WO2020011171A1 - 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃 - Google Patents

一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃 Download PDF

Info

Publication number
WO2020011171A1
WO2020011171A1 PCT/CN2019/095307 CN2019095307W WO2020011171A1 WO 2020011171 A1 WO2020011171 A1 WO 2020011171A1 CN 2019095307 W CN2019095307 W CN 2019095307W WO 2020011171 A1 WO2020011171 A1 WO 2020011171A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ion exchange
molding
exchange performance
aluminosilicate glass
Prior art date
Application number
PCT/CN2019/095307
Other languages
English (en)
French (fr)
Inventor
陈招娣
梁新辉
林文城
洪立昕
Original Assignee
科立视材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科立视材料科技有限公司 filed Critical 科立视材料科技有限公司
Publication of WO2020011171A1 publication Critical patent/WO2020011171A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention belongs to the field of glass materials, and particularly relates to an aluminosilicate glass suitable for 3D molding and capable of improving ion exchange performance.
  • 3C product designs such as smart phones, smart watches, tablet computers, wearable smart products, dashboards, and other 3D products have appeared one after another, which has clearly guided the development direction of 3D curved glass.
  • chemical strengthening technology has been widely used.
  • Ion exchange technology is also a well-known technology, that is, the ions with a smaller radius on the glass surface and the ions with a larger radius in the molten salt replace each other (currently, most of the glass is sodium-potassium ion exchange), so that the glass surface has a certain depth of pressure. Stress layer.
  • the present invention is intended to provide a glass suitable for 3D molding and capable of improving ion exchange performance, and more specifically, a strengthened glass capable of obtaining a double stress layer through ion exchange. At least 50pm.
  • the substrate glass of the present invention has a relatively low softening point temperature and is suitable for 3D molding.
  • An object of the present invention is to provide an aluminosilicate glass suitable for 3D molding and capable of improving ion exchange performance in view of the shortcomings of the prior art.
  • the present invention makes the glass have a relatively low softening point temperature, about 900 ° C or less, which is favorable for 3D molding.
  • O is the sum of monovalent cations Li, Na, and K oxides.
  • the molar percentage of each oxide in R 2 0 is: Na 2 05 ⁇ 10%, Li 2 04.5 ⁇ 10% and K 2 00 ⁇ 2%.
  • the aluminosilicate glass is suitable for 3D molding and can improve ion exchange performance.
  • the aluminosilicate glass which is suitable for 3D molding and can improve the ion exchange performance, has a softening point temperature of less than 900 ° C; Vickers hardness HV a2 > 580 MPa.
  • the aluminosilicate glass suitable for 3D molding and capable of improving ion exchange performance has a compression stress layer depth of at least 5 (Vm).
  • the SiO 2 in the glass of the present invention is mainly a glass forming body, and one of the essential components constitutes a glass mesh main structure.
  • the glass contains 310 2 at a concentration of about 55 to 70 mol%, and a sufficient amount of SiOj Wuyu glass has better chemical stability, mechanical properties and molding properties.
  • Si0 2 will increase the melting temperature too high, especially under the condition of high concentration of alumina in glass, Si0 2
  • the concentration should be controlled below 70 mol%; too low SiO 2 concentration in the glass will lead to deterioration of the aging resistance and surface mechanical properties of the glass, increasing the chance of scratching of ultra-thin glass during cold processing and cleaning. Therefore, the SiO 2 concentration should be controlled above about 55 mol%.
  • A1 2 0 3 glass is one of the essential components are an integral, high alkali concentration in the glass composition, the majority of the alumina tend to be glass network tetrahedral intermediate aluminoxane constituting the glass network Main structure, which improves glass stability and mechanical properties.
  • the volume of aluminum-oxygen tetrahedron formed in glass by A1 2 0 3 is larger than that of silicon-oxygen tetrahedron.
  • the volume of glass expands, which reduces the density of glass. It also provides exchange channels for glass during ion exchange.
  • A1 2 0 3 is an extremely refractory oxide, which can quickly increase the viscosity of the glass, which makes it more difficult to clarify and homogenize the glass, and the probability of defect concentration in the glass increases sharply.
  • the lithium component can quickly lower the melting point of the glass, but the higher concentration causes the liquidus temperature of the glass to increase rapidly, making it difficult to form. So in the glass of the invention A concentration of about 12 mole% ⁇ 15 mole% of the eight 1203.
  • Li 2 0 in the glass of the present invention is one of the ion-exchange components.
  • the present invention proves through a large number of experiments that lithium-containing glass can be exchanged by Li + and Na + in the glass at a suitable temperature under fast temperature. Get high compressive stress layer depth.
  • Li 2 0 can rapidly decrease the viscosity characteristics of the glass, especially when the viscosity at high temperature is significantly reduced, which is beneficial to the melting and clarification of the glass, and provides the possibility for the high concentration of Al 2 0 3 in the glass.
  • the concentration of Li 2 0 in the present invention is not low.
  • the Li 2 0 concentration in the present invention is not higher than 10 mol%
  • Na 2 0 in the glass is one of the essential components, which provides a large source of free oxygen, which destroys the glass silicon oxygen network structure, greatly reduces the viscosity of the glass, and helps the glass to melt and clarify. At the same time, the glass maintains a higher concentration of Na 2 0, which provides the possibility for glass chemical strengthening. Therefore, in the present invention, Na 2
  • the 0 concentration is not less than about 5 mol%. However, if the Na 2 0 concentration is too high, the mechanical properties and chemical stability of the glass will be deteriorated. Especially in the silicate glass with high alumina concentration and phosphorus content, Na 2 0 is more likely to be exchanged with hydrogen ions in the water and dissolved. Into the water, it accelerates the change of the chemical properties of the glass surface. In the lithium-containing glass composition, the Na 2 0 concentration on the glass surface can be maintained by the exchange of Li + and Na + in the sodium-containing molten salt, which can maintain a high concentration of Na concentration on the glass surface. To ensure the concentration of Na ions required for the exchange of K + and Na + in the glass surface of the glass containing potassium in a molten salt, the Na 2 0 concentration in the glass is preferably less than about 10 mol%.
  • K 2 0 has an adverse effect on the decomposition temperature of zircon. Therefore, the present invention keeps K 2 0 at a low level, that is, less than 2 mol%.
  • the concentration of the monovalent cationic oxide R 2 0 is controlled to be more than 12 mol%, and in order to maintain the high Vickers hardness value of the glass, the present invention controls the concentration ratio of R 2 0 to A1 2 0 3 to 0.8 to 1.3 between.
  • the component B 2 0 3 is a network-forming body oxide, which can reduce the glass melt viscosity, and research shows that it can effectively suppress the decomposition of zircon. Therefore, the present invention adds more than 0.5 mol%: 8 2 0 3 .
  • B 2 0 3 is not conducive to obtaining high compressive stress and high stress layer depth of the glass. Therefore, in the present invention, the B 2 0 3 concentration is controlled to less than 3.5 mol%.
  • P 2 0 5 is a glass forming body component, which is interconnected by a [PO 4 ] tetrahedron to form a network, but the network structure formed by P 2 0 5 is layered, and the layers are connected to each other by Van der Waals force. So, in glass? 2 0 5 It has the functions of small viscosity, poor chemical stability and large thermal expansion coefficient. However, experiments show that the present invention, P 2 0 5 concentration to promote glass strengthening process from the ion exchange, the rapid stress layer plays an important role to obtain higher compression. Thus in the present invention is 205 mole% concentration limits between 0.5 ⁇ 4 mol%.
  • the glass of the present invention contains a divalent cationic oxide, which is an outer body component of the glass network, which destroys the integrity of the glass structure and reduces the glass melting temperature. It is a good flux and facilitates clarification, but at the same time improves the The linear thermal expansion coefficient value reduces the temperature of the strain point of the glass, while improving the glass elastic modulus and mechanical properties.
  • Divalent cationic oxides have advantages in increasing the compressive stress on the glass surface. Experiments in the present invention show that ZnO in glass improves the compressive stress on the glass surface at the same level as MgO. It is particularly important that ZnO strengthens the stress layer in the strengthening performance of glass. Deeply has an improvement effect.
  • the MgO concentration in the glass of the present invention is about 0 mol% to 7 mol%.
  • An excessively high ZnO concentration in the glass will cause a significant increase in the crystallization tendency of the glass.
  • the ZnO concentration in the glass is about 2 mol% to 5 mol%.
  • small-radius ions in the glass and large-radius ions in the molten salt are ion-exchanged to generate a compressive stress and a compressive stress layer on the surface of the glass.
  • the source of the compressive stress layer is formed by the exchange of sodium ions and potassium ions ( DOL1), and lithium ion and sodium ion exchange formation (DOL2).
  • the present invention facilitates 3D molding by rationally adjusting the content of boron oxide, phosphorus oxide, and other components in the glass, so that the glass has a relatively low softening point temperature, about 900 ° C or less;
  • the formula has the function of improving the ion exchange performance, and it is possible to achieve a double stress layer on the glass surface through chemical strengthening with a depth of at least 5 (Vm or more; moreover, the boron-containing lithium aluminosilicate glass substrate has high Vickers hardness (Above 580MPa).
  • the ion exchange process of the glass is described as follows: the annealed glass block is prepared into a glass sheet with a thickness of about 0.7 mm, and the glass sheet is cleaned by using ultrasonic waves for backup; Glass products are immersed in 380 ° C ⁇ 430 ° C molten salt, the molten salt contains more than 20% sodium nitrate molten salt of sodium nitrate, soaking time is about 20 ⁇ 120 minutes, and the glass flakes are taken out and soaked in 380 ⁇ In 430 ° C molten salt, the molten salt contains less than 20% sodium nitrate molten salt, and the immersion time is 10 to 90 minutes; the glass is taken out and washed for testing.
  • Table 2 is a compound prepared according to the purity and moisture content of each raw material according to the formula No. 2 in Table 1; after the raw material composition shown in Table 1 is weighed and mixed to obtain a uniform ingredient; Transfer the batch from a plastic bottle to about 800 ml of molybdenum crucible, place the molybdenum crucible in a silicon molybdenum rod high temperature furnace, gradually raise the temperature to 1650 ° C, and maintain the temperature for 3 to 8 hours. The glass bubbles are discharged and stirred by stirring. Glass homogenization is eliminated.
  • the molten liquid is poured into a heat-resistant stainless steel mold for molding, and then the glass block is taken out and moved into a box type
  • the annealing furnace is heat-treated at 600 ° C for about 2 hours, and then lowered to 550 ° C at a rate of less than 1 ° C / min, and then naturally cooled to room temperature.
  • chemical-grade compound raw materials should be selected.
  • a liquidus temperature (° C) that is, the maximum temperature of devitrification of glass in a temperature difference furnace is used to indicate, the duration of the devitrification process is usually 24 hours;
  • Softening point temperature (° C): The temperature point at which the glass viscosity is 10 % poise, measured according to the ASTM C-338 fiber elongation detection method;
  • strain point temperature (° C): temperature point at which the viscosity of the glass is 10 ⁇ poise, measured according to ASTM C-336 fiber elongation detection method;
  • E. CS1, DOL1 and CS2, DOL2 are glass after ion-exchanged glass.
  • the values of CS1, DOL1 and CS2, and DOL2 are tested using a SLP-1000 surface stress meter. Among them, the depth of the surface compressive stress (Depth of Layer, DOL for short) and the surface compressive stress (Compressive Stress, CS for short).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

一种适合3D成型且可改善离子交换性能的铝硅酸盐玻璃。玻璃的原料以摩尔百分比计,包含SiO 255~70%,Al 2O 312~15%,B 2O 30.5~3.5%,P 2O 50.5~4%,ZnO 2~5%,MgO 0~7%,SnO 20.05~0.5%,R 2O 12~22%; R 2O是单价阳离子Li、Na、K氧化物的总和。通过合理调节玻璃中氧化硼、氧化磷及其他组分含量,使得其玻璃具有相对较低的软化点温度,约为900℃或更小,有利于3D成型;同时该玻璃配方具备改善离子交换性能,可通过化学强化实现玻璃表面具有双应力层,应力层深度至少50μm以上。

Description

说明书 发明名称:一种适合 3D成型且可改善离子交换性能的铝硅酸盐玻璃 技术领域
[0001] 本发明属于玻璃材料领域, 具体涉及一种适合 3D成型且可改善离子交换性能的 铝硅酸盐玻璃。
背景技术
[0002] 3C产品设计如智能手机、 智能手表、 平板计算机、 可穿戴式智能产品、 仪表板 等陆续出现 3D产品, 已经明确引导 3D曲面玻璃发展方向。 同时, 为提高玻璃强 度, 化学强化技术已被广泛应用。 离子交换技术也属大众熟知技术, 即玻璃表 面半径较小的离子与熔盐中半径较大的离子进行相互置换 (目前玻璃较多为钠 钾离子交换) , 进而使得玻璃表面具有一定深度的压应力层。
发明概述
技术问题
[0003] 然而随着客户对强化玻璃机械性能要求的逐渐提升, 开发出力学性能更优的强 化玻璃十分有必要。
[0004] 本发明意在提供一种适合 3D成型且可改善离子交换性能的玻璃, 更具体而言, 是一种可通过离子交换获得双应力层的强化玻璃, 所述强化玻璃具有应力层深 度至少 50pm以上。 同时, 本发明基板玻璃的具有相对较低的软化点温度, 适合 用于 3D成型。
问题的解决方案
技术解决方案
[0005] 本发明的目的在于针对现有技术的不足, 提供一种适合 3D成型且可改善离子交 换性能的铝硅酸盐玻璃。 本发明通过合理调节玻璃中氧化硼、 氧化磷及其他组 分含量, 使得其玻璃具有相对较低的软化点温度, 约为 900°C或更小, 有利于 3D 成型。
[0006] 为实现本发明的目的, 采用如下技术方案:
[0007] 一种适合 3D成型且可改善离子交换性能的铝硅酸盐玻璃, 原料以摩尔百分比计 , 包含 Si0255〜 70%, Al20312〜 15%, B 2030.5〜 3.5%, P205
0.5〜 4%, Zn02〜 5%, MgOO〜 7%, SnO 20.05〜 0.5%, R 2012-22%; 所述 R 2
O是单价阳离子 Li、 Na、 K氧化物的总和。
[0008] 优选的, 所述的 R20中, 各氧化物的摩尔百分比为: Na205〜 10%, Li 204.5 〜 10%和 K200〜 2%。
[0009] 优选的, 所述的适合 3D成型且可改善离子交换性能的铝硅酸盐玻璃, 原料中 Li
2O/R2O<0.5。
[0010] 优选的, 所述的适合 3D成型且可改善离子交换性能的铝硅酸盐玻璃, 原料中 0.
8^R O /A1 O 3^1.3
[0011] 进一步的, 所述的适合 3D成型且可改善离子交换性能的铝硅酸盐玻璃, 软化点 温度小于 900°C; 维氏硬度 HV a2> 580MPa。
[0012] 进一步的, 所述的适合 3D成型且可改善离子交换性能的铝硅酸盐玻璃, 压缩应 力层深至少 5(Vm。
[0013] 本发明所述玻璃中 Si02主要为玻璃成形体, 必需成分之一, 构成了玻璃网状主 结构。 玻璃中含浓度约 55〜 70摩尔%的3102, 足够多的 SiOj武予玻璃较佳化学 稳定性、 机械性能和成型性能。 但 Si02会过高地提高熔融温度, 尤其玻璃中存 在高浓度的氧化铝的条件下, Si02
浓度应控制在低于约 70摩尔%; 玻璃中过低的 SiO 2浓度会导致玻璃的耐老化性能 和表面机械性能趋于劣化, 增加超薄玻璃在冷加工和清洗过程中产生划伤几率 。 因此, SiO 2浓度应控制在高于约 55摩尔%。
[0014] 本发明所述玻璃中 A1203为必需成分之一, 属于网络中间体组成, 在高碱浓度 玻璃成分中, 多数氧化铝倾向于成为玻璃铝氧四面体, 构成了玻璃网状主结构 , 从而提高玻璃稳定性和机械性能。 A1203在玻璃中形成的铝氧四面体在玻璃中 体积比硅氧四面体体积要大, 玻璃体积发生膨胀, 从而降低玻璃的密度, 更为 玻璃在离子交换过程提供交换通道, 极大提高玻璃压缩成应力和压缩成应力层 深, 但 A1203属于极难熔氧化物, 其能快速提高玻璃粘度, 致使玻璃澄清均化难 度加大, 玻璃中缺陷浓度几率急剧增加; 虽然氧化锂成分能快速降低玻璃熔点 , 但更高浓度使得玻璃液相线温度快速提高, 难以成型。 因此在本发明玻璃中 浓度约 12摩尔%〜15摩尔%的八1 20 3
[0015] 本发明玻璃中 Li 20属于离子交换成分之一, 本发明通过大量实验证明含锂玻璃 在含钠熔盐中, 在合适温度下, 可通过玻璃中 Li +和 Na +交换, 快速获得高压缩 应力层深度。 此外, Li 20可使玻璃粘度特性快速下降, 尤其是降低高温粘度明 显, 有利于玻璃熔化与澄清, 为玻璃中高浓度的 A1 20 3浓度提供可能性, 本发明 中 Li 20浓度不低于约 4.5摩尔%, 如 Li 20浓度过低, 玻璃中 Li +和 Na +交换量不足 , 难以获得高压缩应力层深度; 但 Li 20浓度过高, 其液相线温度随着玻璃粘度 而降低, 从而是玻璃变得容易失透, 因此, 本发明中 Li 20浓度不高于 10摩尔%
, 同时, Li 2O/R 2O < 0.5。
[0016] 玻璃中 Na 20为必需成分之一, 其提供大量游离氧来源, 对玻璃硅氧网络结构 体起破坏作用, 大大降低玻璃的粘度, 有助于玻璃熔化与澄清。 同时玻璃维持 较高浓度的 Na 20为玻璃化学强化提供可能。 因此, 本发明中 Na 2
0浓度不低于约 5摩尔%。 但 Na 20浓度过高, 将使得玻璃机械性能和化学稳定性 能劣化, 尤其在高氧化铝浓度和含磷成分的硅酸玻璃中, Na 20更容易倾向与水 中的氢离子交换出而溶入水中, 加速玻璃表面化学性能变化; 在含锂玻璃成分 中, 玻璃表面的 Na 20浓度可以通过含钠熔盐中 Li +和 Na +交换来维持, 可使玻璃 表面维持高浓度的 Na浓度, 保证玻璃在含钾熔盐中玻璃表面中 K +和 Na +交换所 需的 Na离子浓度, 因此玻璃中 Na 20浓度优选低于约 10摩尔%。
[0017] 少量 K 20的存在, 可以改善离子扩散率, 但是 K 20对锆石分解温度具有不利影 响, 因此本发明将 K 20保持在低水平, 即小于 2摩尔%。
[0018] 本发明中一价阳离子氧化物 R 20浓度控制在 12摩尔%以上, 同时为了维持玻璃 高维氏硬度值, 本发明将 R 20与 A1 20 3浓度比值控制在 0.8〜 1.3之间。
[0019] B 20 3成分属于网络形成体氧化物, 可降低玻璃熔融粘度, 并且研究表明其可 有效的抑制锆石的分解, 因此本发明加入高于 0.5摩尔%的:8 20 3。 但对于玻璃离 子交换性能而言, B 20 3不利于玻璃获取高压缩应力和高应力层深度, 因此本发 明中将 B 20 3浓度控制在小于 3.5摩尔%。
[0020] 本发明中 P 20 5属于玻璃形成体成分, 其以 [PO 4]四面体相互连成网络, 但 P 20 5 形成的网络结构属于层状, 且层间由范德华力相互连接, 因此, 玻璃中?20 5具 有粘度小, 化学稳定性差和热膨胀系数大作用。 但本发明实验表明, P 20 5浓度 对玻璃强化工艺过程中离子交换起促进作用, 对快速获得较高压缩应力层起重 要作用。 因此本发明中将 20 5浓度限制在 0.5摩尔%〜4摩尔%之间。
[0021] 本发明的玻璃中含有二价阳离子氧化物, 其为玻璃网络外体成分, 破坏玻璃结 构的完整性, 降低玻璃熔化温度, 是良好的助熔剂, 利于澄清, 但同时提高了 玻璃的线热膨胀系数值, 降低玻璃的应变点温度值, 同时提高玻璃弹性模量和 机械性能。 二价阳离子氧化物在提高玻璃表面压缩应力方面具有优势, 本发明 中实验表明, 玻璃中 ZnO对提高玻璃表面压缩应力与 MgO处于同一水平, 尤为重 要的是, ZnO对玻璃强化性能中强化应力层深具有改善效果。 本发明玻璃中 MgO 浓度约为 0摩尔〜 7摩尔%。 玻璃中过高 ZnO浓度会导致玻璃析晶倾向明显增加, 本发明中玻璃中 ZnO浓度约为 2摩尔%〜5摩尔%。
[0022] 除上述的氧化物之外, 本发明的玻璃中含化学澄清剂, 其中 Sn0 2浓度控制在 约 0.05〜 0.5摩尔%。
[0023] 本发明中玻璃制品通过玻璃中小半径离子与熔盐中大半径离子进行离子交换从 而在玻璃表面产生压缩应力和压缩应力层, 所述压缩应力层来源含钠离子与钾 离子交换形成 (DOL1) , 以及锂离子与钠离子交换形成 (DOL2) 。
发明的有益效果
有益效果
[0024] 本发明通过合理调节玻璃中氧化硼、 氧化磷及其他组分含量, 使得玻璃具有相 对较低的软化点温度, 约为 900°C或更小, 有利于 3D成型; 同时所述玻璃配方具 备改善的离子交换性能的作用, 可通过化学强化实现玻璃表面具有双应力层, 应力层深度至少 5(Vm以上; 再者, 所述含硼锂铝硅酸盐玻璃基板具备高维氏硬 度 (580MPa以上) 。
发明实施例
本发明的实施方式
[0025] 为进一步公开而不是限制本发明, 以下结合实例对本发明作进一步的详细说明 实施例 [0026] 表 1实施例 1-8的玻璃配方及性能测试
Figure imgf000006_0001
[0027] 表 2实施例 2的具体原料组成
[]
Figure imgf000007_0001
[0028] 所述玻璃的离子交换过程描述如下: 将退火后玻璃块制备成厚度约 0.7mm玻璃 薄片, 采用超声波进行清洗备用; 将玻璃薄片进行 250°C〜 300°C预热处理后, 将 玻璃制品浸泡在 380°C〜 430°C熔盐中, 所述熔盐含有高于 20%比例硝酸钠的硝酸 钾熔盐, 浸泡时间约 20〜 120分钟, 再将玻璃薄片取出浸泡在 380〜 430°C熔盐中 , 所述熔盐中含有低于 20%硝酸钠的硝酸钾熔盐中, 浸泡时间为 10〜 90分钟; 将 玻璃取出, 清洗待测试。
[0029] 1) 测试样品制备
[0030] 本发明实施例中, 表 2为表 1中 2号配方依据各原料纯度与水分含量制备成配合 料; 按表 1所示原料组成进行称重混合后, 以获得均匀的配料; 然后将配合料从 塑料瓶中转移至约 800ml钼坩埚中, 将钼坩埚置入硅钼棒高温炉炉内, 逐渐升温 至 1650°C, 持温 3〜 8小时, 通过搅拌加速玻璃气泡排出和使玻璃均化消除。 在熔 融后, 将熔融液倒入至耐热不锈钢模具进行成型, 然后取出玻璃块并移入箱式 退火炉内进行 600°C约 2小时的热处理, 随后以小于 1°C/分的速率降至 550°C, 之 后自然冷却至室温。 为取得更加稳定的测量结果, 应选择化学级的配合原料。
[0031] 2) 中文 物理性质符号及测量方法定义
[0032] 玻璃样品的物理性质如表 1所示。 其定义及解释如下所示:
[0033] A. 液相线温度 (°C) : 即采用玻璃在温差炉中失透的最高温度表示, 通常失 透过程时长为 24小时;
[0034] B. 软化点温度 (°C) :玻璃粘度为 10 %泊时的温度点, 根据 ASTM C-338纤维 伸长检测方法测量;
[0035] C. 退火点温度 (°C) :玻璃粘度为 10 13泊时的温度点, 根据 ASTM C-336纤维 伸长检测方法测量;
[0036] D. 应变点温度 (°C) :玻璃粘度为 10 ^泊时的温度点, 根据 ASTM C-336纤维 伸长检测方法测量;
[0037] E. CS1、 DOL1和 CS2、 DOL2为玻璃离子交换后玻璃采用 SLP-1000表面应力 仪测试 CS1、 DOL1和 CS2、 DOL2值。 其中, 表面压缩应力层深 (Depth of Layer , 简称 DOL) , 表面压缩应力 (Compressive Stress, 简称 CS) 。
[0038] 以上所述仅为本发明的较佳实施例, 凡依本发明申请专利范围所做的均等变化 与修饰, 皆应属本发明的涵盖范围。

Claims

权利要求书
[权利要求 1] 一种适合 3D成型且可改善离子交换性能的铝硅酸盐玻璃, 其特征在 于: 玻璃原料以摩尔百分比计, 包含 Si0255〜 70%, Al20312〜 15% , B 2030.5〜 3.5%,
P2O50.5〜 4%, Zn02〜 5%, MgOO〜 7%, SnO 20.05〜 0.5%, R 20
12-22%; 所述 R20是单价阳离子 Li、 Na、 K氧化物的总和。
[权利要求 2] 根据权利要求 1所述的适合 3D成型且可改善离子交换性能的铝硅酸盐 玻璃, 其特征在于: 所述的 R20中, 各氧化物的摩尔百分比为: Na2
05〜 10%, Li204.5〜109^RK200〜2%。
[权利要求 3] 根据权利要求 1所述的适合 3D成型且可改善离子交换性能的铝硅酸盐 玻璃, 其特征在于: 原料中 Li2O/R2O<0.5。
[权利要求 4] 根据权利要求 1所述的适合 3D成型且可改善离子交换性能的铝硅酸盐 玻璃, 其特征在于: 原料中 0.8SR20/A1203^1.3。
[权利要求 5] 根据权利要求 1所述的适合 3D成型且可改善离子交换性能的铝硅酸盐 玻璃, 其特征在于: 所述铝硅酸盐玻璃的软化点温度小于 900°C; 维 氏硬度 HV a2>580MPa。
[权利要求 6] 根据权利要求 1所述的适合 3D成型且可改善离子交换性能的铝硅酸盐 玻璃, 其特征在于: 所述玻璃中压缩应力层深至少 5(Vm。
PCT/CN2019/095307 2018-07-13 2019-07-09 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃 WO2020011171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810766766.9A CN108706868A (zh) 2018-07-13 2018-07-13 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃
CN201810766766.9 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020011171A1 true WO2020011171A1 (zh) 2020-01-16

Family

ID=63874032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095307 WO2020011171A1 (zh) 2018-07-13 2019-07-09 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃

Country Status (2)

Country Link
CN (1) CN108706868A (zh)
WO (1) WO2020011171A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12024465B2 (en) 2021-06-11 2024-07-02 Corning Incorporated Glass compositions having improved mechanical durability and low characteristic temperatures

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108706868A (zh) * 2018-07-13 2018-10-26 科立视材料科技有限公司 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃
CN109694187B (zh) * 2019-03-07 2022-03-22 科立视材料科技有限公司 一种低软化点含锂玻璃
CN110255896A (zh) * 2019-05-31 2019-09-20 彩虹集团(邵阳)特种玻璃有限公司 一种3d成型可着色的离子交换玻璃及其制备方法
CN111995243A (zh) * 2020-09-04 2020-11-27 彩虹集团(邵阳)特种玻璃有限公司 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用
CN111995245A (zh) * 2020-09-04 2020-11-27 彩虹集团(邵阳)特种玻璃有限公司 一种盖板玻璃及其制备方法
CN114394745B (zh) * 2022-01-07 2024-02-20 彩虹集团(邵阳)特种玻璃有限公司 铝硅酸盐玻璃及其制备方法和盖板玻璃

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690059A (zh) * 2011-03-23 2012-09-26 肖特玻璃科技(苏州)有限公司 用于化学钢化的铝硅酸盐玻璃和玻璃陶瓷
JP2014141363A (ja) * 2013-01-23 2014-08-07 Konica Minolta Inc 化学強化可能なガラス,ガラス板及び化学強化カバーガラス
CN104703937A (zh) * 2012-07-17 2015-06-10 康宁股份有限公司 用于3-D成形的可离子交换的含Li玻璃组合物
CN106604901A (zh) * 2014-06-19 2017-04-26 康宁股份有限公司 具有非易碎的应力特性的玻璃
WO2017205605A1 (en) * 2016-05-27 2017-11-30 Corning Incorporated Fracture and scratch resistant glass articles
CN108706868A (zh) * 2018-07-13 2018-10-26 科立视材料科技有限公司 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666511B2 (en) * 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
TWI588104B (zh) * 2010-12-14 2017-06-21 康寧公司 用於強化玻璃之熱處理
CN107188408A (zh) * 2017-07-19 2017-09-22 东旭科技集团有限公司 一种玻璃组合物及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690059A (zh) * 2011-03-23 2012-09-26 肖特玻璃科技(苏州)有限公司 用于化学钢化的铝硅酸盐玻璃和玻璃陶瓷
CN104703937A (zh) * 2012-07-17 2015-06-10 康宁股份有限公司 用于3-D成形的可离子交换的含Li玻璃组合物
JP2014141363A (ja) * 2013-01-23 2014-08-07 Konica Minolta Inc 化学強化可能なガラス,ガラス板及び化学強化カバーガラス
CN106604901A (zh) * 2014-06-19 2017-04-26 康宁股份有限公司 具有非易碎的应力特性的玻璃
WO2017205605A1 (en) * 2016-05-27 2017-11-30 Corning Incorporated Fracture and scratch resistant glass articles
CN108706868A (zh) * 2018-07-13 2018-10-26 科立视材料科技有限公司 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12024465B2 (en) 2021-06-11 2024-07-02 Corning Incorporated Glass compositions having improved mechanical durability and low characteristic temperatures

Also Published As

Publication number Publication date
CN108706868A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2020011171A1 (zh) 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃
CN108585480B (zh) 一种二步法化学强化碱铝硅酸玻璃组合物及其制备方法
CN111268913B (zh) 电子设备盖板用微晶玻璃制品和微晶玻璃
CN110104954B (zh) 一种低温晶化的可离子交换玻璃陶瓷
WO2020011167A1 (zh) 一种可快速进行离子交换的含锂铝硅酸盐玻璃
TWI806197B (zh) 具有高損傷抗性之鋯石相容離子交換玻璃
CN110143759B (zh) 一种高强度透明微晶玻璃
CN108503213B (zh) 铝硅酸盐玻璃及强化玻璃
CN108863050A (zh) 锂铝硅酸盐玻璃及其制备方法
WO2020082328A1 (zh) 电子设备盖板用微晶玻璃制品和微晶玻璃
CN109694187B (zh) 一种低软化点含锂玻璃
JP2024098122A (ja) 強化ガラス及び強化用ガラス
TW201742841A (zh) 在後離子交換熱處理之後保留高壓縮應力的玻璃組成物
WO2020138062A1 (ja) 強化ガラス板及びその製造方法
TW201829335A (zh) 混成式鹼石灰矽酸鹽及鋁矽酸鹽玻璃物件
JPWO2014122934A1 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用カバーガラス
WO2022222372A1 (zh) 一种可快速离子交换的含硼铝硅酸盐玻璃
CN113683303B (zh) 一种碱铝硅酸盐玻璃及应用
CN113582539B (zh) 一种铝硅酸盐玻璃和应用
CN109320072B (zh) 一种高铝低钙可化学强化处理的玻璃
CN114988698A (zh) 用于制备铝硅酸盐玻璃的组合物、铝硅酸盐玻璃及其制备方法和应用
WO2020078075A1 (zh) 一种具有高应变点、可快速离子交换和耐弱酸性的锌磷铝硅酸盐玻璃
WO2020103496A1 (zh) 一种可快速离子交换的高铝玻璃
CN110482855B (zh) 铝硅酸盐玻璃及制备方法
WO2020191982A1 (zh) 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833346

Country of ref document: EP

Kind code of ref document: A1