4 ] increases with the increase of alkali content, which increases the crystallization tendency of glass.
  • partial zinc oxide is used to replace calcium oxide and magnesium oxide, which is beneficial to maintain the chemical stability of the glass and at the same time promote the rapid progress of ion exchange. Therefore, the mass percentage of ZnO is 0-2%. More preferably, the glass does not contain ZnO.
  • ZrO 2 mainly exists in the form of cubic [ZrO 8 ] coordination in silicate glass. Due to the large ionic radius, it is a network exosome in the glass structure, and its solubility in glass is small, which will significantly increase glass Viscosity, so its addition should not exceed 3%.
  • An appropriate amount of ZrO 2 can improve the acid and alkali resistance and refractive index of the glass. Therefore, in this embodiment, the mass percentage of ZrO 2 is 0.4% to 3%. In one embodiment, the mass percentage of ZrO 2 is 0.4%, 0.5%, 1%, 1.5%, 2%, 2.5% or 3%. Preferably, the mass percentage of ZrO 2 is 0.5% to 1.7%. More preferably, the mass percentage of ZrO 2 is 0.5% to 1.5%.
  • the mass percentage of P 2 O 5 is 0% to 4%.
  • the mass percentage of P 2 O 5 is 0% to 1.7%. More preferably, the mass percentage of P 2 O 5 is 0% to 1%.
  • the sum of the mass percent of Li 2 O, the mass percent of Na 2 O and the mass percent of K 2 O is ⁇ 5.9%. Further, the sum of the mass percentage of Li 2 O, the mass percentage of Na 2 O and the mass percentage of K 2 O is ⁇ 7%. Further, the sum of Li 2 O mass percentage, Na 2 O mass percentage and K 2 O mass percentage ⁇ 12%. Further, the sum of Li 2 O mass percentage, Na 2 O mass percentage and K 2 O mass percentage ⁇ 10.5%.
  • the glass is high-aluminosilicate glass, which has high strength.
  • the aluminosilicate contains more than 20% Al 2 O 3 content, it is different from SiO 2 .
  • the glass forms a compressive stress layer with a depth of more than 100 microns through its Li-Na ion exchange, and forms a compressive stress of more than 700 MPa or even 800-1000 MPa on the glass surface through Na-K exchange, which greatly enhances the scratch resistance and drop resistance of the glass. performance, especially drop resistance on rough ground. This is impossible for traditional glass.
  • the stress depth of ordinary soda lime glass is about 10 microns, that of high alumina silicate glass is about 40 microns, and the stress depth of lithium aluminosilicate glass can be more than 100 microns.
  • the glass comprises: SiO 2 52%-63%, Al 2 O 3 23.1%-32.5%, Li 2 O 4%-7%, Na 2 O 2%-5.9% , K 2 O 0.01% to 2.5%, B 2 O 3 0.7% to 3.7%, ZrO 2 0.5% to 1.7%, MgO 1% to 4%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 ⁇ 2%.
  • the glass with the above composition has a thermal expansion coefficient of 61.36 ⁇ 10 -7 to 79.94 ⁇ 10 -7 , which is more suitable for making glass products with 3D and complex structures, and has high dimensional accuracy.
  • glass has excellent chemical strengthening properties.
  • the tempered CS Na30 exceeds 280MPa, CS Na50 exceeds 189MPa, Dol exceeds 115 ⁇ m, the surface K stress value exceeds 850MPa, and the surface K stress depth exceeds 4.2 ⁇ m; the tempered glass has more than 700Hv
  • the surface Vickers hardness of 100% endows the glass with excellent scratch resistance and has a four-point bending strength of over 800MPa and a drop resistance of 180-grit sandpaper with a height of more than 180cm.
  • the mass percentage of SiO 2 is 53.5% to 62%.
  • the mass percentage of Al 2 O 3 is 24% to 30%.
  • the mass percentage of Li 2 O is 4.5% to 6%.
  • the mass percentage of Na 2 O is 2% to 4.7%.
  • the mass percentage of K 2 O is 0.1% to 2%.
  • the mass percentage of B 2 O 3 is 1% to 2.5%.
  • the mass percentage of ZrO 2 is 0.5% to 1.5%.
  • the mass percentage of MgO is 1% to 3%.
  • the glass in terms of mass percentage, comprises: SiO 2 53.5%-62%, Al 2 O 3 24%-30%, Li 2 O 4.5%-6%, Na 2 O 2% ⁇ 4.7%, K 2 O 0.1% ⁇ 2%, B 2 O 3 1% ⁇ 2.5%, ZrO 2 0.5% ⁇ 1.5%, MgO 1% ⁇ 3%, P 2 O 5 0 ⁇ 1.7% and CaO 0 ⁇ 1%.
  • the glass with the above composition features has a thermal expansion coefficient of 63.58 ⁇ 10 -7 to 78.21 ⁇ 10 -7 at 20°C to 300°C, and is more suitable for making 3D and complex glass products with high dimensional accuracy.
  • the glass has excellent chemical strengthening properties.
  • the tempered CS Na30 exceeds 300MPa, CS Na50 exceeds 220MPa, Dol exceeds 122 ⁇ m, the surface K stress value exceeds 860MPa, and the surface K stress depth exceeds 5.2 ⁇ m; the tempered glass has more than 710Hv
  • the surface Vickers hardness of 100% endows the glass with excellent scratch resistance and has a four-point bending strength of more than 850MPa and a drop resistance of 180-grit sandpaper with a height of more than 190cm.
  • the glass comprises: SiO 2 50%-63%, Al 2 O 3 24%-30%, Li 2 O 4%-7%, Na 2 O 1.5%-5.9%, K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 to 2%.
  • the glass includes: SiO 2 50%-63%, Al 2 O 3 25.5%-30%, Li 2 O 4%-7%, Na 2 O 1.5%-5.9%, K 2 O 0.01% ⁇ 3%, B 2 O 3 0.4% ⁇ 6%, ZrO 2 0.4% ⁇ 3%, MgO 1% ⁇ 5%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass comprises: SiO 2 50%-63%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 1.5%-5.9%, K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 to 2 %.
  • the glass includes: 52%-63%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2%-5.9%, K 2 O 0.01% ⁇ 2.5%, B 2 O 3 0.7% to 3.7%, ZrO 2 0.5% to 1.7%, MgO 1% to 4%, P 2 O 5 0 to 4%, CaO 0 to 3%, and ZnO 0 to 2%.
  • the glass includes: 53.5%-62%, Al 2 O 3 26.5%-30%, Li 2 O 4.5%-6%, Na 2 O 2%-4.7%, K 2 O 0.1 % to 2%, B 2 O 3 1% to 2.5%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass includes: 53.5%-56%, Al 2 O 3 26.5%-30%, Li 2 O 4.5%-6%, Na 2 O 2%-4.7%, K 2 O 0.1 % to 2%, B 2 O 3 1% to 2.5%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass comprises: SiO 2 50%-63%, Al 2 O 3 23.1%-33%, Li 2 O 4%-7%, Na 2 O 2%-4.7% , K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 ⁇ 2%.
  • the glass comprises: SiO 2 52%-63%, Al 2 O 3 23.1%-32.5%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.01% to 2.5%, B 2 O 3 0.7% to 3.7%, ZrO 2 0.5% to 1.7%, MgO 1% to 4%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 to 2% .
  • the glass includes: SiO 2 53.5%-62%, Al 2 O 3 23.1%-32.5%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.01% ⁇ 2.5 %, B2O3 0.7% ⁇ 3.7 %, ZrO2 0.5 % ⁇ 1.7%, MgO 1% ⁇ 4%, P2O5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass includes: SiO 2 53.5%-62%, Al 2 O 3 23.1%-32.5%, Li 2 O 4.5%-6%, Na 2 O 2.5%-4.7%, K 2 O0 .01% ⁇ 2%, B 2 O 3 1% ⁇ 2.5%, ZrO 2 0.5% ⁇ 1.5%, MgO 1% ⁇ 3%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass includes: SiO 2 50%-63%, Al 2 O 3 23.1%-33%, Li 2 O 4%-7%, Na 2 O 2.5%-4.7%, K 2 O 0.01% ⁇ 3%, B 2 O 3 0.4% ⁇ 6%, ZrO 2 0.4% ⁇ 3%, MgO 1% ⁇ 5%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass comprises: SiO 2 52%-63%, Al 2 O 3 23.1%-32.5%, Li 2 O 4%-7%, Na 2 O 2.5%-4.7%, K 2 O 0.01% ⁇ 2.5 %, B2O3 0.7% ⁇ 3.7 %, ZrO2 0.5 % ⁇ 1.7%, MgO 1% ⁇ 4%, P2O5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass comprises: SiO 2 53.5%-62%, Al 2 O 3 24%-30%, Li 2 O 4.5%-6%, Na 2 O 2.5%-4.7%, K 2 O 0.1% to 2%, B 2 O 3 1% to 2.5%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass comprises: SiO 2 53.5%-56%, Al 2 O 3 26.5%-30%, Li 2 O 4.5%-6%, Na 2 O 2.5%-4.7%, K 2 O 0.1% to 2%, B 2 O 3 1% to 2.5%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass comprises: SiO 2 50%-63%, Al 2 O 3 25.5%-30%, Li 2 O 4%-7%, Na 2 O 2.5%-4.7% , K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 ⁇ 2%.
  • the glass includes: SiO 2 50%-63%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2.5%-4.7%, K 2 O 0.01% ⁇ 3%, B 2 O 3 0.4% ⁇ 6%, ZrO 2 0.4% ⁇ 3%, MgO 1% ⁇ 5%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass includes: SiO 2 52%-63%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2.5%-4.7%, K 2 O0 .01% ⁇ 2.5%, B 2 O 3 0.7% ⁇ 3.7%, ZrO 2 0.5% ⁇ 1.7%, MgO 1% ⁇ 4%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2%.
  • the glass comprises: SiO 2 53.5%-62%, Al 2 O 3 26.5%-30%, Li 2 O 4.5%-6%, Na 2 O 2.5%-4.7%, K 2 O 0.1% to 2%, B 2 O 3 1% to 2.5%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass comprises: SiO 2 53.5%-56%, Al 2 O 3 23.1%-33%, Li 2 O 4%-7%, Na 2 O 1.5%-5.9% , K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 ⁇ 2%.
  • the glass includes: SiO 2 53.5%-56%, Al 2 O 3 23.1%-32.5%, Li 2 O 4%-7%, Na 2 O 2%-5.9%, K 2 O 0.01% ⁇ 2.5%, B 2 O 3 0.7% ⁇ 3.7%, ZrO 2 0.5% ⁇ 1.7%, MgO 1% ⁇ 4%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2% .
  • the glass includes: SiO 2 53.5%-56%, Al 2 O 3 24%-30%, Li 2 O 4.5%-6%, Na 2 O 2%-4.7%, K 2 O 0.1% to 2%, B 2 O 3 1% to 2.5%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass includes: SiO 2 53.5%-54.6%, Al 2 O 3 23.1%-33%, Li 2 O 4%-7%, Na 2 O 1.5%-5.9%, K 2 O 0.01% ⁇ 3%, B 2 O 3 0.4% ⁇ 6%, ZrO 2 0.4% ⁇ 3%, MgO 1% ⁇ 5%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass includes: SiO 2 53.5%-54.6%, Al 2 O 3 23.1%-32.5%, Li 2 O 4%-7%, Na 2 O 2%-5.9%, K 2 O 0.01 % ⁇ 2.5 %, B2O3 0.7% ⁇ 3.7 %, ZrO2 0.5 % ⁇ 1.7%, MgO 1% ⁇ 4%, P2O5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2% .
  • the glass includes: SiO 2 53.5%-54.6%, Al 2 O 3 24%-30%, Li 2 O 4.5%-6%, Na 2 O 2%-4.7%, K 2 O 0.1% to 2%, B 2 O 3 1% to 2.5%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass comprises: SiO 2 50%-63%, Al 2 O 3 23.1%-33%, Li 2 O 4%-7%, Na 2 O 1.5%-5.9% , K 2 O 0.01% to 3%, B 2 O 3 1% to 1.9%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 ⁇ 2%.
  • the glass includes: SiO 2 52%-63%, Al 2 O 3 23.1%-32.5%, Li 2 O 4%-7%, Na 2 O 2%-5.9%, K 2 O 0.01% ⁇ 2.5%, B 2 O 3 1% ⁇ 1.9%, ZrO 2 0.5% ⁇ 1.7%, MgO 1% ⁇ 4%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2% .
  • the glass includes: SiO 2 53.5%-62%, Al 2 O 3 24%-30%, Li 2 O 4.5%-6%, Na 2 O 2%-4.7%, K 2 O 0.1% to 2%, B 2 O 3 1% to 1.9%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass comprises: SiO 2 50%-63%, Al 2 O 3 24%-30%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 to 2%.
  • the glass includes: SiO 2 50%-63%, Al 2 O 3 24%-30%, Li 2 O 4%-7%, Na 2 O 2.5%-4.7%, K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3%, and ZnO 0 to 0% 2%, or, by mass percentage, the glass includes: SiO 2 50%-63%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.01% ⁇ 3%, B 2 O 3 0.4% ⁇ 6%, ZrO 2 0.4% ⁇ 3%, MgO 1% ⁇ 5%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO0 ⁇ 2%.
  • the glass includes: SiO 2 53.5%-62%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3%, and ZnO 0 to 0% 2%.
  • the glass includes: SiO 2 53.5%-62%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.01% ⁇ 2.5 %, B2O3 0.4% ⁇ 6 %, ZrO2 0.4% ⁇ 3 %, MgO 1% ⁇ 5 %, P2O5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass includes: SiO 2 53.5%-62%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.1% ⁇ 2 %, B2O3 0.4% ⁇ 6 %, ZrO2 0.4% ⁇ 3 %, MgO 1% ⁇ 5 %, P2O5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass includes: SiO 2 53.5%-62%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.1% to 1.1%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 to 2 %.
  • the glass comprises: SiO 2 50%-63%, Al 2 O 3 23.1%-33%, Li 2 O 4%-7%, Na 2 O 1.5%-5.9% , K 2 O 0.1% to 1.1%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3% and ZnO 0 ⁇ 2%.
  • the glass includes: SiO 2 52%-63%, Al 2 O 3 23.1%-32.5%, Li 2 O 4%-7%, Na 2 O 2%-5.9%, K 2 O 0.1% ⁇ 1.1%, B 2 O 3 0.7% ⁇ 3.7%, ZrO 2 0.5% ⁇ 1.7%, MgO 1% ⁇ 4%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2% .
  • the glass includes: SiO 2 53.5%-62%, Al 2 O 3 24%-30%, Li 2 O 4.5%-6%, Na 2 O 2%-4.7%, K 2 O 0.1% to 1.1%, B 2 O 3 1% to 2.5%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass includes: SiO 2 53.5%-56%, Al 2 O 3 25.5%-30%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.1% to 1.1%, B 2 O 3 1% to 1.9%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3%, and ZnO 0 to 0% 2%.
  • the glass includes: SiO 2 53.5%-56%, Al 2 O 3 25.5%-30%, Li 2 O 4%-7%, Na 2 O 2%-4.7%, K 2 O 0.1% ⁇ 1.1%, B2O3 1 % ⁇ 1.9 %, ZrO2 0.5 % ⁇ 1.7%, MgO 1% ⁇ 4%, P2O5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2 %.
  • the glass includes: SiO 2 53.5%-56%, Al 2 O 3 25.5%-30%, Li 2 O 4.5%-6%, Na 2 O 2%-4.7%, K 2 O 0.1% to 1.1%, B 2 O 3 1% to 1.9%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass includes: SiO 2 53.5%-56%, Al 2 O 3 26.5%-30%, Li 2 O 4.5%-6%, Na 2 O 2.5%-4.7%, K 2 O 0.1% to 1.1%, B 2 O 3 1% to 1.9%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the glass includes: SiO 2 53.5%-54.6%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2.5%-4.7%, K 2 O 0.1% to 1.1%, B 2 O 3 1% to 1.9%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0 to 4%, CaO 0 to 3%, and ZnO 0 to 0% 2%.
  • the glass includes: SiO 2 53.5%-54.6%, Al 2 O 3 26.5%-30%, Li 2 O 4%-7%, Na 2 O 2.5%-4.7%, K 2 O 0.1% ⁇ 1.1%, B 2 O 3 1% ⁇ 1.9%, ZrO 2 0.5% ⁇ 1.7%, MgO 1% ⁇ 4%, P 2 O 5 0 ⁇ 4%, CaO 0 ⁇ 3% and ZnO 0 ⁇ 2% .
  • the glass includes: SiO 2 53.5%-54.6%, Al 2 O 3 26.5%-30%, Li 2 O 4.5%-6%, Na 2 O 2.5%-4.7%, K 2 O 0.1% to 1.1%, B 2 O 3 1% to 1.9%, ZrO 2 0.5% to 1.5%, MgO 1% to 3%, P 2 O 5 0 to 1.7%, and CaO 0 to 1%.
  • the above glass has excellent chemical strengthening properties.
  • the compressive stress value at a depth of 30 microns is mainly due to the compressive stress value in the strengthened salt.
  • Li ions in Na ion-exchanged glass, so called CS Na30 exceeds 254MPa
  • CS Na50 the compressive stress value at 50 ⁇ m depth of tempered glass sample after being strengthened by mixed salt exceeds 187MPa
  • both CS Na30 and CS Na50 The value represents the overall situation of the compressive stress distribution in the direction of the stress depth to some extent.
  • the magnitude of these two values is used to evaluate the anti-drop effect of the strengthened Li-Al-Si glass, especially the anti-drop performance of rough ground.
  • the larger the value of the two the higher the anti-sandpaper drop height, but if it is too large, the central tensile stress will be too large, and self-explosion may occur.
  • the toughened Dol exceeds 115 ⁇ m
  • the surface K stress value exceeds 840MPa
  • the surface K stress depth exceeds 4.2 ⁇ m.
  • 3D hot-bending glass is made by pressing flat glass at a certain high temperature through a graphite mold, especially for small-sized glass of consumer electronics such as mobile phones, which have very high size requirements and are accurate to the micron level, such as graphite molds and glass. If the thermal expansion coefficient of the mold is the same, then theoretically, what size and shape the mold is made into, what size and shape will the final finished glass be; if the thermal expansion of the mold is larger than that of the glass, the glass will shrink due to the excessive shrinkage of the mold during the thermal bending and cooling process.
  • the preparation method of the above-mentioned glass includes float forming process, overflow down-draw method, lead-up method, flat-draw method, calendering method, etc. commonly used in the art.
  • the glass preparation process is as follows: weighing the above raw materials by mass percentage; then mixing the above raw materials, and melting at 1650° C. for 8 hours to obtain glass paste. The glass paste was then homogenized at 1500° C. for 1 h. Finally, the glass paste is formed by casting and molding, and then annealed to obtain glass. In one embodiment, the homogenized glass paste is poured on an iron mold that has been preheated at 450° C. to solidify the glass paste.
  • the preparation method of tempered glass includes the following steps: firstly, the glass is subjected to a first tempering treatment in a first mixed molten salt at a temperature of 390°C to 460°C for 1h to 3h, and then at a temperature of 380°C to 420°C.
  • the second tempering treatment is performed in the first mixed molten salt for 1 h to 4 h to prepare tempered glass.
  • the mass percentage of sodium nitrate is 40% to 70%, and the mass percentage of potassium nitrate is 30% to 60%.
  • the first mixed molten salt consists of sodium nitrate and potassium nitrate.
  • the mass percentage of sodium nitrate is 40%, 50%, 60% or 70%, and the mass percentage of potassium nitrate is 60%, 50%, 40% or 30%.
  • the mass percentage of sodium nitrate is 3% to 15%, and the mass percentage of potassium nitrate is 85% to 97%.
  • the second mixed molten salt consists of sodium nitrate and potassium nitrate.
  • the mass percentage of sodium nitrate is 3%, 5%, 8%, 10%, 12% or 15%, and the mass percentage of potassium nitrate is 97%, 95%, 92%, 90%, 88% % or 85%.
  • the temperature of the first mixed molten salt is 390°C, 400°C, 410°C, 420°C, 430°C, 440°C, 450°C, or 460°C.
  • the time of the first intensive treatment was 1h, 1.5h, 2h, 2.5h or 3h.
  • the temperature of the second mixed molten salt is 380°C, 390°C, 400°C, 410°C, or 420°C.
  • the time of the second chemical strengthening treatment is 1h, 1.5h, 2h, 2.5h, 3h, 3.5h or 4h.
  • the prepared strengthened glass has a thermal expansion coefficient of 57.64 ⁇ 10 -7 to 84.95 ⁇ 10 -7 , which is close to that of a graphite mold, and is more suitable for making 3D and complex glass products. High dimensional accuracy.
  • the CS Na30 of the glass treated by the above strengthening method exceeds 254MPa, the CS Na50 exceeds 187MPa or more, the Dol exceeds 115 ⁇ m, the surface K stress value exceeds 840MPa, and the surface K stress depth exceeds 4.2 ⁇ m.
  • the strengthened glass also has a surface Vickers hardness of more than 700HV, giving the glass excellent scratch resistance, a four-point bending strength of more than 740MPa, and a drop resistance of 180-grit sandpaper with a height of more than 170cm. Therefore, the above preparation method of tempered glass can prepare a tempered glass with a thermal expansion coefficient close to that of a graphite mold, which is more suitable for glass products with 3D and complex structures, and has excellent mechanical strength, scratch resistance and drop resistance. Can be used as protective glass in electronic products.
  • the tempered glass of one embodiment is produced by the method for producing tempered glass of the above-described embodiment.
  • the above tempered glass has a thermal expansion coefficient of 57.64 ⁇ 10 -7 to 84.95 ⁇ 10 -7 , which is close to that of a graphite mold, and is more suitable for making glass products with 3D and complex structures, with high dimensional accuracy.
  • the CS Na30 of the strengthened glass exceeds 254MPa
  • CS Na30 exceeds 187MPa
  • Dol exceeds 115 ⁇ m
  • the surface K stress value exceeds 840MPa
  • the surface K stress depth exceeds 4.2 ⁇ m.
  • the tempered glass also has a surface Vickers hardness of more than 700Hv, which endows the glass with excellent scratch resistance, a four-point bending strength of more than 740MPa, and a drop resistance of 180-grit sandpaper with a height of more than 170cm. Therefore, the above tempered glass has a thermal expansion coefficient close to that of graphite molds, which is more suitable for glass products with 3D and complex structures, and has excellent mechanical strength, scratch resistance and drop resistance. It can be used as protective glass in electronic products middle. The above tempered glass can be used as a protective glass for mobile phones, tablet computers or other mobile smart devices to avoid damage to electronic products due to accidental dropping.
  • the electronic product of one embodiment includes a protective glass, and the protective glass is the tempered glass of the above-mentioned embodiment.
  • the electronic product may be a mobile phone, a tablet computer, a digital camera, a locomotive, a solar energy, a deep water detector, and the like.
  • the above tempered glass has high surface hardness, high strengthening and good drop resistance, and can be used as a protective glass to avoid damage to electronic products due to accidental dropping.
  • Examples 1 to 24 and Comparative Examples 1 to 6 are designed according to the following table. After fully mixing, they were melted at 1650 ° C for 8 hours with a platinum crucible, and a platinum stirring paddle was used at the same time. Stir, after the stirring paddle is pulled out, the temperature is lowered to 1500 ° C, the temperature is kept for 1 h to homogenize, and the glass block is cast on an iron mold to form a glass block of about 80 mm ⁇ 160 mm. The mold is preheated to 450 ° C before casting. Annealing in an annealing furnace (annealing temperature is 590° C.), holding for 2 hours, then cooling to 140° C. for 6 hours, naturally cooling, taking it out for later use, and obtaining the glasses of Examples 1 to 24 and Comparative Examples 1 to 6.
  • annealing temperature is 590° C.
  • the glass obtained in the above Examples 1 to 30 and Comparative Examples 1 to 7 was processed into a double-sided polished glass sheet of 50 mm ⁇ 50 mm ⁇ 0.7 mm for chemical strengthening through two-step salt mixing: in the first step of chemical strengthening , the mass percentage of 40% to 70% of NaNO 3 and 30% to 60% of KNO 3 mixed melt at 390 °C ⁇ 460 °C temperature, soaked for 60 minutes to 180 minutes; the second step of chemical strengthening, transferred to the mass percentage of 3% ⁇ 15% NaNO 3 and 85% ⁇ 97% KNO 3 mixed melt at 380 °C ⁇ 420 °C temperature, soak for 60 minutes ⁇ 240 minutes, obtain Example 1 ⁇ Example 30 and Comparative Example 1 ⁇ Comparative Example 7 tempered glass.
  • the specific process parameters in the chemical strengthening process of each embodiment and comparative example are shown in Table 1 below.
  • the glasses prepared in the above Examples 1 to 30 and Comparative Examples 1 to 7 were processed into The thermal expansion curve of the glass sample was measured with a NETZSCH-DIL 402 PC at a heating rate of 4 °C/min, and the strain point temperature T g and the expansion softening point T of the glass sample were measured through the built-in software. d and the coefficient of thermal expansion CTE in the range of 20°C to 300°C and recorded in the table.
  • the tempered glass prepared in Examples 1 to 30 and Comparative Examples 1 to 7 was measured by the stress tester FSM6000UV and SLP1000 of Japan Orihara to measure its surface stress value CS K , that is, the surface compressive stress formed by Na-K ion exchange.
  • CS Na30 compressive stress value at a depth of 30 ⁇ m
  • CS Na50 compressive stress value at a depth of 50 ⁇ m
  • DOL the depth of the maximum compressive stress layer, that is, the depth of the compressive stress layer formed by Li-Na ion exchange
  • DOL K the depth of the surface stress layer, That is, the depth of the compressive stress layer formed by Na-K ion exchange.
  • the glass samples of Examples 1 to 30 and Comparative Examples 1 to 7 were cut into glass pieces of 70mm ⁇ 140mm ⁇ 0.7mm by the STX-1203 wire cutting machine of Shenyang Kejing, and passed through the HD-640- The 5L double-sided grinding and polishing machine is thinned and polished, and then CNC edged, cleaned, and chemically strengthened by the above two-step mixed salt. Then, the chemically strengthened glass was tested for surface Vickers hardness by FALCON400 hardness tester from Holland, PT-307A universal testing machine for four-point bending strength and GP-2112-T directional drop tester from Shenzhen Goupin Test the drop height of 180 grit sandpaper and record it in the table below.
  • the mass percentage of each component of the glass in Examples 1 to 12 is as follows: SiO 2 50%-63%, Al 2 O 3 23.1%-33%, Li 2 O 4%-7% %, Na 2 O 1.5% to 5.9%, K 2 O 0.01% to 3%, B 2 O 3 0.4% to 6%, ZrO 2 0.4% to 3%, MgO 1% to 5%, P 2 O 5 0-4%, CaO 0-3% and ZnO 0-2%.
  • the glass with the above-mentioned component characteristics has 57.64 ⁇ 10-7 ⁇ 84.95 at 20°C ⁇ 300°C
  • the thermal expansion coefficient of ⁇ 10 -7 is close to the thermal expansion coefficient of graphite molds, which is more suitable for making 3D and complex glass products with high dimensional accuracy.
  • the glass has excellent chemical strengthening properties.
  • the tempered CS Na30 exceeds 254MPa, CS Na30 exceeds 187MPa, Dol exceeds 115 ⁇ m, the surface K stress value exceeds 840MPa, and the surface K stress depth exceeds 4.2 ⁇ m; the tempered glass has more than 700Hv
  • the surface Vickers hardness of 100% endows the glass with excellent scratch resistance and has a four-point bending strength of over 740MPa and a drop resistance of 180-grit sandpaper with a height of more than 170cm.
  • the mass percentages of each component of the glass in Examples 13 to 18 are as follows: SiO 2 52%-63%, Al 2 O 3 24%-32.5%, Li 2 O 4%- 7%, Na 2 O 2% to 5.9%, K 2 O 0.01% to 2.5%, B 2 O 3 0.7% to 3.7%, ZrO 2 0.5% to 1.7%, MgO 1% to 4%, P 2 O 5 0-1.7%, CaO 0-0.6% and ZnO 0-2%.
  • the glasses with the above-mentioned component characteristics have 61.36 ⁇ 10 ⁇ 7 to 79.94 ⁇ 10 ⁇
  • the thermal expansion coefficient of 7 is more suitable for glass products with 3D and complex structures, and the dimensional accuracy is high.
  • the glass has excellent chemical strengthening properties.
  • the tempered CS Na30 exceeds 280MPa, CS Na50 exceeds 189MPa, Dol exceeds 115 ⁇ m, the surface K stress value exceeds 850MPa, and the surface K stress depth exceeds 4.2 ⁇ m; the tempered glass has more than 700HV
  • the surface Vickers hardness of 100% endows the glass with excellent scratch resistance and has a four-point bending strength of over 800MPa and a drop resistance of 180-grit sandpaper with a height of more than 180cm.
  • the mass percentages of each component of the glass in Examples 19 to 24 are as follows: SiO 2 53.5%-62%, Al 2 O 3 24%-30%, Li 2 O 4.5%-6%, Na 2 O 2% ⁇ 4.7%, K 2 O 0.1% ⁇ 2%, B 2 O 3 1% ⁇ 2.5%, ZrO 2 0.5% ⁇ 1.5%, MgO 1% ⁇ 3%, P 2 O 5 0 ⁇ 4% and CaO0 to 1%.
  • the glasses with the above-mentioned compositional characteristics have 63.58 ⁇ 10 ⁇ 7 to 78.21 ⁇ 10 ⁇
  • the thermal expansion coefficient of 7 is more suitable for glass products with 3D and complex structures, and the dimensional accuracy is high.
  • the glass has excellent chemical strengthening properties.
  • the tempered CS Na30 exceeds 300MPa, CS Na50 exceeds 220MPa, Dol exceeds 122 ⁇ m, the surface K stress value exceeds 860MPa, and the surface K stress depth exceeds 5.2 ⁇ m; the tempered glass has more than 710HV
  • the surface Vickers hardness of 100% endows the glass with excellent scratch resistance and has a four-point bending strength of more than 850MPa and a drop resistance of 180-grit sandpaper with a height of more than 190cm.
  • CS K surface stress value, that is, the surface compressive stress formed by Na-K ion exchange
  • DOL the depth of the maximum compressive stress layer, that is, the depth of the compressive stress layer formed by Li-Na ion exchange;
  • DOL K the depth of the surface stress layer, that is, the depth of the compressive stress layer formed by Na-K ion exchange.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

一种玻璃、强化玻璃及其制备方法和电子产品。按质量百分比计,上述玻璃包括:SiO250%~63%、Al2O323.1%~33%、Li2O 4%~7%、Na2O 1.5%~5.9%、K2O 0.01%~3%、B2O30.4%~6%、ZrO20.4%~3%、MgO 1%~5%、P2O50~4%、CaO 0~3%及ZnO 0~2%。通过调整组成及配比,使得玻璃经强化处理后拥有超过700HV的表面维氏硬度,赋予了玻璃优良的耐刮檫性能且具备超过740MPa的四点弯曲强度和170cm以上高度的耐180目砂纸跌落的能力,具有优良的耐刮擦性能和抗摔落性能。

Description

玻璃、强化玻璃及其制备方法和电子产品 技术领域
本发明涉及玻璃领域,特别是涉及一种玻璃、强化玻璃及其制备方法和电子产品。
背景技术
薄板玻璃是一种用来保护显示器件的显示面板且不影响其显示效果的部件,显示器件例如便携式电话、掌上电脑(PDA)、数码相机、平板显示器(FPD)等。近年来,随着显示器件向更加薄型、高功能化的趋势发展,对玻璃的机械强度提出了更高的要求。因此,一般地,会对薄板玻璃进一步化学强化处理,得到钢化玻璃以提高玻璃的机械性能。
这种钢化玻璃例如通过离子交换处理来进行化学强化。离子交换处理通常为下述方法:将玻璃浸渍到温度为350℃~550℃左右的含有钾和/或钠的熔融盐中,由此使玻璃表面的钠离子、锂离子与离子交换盐中的钾离子或钠离子交换,在玻璃表面形成压缩应力层。由此,作为制造钢化玻璃的玻璃材料,开发了各种组成的玻璃。
目前的玻璃盖板市场主要以(硼)铝硅玻璃和锂(硼)铝硅玻璃为主,如康宁的Gorilla玻璃、NEG的T2X-1、旭硝子的龙迹玻璃和国内旭虹的熊猫玻璃及南玻的KK3玻璃等。但传统的玻璃经强化后,虽然具有一定的强度,在进行粗糙地面整机跌落测试时,具有160cm以上高度的耐180目砂纸跌落的能力。但玻璃的表面硬度较低,容易出现刮擦,用于移动设备保护玻璃时仍不能起到很好的保护作用。
发明内容
基于此,有必要提供一种兼具较高的表面硬度、力学强度高且抗摔落性能好的玻璃。
此外,还提供一种强化玻璃及制备方法和电子产品。
一种玻璃,按质量百分比计,包括:SiO 250%~63%、Al 2O 323.1%~33%、Li 2O4%~7%、Na 2O 1.5%~5.9%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。
在其中一个实施例中,在所述玻璃中,5.9%≤所述Li 2O质量百分比、所述Na 2O质量百分比和所述K 2O质量百分比之和≤12%。
在其中一个实施例中,7%≤所述Li 2O质量百分比、所述Na 2O质量百分比和所述K 2O质量百分比之和≤10.5%。
在其中一个实施例中,在所述玻璃中,所述SiO 2的质量百分比为52%~63%;及/或,所述Al 2O 3的质量百分比为23.1%~32.5%;及/或,所述Na 2O的质量百分比为2%~5.9%;及/或,所述ZrO 2的质量百分比为0.5%~1.7%。
在其中一个实施例中,所述SiO 2的质量百分比为53.5%~62%;及/或,所述Al 2O 3的质量百分比为24%~30%;及/或,所述Li 2O的质量百分比为4.5%~6%;及/或,所述Na 2O的质量百分比为2%~4.7%;及/或,所述ZrO 2的质量百分比为0.5%~1.5%。
在其中一个实施例中,所述Al 2O 3的质量百分比为26.5%~30%;及/或,所述Na 2O的质量百分比为2.5%~4.7%。
在其中一个实施例中,在所述玻璃中,所述K 2O的质量百分比为0.01%~2.5%;及/或,所述B 2O 3的质量百分比为0.7%~3.7%;及/或,所述MgO的质量百分比为1%~4%。
在其中一个实施例中,所述K 2O的质量百分比为0.1%~2%;及/或,所述B 2O 3的质量百分比为1%~2.5%;及/或,所述MgO的质量百分比为1%~3%。
一种强化玻璃的制备方法,包括如下步骤:先将玻璃在390℃~460℃的第一混合熔融盐中进行强化处理1h~3h,然后在温度为380℃~420℃的第一混合熔融盐中进行强化处理1h~4h,制备强化玻璃,所述玻璃为上述的玻璃。
在其中一个实施例中,在所述第一混合熔融盐中,硝酸钠的质量百分比为40%~70%,硝酸钾的质量百分比为30%~60%;及/或,在所述第二混合熔融盐中,硝酸钠的质量百分比为3%~15%,硝酸钾的质量百分比为85%~97%。
一种强化玻璃,由上述的强化玻璃的制备方法制备得到。
一种电子产品,包括保护玻璃,所述保护玻璃为上述的强化玻璃。
上述玻璃通过调整组成及配比,使得由上述玻璃经钢化处理后,具有超过700HV的表面维氏硬度,赋予了玻璃优异的耐刮檫性能,且玻璃具备超过740MPa的四点弯曲强度和170cm以上高度的耐180目砂纸跌落的能力。因此,上述玻璃经化学强化后兼具较高的表面硬度、力学强度和抗摔落性能。
具体实施方式
为了便于理解本发明,下面将结合具体实施方式对本发明进行更全面的描述。具体实施方式中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体地实施例的目的,不是旨在于限制本发明。
一实施方式的玻璃,按质量百分比计,包括:SiO 250%~63%、Al 2O 323.1%~33%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。
其中,SiO 2是重要的玻璃形成氧化物,是形成玻璃骨架所必需的成分。SiO 2能提高玻璃的强度、化学稳定性等,可以使玻璃获得更高的应变点和较低的热膨胀系数。若SiO 2的质量百分比不足50%,玻璃主体网络结构较差,机械性能不佳,且耐候性变差;若SiO 2的质量百分比超过63%,玻璃在生产过程中熔制温度过高,能耗增加,且容易造成频繁的气泡、结石等缺陷,同时硅氧骨架结构比例偏高,网络间隙较小,不利于化学强化离子交换,影响化学增强的效率。因此,在本实施方式中,SiO 2的质量百分比为50%~63%。在其中一个实施例中,SiO 2的质量百分比为50%、52%、53%|、54%、56%、58%、60%、62%或63%。优选地,SiO 2的质量百分比为52%~63%,更优选地,SiO 2的质量百分比为53.5%~62%。进一步地,SiO 2的质量百分比为53.5%~56%。进一步优选地,SiO 2的质量百分比为53.5%~54.6%。
Al 2O 3能参与玻璃网络中,起网络生成体的作用,且Al 2O 3还能降低玻璃的结晶倾向,提高玻璃的化学稳定性、热稳定性、机械强度和硬度等性能。Al 2O 3也是提高玻璃的拉伸弹性模量的必要成分,但是会增加玻璃粘度,如果Al 2O 3过多,就难以得到料性长的玻璃,使玻璃成型较为困难。此外,玻璃中的Al 3+倾向于形成铝氧四面体网络[AlO 4],这比硅氧四面体[SiO 4]网络要大得多,留下较大的空隙作为离子扩散的通道,因此玻璃中高的Al 2O 3含量能促进碱金属离子的迁移和置换速率,Al 2O 3含量越高,骨架网络的间隙越大,越有利于离子交换,然而热膨胀系数却不会因为其含量过高而进一步降低,相反,Al 2O 3含量越高,玻璃的高温黏度明显增大,生产过程中熔制温度过高,能耗增加,同样不利于控制气泡、结石等缺陷。然而,Al 2O 3含量偏低时,网络空间的空隙变小,不利于离子迁移,严重影响化学增强的效率。
因此,综合考虑上述各种因素,在本实施方式中,Al 2O 3的质量百分比为23.1%~33%。在其中一个实施例中,Al 2O 3的质量百分比为23.1%、23.5%、24%、25%、28%、30%、32%或33%。优选地,Al 2O 3的质量百分比为23.1%~32.5%。更优选地,Al 2O 3的质量百分比为24%~30%。进一步地,Al 2O 3的质量百分比为25.5%~30%。进一步地,Al 2O 3的质量百分比为26.5%~30%。
B 2O 3是硼铝硅酸盐玻璃的重要组分之一,属于形成体氧化物,能降低铝硅酸盐玻璃的热膨胀系数,提高铝硅酸盐玻璃的热稳定性和化学稳定性。B 2O 3的含量太高,在高温下由于其降低粘度的作用导致硼挥发严重,同时B 2O 3的含量过高会缩窄成型温度,给硼铝硅酸盐玻璃拉管成型中对壁厚、管径精度控制带来困难。另外,当B 2O 3引入量过高时,由于硼氧三角体[BO 3]增多,硼铝硅酸盐玻璃的膨胀系数等反而增大,发生反常现象,B 2O 3含量过高时,玻璃的离子交换能力显著降低。因此,综合考虑各种因素,在本实施方式中,B 2O 3的质量百分比为0.4%~6%。在其中一个实施例中,B 2O 3的质量百分比为0.4%、0.7%、1%、2%、2.5%、3%、3.7%、4%、5%或6%。优选地,B 2O 3的质量百分比为0.7%~3.7%,更优选地,B 2O 3的质量百分比为1%~2.5%。进一步优选地,B 2O 3的质量百分比为1%~1.9%。
Li 2O是理想的助熔剂,也是进行离子交换的主要成分。由于Li +的极化特性, 在高温下能有效降低高温黏度,且Li +的半径较小,可以填充在玻璃体空气中,平衡游离氧,适当的Li 2O可以显著增强玻璃体的机械强度、表面硬度和抗化学侵蚀性等。在后续强化工艺中使用NaNO 3与KNO 3的混合熔盐进行离子交换,通过玻璃中Li +与熔盐中Na +进行离子交换,可以在较短的时间内提升压应力层深度,使玻璃具有更加优异的抗冲击性能。若Li 2O的质量百分比低于4%,则玻璃基本难以获得更高的应力层深度;若Li 2O的质量百分比高于7%,增加了玻璃制造成本,玻璃膨胀系数显著增大,且玻璃析晶倾向过高,玻璃生成结石缺陷的概率明显增加。因此,在本实施方式中,Li 2O的质量百分比为4%~7%。在其中一个实施例中,Li 2O的质量百分比为4%、4.5%、5%、5.5%、6%、6.5%或7%。优选地,Li 2O的质量百分比为4.5%~6%。
Na 2O是硼铝硅酸盐玻璃网络外体氧化物,能提供游离氧使Si-O键断开,从而降低铝硅酸盐玻璃的粘度和熔制温度。Na 2O的含量过高,会增大热膨胀系数,降低化学稳定性,且Na 2O挥发量增大,导致铝硅酸盐玻璃成分不均一。Na 2O的含量过低,不利于玻璃的熔制和成型,且不利于Na离子与K离子的化学交换而不利于在玻璃表面形成压应力层,不能起到增强玻璃机械强度的目的。且Na 2O成分在钢化时承担与熔融盐中的K离子交换来形成玻璃表面的压应力的作用,直接影响玻璃的强度性能。因此,综合考虑上述各因素,在本实施方式中,Na 2O的质量百分比为1.5%~5.9%。在其中一个实施例中,Na 2O的质量百分比为1.5%、2%、3%、4%、4.7%、5%、5.5%或5.9%。优选地,Na 2O的质量百分比为2%~5.9%,更优选地,Na 2O的质量百分比为2%~4.7%。进一步地优选地,Na 2O的质量百分比为2.5%~4.7%。
K 2O和Na 2O同属于碱金属氧化物,在玻璃结构中的作用类似,以少量K 2O取代Na 2O能发挥“混合碱效应”,使玻璃的一系列性能变好,是用于提高熔融性质和用于在化学强化中提高离子交换率以获得所需表面压缩应力和应力层深度的组分。若K 2O的含量过高,则玻璃的耐候性会降低。在本实施方式中,通过对玻璃中碱金属含量的分析,K 2O的质量百分比设置为0.01%~3%。在其中一个实施例中,K 2O的质量百分比为0.01%、0.1%、0.5%、1%、1.5%、2%、2.5%或3%。优选地,K 2O的质量百分比为0.01%~2.5%。更优选地,K 2O的质量百 分比为0.1%~2%。进一步地优选地,K 2O的质量百分比为0.1%~1.1%。
MgO是一种网络外体氧化物,MgO有助于降低玻璃熔点,高温时能降低玻璃的黏度,促进玻璃的熔化和澄清,改善均匀性,增加抗水解性。MgO也能使玻璃趋于稳定,提高玻璃的耐久性,防止玻璃产生结晶,抑制玻璃中碱金属离子的移动,也同样具有提高玻璃弹性模量的功能。MgO在低温下可以增强玻璃网络空间的稳定性,一定程度上可以降低玻璃的热膨胀系数,但其对离子交换存在阻碍的作用,若MgO的质量百分比高于5%,Mg 2+严重阻碍玻璃的离子交换能力,导致压应力层深度明显减小。因此,综合考虑,在本实施方式中,MgO的质量百分比为1%~5%。在其中一个实施例中,MgO的质量百分比为1%、2%、3%、4%或5%。优选地,MgO的质量百分比为1%~4%。更优选地,MgO的质量百分比为1%~3%。
CaO能够使硅氧四面体[SiO 4]所形成的网络松弛、断裂,改善玻璃在高温下的熔融性质或使玻璃不易失透,但CaO含量过多会影响铝硅酸盐玻璃的耐候性,且严重阻碍离子交换的进行。因此,在本实施方式中,CaO的质量百分比为0~3%。优选地,CaO的质量百分比为0~1%。更优选地,CaO的质量百分比为0~0.6%。
ZnO属于二价金属氧化物行列,同样具有碱土金属氧化物的作用,在硅酸盐玻璃体系中,加入部分的ZnO物料,可有效降低玻璃的熔化温度,降低玻璃的转变温度T g,同时还可以提高玻璃基体的耐碱性。在铝硅酸盐玻璃体中,ZnO常处于[ZnO 6]和[ZnO 4]两种配位体中,[ZnO 4]随碱含量的增高而增大,增加玻璃的析晶倾向。在本实施方式中,采用部分氧化锌取代氧化钙和氧化镁,有利于维持玻璃化学稳定性的同时还能促进离子交换的快速进行。因此,ZnO的质量百分比为0~2%。更优选地,玻璃中不含有ZnO。
ZrO 2在硅酸盐玻璃中主要是以立方体[ZrO 8]配位形式存在,由于离子半径较大,在玻璃结构中属网络外体,且其在玻璃中溶度较小,会显著增加玻璃黏度,因此其添加量不宜超过3%。适量的ZrO 2可以提高玻璃的耐酸碱性能和折射率,因此,在本实施方式中,ZrO 2的质量百分比为0.4%~3%。在其中一个实施例中,ZrO 2的质量百分比为0.4%、0.5%、1%、1.5%、2%、2.5%或3%。优选地,ZrO 2 的质量百分比为0.5%~1.7%。更优选地,ZrO 2的质量百分比为0.5%~1.5%。
一般在Al 2O 3的含量较低时,引入一定量的P 2O 5,它进入玻璃网络,使网络空隙比铝氧四面体更大,因此能显著增加离子交换的能力。更为重要的是,P 2O 5的引入可以进一步提高玻璃的应变点,能起到一定程度的减缓离子交换过程中的应力松弛问题,使强化后的表面压应力值获得较高水平。然而,过多的P 2O 5的引入,使玻璃的热膨胀系数明显增大,反而导致表面压应力值降低。因此,在本实施方式中,P 2O 5的质量百分比为0%~4%。优选地,P 2O 5的质量百分比为0%~1.7%。更优选地,P 2O 5的质量百分比为0%~1%。
进一步地,Li 2O质量百分比、Na 2O质量百分比和K 2O质量百分比之和≥5.9%。更进一步地,Li 2O质量百分比、Na 2O质量百分比和K 2O质量百分比之和≥7%。更进一步地,Li 2O质量百分比、Na 2O质量百分比和K 2O质量百分比之和≤12%。更进一步地,Li 2O质量百分比、Na 2O质量百分比和K 2O质量百分比之和≤10.5%。
在本实施方式中,玻璃为高铝硅酸盐玻璃,强度较高,主要有两方面:一方面是玻璃本体结构,铝硅酸盐由于其含有大于20%的Al 2O 3含量,与SiO 2一起形成稳定的玻璃结构,在玻璃结构间隙中填充着小尺寸的Li离子,增加了玻璃结构密度等,赋予了其玻璃本体的高硬度、高强度和抗冲击性;另一方面锂铝硅玻璃通过其Li-Na离子交换形成超过100微米深度的压应力层,在通过Na-K交换在玻璃表面形成超过700MPa,甚至800-1000MPa的压应力,大大增强了玻璃的耐刮擦和抗跌落性能,尤其是粗糙地面的抗跌落性能。这是传统玻璃无法做到的,普通钠钙玻璃的应力深度在10微米左右,高铝硅玻璃在40微米左右,而锂铝硅酸盐玻璃可以做到100微米以上的应力深度。
在其中一个实施例中,按质量百分比计,玻璃包括:SiO 252%~63%、Al 2O 323.1%~32.5%、Li 2O 4%~7%、Na 2O 2%~5.9%、K 2O 0.01%~2.5%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO 1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。实验证明,上述组成的玻璃,具有61.36×10 -7~79.94×10 -7的热膨胀系数,更适合制成3D及复杂结构的玻璃制品,尺寸精确度高。另外,玻璃具有优异的化学强化性能,其钢化后的CS Na30超过280MPa,CS Na50超过189MPa,Dol超过115μm,表面K 应力值超过850MPa,表面K应力深度超过4.2μm;钢化后的玻璃拥有超过700Hv的表面维氏硬度,赋予了玻璃优异的耐刮檫性能且具备超过800MPa的四点弯曲强度和180cm以上高度的耐180目砂纸跌落的能力。
进一步地,SiO 2的质量百分比为53.5%~62%。Al 2O 3的质量百分比为24%~30%。Li 2O的质量百分比为4.5%~6%。Na 2O的质量百分比为2%~4.7%。K 2O的质量百分比为0.1%~2%。B 2O 3的质量百分比为1%~2.5%。ZrO 2的质量百分比为0.5%~1.5%。MgO的质量百分比为1%~3%。
进一步地,在其中一个实施例中,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 324%~30%、Li 2O 4.5%~6%、Na 2O 2%~4.7%、K 2O 0.1%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。实验证明,具有上述组分特征的玻璃在20℃~300℃具有63.58×10 -7~78.21×10 -7的热膨胀系数,更适合制成3D及复杂结构的玻璃制品,尺寸精确度高。另外,玻璃具有优异的化学强化性能,其钢化后的CS Na30超过300MPa,CS Na50超过220MPa,Dol超过122μm,表面K应力值超过860MPa,表面K应力深度超过5.2μm;钢化后的玻璃拥有超过710Hv的表面维氏硬度,赋予了玻璃优异的耐刮檫性能且具备超过850MPa的四点弯曲强度和190cm以上高度的耐180目砂纸跌落的能力。
在一些实施例中,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 324%~30%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 325.5%~30%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更优地,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO0~2%。进一步地,按质量百分比计,玻璃包括:52%~63%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O 2%~5.9%、K 2O 0.01%~2.5%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO 1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地, 按质量百分比计,玻璃包括:53.5%~62%、Al 2O 326.5%~30%、Li 2O 4.5%~6%、Na 2O 2%~4.7%、K 2O 0.1%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。更进一步地,按质量百分比计,玻璃包括:53.5%~56%、Al 2O 326.5%~30%、Li 2O 4.5%~6%、Na 2O 2%~4.7%、K 2O 0.1%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。
在另一些实施例中,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 323.1%~33%、Li 2O 4%~7%、Na 2O 2%~4.7%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。优选地,按质量百分比计,玻璃包括:SiO 252%~63%、Al 2O 323.1%~32.5%、Li 2O 4%~7%、Na 2O 2%~4.7%、K 2O 0.01%~2.5%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 323.1%~32.5%、Li 2O 4%~7%、Na 2O 2%~4.7%、K 2O 0.01%~2.5%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO 1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 323.1%~32.5%、Li 2O 4.5%~6%、Na 2O 2.5%~4.7%、K 2O0.01%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~4%、CaO0~3%及ZnO 0~2%。
进一步地,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 323.1%~33%、Li 2O 4%~7%、Na 2O 2.5%~4.7%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。优选地,按质量百分比计,玻璃包括:SiO 252%~63%、Al 2O 323.1%~32.5%、Li 2O 4%~7%、Na 2O 2.5%~4.7%、K 2O 0.01%~2.5%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO 1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更优地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 324%~30%、Li 2O 4.5%~6%、Na 2O 2.5%~4.7%、K 2O 0.1%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。更优地,按质量百分比计,玻璃包括:SiO 253.5%~56%、Al 2O 326.5%~30%、Li 2O 4.5%~6%、Na 2O 2.5%~4.7%、K 2O 0.1%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。
在另一些实施例中,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 325.5%~30%、Li 2O 4%~7%、Na 2O 2.5%~4.7%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O 2.5%~4.7%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 252%~63%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O 2.5%~4.7%、K 2O0.01%~2.5%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO 1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更优地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 326.5%~30%、Li 2O 4.5%~6%、Na 2O 2.5%~4.7%、K 2O 0.1%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。
在另一些实施例中,按质量百分比计,玻璃包括:SiO 253.5%~56%、Al 2O 323.1%~33%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 253.5%~56%、Al 2O 323.1%~32.5%、Li 2O 4%~7%、Na 2O 2%~5.9%、K 2O 0.01%~2.5%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~56%、Al 2O 324%~30%、Li 2O 4.5%~6%、Na 2O 2%~4.7%、K 2O 0.1%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。
进一步地,按质量百分比计,玻璃包括:SiO 253.5%~54.6%、Al 2O 323.1%~33%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 253.5%~54.6%、Al 2O 323.1%~32.5%、Li 2O4%~7%、Na 2O 2%~5.9%、K 2O 0.01%~2.5%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO 1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~54.6%、Al 2O 324%~30%、Li 2O 4.5%~6%、Na 2O2%~4.7%、K 2O 0.1%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 5 0~1.7%及CaO 0~1%。
在另一些实施例中,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 323.1%~33%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O 0.01%~3%、B 2O 31%~1.9%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 252%~63%、Al 2O 323.1%~32.5%、Li 2O 4%~7%、Na 2O 2%~5.9%、K 2O 0.01%~2.5%、B 2O 31%~1.9%、ZrO 20.5%~1.7%、MgO1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 324%~30%、Li 2O 4.5%~6%、Na 2O 2%~4.7%、K 2O 0.1%~2%、B 2O 31%~1.9%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。
在一些实施例中,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 324%~30%、Li 2O 4%~7%、Na 2O 2%~4.7%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 324%~30%、Li 2O 4%~7%、Na 2O2.5%~4.7%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%,或者,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O 2%~4.7%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO0~2%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O 2%~4.7%、K 2O 0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 326.5%~30%、Li 2O4%~7%、Na 2O 2%~4.7%、K 2O 0.01%~2.5%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O2%~4.7%、K 2O 0.1%~2%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O 2%~4.7%、K 2O 0.1%~1.1%、 B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO0~2%。
在另一些实施例中,按质量百分比计,玻璃包括:SiO 250%~63%、Al 2O 323.1%~33%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O 0.1%~1.1%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 252%~63%、Al 2O 323.1%~32.5%、Li 2O 4%~7%、Na 2O 2%~5.9%、K 2O 0.1%~1.1%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~62%、Al 2O 324%~30%、Li 2O 4.5%~6%、Na 2O 2%~4.7%、K 2O 0.1%~1.1%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。
更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~56%、Al 2O 325.5%~30%、Li 2O 4%~7%、Na 2O 2%~4.7%、K 2O 0.1%~1.1%、B 2O 31%~1.9%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 253.5%~56%、Al 2O 325.5%~30%、Li 2O 4%~7%、Na 2O 2%~4.7%、K 2O 0.1%~1.1%、B 2O 31%~1.9%、ZrO 20.5%~1.7%、MgO 1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~56%、Al 2O 325.5%~30%、Li 2O 4.5%~6%、Na 2O 2%~4.7%、K 2O0.1%~1.1%、B 2O 31%~1.9%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~56%、Al 2O 326.5%~30%、Li 2O 4.5%~6%、Na 2O 2.5%~4.7%、K 2O 0.1%~1.1%、B 2O 31%~1.9%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。
更进一步地,按质量百分比计,玻璃包括:SiO 253.5%~54.6%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O 2.5%~4.7%、K 2O 0.1%~1.1%、B 2O 31%~1.9%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。进一步地,按质量百分比计,玻璃包括:SiO 253.5%~54.6%、Al 2O 326.5%~30%、Li 2O 4%~7%、Na 2O 2.5%~4.7%、K 2O 0.1%~1.1%、B 2O 31%~1.9%、ZrO 20.5%~1.7%、MgO1%~4%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。更进一步地,按质量百分比计, 玻璃包括:SiO 253.5%~54.6%、Al 2O 326.5%~30%、Li 2O 4.5%~6%、Na 2O2.5%~4.7%、K 2O 0.1%~1.1%、B 2O 31%~1.9%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~1.7%及CaO 0~1%。
上述玻璃至少具有以下优点:
(1)上述玻璃经钢化处理后,拥有超过700HV的表面维氏硬度,赋予了玻璃优异的耐刮檫性能且具备超过740MPa的四点弯曲强度和170cm以上高度的耐180目砂纸跌落的能力,具有优异的耐刮擦性能和抗摔落性能。
(2)上述玻璃具有优异的化学强化性能,其钢化后的CS Na30(强化玻璃样品经过混合盐强化后,其30微米深度位置的压应力值,由于其压应力值主要是通过强化盐中的Na离子交换玻璃中的Li离子,因此叫做CS Na30)超过254MPa,CS Na50(强化玻璃样品经过混合盐强化后,其50微米深度位置的压应力值)超过187MPa,CS Na30和CS Na50这两个值某种程度上代表了应力深度方向的压应力分布的整体情况,通过这两个值的大小来评估强化后的锂铝硅玻璃在抗跌落效果,尤其是粗糙地面的抗跌落性能,在一定范围内,二者值越大,抗砂纸跌落高度越高,但太大了,会导致中心张应力会过大,可能发生自爆。钢化后的Dol超过115μm,表面K应力值超过840MPa,表面K应力深度超过4.2μm。
(3)3D热弯玻璃是通过石墨模具对平片玻璃在一定高温下进行压制而成的,尤其是手机等消费电子小尺寸玻璃对尺寸要求非常高,精确到微米级,如石墨模具和玻璃的热膨胀系数一致,那么理论上讲模具做成什么尺寸和形状,最终的成品玻璃就是什么尺寸和形状;如模具的热膨胀比玻璃大,玻璃会由于模具热弯冷却过程的过度收缩,而导致玻璃受挤压而破裂或变形,如模具的热膨胀比玻璃小,玻璃会在冷却过程的而过度收缩,尺寸小于目标尺寸,需要在设计上做出补偿,导致工艺控制难度大大增加,因此玻璃和石墨的热膨胀系数越接近约有利于3D热弯的尺寸和形状控制。在本实施方式中,上述玻璃通过调整玻璃的组成及配比,使得玻璃在经过化学钢化处理后,钢化后的玻璃具有57.64×10 -7~84.95×10 -7的热膨胀系数,热膨胀系数与石墨模具的热膨胀系数接近,更适合制成3D及复杂结构的玻璃制品,尺寸精确度高。
具体地,上述玻璃的制备方法包括本领域常用的浮法成形工艺、溢流下拉 法、引上法、平拉法、压延法等。
在其中一个实施例中,玻璃的制备过程具体如下:按质量百分比计,称取上述原料;然后将上述原料混合,并在1650℃下进行熔制8h,得到玻璃浆料。再将玻璃浆料在1500℃下进行均化处理1h。最后采用浇注成型的方式将玻璃浆料成型,再经退火处理,得到玻璃。在其中一个实施例中,将经过均化处理的玻璃浆料浇注在经过450℃预热后的铁质模具上,使玻璃浆料固化成型。
可以理解,上述仅列出了一种常用的玻璃的制备方法,但并不限于此,本领域常用的玻璃的制备方法均可以用于本实施方式中。
一实施方式的强化玻璃的制备方法,包括如下步骤:先将玻璃在390℃~460℃的第一混合熔融盐中进行第一次强化处理1h~3h,然后在温度为380℃~420℃的第一混合熔融盐中进行第二次强化处理1h~4h,制备强化玻璃。
其中,第一混合熔融盐中,硝酸钠的质量百分比为40%~70%,硝酸钾的质量百分比为30%~60%。在其中一个实施例中,第一混合熔融盐由硝酸钠和硝酸钾组成。第一混合熔融盐中,硝酸钠的质量百分比为40%、50%、60%或70%,硝酸钾的质量百分比为60%、50%、40%或30%。
第二混合熔融盐中,硝酸钠的质量百分比为3%~15%,硝酸钾的质量百分比为85%~97%。在其中一个实施例中,第二混合熔融盐由硝酸钠和硝酸钾组成。第二混合熔融盐中,硝酸钠的质量百分比为3%、5%、8%、10%、12%或15%,硝酸钾的质量百分比为97%、95%、92%、90%、88%或85%。
第一混合熔融盐的温度为390℃、400℃、410℃、420℃、430℃、440℃、450℃或460℃。第一次强化处理的时间为1h、1.5h、2h、2.5h或3h。
第二混合熔融盐的温度为380℃、390℃、400℃、410℃或420℃。第二次化学强化处理的时间为1h、1.5h、2h、2.5h、3h、3.5h或4h。
玻璃经上述强化处理后,所制备的强化玻璃具有57.64×10 -7~84.95×10 -7的热膨胀系数,热膨胀系数与石墨模具的热膨胀系数接近,更适合制成3D及复杂结构的玻璃制品,尺寸精确度高。且经上述强化方法处理后的玻璃的CS Na30超过254MPa,CS Na50超过187MPa以上,Dol超过115μm,表面K应力值超过840MPa, 表面K应力深度超过4.2μm。另外,强化后的玻璃还拥有超过700HV的表面维氏硬度,赋予了玻璃优异的耐刮檫性能且具备超过740MPa的四点弯曲强度和170cm以上高度的耐180目砂纸跌落的能力。因此,上述强化玻璃的制备方法能够制备得到具有与石墨模具接近的热膨胀系数,更适合3D及复杂结构的玻璃制品,且具有优异的力学强度、抗刮擦性能和抗摔落性能的强化玻璃,能够作为保护玻璃,应用在电子产品中。
一实施方式的强化玻璃,由上述实施方式的强化玻璃的制备方法制备得到。
上述强化玻璃具有57.64×10 -7~84.95×10 -7的热膨胀系数,热膨胀系数与石墨模具的热膨胀系数接近,更适合制成3D及复杂结构的玻璃制品,尺寸精确度高。且强化玻璃的CS Na30超过254MPa,CS Na30超过187MPa以上,Dol超过115μm,表面K应力值超过840MPa,表面K应力深度超过4.2μm。另外,强化玻璃还拥有超过700Hv的表面维氏硬度,赋予了玻璃优异的耐刮檫性能且具备超过740MPa的四点弯曲强度和170cm以上高度的耐180目砂纸跌落的能力。因此,上述强化玻璃具有与石墨模具接近的热膨胀系数,更适合3D及复杂结构的玻璃制品,且具有优异的力学强度、抗刮擦性能和抗摔落性能,能够作为保护玻璃,应用在电子产品中。上述强化玻璃能够作为手机、平板电脑或其他移动智能设备用保护玻璃,避免电子产品因不小心跌落而损坏的情况。
一实施方式的电子产品,包括保护玻璃,保护玻璃为上述实施方式的强化玻璃。具体地,该电子产品可以为手机、平板电脑、数码相机、机车、太阳能、深水探测器等。上述强化玻璃的表面硬度高、强化高且耐摔落性能好,能够作为保护玻璃避免电子产品因不小心跌落而损坏的情况。
以下为具体实施例部分:
实施例1~实施例24和对比例1~对比例6的玻璃的制备过程具体如下:
将实施例1~实施例24和对比例1~对比例6按照下表格中设计组分配料(质量百分比),经充分混合均匀后,用铂金坩埚在1650℃熔制8h,同时用铂金搅拌桨搅拌,待抽出搅拌桨后,降温至1500℃,保温1h均化,浇铸到铁质模具上形成80mm×160mm左右大小的玻璃块,模具浇铸前预热到450℃,玻璃块硬化 后立即转移至退火炉中退火(退火温度为590℃),保温2h,然后6小时降温140℃,自然冷却,取出后备用,得到实施例1~实施例24和对比例1~对比例6的玻璃。
实施例1~实施例30和对比例1~对比例7的玻璃的强化过程具体如下:
将上述实施例1~实施例30和对比例1~对比例7得到的玻璃加工成50mm×50mm×0.7mm的双面抛光的玻璃片通过两步混盐进行化学强化:第一步化学强化中,质量百分比为40%~70%的NaNO 3和30%~60%的KNO 3混合熔融液在390℃~460℃温度,浸泡60分钟~180分钟;第二步化学强化,转移至质量百分比为3%~15%的NaNO 3和85%~97%的KNO 3混合熔融液在380℃~420℃温度,浸泡60分钟~240分钟,得到实施例1~实施例30和对比例1~对比例7的强化玻璃。各实施例和对比例的化学强化过程中的工艺参数具体如下表1所示。
测试部分:
将上述实施例1~实施例30和对比例1~对比例7制备的玻璃加工成
Figure PCTCN2020141725-appb-000001
的玻璃试样,用耐驰热膨胀仪NETZSCH-DIL 402 PC在4℃/min的升温速度下测得热膨胀曲线,通过自带软件,测得玻璃试样的应变点温度T g、膨胀软化点T d以及20℃~300℃范围内的热膨胀系数CTE,并记录于表中。
将实施例1~实施例30和对比例1~对比例7的玻璃样品选取250g通过ORTON的RSV-1600型号玻璃高温黏度计测试高温黏度,将黏度为10 2dPa·S的温度定义为玻璃熔化温度T m,将其数值记录于表格中。
将实施例1~实施例30和对比例1~对比例7制备的强化玻璃经日本折原的应力测试仪FSM6000UV和SLP1000测得其表面应力值CS K,即Na-K离子交换形成的表面压应力、CS Na30:30μm深度的压应力值、CS Na50:50μm深度的压应力值、DOL:最大压应力层深度,即Li-Na离子交换形成的压应力层深度、DOL K:表面应力层深度,即Na-K离子交换形成的压应力层深度。
将实施例1~实施例30和对比例1~对比例7的玻璃样品经沈阳科晶的STX-1203线切割机切割成70mm×140mm×0.7mm的玻璃片,经深圳海德的HD-640-5L双面研磨抛光机减薄抛光,再经CNC磨边,清洗后,通过上述两步混盐进行化学强化处理。然后将化学强化后的玻璃通过荷兰轶诺的FALCON400 硬度计测试表面维氏硬度、普赛特的PT-307A万能试验机测试四点弯曲强度以及深圳高品的GP-2112-T定向跌落测试仪测试180目砂纸跌落高度,记录于下表中。
表1和表2中实施例1~实施例12的玻璃的各组分的质量百分比具体如下:SiO 250%~63%、Al 2O 323.1%~33%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O0.01%~3%、B 2O 30.4%~6%、ZrO 20.4%~3%、MgO 1%~5%、P 2O 50~4%、CaO 0~3%及ZnO 0~2%。
从表1和表2记载的上述实施例1~实施例12的玻璃经强化后的性能数据中可以看出,具有上述组分特征的玻璃在20℃~300℃具有57.64×10-7~84.95×10 -7的热膨胀系数,与石墨模具接近的热膨胀系数,更适合制成3D及复杂结构的玻璃制品,尺寸精确度高。另外,玻璃具有优异的化学强化性能,其钢化后的CS Na30超过254MPa,CS Na30超过187MPa,Dol超过115μm,表面K应力值超过840MPa,表面K应力深度超过4.2μm;钢化后的玻璃拥有超过700Hv的表面维氏硬度,赋予了玻璃优异的耐刮檫性能且具备超过740MPa的四点弯曲强度和170cm以上高度的耐180目砂纸跌落的能力。
进一步优化设计配方,表格3中实施例13~实施例18的玻璃的各组分的质量百分比如下:SiO 252%~63%、Al 2O 324%~32.5%、Li 2O 4%~7%、Na 2O 2%~5.9%、K 2O 0.01%~2.5%、B 2O 30.7%~3.7%、ZrO 20.5%~1.7%、MgO 1%~4%、P 2O 50~1.7%、CaO 0~0.6%及ZnO 0~2%。
从表3记载的上述实施例13~实施例18的玻璃经强化后的性能数据中可以看出,具有上述组分特征的玻璃在20℃~300℃具有61.36×10 -7~79.94×10 -7的热膨胀系数,更适合制成3D及复杂结构的玻璃制品,尺寸精确度高。另外,玻璃具有优异的化学强化性能,其钢化后的CS Na30超过280MPa,CS Na50超过189MPa,Dol超过115μm,表面K应力值超过850MPa,表面K应力深度超过4.2μm;钢化后的玻璃拥有超过700HV的表面维氏硬度,赋予了玻璃优异的耐刮檫性能且具备超过800MPa的四点弯曲强度和180cm以上高度的耐180目砂纸跌落的能力。
进一步优化设计配方,实施例19~实施例24的玻璃的各组分的质量百分比 如下:SiO 253.5%~62%、Al 2O 324%~30%、Li 2O 4.5%~6%、Na 2O 2%~4.7%、K 2O0.1%~2%、B 2O 31%~2.5%、ZrO 20.5%~1.5%、MgO 1%~3%、P 2O 50~4%及CaO0~1%。
从表4记载的上述实施例19~实施例24的玻璃经强化后的性能数据中可以看出,具有上述组分特征的玻璃在20℃~300℃具有63.58×10 -7~78.21×10 -7的热膨胀系数,更适合制成3D及复杂结构的玻璃制品,尺寸精确度高。另外,玻璃具有优异的化学强化性能,其钢化后的CS Na30超过300MPa,CS Na50超过220MPa,Dol超过122μm,表面K应力值超过860MPa,表面K应力深度超过5.2μm;钢化后的玻璃拥有超过710HV的表面维氏硬度,赋予了玻璃优异的耐刮檫性能且具备超过850MPa的四点弯曲强度和190cm以上高度的耐180目砂纸跌落的能力。
表1实施例的玻璃组分和相关性能数据
Figure PCTCN2020141725-appb-000002
Figure PCTCN2020141725-appb-000003
备注:CS K:表面应力值,即Na-K离子交换形成的表面压应力;
CS Na30:30μm深度的压应力值;
CS Na50:50μm深度的压应力值;
DOL:最大压应力层深度,即Li-Na离子交换形成的压应力层深度;
DOL K:表面应力层深度,即Na-K离子交换形成的压应力层深度。
表2实施例的玻璃组分和相关性能数据
Figure PCTCN2020141725-appb-000004
Figure PCTCN2020141725-appb-000005
表3实施例的玻璃组分和相关性能数据
Figure PCTCN2020141725-appb-000006
Figure PCTCN2020141725-appb-000007
Figure PCTCN2020141725-appb-000008
表4实施例的玻璃组分和相关性能数据
Figure PCTCN2020141725-appb-000009
Figure PCTCN2020141725-appb-000010
表5实施例的玻璃组分和相关性能数据
Figure PCTCN2020141725-appb-000011
Figure PCTCN2020141725-appb-000012
Figure PCTCN2020141725-appb-000013
表6对比例的玻璃组分和相关性能数据
Figure PCTCN2020141725-appb-000014
Figure PCTCN2020141725-appb-000015
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对 上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种玻璃,其特征在于,按质量百分比计,包括:SiO 2 50%~63%、Al 2O 3 23.1%~33%、Li 2O 4%~7%、Na 2O 1.5%~5.9%、K 2O 0.01%~3%、B 2O 3 0.4%~6%、ZrO 2 0.4%~3%、MgO 1%~5%、P 2O 5 0~4%、CaO 0~3%及ZnO 0~2%。
  2. 根据权利要求1所述的玻璃,其特征在于,在所述玻璃中,5.9%≤所述Li 2O的质量百分比、所述Na 2O的质量百分比与所述K 2O的质量百分比的总和≤12%。
  3. 根据权利要求2所述的玻璃,其特征在于,7%≤所述Li 2O的质量百分比、所述Na 2O的质量百分比与所述K 2O的质量百分比的总和≤10.5%。
  4. 根据权利要求1~3任一项所述的玻璃,其特征在于,在所述玻璃中,所述SiO 2的质量百分比为52%~63%;及/或,所述Al 2O 3的质量百分比为23.1%~32.5%;及/或,所述Na 2O的质量百分比为2%~5.9%;及/或,所述ZrO 2的质量百分比为0.5%~1.7%。
  5. 根据权利要求4所述的玻璃,其特征在于,所述SiO 2的质量百分比为53.5%~62%;及/或,所述Al 2O 3的质量百分比为24%~30%;及/或,所述Li 2O的质量百分比为4.5%~6%;及/或,所述Na 2O的质量百分比为2%~4.7%;及/或,所述ZrO 2的质量百分比为0.5%~1.5%。
  6. 根据权利要求5所述的玻璃,其特征在于,所述Al 2O 3的质量百分比为26.5%~30%;及/或,所述Na 2O的质量百分比为2.5%~4.7%。
  7. 根据权利要求1~3及5~6任一项所述的玻璃,其特征在于,在所述玻璃中,所述K 2O的质量百分比为0.01%~2.5%;及/或,所述B 2O 3的质量百分比为0.7%~3.7%;及/或,所述MgO的质量百分比为1%~4%。
  8. 根据权利要求7所述的玻璃,其特征在于,所述K 2O的质量百分比为0.1%~2%;及/或,所述B 2O 3的质量百分比为1%~2.5%;及/或,所述MgO的质量百分比为1%~3%。
  9. 一种强化玻璃的制备方法,其特征在于,包括如下步骤:先将玻璃在390℃~460℃的第一混合熔融盐中进行一次强化处理1h~3h,然后在温度为380℃~420℃的第二混合熔融盐中进行二次强化处理1h~4h,制备强化玻璃;所述玻璃为权利要求1~8任一项所述的玻璃。
  10. 根据权利要求9所述的强化玻璃的制备方法,其特征在于,在所述第一混合熔融盐中,硝酸钠的质量百分比为40%~70%,硝酸钾的质量百分比为30%~60%;及/或,在所述第二混合熔融盐中,硝酸钠的质量百分比为3%~15%,硝酸钾的质量百分比为85%~97%。
  11. 一种强化玻璃,其特征在于,由权利要求9或10所述的强化玻璃的制备方法制备得到。
  12. 一种电子产品,其特征在于,包括保护玻璃,所述保护玻璃为权利要求11所述的强化玻璃。
PCT/CN2020/141725 2020-12-30 2020-12-30 玻璃、强化玻璃及其制备方法和电子产品 WO2022141274A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141725 WO2022141274A1 (zh) 2020-12-30 2020-12-30 玻璃、强化玻璃及其制备方法和电子产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141725 WO2022141274A1 (zh) 2020-12-30 2020-12-30 玻璃、强化玻璃及其制备方法和电子产品

Publications (1)

Publication Number Publication Date
WO2022141274A1 true WO2022141274A1 (zh) 2022-07-07

Family

ID=82260041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141725 WO2022141274A1 (zh) 2020-12-30 2020-12-30 玻璃、强化玻璃及其制备方法和电子产品

Country Status (1)

Country Link
WO (1) WO2022141274A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490423A (zh) * 2022-09-21 2022-12-20 清远南玻节能新材料有限公司 铝硅酸盐玻璃及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662339B1 (en) * 2012-05-10 2016-12-28 LG Electronics, Inc. Enamel composition, preparation method thereof, and cooking appliance including the same
CN108314316A (zh) * 2018-02-12 2018-07-24 东旭科技集团有限公司 玻璃用组合物、化学强化玻璃及其制备方法和应用
CN110615610A (zh) * 2019-10-10 2019-12-27 清远南玻节能新材料有限公司 锂锆质铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2662339B1 (en) * 2012-05-10 2016-12-28 LG Electronics, Inc. Enamel composition, preparation method thereof, and cooking appliance including the same
CN108314316A (zh) * 2018-02-12 2018-07-24 东旭科技集团有限公司 玻璃用组合物、化学强化玻璃及其制备方法和应用
CN110615610A (zh) * 2019-10-10 2019-12-27 清远南玻节能新材料有限公司 锂锆质铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490423A (zh) * 2022-09-21 2022-12-20 清远南玻节能新材料有限公司 铝硅酸盐玻璃及其制备方法
CN115490423B (zh) * 2022-09-21 2024-03-01 清远南玻节能新材料有限公司 铝硅酸盐玻璃及其制备方法

Similar Documents

Publication Publication Date Title
CN110615610B (zh) 锂锆质铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
WO2021068423A1 (zh) 铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
WO2022048377A1 (zh) 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用
CN110104954B (zh) 一种低温晶化的可离子交换玻璃陶瓷
CN112707639A (zh) 锂铝硅酸盐玻璃、强化玻璃及其制备方法和电子产品
CN108863050A (zh) 锂铝硅酸盐玻璃及其制备方法
CN112723736B (zh) 玻璃、强化玻璃及其制备方法和电子产品
WO2020082328A1 (zh) 电子设备盖板用微晶玻璃制品和微晶玻璃
CN108975688B (zh) 一种玻璃及制备方法
WO2022166029A1 (zh) 铝硅酸盐强化玻璃及其制备方法
CN108529873B (zh) 可离子交换的玻璃及其制备方法
WO2020011167A1 (zh) 一种可快速进行离子交换的含锂铝硅酸盐玻璃
CN109694187B (zh) 一种低软化点含锂玻璃
WO2022166028A1 (zh) 铝硅酸盐强化玻璃及其制备方法
WO2021068424A1 (zh) 铝硅酸盐玻璃、强化玻璃及其制备方法、盖板、背板及装置
TW202130593A (zh) 具高中心張力之高破壞韌性玻璃
WO2020011171A1 (zh) 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃
CN109293234A (zh) 铝硅酸盐玻璃及制备方法、电子显示屏保护玻璃
WO2023082936A1 (zh) 一种结晶玻璃、强化结晶玻璃及其制备方法
WO2020078075A1 (zh) 一种具有高应变点、可快速离子交换和耐弱酸性的锌磷铝硅酸盐玻璃
CN109279787A (zh) 一种可快速离子交换的高铝玻璃
WO2022141274A1 (zh) 玻璃、强化玻璃及其制备方法和电子产品
CN115490423B (zh) 铝硅酸盐玻璃及其制备方法
CN111116040A (zh) 一种具有非单一表面压应力斜率的钢化玻璃制品及其制备方法
WO2020191982A1 (zh) 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967614

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/10/2024)