WO2020191982A1 - 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃 - Google Patents

一种具有低成本高压缩应力层的磷铝硅酸盐玻璃 Download PDF

Info

Publication number
WO2020191982A1
WO2020191982A1 PCT/CN2019/099259 CN2019099259W WO2020191982A1 WO 2020191982 A1 WO2020191982 A1 WO 2020191982A1 CN 2019099259 W CN2019099259 W CN 2019099259W WO 2020191982 A1 WO2020191982 A1 WO 2020191982A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
compressive stress
cost
stress layer
high compressive
Prior art date
Application number
PCT/CN2019/099259
Other languages
English (en)
French (fr)
Inventor
梁新辉
陈招娣
林文城
洪立昕
Original Assignee
科立视材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科立视材料科技有限公司 filed Critical 科立视材料科技有限公司
Publication of WO2020191982A1 publication Critical patent/WO2020191982A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid
    • C03B27/03Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the invention relates to the technical field of glass materials, in particular to an alkaline earth metal oxide-free phosphoaluminosilicate glass with a low-cost and high compressive stress layer.
  • the surface layer of the glass has a high surface compressive stress (CS) and a depth of ion exchange layer (DOL) is formed, which can quickly increase the hardness and resistance of the glass surface.
  • CS surface compressive stress
  • DOL depth of ion exchange layer
  • the depth of scratches on the glass surface is generally 30 ⁇ m to 50 ⁇ m. Therefore, it is required that the depth of the ion exchange layer on the glass surface reaches 60 ⁇ m to meet the requirements of scratch resistance and high-strength cover glass in most application scenarios.
  • the chemical strengthening treatment process generally adopts one-step ion exchange method and two-step ion exchange method.
  • the one-step ion exchange method mainly introduces a high content of sodium oxide composition into the glass to provide sufficient Na + ion concentration and K + in the molten salt for exchange, thereby generating a surface compressive stress layer on the glass surface.
  • the DOL value of the ion-exchanged glass in the commercialized glass is less than 50 ⁇ m.
  • the main reason is that the commercialized glass is limited by the ion exchange rate.
  • the glass needs at least 10 hours of ion exchange to reach 50 ⁇ m (the commercialized glass has been re-annealed Treatment), high strengthening time significantly reduces production efficiency and increases the cost of glass strengthening time.
  • the chemical strengthening treatment process has gradually changed from one-step ion exchange method (Na + ion in glass and K + exchange in molten salt) to a two-step ion exchange method (first exchange of Li + ions in glass and Na + in molten salt, and then
  • the main purpose of the development of Na + ions in glass and K + in molten salt) is to increase the depth DOL value of the ion exchange layer, thereby effectively improving the damage resistance of the glass.
  • the depth of the ion exchange layer of the glass reaches 80 ⁇ m or higher, but the depth of the ion exchange layer is more than 80% mainly from the exchange of Li + ions in the glass and Na + in the molten salt, while the Na + in the glass
  • the depth of the K + exchange layer in both the ion and molten salt is below 15 ⁇ m, which leads to a decrease in the scratch resistance of the glass surface.
  • the commercially available double two-step ion exchange glasses must contain lithium oxide, and the introduction of lithium carbonate and other raw materials used in lithium oxide leads to very high raw material costs, which makes the glass itself expensive and difficult to popularize; in addition, it contains
  • the side effects of lithium ions on the ion exchange molten salt are very large, which accelerates the shortening of the service life of the sodium-containing molten salt, thereby increasing the production cost of the cover plate processing manufacturer. Therefore, although the two-step ion exchange glass can be realized A higher ion exchange layer requires customers to bear high cost prices and also limits the popular application of two-step ion strengthened glass. There is still no glass product with low cost and high compressive stress layer.
  • the glass is required to be processed into products with 2.5D and 3D curved surfaces.
  • the glass surface needs to be polished, so that many visible or invisible scratches will inevitably remain on the glass surface, as well as dirt such as polishing powder.
  • an acidic cleaning agent is often used to clean the glass in an ultrasonic environment at about 55°C to 65°C.
  • the cleaning solution is, for example, an oxalic acid solution with a pH of about 2.
  • the Na + on the glass surface and the H + ions in the water exchange thereby generating a layer of hydroxide film on the glass surface that protects the glass surface, but in an acidic environment, the hydroxide film
  • the layer is neutralized by H + in the weak acid environment, thereby accelerating the glass exchange effect, which causes the weight loss of the glass to become more serious in the weak acid environment, especially when the glass surface remains damaged due to the process, such damage is in the pickling environment
  • the microscopic damage gradually becomes visible damage to the naked eye, resulting in obvious visible defects on the glass surface, such as visible scratches, fogging, white spots, etc., thereby reducing the glass transmittance and affecting the production yield.
  • the SiO 2 component in the glass forms a protective film layer with water resistance and acid resistance on the glass surface.
  • the existence of this protective film layer reduces the exchange rate of Na + and H + ions in the glass. , So as to stop, thereby effectively protecting the glass surface, so that it can withstand the acid process.
  • the patent CN108585480A discloses a two-step chemically strengthened alkali aluminosilicate glass composition and a preparation method thereof.
  • the two-step chemically strengthened alkali-aluminosilicate glass composition includes 53-65% SiO 2 , 16-22% Al 2 O 3 , and 0.01-0.5% B 2 in mole percentage.
  • the present invention optimizes the glass formula, introduces lithium oxide and phosphorus oxide into the glass, and through two-step chemical strengthening, the glass surface has a higher surface compressive stress and a deeper
  • the ion exchange layer improves the surface hardness, scratch resistance and drop resistance of the glass.
  • the patented glass contains high Li 2 O components, which greatly increases the glass cost and processing cost.
  • Patent CN106470952A discloses a structure comprising an outer glass sheet and an inner glass laminate, wherein a glass laminate structure comprising an outer glass sheet and an inner glass sheet, wherein one or two of the glass sheets contain SiO 2 + B 2 O 3 +Al 2 O 3 ⁇ 86.5 mol% and R 2 O–RO–Al 2 O 3 ⁇ about 5 mol%.
  • Exemplary glass flakes may include about 69-80 mol% SiO 2 , about 6-12 mol% Al 2 O 3 , about 2-10 mol% B 2 O 3 , about 0-5 mol% ZrO 2 , Li 2 O, MgO, ZnO and P 2 O 5 , about 6-15 mol% Na 2 O, about 0-3 mol% K 2 O and CaO, and about 0-2 mol% SnO 2 , thereby providing a mechanically strong and environmentally durable structure.
  • the compressive stress layer to be higher than 60 ⁇ m.
  • the present invention provides a phosphoaluminosilicate glass with a low-cost and high compressive stress layer.
  • a phosphoaluminosilicate glass with low-cost and high compressive stress layer comprising the following components in mole percentage: SiO 2 65 ⁇ 75%; Al 2 O 3 8 ⁇ 16%; Na 2 O 11 ⁇ 16 %; K 2 O 0 ⁇ 5%; P 2 O 5 1 ⁇ 4%; B 2 O 3 0 ⁇ 4%; ZnO 0 ⁇ 1%; SnO 2 0 ⁇ 1%;
  • composition of the glass also contains (CaO+MgO+SrO+BaO) ⁇ 0.1mol%;
  • composition of the glass also contains 2mol% ⁇ P 2 O 5 + K 2 O ⁇ 6mol%;
  • the average linear thermal expansion coefficient of the glass is less than 90 ⁇ 10 -7 /°C.
  • the surface compressive stress value of the glass compression layer is 500 MPa to 1000 MPa.
  • the weight loss rate per unit area after the glass is immersed in an oxalic acid solution at 60° C. for 6 hrs is less than or equal to 0.15 mg/cm 2 .
  • SiO 2 is the main glass forming body, one of the essential components, and mainly constitutes the main glass network structure, which gives the glass better chemical stability, mechanical properties and molding properties.
  • the SiO 2 component of the glass forms a protective film layer with water and acid resistance on the surface of the glass. The higher the content of SiO 2 in the glass, the stronger the water and acid resistance of the protective film.
  • the SiO 2 is at least 65mol%, preferably 66mol % Or more, more preferably 67mol% or more; increasing the SiO 2 content in the glass reduces the cost of glass production, because the raw material cost of SiO 2 sourced quartz sand is the lowest, but too high SiO 2 content increases the melting temperature of the glass, resulting in a large number of small glass Defects of bubbles; too high may also lead to crystallization, so SiO 2 is at most 75 mol%, more preferably, at most 73 mol%.
  • Al 2 O 3 is one of the essential components of glass and belongs to the network intermediate composition.
  • the alkaline ions charge the Al 3+ ions, so that most of the alumina tends to become glass aluminum oxide tetrahedrons, forming the main glass network structure, thereby improving the stability and mechanical properties of the glass.
  • the volume of Al 2 O 3 formed in glass is larger than that of silica tetrahedron. The volume of the glass expands, thereby reducing the density of the glass, providing an exchange channel for the glass in the ion exchange process, and improving the compression of the glass.
  • the stress layer is deep, and the content of Al 2 O 3 in the glass is at least 8 mol%, preferably at least 10 mol%, and more preferably at least 12 mol%; but Al 2 O 3 is an extremely refractory oxide, which can quickly increase the high-temperature viscosity of the glass, As a result, the clarification and homogenization temperature of the glass rises sharply, leading to a large increase in the concentration of bubble defects in the glass, especially in the case of high concentration of SiO 2 in the glass, high concentration of Al 2 O 3 makes it difficult to clarify the glass, resulting in a decrease in yield and production Cost increase; in addition, when the glass contains high concentration of Al 2 O 3 , the glass structure is relatively loose, which provides more possibilities for ion replacement of alkali metal ions (such as Na +, etc.) in the glass and H + ions in weak acids, thereby reducing The glass surface is resistant to acid corrosion. Therefore, the content of Al 2 O 3 in the glass is at most 16 mol %, preferably at most 14
  • Na 2 O is one of the essential components of glass.
  • the high concentration of Na 2 O in the glass makes the glass contain enough Na + to exchange with the K + ions in the potassium nitrate molten salt to produce on the glass surface High compressive stress.
  • Na 2 O can provide a large amount of free oxygen source, damage the glass silica network structure, reduce the viscosity of the glass, and help the glass to melt and clarify. Therefore, the content of Na 2 O in the present invention is not less than 11 mol% , Preferably, not less than 12 mol%, more preferably, not less than 13 mol%. However, if the Na 2 O concentration is too high, the mechanical properties and chemical stability of the glass will be deteriorated.
  • Na 2 O tends to exchange with hydrogen ions in the water and dissolve into it.
  • the content of Na 2 O in the glass is at most 18 mol%, preferably at most 16 mol%.
  • Li 2 O The glass component contains at most 0.1% Li 2 O, which is an optional component.
  • a certain concentration of Li 2 O in the glass helps to reduce the melting viscosity of the glass, thereby improving the melting effect.
  • a small amount of Li 2 O helps to improve the water resistance of the glass, but high Li 2 O tends to hinder the exchange of Na + and K + .
  • the cost of glass raw materials will greatly increase, so Li 2 O is preferably not contained in the present invention.
  • K 2 O glass K 2 O is a non-essential component, K 2 O can be improved glass melting and refining effect; glass K to produce "mixed alkali effect" when 2 O present together 2 O and Na, thereby improving the water glass and Acid resistance; when the glass maintains a certain K 2 O concentration, it helps to obtain a layer that increases the compressive stress of the glass.
  • the K 2 O concentration reduces the surface compressive stress caused by glass ion exchange more obviously; but the high K 2 O concentration in the glass is chemically stable The deterioration of performance makes the glass poorer in acid resistance; the cost of potassium carbonate and potassium bicarbonate derived from K 2 O is higher than that of sodium carbonate. Therefore, the K 2 O content in the glass of the present invention is preferably 0 to 5 mol%, and more preferably 1 mol% to 3 mol%.
  • the B 2 O 3 component in the glass belongs to the network forming body oxide, which can significantly reduce the viscosity of high-temperature glass; high-concentration B 2 O 3 has the phenomenon of oxide volatilization during the high-temperature melting process, which is not conducive to the stability of the glass composition. And the high B 2 O 3 concentration reduces the viscosity of the glass, which leads to a decrease in the strain point temperature of the glass.
  • P 2 O 5 in glass is a glass forming body component, which is connected to each other as a network of [PO 4 ] tetrahedrons, but the network structure formed by P 2 O 5 is layered, and the layers are mutually connected by van der Waals forces.
  • the connection makes the glass network structure in a loose state, and the network gap becomes larger, which is conducive to the mutual diffusion of Na + ions in the glass and K + ions in the molten salt, and promotes the ion exchange during the glass strengthening process, which is helpful for rapid gains.
  • the compressive stress layer plays a very important role.
  • the high P 2 O 5 concentration makes the glass chemical stability worse, and the P 2 O 5 raw material source cost is relatively high. Therefore, the content of P 2 O 5 is preferably 1 to 4 mol%.
  • the oxidation of divalent metals includes CaO, MgO, SrO, BaO, etc., which are the external components of the glass network, which damage the glass network structure and reduce the glass melting temperature.
  • the divalent oxide metals all hinder the ion exchange rate of the glass, and it is difficult to obtain a glass with a high compressive stress layer. Therefore, in the present invention, (CaO+MgO+SrO+BaO) ⁇ 0.1mol%.
  • ZnO in glass is a divalent metal oxide, which is the external component of the glass network, which has a destructive effect on the glass network structure, reduces the melting temperature of the glass, is a good flux, and is beneficial to clarification.
  • Zn 2+ has six-coordinate [ZnO 6 ] and four-coordinate [ZnO 4 ] states.
  • the six-coordinate [ZnO 6 ] structure is relatively dense, while the four-coordinate [ The structure of ZnO 4 ] is relatively loose, and the number of four coordinations increases with the increase of alkali metal oxides.
  • the glass network is looser, which is conducive to the migration of ions (Na + ) in the glass, thereby increasing the depth of the glass ion exchange layer.
  • ZnO content has a positive effect on improving glass ion exchange efficiency.
  • ZnO can maintain a high surface compressive stress on the surface of the strengthened glass, which is easy to make the surface compressive stress value exceed 1000MPa.
  • the raw material source cost of ZnO is high. Reducing the ZnO content in the glass can reduce the production cost, which is conducive to obtaining a larger range of products. application. Therefore, the ZnO content is ⁇ 1 mol%, more preferably ⁇ 0.1 mol%.
  • the glass of the present invention contains a chemical fining agent.
  • SnO 2 is the main high-temperature fining agent, and it is environmentally friendly and non-toxic, but high-concentration SnO 2 is prone to produce excessive oxygen, causing excessive bubbles to remain in the glass, and the cost of SnO 2 raw materials is relatively high, and its content is up to 0.4 mol%. It is more preferably 0.2 mol%.
  • the phosphoaluminosilicate glass of the present invention has a high surface compressive stress layer. On the one hand, it can reduce the concentration of divalent metal ion oxides in the glass, and limit the glass composition (CaO+MgO+SrO+BaO) ⁇ 0.1mol% , Can greatly reduce the resistance to Na + ion and K + ion exchange in the glass divalent metal ion component; on the other hand, in the present invention, by optimizing the Al 2 O 3 , P 2 O 5 and K 2 O in the glass, The exchange rate of Na + ions and K + ions is increased, so as to realize that the compressive stress layer of the strengthened glass in the present invention is greater than or equal to 60 ⁇ m.
  • the glass has excellent resistance to the ability of the weak acid, weak acid-resistant properties of the present invention improves glass by three, on the one hand to improve the SiO 2 content in the glass composition, the concentration of SiO 2 in the glass requires not less than 65mol%; on the one hand R 2 O and P 2 O 5 in the glass limit the weak acid resistance of the glass surface.
  • the significant advantage of the present invention is that: on the one hand, the present invention improves the ion exchange efficiency of the glass by optimizing the composition, and obtains a strengthened glass with a compressive stress layer.
  • the present invention increases the SiO 2 composition content in the glass, and treats the R 2 O and P 2 O 5 components in the glass that reduce the weak acid resistance of the glass surface, thereby significantly improving the acid resistance of the glass.
  • the present invention has the advantages of low cost and high compressive stress layer.
  • Embodiment 1-8 are identical to Embodiment 1-8:
  • Sample preparation process of Example 1-8 After mixing the purity and moisture content of raw materials such as quartz sand, alumina, sodium carbonate, etc., weigh and mix uniformly to obtain uniform ingredients; then transfer the ingredients from the plastic bottle to about Put the platinum crucible into the silicon-molybdenum rod high-temperature furnace in an 800ml platinum crucible, gradually increase the temperature to 1650°C, hold the temperature for 4-8 hours, stir to accelerate the discharge of glass bubbles and homogenize the glass to eliminate defects.
  • raw materials such as quartz sand, alumina, sodium carbonate, etc.
  • the molten liquid was poured into a heat-resistant stainless steel mold for rapid forming, and then the glass block was taken out and moved into a box annealing furnace for heat treatment at 630°C for about 2 hours, and then reduced to 570°C at a rate of less than 1°C/min. Naturally cool to room temperature.
  • the glass block is cut and ground to prepare the relevant test sample. In order to obtain more stable measurement results, chemical-grade matching materials should be selected.
  • Softening point the softening point temperature when the glass viscosity is 10 7.6 poise, measured according to ASTM C-338 "Standard Test Method for Softening Point of Glass";
  • Annealing point the annealing point temperature when the glass viscosity is 10 13 poise, measured according to the ASTM C-336 "Standard Test Method for Annealing Point and Strain Point of Glass by Fiber Elongation";
  • Depth of Layer Depth of Layer, tested with FSM-6000LE surface stress meter from Japan Orihara Industry Co., Ltd.
  • Weight loss per unit area cut the glass into regular-shaped glass sheets, rough-grind the mounting samples, and finally use 2000 grit sandpaper to fine-grind the upper and lower surfaces of the glass samples. After drying, the sample is immersed in an oxalic acid solution with PH ⁇ 2, the temperature is set to 60°C, and the time is 6 hours; the glass mass change before and after soaking is measured with a precision balance of 1/10, and the glass is weakly acidic by measuring the surface area of the glass. The weight loss ratio in the solution.
  • Average linear thermal expansion coefficient Coefficient of Linear Thermal Expansion, using ASTM E228 ⁇ Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer" Standard method for measurement, the temperature range is 30°C ⁇ 300°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

一种具有高压缩应力层的磷铝硅酸盐玻璃,包含:SiO 2 65~75%;Al 2O 3 8~16%;Na 2O 11~18%;K 2O 0~5%;P 2O 5 1~4%;B 2O 3 0~3%;ZnO 0~1%;SnO 2 0~0.4%;其中,(CaO+MgO+SrO+BaO)≤0.1%;该玻璃强化后离子交换层深≥60μm;该玻璃的平均线热膨胀系数<90×10 -7/℃,在60℃草酸溶液中浸泡6hrs后单位面积重量损失率≤0.15mg/cm 3

Description

一种具有低成本高压缩应力层的磷铝硅酸盐玻璃 技术领域
本发明涉及玻璃材料技术领域,具体涉及一种具有低成本高压缩应力层的无碱土金属氧化物的磷铝硅酸盐玻璃。
背景技术
铝硅酸玻璃通过化学强化处理后,使玻璃表层具有高表面压应力(Compressive Stress,简称CS)和形成一定深度的离子交换层(Depth of Layer,简称DOL),实现快速提高玻璃表面硬度、抗冲击性能、耐划伤性能和耐损伤性能,从而被广泛应用在触控显示产品最外层盖板保护材料。
一般玻璃表面产生的划痕深度一般在30μm~50μm,因此要求玻璃表面离子交换层深度达到60μm即可符合大部分应用场景对抗划伤和高强度盖板玻璃的要求。目前化学强化处理工艺普遍采用一步离子交换法和二步离子交换法。一步离子交换法主要在玻璃中引入高含量的氧化钠组成,用以提供足够Na +离子浓度和熔盐中K +进行交换,从而在玻璃表面产生表面压缩应力层。目前已商业化玻璃中离子交换后玻璃的DOL值均小于50μm,主要原因已商业化玻璃的受离子交换速度限制,玻璃需经过至少10小时离子交换才能达到50μm(已商业化玻璃经再重新退火处理),高强化时间明显降低生产效率,增加玻璃强化时间上的成本。
技术问题
目前化学强化处理工艺已经从一步离子交换法(玻璃中Na +离子和熔盐中K +交换)逐步向两步离子交换法(首先进行玻璃中Li +离子和熔盐中Na +交换,再进行玻璃中Na +离子和熔盐中K +交换)发展,其主要目的在于提升离子交换层的深度DOL值,从而有效提升玻璃的耐损性能。通过双离子交换后,玻璃的离子交换层深度达到80μm或者更高,但该离子交换层深度80%以上深度主要来自于玻璃中Li +离子和熔盐中Na +交换形成,而玻璃中Na +离子和熔盐中K +交换交换层深度均在15μm以下,从而导致玻璃表面抗划伤能力降低。目前已经商业化的双两步离子交换的玻璃中均需含有氧化锂成分,而氧化锂采用的碳酸锂等原料引入而导致原料成本非常高,从而使得玻璃本身价格偏高,难以普及;此外含锂玻璃在进行离子强化过程中,锂离子对离子交换熔盐的副作用非常大,加速缩短含钠熔盐的使用寿命,从而提高盖板加工厂商的生产成本,因此两步离子交换玻璃虽然可以实现更高的离子交换层,但需要客户承担高昂的成本价格,同时也限制了两步离子强化玻璃的普及应用。目前仍没有一款产品具有低成本和高压缩应力层的玻璃产品。
此外,随着2.5D、3D等曲面造型的触控显示屏渐成为主流产品,玻璃被要求加工成具有2.5D 、3D曲面造型的产品。当玻璃从2D被加工成2.5D和采用热弯制程制作3D造型后,需要对玻璃表面抛光处理,从而在玻璃表面不可避免的残留诸多可见或不可见划痕,还包含抛光粉等脏污。为有效除去玻璃表面脏污,常采用酸性清洗剂在超声波和约55℃~65℃环境中对玻璃进行清洗,清洗液例如采用PH约为2的草酸溶液。玻璃在酸性的水溶液环境下,玻璃表面的Na +和水中H +离子发生交换作用,从而在玻璃表面产生一层具有保护玻璃表面的氢氧化物膜层,但在酸性环境下,氢氧化物膜层被弱酸环境中H +中和,从而加速玻璃交换作用,从而引起玻璃在弱酸性环境中重量损失变得更为严重,尤其当玻璃表面残留由于制程产生的损伤,该类损伤在酸洗环境进行清洗中,微观损伤逐渐变成肉眼可见的损伤,从而导致玻璃表面产生明显的可见缺陷,例如可见划伤、雾化、白点等,从而降低玻璃的透过率影响生产良率。在水或酸性水溶液中,玻璃中SiO 2成分在玻璃表面形成一层具有抗水和抗酸能力的保护膜层,该保护膜层的存在使玻璃中Na +和水中H +离子发生交换速率降低,以致停止,从而有效保护玻璃表面,使其可经受酸性制程。
现有技术中如专利CN108585480A公开了一种二步法化学强化碱铝硅酸玻璃组合物及其制备方法。所述二步法化学强化碱铝硅酸玻璃组合物,其组成以摩尔百分比计包括:53~65%的SiO 2,16~22%的Al 2O 3,0.01~0 .5%的B 2O 3,4~8%的Li 2O,8~14%的Na 2O,0.01~1%的K 2O,0.01~3%的MgO,0~1%ZnO,0~4%的P 2O 5,0~0.1%的SnO 2;本发明通过优化玻璃配方,在玻璃中引入氧化锂和氧化磷成分,通过二步法化学强化,使玻璃表面具有较高的表面压应力和较深的离子交换层,从而提高玻璃的表面硬度、抗刮伤性以及抗摔落性能。该专利玻璃中均含有高Li 2O成分,致使玻璃成本及加工成本大大增加。
专利CN106470952A公开了一种包含外部玻璃片和内部玻璃层压件结构,其中包含外部玻璃片和内部玻璃片的玻璃层压件结构,其中所述玻璃片中的一种或两种包含SiO 2+B 2O 3+Al 2O 3≥86.5摩尔%和R 2O–RO–Al 2O 3< 约5摩尔%。示例性玻璃片可包含约69~80摩尔%SiO 2, 约6~12摩尔%Al 2O 3, 约2~10摩尔%B 2O 3, 约0~5摩尔%ZrO 2, Li 2O, MgO, ZnO和P 2O 5, 约6~15摩尔%Na 2O, 约0~3摩尔%K 2O和CaO, 和约0~2摩尔%SnO 2,从而提供机械牢固和环境耐久的结构。该专利中并没有要求压缩应力层高于60μm的说明和实施例。
技术解决方案
针对上述问题,本发明提供一种具有低成本和高压缩应力层的磷铝硅酸玻璃。
为实现上述目的,本发明采用如下技术方案:
一种具有低成本和高压缩应力层的磷铝硅酸盐玻璃,以摩尔百分比计包括以下组分为:SiO 2 65~75%;Al 2O 3 8~16%;Na 2O 11~16%;K 2O 0~5%;P 2O 5 1~4%;B 2O 3 0~4%;ZnO0~1%;SnO 2 0~1%;
所述玻璃的组分中还包含(CaO+MgO+SrO+BaO)≤0.1mol%;
所述玻璃的组分中,更优选(CaO+MgO+SrO+BaO+ZnO)≤0.1mol%;
所述玻璃的组分中还包含2mol% ≤P 2O 5+ K 2O≤6mol%;
所述玻璃平均线热膨胀系数<90×10 -7/℃。
所述玻璃压缩层的表面压缩应力值500MPa~1000MPa。
所述玻璃在60℃草酸溶液中浸泡6hrs后单位面积重量损失率≤0.15mg/cm 2
以下对各成分的含量进行数值限定的理由加以说明:
SiO 2:SiO 2为主要玻璃成形体,属必需成分之一,主要构成了玻璃网状主结构,其赋予玻璃较佳的化学稳定性、机械性能和成型性能。玻璃中SiO 2成分在玻璃表面形成一层具有耐水和耐酸能力的保护膜层,玻璃中SiO 2含量越高,保护膜层对玻璃耐水和耐酸性能越强,SiO 2至少为65mol%,优选66mol%以上,更优选67mol%以上;提高玻璃中SiO 2含量降低玻璃生产成本,因为SiO 2来源的石英砂原料成本是最低,但过高SiO 2含量使玻璃熔化温度提高,从而导致玻璃出现大量小气泡的缺陷;过高也可能导致析晶,因此SiO 2至多为75mol%,更优选地,至多为73mol %。
Al 2O 3:Al 2O 3为玻璃的必需成分之一,属于网络中间体组成。在高碱浓度玻璃成分中,碱性离子对Al 3+离子进行电荷平衡,使多数氧化铝倾向于成为玻璃铝氧四面体,构成了玻璃网状主结构,从而提高玻璃稳定性和机械性能。Al 2O 3在玻璃中形成的铝氧四面体在玻璃中体积比硅氧四面体体积要大,玻璃体积发生膨胀,从而降低玻璃的密度,为玻璃在离子交换过程提供交换通道,提高玻璃压缩应力层深,玻璃中Al 2O 3含量至少为8mol%,优选地,至少为10mol %,更优选至少12mol%;但Al 2O 3属于极难熔氧化物,其能快速提高玻璃高温粘度,致使玻璃澄清和均化温度急剧升高,导致玻璃中的气泡缺陷浓度大量增加,尤其在玻璃中具有高浓度SiO 2情况下,高浓度Al 2O 3导致玻璃难以澄清,导致良品率降低致使生产成本增加;此外,当玻璃中含有高浓度Al 2O 3后,玻璃结构较为疏松,为玻璃中碱金属离子(例如Na +等)和弱酸中H +离子发生离子置换提供更多可能,从而降低玻璃表面耐酸侵蚀能力。因此在玻璃中Al 2O 3含量至多为16mol%,优选地,至多为14mol %。
Na 2O:Na 2O为玻璃的必需成分之一,玻璃中高浓度的Na 2O,使得玻璃中含有足够多的Na +,与硝酸钾熔盐中K +离子进行交换,从而在玻璃表面产生高压缩应力。此外,Na 2O可提供大量游离氧来源,对玻璃硅氧网络结构体起破坏作用,降低玻璃的粘度,有助于玻璃熔化与澄清,因此,本发明中Na 2O含量不低于11mol%,优选地,不低于12mol%,更优选地,不低于13mol%。但Na 2O浓度过高,将使得玻璃机械性能和化学稳定性能劣化,尤其在高氧化铝浓度和含磷成分的硅酸玻璃中,Na 2O更容易倾向与水中的氢离子交换而溶入水中,降低玻璃的耐水和耐酸性能。因此玻璃中Na 2O含量至多为18mol%,优选地,至多为16mol%。
Li 2O:玻璃组分至多包含0.1% Li 2O,其属于非必要成分。玻璃中一定Li 2O浓度有助于降低玻璃的熔化粘度,从而改善熔化效果,少量的Li 2O有助于改善玻璃的耐水性能,但高Li 2O倾向于阻碍Na +和K +交换,且玻璃原料成本会大大增加,因此本发明中优选地不含Li 2O。
K 2O:玻璃中K 2O属于非必要成分,K 2O可以改善玻璃熔化与澄清效果;玻璃中K 2O和Na 2O共同存在时产生“混合碱效应”,从而改善玻璃中耐水和耐酸性能;当玻璃中维持一定K 2O浓度有助于获得提高玻璃的压缩应力层, K 2O浓度对玻璃离子交换产生的表面压应力降低更为明显;但玻璃中高K 2O浓度化学稳定性劣化,使玻璃耐酸性变差;K 2O来源的碳酸钾和碳酸氢钾成本相对碳酸钠是增加的。因此,本发明的玻璃中K 2O含量优选为0~5mol%,更优选为1mol%~3mol%。
B 2O 3:玻璃中B 2O 3成分属于网络形成体氧化物,可明显降低高温玻璃粘度;高浓度B 2O 3在高温熔制过程中存在氧化物挥发现象,不利于玻璃成分稳定,且高B 2O 3浓度降低玻璃粘度,从而导致玻璃应变点温度降低。此外,离子交换的实验表明,高 B 2O 3浓度对离子交换起阻碍作用,不利于玻璃高应力层深度获得;并且B 2O 3原料成本相对较高,因此B 2O 3含量≤3mol %,更优选≤2mol%。
P 2O 5:玻璃中P 2O 5属于玻璃形成体成分,其以[PO 4]四面体相互连成网络,但P 2O 5形成的网络结构属于层状,且层间由范德华力相互连接,使玻璃网络结构呈疏松状态,网络空隙变大,有利于玻璃中Na +离子和熔盐中K +离子进行相互扩散,对玻璃强化工艺过程中离子交换起促进作用,对快速获得较高压缩应力层起非常重要作用。高P 2O 5浓度使玻璃化学稳定性变差,同时P 2O 5的原料来源成本相对较高。因此P 2O 5含量优选1~4 mol%。
二价金属氧化包含CaO,MgO、SrO和BaO等,其为玻璃网络外体成分,对玻璃网络结构起破坏作用,降低玻璃熔化温度。但二价氧化物金属均对玻璃的离子交换速率起阻碍作用,难以获得具有高压缩应力层的玻璃,因此,本发明中(CaO+MgO+SrO+BaO)≤0.1mol%。
ZnO:玻璃中ZnO属于二价金属氧化物,其为玻璃网络外体成分,对玻璃网络结构起破坏作用,降低玻璃熔化温度,是良好的助熔剂,有利于澄清。在高碱金属氧化物硅酸盐玻璃中,Zn 2+存在六配位[ZnO 6]和四配位[ZnO 4]状态,其中六配位[ZnO 6]结构较为致密,而四配位[ZnO 4]结构较为疏松,四配位数量随碱金属氧化物增加而增加。当四配位[ZnO 4]含量较多时,玻璃网络更为疏松,有利于玻璃中离子(Na +)迁移,从而提高玻璃离子交换层深度,相比同族的CaO、MgO和SrO对离子交换的阻碍作用,ZnO含量对提高玻璃离子交换效率积极作用。此外,ZnO能维持强化玻璃表面高的表面压缩应力,容易使表面压缩应力值超过1000MPa;此外,ZnO的原料来源成本高,降低玻璃中ZnO含量可以降低生产成本,有利于产品获得更大范围的应用。因此ZnO含量≤1mol%,更优选≤0.1mol%。
除上述的氧化物之外,本发明的玻璃中含有化学澄清剂。其中SnO 2为主要高温澄清剂,且环保无毒,但高浓度的SnO 2易于产生过量氧,造成过多气泡残留在玻璃中,且SnO 2原料成本较高,其含量至多为0.4mol %,更优选0.2mol%。
本发明的磷铝硅酸盐玻璃具有高表面压缩应力层,其一方面可通过降低玻璃中二价金属离子氧化物浓度,玻璃组分中限制(CaO+MgO+SrO+BaO)≤0.1mol%,可极大减少玻璃二价金属离子组分中对Na +离子和K +离子交换的阻力;另一方面,本发明中通过优化玻璃中Al 2O 3、P 2O 5和K 2O,提升Na +离子和K +离子交换速率,从而实现本发明中强化玻璃的压缩应力层≥60μm。
本发明中的玻璃具有良好的耐弱酸的能力,本发明通过三方面改善玻璃的耐弱酸性能,一方面提高玻璃中SiO 2组成含量,要求玻璃中SiO 2浓度不低于65mol%;一方面对玻璃中R 2O和P 2O 5导致玻璃表面的耐弱酸能力降低成分进行限制。
有益效果
本发明的显著优点在于:本发明一方面通过优化成分改善玻璃的离子交换效率,获得具有压缩应力层强化玻璃。另一方面本发明提高玻璃中SiO 2组成含量,并对玻璃中导致玻璃表面的耐弱酸能力降低成分的R 2O和P 2O 5,从而明显改善玻璃耐酸性能。此外,本发明具有低成本高压缩应力层的优势。
本发明的实施方式
以下结合具体实施例对本发明做进一步说明,但本发明不仅仅限于这些实施例。
实施例1-8: 
1、测试样品制备              
实施案1-8样品制备过程:依据石英砂、氧化铝、碳酸钠等原料纯度与水分含量进行配比后,称量并均匀混合获得均匀的配料;然后将配合料从塑料瓶中转移至约800ml铂坩埚中,将铂坩埚置入硅钼棒高温炉炉内,逐渐升温至1650℃,持温4~8小时,通过搅拌加速玻璃气泡排出和使玻璃均化消除缺陷。随后将熔融液倒入至耐热不锈钢模具进行快速成型,然后取出玻璃块并移入箱式退火炉内进行630℃约2小时的热处理,随后以小于1℃/分的速率降至570℃,之后自然冷却至室温。将玻璃块进行切割研磨制备成符合相关测试样品。为取得更加稳定的测量结果,应选择化学级的配合原料。
实施案1-8样品包含的成分和物理性质如表一,各物理的其定义及解释如下所示:
(1)软化点:玻璃粘度为10 7.6泊时的软化点温度,根据ASTM C-338《Standard Test Method for Softening Point of Glass》标准方法测量;
(2)退火点: 玻璃粘度为10 13泊时的退火点温度,根据ASTM C-336《Standard Test Method for Annealing Point and Strain Point of Glass by Fiber Elongation》标准方法测量;
(3)应变点: 玻璃粘度为10 14.5泊时的应力点温度,根据ASTM C-336《Standard Test Method for Annealing Point and Strain Point of Glass by Fiber Elongation》标准方法测量;
(4)表面压缩层应力值:Compressive Stress,即采用日本折原工业有限公司FSM-6000LE表面应力计进行测试。
(5)表面压缩应力层深: Depth of Layer,采用日本折原工业有限公司FSM-6000LE表面应力计进行测试。
(6)单位面积重量损失率:将玻璃切割成规则形状的玻璃片,镶样进行粗磨,最后采用2000目砂纸对玻璃样品上下表面进行精磨。干燥后将样品浸没在PH≈2的草酸溶液中,温度设定为60℃,时间为6小时;采用万分之一精密天平测量浸泡前后玻璃质量变化,通过测量玻璃表面积计算获得玻璃在弱酸性溶液中的重量损失比。
(7)平均线热膨胀系数: Coefficient of  Linear Thermal Expansion,采用ASTM E228 《Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer》  标准方法进行测量,温度范围为30℃~300℃ 。 
表一 实施例1-8
Figure dest_path_image001

Claims (9)

  1. 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃,其特征在于,以摩尔百分比计,所述玻璃包含:
    SiO 2 65~75%;Al 2O 3 8~16%;Na 2O 11~18%;K 2O 0~5%;P 2O 5 1~4%;
    B 2O 3 0~3%;ZnO 0~1%;SnO 2 0~0.4%。
  2. 根据权利要求1所述的一种具有低成本高压缩应力层的磷铝硅酸盐玻璃,其特征在于,以摩尔百分比计,还包含(CaO+MgO+SrO+BaO)≤0.1%。
  3. 根据权利要求1所述的一种具有低成本高压缩应力层的磷铝硅酸盐玻璃,其特征在于,所述玻璃强化后离子交换层深≥60μm。
  4. 根据权利要求1所述的一种具有低成本高压缩应力层的磷铝硅酸盐玻璃,其特征在于,以摩尔百分比计,所述玻璃包含:SiO 2 65~72%;Al 2O 3 10~14%;Na 2O 11~16%;K 2O 0.1~3%;P 2O 5 1.5~4%;B 2O 3 0~2%;SnO 2 0~0.2%。
  5. 根据权利要求1~4任一项所述具有低成本高压缩应力层的磷铝硅酸盐玻璃,其特征在于,以摩尔百分计,2%≤P 2O 5+K 2O≤6%。
  6. 根据权利要求1~4任一项所述的一种具有低成本高压缩应力层的磷铝硅酸盐玻璃,其特征在于,以摩尔百分比计,还包含Li 2O≤0.1%。
  7. 根据权利要求1~4任一项所述的一种具有低成本高压缩应力层的磷铝硅酸盐玻璃,其特征在于,所述玻璃平均线热膨胀系数<90×10 -7/℃。
  8. 根据权利要求1~4任一项所述的一种具有低成本高压缩应力层的磷铝硅酸盐玻璃,其特征在于,所述玻璃压缩层的压缩应值为500MPa~1000MPa。
  9. 根据权利要求1~4任一项所述的一种具有低成本高压缩应力层的磷铝硅酸盐玻璃,其特征在于,所述玻璃在60℃草酸溶液中浸泡6hrs后单位面积重量损失率≤0.15mg/cm 2
PCT/CN2019/099259 2019-03-22 2019-08-05 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃 WO2020191982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910221340.XA CN109836037A (zh) 2019-03-22 2019-03-22 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃
CN201910221340.X 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020191982A1 true WO2020191982A1 (zh) 2020-10-01

Family

ID=66886168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099259 WO2020191982A1 (zh) 2019-03-22 2019-08-05 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃

Country Status (2)

Country Link
CN (1) CN109836037A (zh)
WO (1) WO2020191982A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109836037A (zh) * 2019-03-22 2019-06-04 科立视材料科技有限公司 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃
CN111533443B (zh) * 2020-05-27 2022-04-15 成都光明光电股份有限公司 光学玻璃

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059038A (ja) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd 強化ガラスおよびその製造方法
CN103328396A (zh) * 2011-01-18 2013-09-25 日本电气硝子株式会社 强化玻璃及强化玻璃板
CN105683108A (zh) * 2013-08-27 2016-06-15 康宁股份有限公司 具有高热膨胀系数的耐损坏的玻璃
WO2016104454A1 (ja) * 2014-12-25 2016-06-30 旭硝子株式会社 ガラス板
CN105916824A (zh) * 2013-11-19 2016-08-31 康宁股份有限公司 可离子交换的具有高耐损坏性的玻璃
CN107226614A (zh) * 2017-05-16 2017-10-03 东旭科技集团有限公司 一种玻璃用组合物和玻璃及其制备方法和应用
CN109836037A (zh) * 2019-03-22 2019-06-04 科立视材料科技有限公司 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI591039B (zh) * 2011-07-01 2017-07-11 康寧公司 具高壓縮應力的離子可交換玻璃
JP2014028743A (ja) * 2012-06-25 2014-02-13 Nippon Electric Glass Co Ltd 有機el用ガラス基板及びその製造方法
CN107382052B (zh) * 2017-08-25 2020-02-07 郑州大学 一种无碱硅酸盐玻璃及其制备方法和应用
CN108585481A (zh) * 2018-07-13 2018-09-28 科立视材料科技有限公司 一种可快速进行离子交换的含锂铝硅酸盐玻璃
CN109020192A (zh) * 2018-10-17 2018-12-18 科立视材料科技有限公司 一种具有高应变点、可快速离子交换和耐弱酸性的锌磷铝硅酸盐玻璃

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059038A (ja) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd 強化ガラスおよびその製造方法
CN103328396A (zh) * 2011-01-18 2013-09-25 日本电气硝子株式会社 强化玻璃及强化玻璃板
CN105683108A (zh) * 2013-08-27 2016-06-15 康宁股份有限公司 具有高热膨胀系数的耐损坏的玻璃
CN105916824A (zh) * 2013-11-19 2016-08-31 康宁股份有限公司 可离子交换的具有高耐损坏性的玻璃
WO2016104454A1 (ja) * 2014-12-25 2016-06-30 旭硝子株式会社 ガラス板
CN107226614A (zh) * 2017-05-16 2017-10-03 东旭科技集团有限公司 一种玻璃用组合物和玻璃及其制备方法和应用
CN109836037A (zh) * 2019-03-22 2019-06-04 科立视材料科技有限公司 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃

Also Published As

Publication number Publication date
CN109836037A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
EP4043413A1 (en) Lithium-zirconium-based aluminosilicate glass, reinforced glass, preparation method therefor and display device
KR102659268B1 (ko) 고 액상선 점도를 갖는 과알루미늄질 리튬 알루미노실리케이트
JP5779296B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用のカバーガラス
JP5977841B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用カバーガラス
CN101508524B (zh) 适于化学钢化的玻璃及其化学钢化玻璃
CN107162410B (zh) 一种玻璃及其制备方法
JP2012214356A (ja) カバーガラス及びその製造方法
TW201742841A (zh) 在後離子交換熱處理之後保留高壓縮應力的玻璃組成物
WO2020011167A1 (zh) 一种可快速进行离子交换的含锂铝硅酸盐玻璃
JPWO2014122935A1 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用カバーガラス
CN102417301A (zh) 一种玻璃组合物及由其制成的玻璃、制法和用途
US20200189962A1 (en) Ion-exchangeable lithium-containing aluminosilicate glasses
WO2020011171A1 (zh) 一种适合3d成型且可改善离子交换性能的铝硅酸盐玻璃
TW202130593A (zh) 具高中心張力之高破壞韌性玻璃
TW201638040A (zh) 具有低軟化點的快速可離子交換的無硼玻璃
JPWO2009096611A1 (ja) 基板用ガラス組成物
JP2013193887A (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、ディスプレイ用のカバーガラスおよび強化ガラス物品の製造方法
WO2022166028A1 (zh) 铝硅酸盐强化玻璃及其制备方法
CN106698928A (zh) 一种可离子交换的碱性铝硅酸盐保护玻璃及制备方法
WO2020078075A1 (zh) 一种具有高应变点、可快速离子交换和耐弱酸性的锌磷铝硅酸盐玻璃
WO2020191982A1 (zh) 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃
KR20170118923A (ko) 3-차원 형상을 위한 이온교환 가능한 연질 유리
CN109320072B (zh) 一种高铝低钙可化学强化处理的玻璃
CN110482855B (zh) 铝硅酸盐玻璃及制备方法
JP2001226137A (ja) 化学強化用のガラス素板の製造方法およびそれを用いて得られる化学強化ガラス物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922077

Country of ref document: EP

Kind code of ref document: A1