WO2024109495A1 - 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃 - Google Patents

一种3d微晶玻璃及其制备方法、预晶化微晶玻璃 Download PDF

Info

Publication number
WO2024109495A1
WO2024109495A1 PCT/CN2023/128792 CN2023128792W WO2024109495A1 WO 2024109495 A1 WO2024109495 A1 WO 2024109495A1 CN 2023128792 W CN2023128792 W CN 2023128792W WO 2024109495 A1 WO2024109495 A1 WO 2024109495A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mol
ceramics
microcrystalline
crystallized
Prior art date
Application number
PCT/CN2023/128792
Other languages
English (en)
French (fr)
Inventor
陶武刚
徐兴军
王勇
陈发伟
候英兰
李要辉
Original Assignee
湖南旗滨新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南旗滨新材料有限公司 filed Critical 湖南旗滨新材料有限公司
Publication of WO2024109495A1 publication Critical patent/WO2024109495A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present application relates to the field of microcrystalline glass, and in particular to a 3D microcrystalline glass and a preparation method thereof, and a pre-crystallized microcrystalline glass.
  • the cover glass used to protect electronic products on the market is generally high-aluminum silicate glass. High aluminum is conducive to the improvement of stress intensity and stress layer depth after ion exchange, but the glass has poor drop resistance.
  • microcrystalline glass depends on the ratio of the crystalline phase to the glass phase, the size of the crystal grains, etc.
  • a nucleating agent into the glass formula or adjusting the oxide ratio composition in the formula, one or more crystalline phases are formed in the subsequent heat treatment process. It has both the high permeability of glass and the high strength of ceramics, which can improve the average hardness and fracture toughness of glass.
  • the microcrystalline phase in microcrystalline glass can hinder the propagation path of microcracks, which is beneficial to the overall improvement of the glass's scratch resistance, impact resistance, and drop resistance.
  • 3D hot-bent micro-ceramic glass is formed by hot-bending completely crystallized micro-ceramic glass. Its processing process includes glass plate forming, glass plate nucleation and crystallization, crystallized glass plate thinning, crystallized glass plate cutting, CNC, and polishing. Only when it is completely crystallized can it be subjected to 3D hot bending, 3D polishing, and chemical strengthening operations.
  • the 3D hot bending molding temperature is higher than 700°C. If completely crystallized microcrystalline glass is used, its crystal phase type, crystal particle size, refractive index, Lab (chromaticity) value, haze, transmittance, etc. will undergo unpredictable changes when it is heated again, affecting its display effect in display scenarios. If incompletely crystallized microcrystalline glass (microcrystalline glass that is only nucleated) is used for 3D hot bending molding, the microcrystalline glass that is only nucleated will undergo a relatively large volume change during the hot bending crystallization process and is prone to warping, affecting the dimensional accuracy of the 3D hot-bent microcrystalline glass after molding.
  • the present application provides a 3D microcrystalline glass and a preparation method thereof, and a pre-crystallized microcrystalline glass, which, while ensuring that the 3D microcrystalline glass has excellent physical and chemical properties and mechanical properties, solves the problem that the microcrystalline glass is prone to adverse changes and warping during 3D hot bending.
  • the present application provides a 3D microcrystalline glass, the crystal phase of which comprises LiAlSi 4 O 10 and Li 2 Si 2 O 5 , wherein the content of the LiAlSi 4 O 10 is greater than the content of the Li 2 Si 2 O 5 .
  • the ratio of the content of LiAlSi 4 O 10 to the content of Li 2 Si 2 O 5 is ⁇ 1.5.
  • the crystalline phase of the 3D glass-ceramics further includes at least one of Li 2 SiO 3 , Li 3 PO 4 and ⁇ -spodumene.
  • the crystallinity of the 3D glass-ceramics is ⁇ 50%, wherein the content of LiAlSi 4 O 10 is 30% to 60%, and the content of Li 2 Si 2 O 5 is 20% to 30%.
  • the average crystal particle size of the 3D glass-ceramics is ⁇ 50 nm.
  • the average transmittance of the 3D glass-ceramics at a wavelength of 380 nm to 780 nm is ⁇ 90.8%.
  • the 3D glass-ceramics warpage is ⁇ 0.1 mm.
  • the b value of the 3D microcrystalline glass is ⁇ 0.45, and the b value is the absolute value of the yellow-blue value when the thickness of the 3D microcrystalline glass is 0.6 mm.
  • the haze of the 3D glass-ceramics is ⁇ 0.25.
  • components of the 3D glass-ceramics include SiO 2 , Al 2 O 3 , P 2 O 5 , Li 2 O, Na 2 O, and ZrO 2 .
  • the 3D glass-ceramics comprises the following components, calculated by mole percentage:
  • the 3D glass-ceramics comprises the following components, calculated by mole percentage:
  • the 3D glass-ceramics further comprises the following components calculated by mole percentage:
  • Clarifying agent 0 ⁇ 1mol%.
  • the present application also provides a pre-crystallized glass-ceramics, the crystallinity of the pre-crystallized glass-ceramics is ⁇ 35%, the crystal phase composition includes LiAlSi 4 O 10 and Li 2 Si 2 O 5 , and the content of LiAlSi 4 O 10 is greater than the content of Li 2 Si 2 O 5 .
  • the average particle size of the crystals of the pre-crystallized glass-ceramics is ⁇ 50 nm
  • the thickness of the pre-crystallized glass-ceramics is 0.3 mm to 0.8 mm;
  • the average transmittance of the pre-crystallized glass-ceramics at a wavelength of 380nm to 780nm is ⁇ 90.5%;
  • the b value of the pre-crystallized glass-ceramics is ⁇ 0.55, wherein the b value is the absolute value of the yellow-blue value when the thickness of the 3D glass-ceramics is 0.6 mm;
  • the haze of the pre-crystallized glass-ceramics is ⁇ 0.27.
  • the present application also provides a method for preparing 3D glass-ceramics, the method comprising the following steps:
  • the pre-crystallized microcrystalline glass as described above is subjected to 3D heat bending treatment to obtain 3D microcrystalline glass, wherein the 3D heat bending treatment is also accompanied by a crystallization treatment.
  • the method for preparing the pre-crystallized glass-ceramics comprises the following steps:
  • the plain glass is subjected to a nucleation treatment at 530° C. to 580° C. for 0.5 h to 1.5 h, and then subjected to a crystallization treatment at 630° C. to 720° C. for 1 h to 3 h, and then cooled to room temperature to obtain a pre-crystallized microcrystalline glass.
  • the 3D hot bending process includes a preheating station, a hot pressing station and a cooling station.
  • the working temperature of the preheating station is 460°C to 760°C, and the working time is 160s to 900s;
  • the working temperature of the hot pressing station is 720°C to 860°C, and the working time is 80s to 750s;
  • the temperature of the cooling station is 350°C to 600°C, and the working time is It is 160s to 900s.
  • the 3D glass-ceramics is further subjected to hot bending chemical strengthening treatment, the chemical strengthening temperature is 450°C to 520°C, and the chemical strengthening time is 4h to 8h; the bath salt used for the chemical strengthening treatment includes 10wt% to 40wt% NaNO 3 and 59wt% to 90wt% KNO 3 ; and/or 0wt% to 0.2wt% LiNO 3 .
  • the drop height of the 3D glass-ceramics after the chemical strengthening treatment is ⁇ 1.5 m.
  • the crystalline phase of the 3D microcrystalline glass obtained by the technical solution of the present application contains LiAlSi 4 O 10 and Li 2 Si 2 O 5 , the content of LiAlSi 4 O 10 is greater than the content of Li 2 Si 2 O 5 , and it has excellent physical and chemical properties and mechanical properties. It can be used to prepare a front cover or a back cover for a touch display screen, or to other electronic intelligent terminals and photovoltaic power generation devices, and plays a good protective role.
  • the present application performs pre-crystallization treatment on plain plate glass through a pre-crystallization process to obtain pre-crystallized microcrystalline glass with a crystallinity ⁇ 35% and a LiAlSi 4 O 10 content greater than that of Li 2 Si 2 O 5 , and controls the structural ratio of its glass phase and crystal phase.
  • a 3D microcrystalline glass with an average crystal particle size of ⁇ 50nm, a crystallinity ⁇ 50%, and a LiAlSi 4 O 10 content greater than that of Li 2 Si 2 O 5 can be obtained.
  • the difference in the structure of the glass phase and the crystal phase during the 3D hot bending process can be controlled to obtain a 3D microcrystalline glass with higher dimensional accuracy and lower warping.
  • the technical solution of the present application solves the technical problem that when fully crystallized microcrystalline glass is used and its crystal phase type, crystal particle size, refractive index, Lab (chromaticity) value, haze, transmittance, etc. change when it is hot-bent and heated again, thus affecting its application effect.
  • the crystal phase value, average crystal particle size, transmittance, b value, and haze value of the 3D microcrystalline glass of the present application do not change significantly compared with those of the pre-crystallized microcrystalline glass, indicating that the present application can control the variation range of the above properties of the 3D microcrystalline glass through the pre-crystallized microcrystalline glass, which also makes the finished product of the 3D microcrystalline glass prepared by the present application multi-controllable and high control degree of the finished product.
  • the present application also solves the technical problem that the micro-ceramic glass that has only been nucleated is prone to large volume changes and warping during the 3D hot bending crystallization process, which affects the dimensional accuracy of the 3D hot bent micro-ceramic glass after forming.
  • the present application can obtain 3D micro-ceramic glass with higher dimensional accuracy and warping ⁇ 0.1mm.
  • the 3D glass-ceramics of the present application has the highest content of LiAlSi 4 O 10 in the crystal phase.
  • sodium ions and potassium ions replace lithium ions in the LiAlSi 4 O 10 structure, thereby obtaining excellent anti-drop performance with a drop height of ⁇ 1.5m.
  • the preparation method of the present application has low processing difficulty and low processing cost, which saves time cost and energy for heat treatment.
  • FIG1 is a schematic flow chart of a method for preparing 3D glass-ceramics according to Example 1 of the present application.
  • the present application provides a 3D microcrystalline glass, wherein the crystal phase of the 3D microcrystalline glass comprises LiAlSi 4 O 10 and Li 2 Si 2 O 5 , wherein the content of LiAlSi 4 O 10 is greater than the content of Li 2 Si 2 O 5 .
  • the crystallinity of the 3D microcrystalline glass of the present application is ⁇ 50%, wherein the content of LiAlSi 4 O 10 is 30% to 60%, the content of Li 2 Si 2 O 5 is 20% to 30%, and the ratio of the content of LiAlSi 4 O 10 to the content of Li 2 Si 2 O 5 is ⁇ 1.5, which can effectively solve the difference in structure between the glass phase and the crystal phase, so that the 3D microcrystalline glass after hot bending has higher dimensional accuracy and lower warping.
  • the 3D glass-ceramics mainly has a crystal phase of LiAlSi 4 O 10 and Li 2 Si 2 O 5 , and may also contain at least one of Li 2 SiO 3 , Li 3 PO 4 and ⁇ -spodumene, and also has the following physical and chemical properties:
  • Average particle size ⁇ 50nm
  • the average transmittance of light with wavelength of 380nm to 780nm is ⁇ 90.8%;
  • the b value ⁇ 0.45; the b value is the absolute value of the yellow-blue value when the thickness of the 3D microcrystalline glass is 0.6 mm.
  • the components of the 3D glass-ceramics of the present application include SiO 2, Al 2 O 3, P 2 O 5, Li 2 O, Na 2 O, and ZrO 2.
  • the 3D glass-ceramics includes the following components calculated by molar percentage:
  • the 3D glass-ceramics comprises the following components calculated by mole percentage:
  • 3D glass-ceramics of the present application includes but is not limited to the above components, and may also include the following components as required:
  • Clarifying agent 0-1 mol%
  • 3D glass-ceramics The physical and chemical properties and processing properties of 3D glass-ceramics can be further improved.
  • the 3D glass-ceramics comprises the following components, calculated by mole percentage:
  • the 3D glass-ceramics comprises the following components, calculated by mole percentage:
  • the above-mentioned 3D microcrystalline glass can also obtain a drop height of more than 1.5m after chemical strengthening treatment, giving the 3D microcrystalline glass excellent anti-drop performance.
  • the 3D microcrystalline glass obtained by the technical solution of the present application has excellent physical, chemical and mechanical properties, and can be used to prepare front covers or back covers for touch display screens, or to other electronic smart terminals and photovoltaic power generation devices, playing a good protective role.
  • the present application also provides a pre-crystallized glass-ceramic, wherein the pre-crystallized glass-ceramic has a crystallinity of ⁇ 35%, a crystal phase composition including LiAlSi 4 O 10 and Li 2 Si 2 O 5 , the content of LiAlSi 4 O 10 is greater than the content of Li 2 Si 2 O 5 , and has the following physical and chemical properties:
  • the average particle size of the crystals is ⁇ 50nm
  • Thickness 0.3mm ⁇ 0.8mm
  • the average transmittance of light with wavelength of 380nm to 780nm is ⁇ 90.5%;
  • b value ⁇ 0.55, where b value is the absolute value of the yellow-blue value when the thickness of the 3D glass-ceramic is 0.6 mm;
  • the ratio of the content of LiAlSi 4 O 10 to the content of Li 2 Si 2 O 5 is ⁇ 1.33, further ⁇ 1.5.
  • the present application also provides a method for preparing the 3D glass-ceramics as described above, comprising the following steps:
  • the pre-crystallized microcrystalline glass as described above is subjected to 3D heat bending treatment to obtain 3D microcrystalline glass, wherein the 3D heat bending treatment is also accompanied by a crystallization treatment.
  • the crystallization process refers to the further enlargement of the grain size of the pre-crystallized glass-ceramics crystal phase during the 3D hot bending process, and the further dense cross-interlocking of the crystal phase.
  • the present application controls the crystal phase composition and physical and chemical properties of pre-crystallized microcrystalline glass in combination with the 3D hot bending processing method of the present application, thereby effectively controlling the crystal phase composition and physical and chemical properties of 3D microcrystalline glass, thereby solving the problem that when completely crystallized and incompletely crystallized microcrystalline glass are subjected to 3D hot bending forming, the crystal phase type, crystal particle size, refractive index, Lab (chromaticity) value, haze, transmittance, etc. of the 3D microcrystalline glass are easily caused to undergo large changes, thereby affecting its display effect in display scenarios, or it is easy to undergo large volume changes and then warp, affecting the dimensional accuracy after forming, and other problems.
  • the method for preparing pre-crystallized glass-ceramics includes the following steps:
  • Step 2 performing a nucleation treatment on the plain glass at 530° C. to 580° C. for 0.5 h to 1.5 h, and then performing a crystallization treatment at 630° C. to 720° C. for 1 h to 3 h, and then cooling to room temperature to obtain a pre-crystallized microcrystalline glass.
  • the glass raw materials can be selected according to the composition of 3D glass-ceramics, and the composition of the 3D glass includes the following components:
  • SiO2 60-80mol%; Al2O3 : 3-10mol %; P2O5 : 0.6-2mol%; Li2O : 10-30mol%; Na2O: 0.1-4mol%; ZrO2: 0.5-5mol %; K2O : 0-1mol%; B2O3 : 0-1mol%; CaO: 0-1mol %; MgO: 0-1mol%; ZnO: 0-1mol% ; Y2O3 : 0-1mol%; clarifier: 0-1mol% .
  • the composition of the 3D glass includes the following components: SiO2 : 65-73mol% ; Al2O3 : 3-6mol%; P2O5 : 0.7-2mol%; Li2O: 19-25mol%; Na2O : 0.1-2mol%; ZrO2: 0.7-2.5mol %; K2O: 0-1mol%; B2O3 : 0-1mol %; CaO: 0-1mol%; MgO: 0-1mol%; ZnO: 0-1mol%; Y2O3 : 0-1mol%; clarifier: 0-1mol%.
  • the introduced SiO 2 is a component that constitutes the glass skeleton and provides a source of SiO 2 for the formation of a crystalline phase.
  • SiO 2 can serve as the main body of the glass network structure, giving the basic glass and microcrystalline glass better chemical stability, mechanical properties and molding properties. In the process of glass microcrystallization, too high SiO 2 will cause quartz and quartz solid solution to appear in the process of glass microcrystallization.
  • the SiO 2 content is 60 to 80 mol%, further 65 to 73 mol%, and in some embodiments, the SiO 2 content can be 60 mol%, 62 mol%, 64 mol%, 65 mol%, 66 mol%, 68 mol%, 69 mol%, 70 mol%, 71 mol%, 72 mol%, 73 mol%, 75 mol%, 76 mol%, 77 mol%, 78 mol%, 79 mol% or 80 mol%.
  • the introduced P 2 O 5 will react with Li 2 O to form Li 3 PO 4 crystal phase, thereby inducing Li 2 O and SiO 2 in the glass to react to form to form Li 2 SiO 3 , and finally to form Li 2 Si 2 O 5 crystal phase.
  • the P 2 O 5 content is too high, lithium metasilicate will be precipitated during the crystallization process, resulting in too little glass phase, and insufficient Li 2 Si 2 O 5 crystal phase cannot be formed, and the quartz phase will be precipitated, making it difficult to obtain a crystallized glass with high transmittance. Therefore, taking all factors into consideration, the P 2 O 5 content is 0.6 mol% to 2 mol%, and further 0.7 to 2 mol%.
  • the P 2 O 5 content can be 0.6 mol%, 0.7 mol%, 0.9 mol%, 1.0 mol%, 1.2 mol%, 1.3 mol%, 1.5 mol%, 1.7 mol%, 1.8 mol%, 2 mol%.
  • the introduced Al 2 O 3 is a network intermediate oxide.
  • the non-bridging oxygen forms an aluminum oxide tetrahedron with Al.
  • the volume of the aluminum oxide tetrahedron is larger than that of the silicon oxide tetrahedron. It produces a larger gap in the glass structure, which is conducive to ion exchange, making the chemical strengthening effect better and improving the mechanical properties of the glass.
  • Al 2 O 3 is an extremely refractory oxide. It will quickly increase the high-temperature viscosity of the glass, making it more difficult to clarify and homogenize the glass, and greatly increase the concentration of bubble defects in the glass.
  • Too high Al 2 O 3 content will significantly increase the microcrystallization temperature of the glass, inhibit the crystallization ability of the base glass, and make it difficult to form Li 2 Si 2 O 5 , resulting in excessive formation of LiAlSi 4 O 10 in the crystallization process, and even generating LiAlSi 2 O 6 crystal phase in the base glass, which reduces the transmittance of the glass. Therefore, taking all factors into consideration, the Al 2 O 3 content is 3 mol% to 10 mol%, further 3 to 6 mol%.
  • the Al 2 O 3 content is 3 mol%, 3.2 mol%, 3.5 mol%, 3.8 mol%, 4.mol%, 4.3 mol%, 4.5 mol%, 4.8 mol%, 5.mol%, 5.2 mol%, 5.5 mol%, 5.8 mol%, 6.mol%, 6.3 mol%, 6.5 mol%, 6.8 mol%, 7 mol%, 8%, 8.3%, 8.5%, 9%, 9.5%, 9.8%, and 10%.
  • the introduced Li 2 O is a network exo-oxide, which can reduce the viscosity of the glass, promote the melting and clarification of the glass, and promote the formation of Li 3 PO 4 in the basic microcrystallization process, which helps to form Li 2 Si 2 O 5 crystal phase and LiAlSi 4 O 10 crystal phase in the crystallization process.
  • the content of Li 2 O is 10 to 30 mol%, further 19 mol% to 25 mol%.
  • the content of Li 2 O can be 10 mol%, 12 mol%, 15 mol%, 17 mol%, 19 mol%, 20 mol%, 23 mol%, 25 mol%, 27 mol%, 29 mol% or 30 mol%.
  • the introduced Na2O can significantly reduce the viscosity of the base glass, promote the melting and clarification of the base glass, and reduce the crystallization temperature of the glass, so that the crystallized glass can be strengthened with K + ions in the potassium nitrate molten salt, thereby generating high compressive stress on the glass surface to improve the glass strength, and the glass must have enough Na + . Therefore, considering comprehensively, the content of Na2O is 0.1-4mol%, further 0.1mol%-2mol%.
  • the content of Na2O is 0.1mol%, 0.5mol%, 0.8mol%, 1mol%, 1.5mol%, 1.7mol%, 1.9mol%, 2mol%, 2.3mol%, 2.5mol%, 2.7mol%, 3mol%, 3.4mol%, 3.8mol%, or 4mol%.
  • the role of ZrO2 in the 3D microcrystalline glass of the present application is more inclined to promote the crystallization of petalite crystals, helping to reduce the size of grains during the crystallization process, thereby improving the transmittance of the glass.
  • the ZrO2 content is too high, unmelted ZrO2 is likely to appear in the glass, resulting in the inability to uniformly crystallize the glass. Therefore, taking all factors into consideration, the content of ZrO2 is 0.5-5mol%, and further 0.7mol%-2.5mol%.
  • the content of ZrO2 is 0.5mol%, 0.6mol%, 0.7mol%, 0.9mol%, 1mol%, 1.4mol%, 1.6mol%, 1.8mol%, 2mol%, 2.4mol%, 2.8mol%, 3mol%, 3.6mol%, 3.7mol%, 4mol% or 5mol%.
  • any one or a mixture of two or more of K 2 O, B 2 O 3 , CaO, MgO, ZnO, and Y 2 O 3 is conducive to lowering the melting temperature, has the effect of adjusting the properties of the glass forming material, and can also adjust the ion exchange, and improve the stress strength and depth of the glass after strengthening.
  • the clarifier can improve the melting performance of 3D microcrystalline glass.
  • the clarifier can be selected from the types well known to the public.
  • the clarifier includes SnO 2 , CeO 2 , etc.
  • the content of K 2 O, B 2 O 3 , CaO, MgO, ZnO, Y 2 O 3 , and the clarifier is 0-1 mol%, and further 0.1 mol%-0.8 mol%.
  • the content of K2O , B2O3 , CaO, MgO, ZnO, Y2O3 , and fining agent is 0.1 mol % , 0.2 mol%, 0.3 mol%, 0.4 mol%, 0.5 mol%, 0.6 mol%, 0.7 mol%, 0.8 mol%, 0.9 mol%, or 1 mol%.
  • the present application does not limit the melting temperature of the glass raw material, which is 1380°C to 1450°C, and the plain glass of the desired shape can also be obtained by cutting.
  • the melting temperature can be 1380°C, 1400°C, 1420°C or 1450°C.
  • the present application does not limit the method of forming the plain glass plate, and the method well known to the public can be selected, such as float glass forming. Molding, overflow molding, calendering, slit draw-down or frit casting, etc.
  • the thickness of the plain glass obtained by the step 1 is 0.3 mm to 2 mm, further 0.7 mm, and can also be 0.5 mm, 1.0 mm, 1.5 mm or 1.8 mm.
  • Step 2 describes performing a nucleation treatment on the plain glass at 530°C to 580°C for 0.5h to 1.5h, wherein 530°C to 580°C means that the nucleation treatment of the present application can be performed at any temperature condition within this temperature range.
  • the temperature of the nucleation treatment is 530°C, 540°C, 550°C, 560°C, 570°C or 580°C
  • the time of the nucleation treatment can be 0.5h, 0.8h, 1h, 1.2h or 1.5h.
  • the crystallization treatment is carried out at 630°C ⁇ 720°C for 1h ⁇ 3h
  • 630°C ⁇ 720°C means that the crystallization treatment of the present application can be carried out at any temperature condition within this temperature range.
  • the crystallization treatment temperature is 630°C, 640°C, 650°C, 660°C, 670°C, 680°C, 690°C, 700°C, 710°C or 720°C
  • the crystallization treatment time can be 1h, 1.5h, 1.8h, 2h, 2.5h, 2.8h or 3h.
  • the pre-crystallized microcrystalline glass of the present application can be obtained, avoiding excessive crystallization or even complete crystallization, which affects the structural ratio of the glass phase and the crystal phase in the pre-crystallized microcrystalline glass and the 3D microcrystalline glass, and then causes the 3D microcrystalline glass to have poor dimensional accuracy and lower warping.
  • the pre-crystallized glass-ceramics may also be trimmed, CNC machined, roughly ground, and polished.
  • the pre-crystallized microcrystalline glass has completed a partial crystallization treatment, which can prevent the hot bending from being heated again and causing changes in the glass crystal phase type, crystal particle size, refractive index, Lab (chromaticity) value, haze, transmittance, etc., and can effectively solve the differences in glass phase and crystal phase structure, so that the 3D microcrystalline glass has higher dimensional accuracy and lower warping, preventing it from affecting its display effect in display scenarios and its use in other application scenarios.
  • the 3D hot bending process includes a preheating station, a hot pressing station, and a cooling station.
  • the preheating stations are 2 to 6, which can be 2, 3, 4, 5, or 6;
  • the hot pressing stations are 1 to 5, which can be 1, 2, 3, 4, or 5;
  • the cooling stations are 2 to 6, which can be 2, 3, 4, 5, or 6.
  • the working temperature of the preheating station is 460°C to 760°C, and the working time is 160s to 900s; in some embodiments, the working temperature is 460°C, 480°C, 500°C, 530°C, 550°C, 580°C, 600°C, 620°C, 650°C, 680°C, 700°C, 720°C, 750°C or 760°C, and the working time is 160s, 200s, 250s, 300s, 350s, 400s, 450s, 500s, 550s, 600s, 650s, 700s, 750s, 800s, 850s or 900s.
  • the working temperature of the hot pressing station is 720°C ⁇ 860°C, and the working time is 80s ⁇ 750s; in some embodiments, the working temperature is 720°C, 750°C, 780°C, 800°C, 820°C, 850°C or 860°C, and the working time is 80s, 100s, 150s, 180s, 200s, 240s, 250s, 280s, 300s, 350s, 400s, 500s, 550s, 600s, 650s, 680s, 700s, 720s or 750s.
  • the working pressure of the hot pressing station may be 0.05 MPa to 0.7 MPa. In some embodiments, the working pressure of the hot pressing station is 0.05 MPa, 0.1 MPa, 0.2 MPa, 0.3 MPa, 0.4 MPa, 0.5 MPa, 0.6 MPa or 0.7 MPa.
  • the working temperature of the cooling station is 350°C ⁇ 600°C, and the working time is 160s ⁇ 900s.
  • the working temperature is 350°C, 400°C, 450°C, 480°C, 500°C, 520°C, 550°C, 580°C or 600°C
  • the working time is 160s, 200s, 240s, 250s, 300s, 400s, 500s, 550s, 600s, 650s, 700s, 750s, 780s, 800s, 850s, 880s or 900s.
  • the 3D glass-ceramics obtained by the 3D heat bending process can be further subjected to chemical strengthening treatment at a temperature of 450° C. to 520° C. and a chemical strengthening time of 4 to 8 hours.
  • the 3D glass-ceramics is kept at 350-450° C. for 30-60 minutes.
  • the bath salt used for chemical strengthening treatment includes 10 wt% to 40 wt% NaNO 3 and 59 wt% to 90 wt% KNO 3 ; and/or 0 wt% to 0.2 wt% LiNO 3. It is understood that the bath salt includes 10 wt% to 40 wt% NaNO 3 and 59 wt% to 90 wt% KNO 3 ; or, the bath salt includes 10 wt% to 40 wt% NaNO 3 and 59 wt% to 90 wt% KNO 3 and 0 wt% to 0.2 wt% LiNO 3 .
  • the bath salt includes 10 wt% NaNO 3 , 89.8 wt% KNO 3 , and 0.2 wt% LiNO 3 .
  • the bath salt includes 40 wt% NaNO 3 , 59.95 wt% KNO 3 , and 0.05 wt% LiNO 3 .
  • the bath salts include 10 wt % NaNO 3 and 90 wt % KNO 3 .
  • the bath salts include 40 wt % NaNO 3 and 60 wt % KNO 3 .
  • the 3D glass-ceramics can also be cleaned and dried to prevent residual pollutants from affecting the strengthening effect.
  • 3D glass-ceramics that have undergone chemical strengthening treatment can achieve excellent anti-drop performance with a drop height of ⁇ 1.5m.
  • glass raw material components 1 to 6 are respectively prepared according to the 3D microcrystalline glass component ratio shown in Table 1, and the glass raw materials of components 1 to 6 are respectively mixed and melted at 1380°C, and then clarified, homogenized, formed, and annealed to prepare 6 groups of plain glass with a thickness of 0.6 mm.
  • the 6 groups of plain glass are processed according to the conditions of the following steps S20 to S40.
  • the pre-crystallized microcrystalline glass is passed through 5 preheating stations, with the working temperature and working time being 460°C/80s, 520°C/80s, 600°C/80s, 660°C/80s, and 730°C/80s, respectively, and then passed through 3 hot pressing stations, with the working temperature, time, and pressure being 800°C/80s/0.05Mpa, 820°C/80s/0.1MPa, and 720°C/80s/0.2MPa, respectively, and then passed through 3 cooling stations, with the working temperature and time being 600°C/80s, 540°C/80s, and 450°C/80s, respectively.
  • 3D microcrystalline glass is obtained.
  • step S40 preparing chemically strengthened 3D glass-ceramics: keeping the 3D glass-ceramics of step S30 at 400°C for 30 minutes, and then soaking and strengthening in a mixed bath salt composed of 0.2wt% LiNO3 +40wt% NaNO3 +59.8wt% KNO3 at 450°C for 4 hours to complete the chemical strengthening treatment of the 3D glass-ceramics.
  • pre-crystallized microcrystalline glass is prepared according to the conditions of comparative example 2 in step S20 in Table 2. The properties of the pre-crystallized microcrystalline glass are shown in Table 2.
  • Crystalline phase and crystallinity The crystal phase is determined by comparing the XRD diffraction peak with the database spectrum, and the crystallinity is calculated by the Rietveld method to calculate the proportion of the crystalline phase diffraction intensity in the overall spectrum intensity.
  • Warping A 0.6 mm thick glass plate was 3D bent into a 5.5-inch shape, and the gap between the 3D bent glass plate and the measuring table (3D mold) was measured with a feeler gauge.
  • Sandpaper drop performance of the whole device measured by a mobile phone controlled drop tester.
  • the specific test conditions are: 80-grit sandpaper, 195g total weight, 60cm base height, 10cm increment, 1 time per height, until broken.
  • the present application performs pre-crystallization treatment on the plain plate glass to obtain a pre-crystallized microcrystalline glass with a crystallinity of ⁇ 35%, a content of LiAlSi 4 O 10 greater than that of Li 2 Si 2 O 5 , a ratio of the content of LiAlSi 4 O 10 to the content of Li 2 Si 2 O 5 of ⁇ 1.33, a thickness of 0.3 mm to 0.8 mm, an average transmittance of 380 nm to 780 nm wavelength light of ⁇ 90.5%, a b value of ⁇ 0.55, and a haze of ⁇ 0.27.
  • the structural ratio of the glass phase to the crystal phase is controlled, and combined with the 3D hot bending process of the present application, the average particle size of the crystal can be ⁇ 50 nm, the crystallinity is 50% to 85%, the content of LiAlSi 4 O 10 is greater than that of Li 2 Si 2 O 5 , the content of LiAlSi 4 O 10 is greater than that of Li 2 Si 2 O 5, and the content of LiAlSi 4 O 10 is ⁇ 1.33 .
  • 3D microcrystalline glass can solve the difference between the glass phase and the crystal phase structure, and obtain 3D microcrystalline glass with higher dimensional accuracy and lower warpage.
  • the 3D microcrystalline glass can also obtain excellent anti-drop performance with a drop height of ⁇ 1.5m after hot bending and chemical strengthening.
  • the 3D microcrystalline glass obtained by the technical solution of the present application has excellent physical and chemical properties and mechanical properties, and can be used to prepare front covers or back covers for touch display screens, or to other electronic smart terminals and photovoltaic power generation devices, playing a good protective role.
  • the nucleation time of Comparative Example 2 is 2.5 h, the nucleation is excessive, the ratio of the content of LiAlSi 4 O 10 to the content of Li 2 Si 2 O 5 in the obtained pre-crystallized microcrystalline glass is equal to 1, the b value and haze are large, and the transmittance of 0.6 mm microcrystalline glass at 560 nm is only 89.8%.
  • Comparative Example 3 based on the pre-crystallized microcrystalline glass of Comparative Example 2, the 3D microcrystalline glass obtained by 3D hot bending treatment has a large volume change and bends. The warping reaches 0.25mm and 0.3mm, which seriously affects the dimensional accuracy of the 3D microcrystalline glass. In addition, the b value and haze are relatively large. The transmittance of 0.6mm microcrystalline glass at 560nm is only 88.7% and 88.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

通过控制核化、晶化处理得到预晶化微晶玻璃,再将所述预晶化微晶玻璃进行3D热弯处理,制备得到3D微晶玻璃。通过先控制预晶化微晶玻璃的晶相结构,继而可以控制3D热弯过程中玻璃相与晶相结构上的差异变化,获得尺寸精度更高、翘曲更低的3D微晶玻璃。

Description

一种3D微晶玻璃及其制备方法、预晶化微晶玻璃
相关申请
本申请要求于2022年11月22日申请的、申请号为202211471719.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及微晶玻璃领域,尤其涉及一种3D微晶玻璃及其制备方法、预晶化微晶玻璃。
背景技术
随着显示技术的发展,玻璃常用于显示器件的保护中。有研究表明,70%的电子产品破坏是不经意间的跌落造成的。市面电子产品保护用的盖板玻璃一般都属于高铝硅酸盐玻璃,高铝有利于离子交换后应力强度和应力层深度的提升,但是玻璃的抗摔性能较差。
微晶玻璃的性能取决于晶相与玻璃相的比例、晶粒的尺寸等。在玻璃配方中引入成核剂或调整配方中氧化物配比组成,在后续的热处理工艺中形成一种或多种结晶相。既有玻璃的高透过性又具有陶瓷的高强度性,可提高玻璃的平均硬度、断裂韧性等性能。微晶玻璃中的微晶相可以阻碍微裂纹扩展路径,有利于玻璃的抗划伤、抗冲击及抗跌落等性能的整体提升。
当前3D后盖成为高档时尚手机的标配,手机盖板“曲面化”的趋势也将愈演愈烈。现有的3D热弯微晶玻璃由完全结晶的微晶玻璃热弯成型,其加工工序流程为玻璃板成型、玻璃板核化和晶化,晶化玻璃板减薄、晶化玻璃板切割、CNC、抛光,当其完全结晶后才进行3D热弯、3D抛光和化学强化等操作。
然而,在热弯过程中,3D热弯成型温度高于700℃,如采用完全结晶的微晶玻璃,热弯再次受热其晶相种类、晶体粒径、折射率、Lab(色度)值、雾度、透过率等会发生难以预测的变化,影响其应用在显示场景中显示效果。而采用不完全结晶的微晶玻璃(只做核化的微晶玻璃)进行3D热弯成型,只做核化的微晶玻璃在热弯晶化过程中会发生比较大的体积变化容易发生翘曲,影响成型后的3D热弯微晶玻璃的尺寸精度。
发明内容
本申请提供一种3D微晶玻璃及其制备方法、预晶化微晶玻璃,在保证3D微晶玻璃具有优异的理化性能和机械性能的同时,解决微晶玻璃在3D热弯时容易发生不良变化和翘曲的问题。
为达到上述目的,本申请提供一种3D微晶玻璃,所述3D微晶玻璃的晶相包含LiAlSi4O10和Li2Si2O5,其中,所述LiAlSi4O10的含量大于所述Li2Si2O5的含量。
在一些实施例中,所述LiAlSi4O10的含量与所述Li2Si2O5的含量的比值≥1.5。
在一些实施例中,所述3D微晶玻璃的晶相还包括Li2SiO3、Li3PO4和β-锂辉石中的至少一种。
在一些实施例中,所述3D微晶玻璃的结晶度≥50%,其中,所述LiAlSi4O10的含量为30%~60%,所述Li2Si2O5的含量为20%~30%。
在一些实施例中,所述3D微晶玻璃的晶体平均粒径≤50nm。
在一些实施例中,所述3D微晶玻璃在380nm~780nm波长光的平均透过率≥90.8%。
在一些实施例中,所述3D微晶玻璃翘曲≤0.1mm。
在一些实施例中,所述3D微晶玻璃的b值≤0.45,所述b值是3D微晶玻璃厚度为0.6mm时的黄蓝值的绝对值。
在一些实施例中,所述3D微晶玻璃的雾度≤0.25。
在一些实施例中,所述3D微晶玻璃的组分包括SiO2、Al2O3、P2O5、Li2O、Na2O、ZrO2
在一些实施例中,按摩尔百分比计算,所述3D微晶玻璃包含以下组分:
SiO2:60~80mol%;
Al2O3:3~10mol%;
P2O5:0.6~2mol%;
Li2O:10~30mol%;
Na2O:0.1~4mol%;
ZrO2:0.5~5mol%。
在一些实施例中,按摩尔百分比计算,所述3D微晶玻璃包含以下组分:
SiO2:65~73mol%;
Al2O3:3~6mol%;
P2O5:0.7~2mol%;
Li2O:19~25mol%;
Na2O:0.1~2mol%;
ZrO2:0.7~2.5mol%;
在一些实施例中,按摩尔百分比计算,所述3D微晶玻璃还包括以下组分:
K2O:0~1mol%;
B2O3:0~1mol%;
CaO:0~1mol%;
MgO:0~1mol%;
ZnO:0~1mol%;
Y2O3:0~1mol%;
澄清剂:0~1mol%。
此外,为实现上述目的,本申请还提供一种预晶化微晶玻璃,所述预晶化微晶玻璃的结晶度≥35%,晶相组成包括LiAlSi4O10和Li2Si2O5,所述LiAlSi4O10的含量大于所述Li2Si2O5的含量。
在一些实施例中,所述预晶化微晶玻璃的晶体的平均粒径≤50nm;
和/或,所述预晶化微晶玻璃的厚度为0.3mm~0.8mm;
和/或,所述预晶化微晶玻璃在380nm~780nm波长光的平均透过率≥90.5%;
和/或,所预晶化微晶玻璃的b值≤0.55,所述b值是3D微晶玻璃厚度为0.6mm时的黄蓝值的绝对值;
和/或,所述预晶化微晶玻璃的雾度≤0.27。
此外,为实现上述目的,本申请还提供一种3D微晶玻璃的制备方法,所述制备方法包含以下步骤:
将如上所述的预晶化微晶玻璃进行3D热弯处理,得到3D微晶玻璃,其中,所述3D热弯处理过程中还伴随着晶化处理。
在一些实施例中,所述预晶化微晶玻璃的制备方法包括以下步骤:
将玻璃原材料混合后熔化、澄清、均化、成型、退火得到素板玻璃;
在530℃~580℃对所述素板玻璃进行核化处理0.5h~1.5h,然后在630℃~720℃进行晶化处理1h~3h,接着冷却至室温,得到预晶化微晶玻璃。
在一些实施例中,所述3D热弯处理包括预热工站、热压工站和冷却工站,所述预热工站工作温度为460℃~760℃,工作时间为160s~900s;所述热压工站的工作温度为720℃~860℃,工作时间为80s~750s;所述冷却工站的温度为350℃~600℃,工作时间 为160s~900s。
在一些实施例中,所述3D微晶玻璃还经过热弯化学强化处理,所述化学强化温度为450℃~520℃,化学强化时间为4h~8h;所述化学强化处理所用浴盐包括10wt%~40wt%的NaNO3和59wt%~90wt%的KNO3;和/或0wt%~0.2wt%的LiNO3
在一些实施例中,经过所述化学强化处理后的3D微晶玻璃的跌落高度≥1.5m。
本申请所能实现的有益效果:
通过本申请技术方案获得的3D微晶玻璃的晶相包含LiAlSi4O10和Li2Si2O5,LiAlSi4O10的含量大于所述Li2Si2O5的含量,具有优良的理化性能和机械性能,可应用于制备触控显示屏用的前盖或后盖,或者应用于其他电子智能终端和光伏发电器件,起到很好的保护作用。
本申请通过预晶化工艺对素板玻璃进行预晶化处理,得到结晶度≥35%,LiAlSi4O10的含量大于Li2Si2O5的含量的预晶化微晶玻璃,控制其玻璃相与晶相的结构比例,再结合本申请的3D热弯工艺,可以得到晶体的平均粒径≤50nm,结晶度≥50%,LiAlSi4O10的含量大于Li2Si2O5的含量的3D微晶玻璃,可以控制3D热弯过程中玻璃相与晶相结构上的差异变化,获得尺寸精度更高、翘曲更低的3D微晶玻璃。
本申请的技术方案解决了采用完全结晶的微晶玻璃,热弯再次受热时其晶相种类、晶体粒径、折射率、Lab(色度)值、雾度、透过率等会发生变化,影响其应用效果的技术问题,本申请的3D微晶玻璃与预晶化微晶玻璃的晶相比值、晶体的平均粒径、透过率、b值、雾度值相比都无发生较大的变化,说明本申请可以通过预晶化微晶玻璃控制3D微晶玻璃以上性能的变化范围,这也使得本申请制备3D微晶玻璃的成品可多重控制,成品控制度高。
本申请还解决了只做核化的微晶玻璃在3D热弯晶化过程中容易发生较大的体积变化继而容易发生翘曲,影响成型后的3D热弯微晶玻璃尺寸精度的技术问题。本申请可以获得尺寸精度更高、翘曲≤0.1mm的3D微晶玻璃。
本申请的3D微晶玻璃晶相中LiAlSi4O10的含量最高,在浴盐中进行化学强化时,钠离子和钾离子取代LiAlSi4O10结构中的锂离子,获得跌落高度≥1.5m的优良抗跌落性能。
此外,本申请的制备方法加工难度小、加工成本低,节约时间成本,同时节约了热处理的能源。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面对实施例或现有技术描述中所需要使用的附图做简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请实施例1一种3D微晶玻璃的制备方法的的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互 矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提供一种3D微晶玻璃,所述3D微晶玻璃的晶相包含LiAlSi4O10和Li2Si2O5,其中,LiAlSi4O10的含量大于Li2Si2O5的含量。
本申请的3D微晶玻璃的结晶度≥50%,其中,所述LiAlSi4O10的含量为30%~60%,所述Li2Si2O5的含量为20%~30%,LiAlSi4O10的含量与Li2Si2O5的含量的比值≥1.5,可以有效解决玻璃相与晶相结构上的差异,使热弯后的3D微晶玻璃尺寸精度更高、翘曲更低。
所述3D微晶玻璃的晶相主要为LiAlSi4O10和Li2Si2O5,还可以含有Li2SiO3、Li3PO4和β-锂辉石中的至少一种,并还具有以下理化性能:
平均粒径≤50nm;
在380nm~780nm波长光的平均透过率≥90.8%;
翘曲≤0.1mm;
b值≤0.45;所述b值是3D微晶玻璃厚度为0.6mm时的黄蓝值的绝对值。
雾度≤0.25。
在一些实施例中,本申请的3D微晶玻璃的组分包括SiO2、Al2O3、P2O5、Li2O、Na2O、ZrO2。在一些实施例中,按摩尔百分比计算,3D微晶玻璃包含以下组分:
SiO2:60~80mol%;
Al2O3:3~10mol%;
P2O5:0.6~2mol%;
Li2O:10~30mol%;
Na2O:0.1~4mol%;
ZrO2:0.5~5mol%;
进一步,在一些实施例中,按摩尔百分比计算,3D微晶玻璃包含以下组分:
SiO2:65~73mol%;
Al2O3:3~6mol%;
P2O5:0.7~2mol%;
Li2O:19~25mol%;
Na2O:0.1~2mol%;
ZrO2:0.7~2.5mol%;
需要说明的是,本申请3D微晶玻璃包含但不限于上述组分,根据需要,还可以包含以下组分:
K2O:0~1mol%;
B2O3:0~1mol%;
CaO:0~1mol%;
MgO:0~1mol%;
ZnO:0~1mol%;
Y2O3:0~1mol%;
澄清剂:0~1mol%;
可以进一步提升3D微晶玻璃的理化性能和加工性能。
在一些实施例中,按摩尔百分比计算,3D微晶玻璃包含以下组分:
80mol%SiO2;7.8mol%Al2O3;0.6mol%的P2O5;10mol%Li2O;0.1mol%Na2O;0.5mol%ZrO2;0.5mol%CaO;0.5mol%Y2O3
在一些实施例中,按摩尔百分比计算,3D微晶玻璃包含以下组分:
72.8mol%SiO2;10mol%Al2O3;1.9mol%P2O5;10mol%Li2O;3.5mol%Na2O;1.8mol%ZrO2
在一些实施例中,上述3D微晶玻璃经过化学强化处理,还可以获得1.5m以上的跌落高度,赋予3D微晶玻璃优异的抗跌落性能。
通过本申请技术方案获得的3D微晶玻璃具有优良的理化性能和机械性能,可应用于制备触控显示屏用的前盖或后盖,或者应用于其他电子智能终端和光伏发电器件,起到很好的保护作用。
本申请还提供一种预晶化微晶玻璃,所述预晶化微晶玻璃的结晶度≥35%,晶相组成包括LiAlSi4O10和Li2Si2O5,LiAlSi4O10的含量大于Li2Si2O5的含量,还具有以下理化性能:
晶体的平均粒径≤50nm;
厚度为0.3mm~0.8mm;
在380nm~780nm波长光的平均透过率≥90.5%;
b值≤0.55,所述b值是3D微晶玻璃厚度为0.6mm时的黄蓝值的绝对值;
雾度≤0.27。
LiAlSi4O10的含量与Li2Si2O5的含量的比值≥1.33,进一步≥1.5。
进一步地,本申请还提供一种如上所述3D微晶玻璃的制备方法,包括以下步骤:
将如上所述的预晶化微晶玻璃进行3D热弯处理,得到3D微晶玻璃,其中,所述3D热弯处理过程中还伴随着晶化处理。
所述晶化处理指的是预晶化微晶玻璃的晶相在3D热弯处理过程中的晶粒尺寸进一步变大,晶相进一步密集交叉互锁。
本申请通过控制预晶化微晶玻璃的晶相组成和理化性能,结合本申请的3D热弯处理方法,可以有效控制3D微晶玻璃的晶相组成和理化性能,继而解决完全晶化以及不完全晶化的微晶玻璃在进行3D热弯成型时,容易导致3D微晶玻璃的晶相种类、晶体粒径、折射率、Lab(色度)值、雾度、透过率等发生较大的变化,继而影响其应用在显示场景中的显示效果,或者,容易发生较大的体积变化继而发生翘曲,影响成型后的尺寸精度等问题。
在一些实施例中,预晶化微晶玻璃的制备方法包括以下步骤:
步骤一、将玻璃原材料混合后熔化、澄清、均化、成型、退火得到素板玻璃;
步骤二、在530℃~580℃对所述素板玻璃进行核化处理0.5h~1.5h,然后在630℃~720℃进行晶化处理1h~3h,接着冷却至室温,得到预晶化微晶玻璃。
玻璃原材料可根据3D微晶玻璃的成分组成进行选择,所述3D玻璃的成分包括以下组分:
SiO2:60~80mol%;Al2O3:3~10mol%;P2O5:0.6~2mol%;Li2O:10~30mol%;Na2O:0.1~4mol%;ZrO2:0.5~5mol%;K2O:0~1mol%;B2O3:0~1mol%;CaO:0~1mol%;MgO:0~1mol%;ZnO:0~1mol%;Y2O3:0~1mol%;澄清剂:0~1mol%。
在另一些实施例中,所述3D玻璃的成分包括以下组分:SiO2:65~73mol%;Al2O3:3~6mol%;P2O5:0.7~2mol%;Li2O:19~25mol%;Na2O:0.1~2mol%;ZrO2:0.7~2.5mol%;K2O:0~1mol%;B2O3:0~1mol%;CaO:0~1mol%;MgO:0~1mol%;ZnO:0~1mol%;Y2O3:0~1mol%;澄清剂:0~1mol%。
其中,引入的SiO2,是构成玻璃骨架的成分,为形成晶相提供SiO2来源。SiO2可以作为玻璃网络结构的主体,赋予基础玻璃及微晶玻璃较佳的化学稳定性、机械性能和成型性能。在玻璃微晶化过程中,过高的SiO2会导致玻璃微晶化过程中出现石英以及石英固溶体。因此,综合考虑,SiO2含量为60~80mol%,进一步为65~73mol%,在一些实施例中,SiO2含量可以是60mol%、62mol%、64mol%、65mol%、66mol%、68mol%、69mol%、70mol%、71mol%、72mol%、73mol%、75mol%、76mol%、77mol%、78mol%、79mol%或80mol%。
引入的P2O5,会和Li2O反应形成Li3PO4晶相,从而诱导玻璃中Li2O和SiO2反应形 成Li2SiO3,最终形成Li2Si2O5晶相。但是,P2O5含量过高时,在晶化过程中将促使偏硅酸锂析出,导致玻璃相过少,无法形成足够的Li2Si2O5晶相,并促使石英相的析出,难以获得具有高透过的晶化玻璃。因此,综合考虑,P2O5含量为0.6mol%~2mol%,进一步为0.7~2mol%,在一些实施例中,P2O5含量可以为0.6mol%、0.7mol%、0.9mol%、1.0mol%、1.2mol%、1.3mol%、1.5mol%、1.7mol%、1.8mol%、2mol%。
引入的Al2O3,属于网络中间体氧化物,非桥氧与Al形成铝氧四面体,该体积比硅氧四面体的体积大,在玻璃结构中产生更大的缝隙,有利于离子交换,使得化学强化效果更好,提高玻璃的机械性能。但是,Al2O3属于极难熔氧化物,会快速提高玻璃高温粘度,致使玻璃澄清均化难度加大,玻璃中的气泡缺陷浓度大量增加;Al2O3含量过高会显著提高玻璃微晶化温度,抑制基础玻璃的晶化能力,难以形成Li2Si2O5,导致晶化过程玻璃LiAlSi4O10过量形成,甚至在基础玻璃中生成LiAlSi2O6晶相,使得玻璃透过率降低。因此,综合考虑,Al2O3含量为3mol%~10mol%,进一步为3~6mol%,在一些实施例中,Al2O3含量为3mol%、3.2mol%、3.5mol%、3.8mol%、4.mol%、4.3mol%、4.5mol%、4.8mol%、5.mol%、5.2mol%、5.5mol%、5.8mol%、6.mol%、6.3mol%、6.5mol%、6.8mol%、7mol%、8%、8.3%、8.5%、9%、9.5%、9.8%、10%。
引入的Li2O,属于网络外体氧化物,可以降低玻璃的粘度,技能促使玻璃的熔化和澄清,还能促使基础微晶化过程中Li3PO4形成,有助于晶化过程中形成Li2Si2O5晶相和LiAlSi4O10晶相。但是,Li2O含量过高,会导致玻璃粘度过低,难以获得化学稳定的玻璃组成,同时会造成在离子强化过程中压缩应力值过低,并且增加原料成本。因此,综合考虑,Li2O的含量为10~30mol%,进一步为19mol%~25mol%,在一些实施例中,Li2O的含量可以为10mol%、12mol%、15mol%、17mol%、19mol%、20mol%、23mol%、25mol%、27mol%、29mol%或30mol%。
引入的Na2O,能显著降低基础玻璃的粘度,促使基础玻璃的熔化和澄清,同时降低玻璃晶化温度的同时,使晶化玻璃能够与硝酸钾熔盐中K+离子进行强化,从而在玻璃表面产生高压缩应力提高玻璃强度,而玻璃必须有足够多的Na+存在。因此,综合考虑,Na2O的含量为0.1~4mol%,进一步为0.1mol%~2mol%。在一些实施例中,Na2O的含量为0.1mol%、0.5mol%、0.8mol%、1mol%、1.5mol%、1.7mol%、1.9mol%、2mol%、2.3mol%、2.5mol%、2.7mol%、3mol%、3.4mol%、3.8mol%、或4mol%。
引入的ZrO2因为具有势能大的锆离子,ZrO2在本申请的3D微晶玻璃中的作用更偏向于促使透锂长石晶体析晶,帮助降低晶化过程中晶粒的尺寸大小,从而提高玻璃的透过率。但是,ZrO2含量过高,玻璃中容易出现ZrO2未熔物,从而导致玻璃无法均匀析晶。因此,综合考虑,ZrO2的含量为0.5~5mol%,进一步为0.7mol%~2.5mol%。在一些实施例中,ZrO2的含量为0.5mol%、0.6mol%、0.7mol%、0.9mol%、1mol%、1.4mol%、1.6mol%、1.8mol%、2mol%、2.4mol%、2.8mol%、3mol%、3.6mol%、3.7mol%、4mol%或5mol%。
而由K2O、B2O3、CaO、MgO、ZnO、Y2O3中的任意一种或两种以上的混合物,有利于降低熔化温度,具有调节玻璃成形料性的作用,同时还能调节离子交换,提高玻璃强化后应力强度及深度。而澄清剂,可以提升3D微晶玻璃的熔化性能。其中,澄清剂可选择公众所熟知的种类,在一些实施例中,澄清剂包括SnO2、CeO2等。因此,综合考虑,K2O、B2O3、CaO、MgO、ZnO、Y2O3、澄清剂的含量为0~1mol%,进一步为0.1mol%~0.8mol%。在一些实施例中,K2O、B2O3、CaO、MgO、ZnO、Y2O3、澄清剂的含量为0.1mol%、0.2mol%、0.3mol%、0.4mol%、0.5mol%、0.6mol%、0.7mol%、0.8mol%、0.9mol%或1mol%。
在步骤一中,本申请不限制玻璃原材料的熔化温度,为1380℃~1450℃,还可以经过切割获得所需形状的素板玻璃。其中,在一些实施例中,所述熔化温度可以是1380℃、1400℃、1420℃或1450℃。
本申请也不限制素板玻璃成型的方式,可以选择公众所熟知的方式进行,例如浮法成 型、溢流成型、压延、狭缝下拉或熔块浇筑成型等。
在一些实施例中,通过步骤一处理得到的素板玻璃的厚度为0.3mm~2mm,进一步为0.7mm,还可以是0.5mm、1.0mm、1.5mm或1.8mm。
步骤二所述在530℃~580℃对所述素板玻璃进行核化处理0.5h~1.5h,其中,530℃~580℃指在该温度范围中任意一个温度条件下都可以进行本申请的核化处理,在一些实施例中,核化处理的温度为530℃、540℃、550℃、560℃、570℃或580℃,核化处理的时间可以是0.5h,0.8h,1h,1.2h或1.5h。
同理,在630℃~720℃进行晶化处理1h~3h,630℃~720℃指在该温度范围内任意一个温度条件下都可以进行本申请的晶化处理,在一些实施例中,晶化处理的温度为630℃、640℃、650℃、660℃、670℃、680℃、690℃、700℃、710℃或720℃,晶化处理时间可以是1h、1.5h、1.8h、2h、2.5h、2.8h或3h。
在上述特定核化条件和晶化条件下,可以得到本申请的预晶化微晶玻璃,避免出现晶化过度,甚至完全晶化的现象,影响预晶化微晶玻璃和3D微晶玻璃中玻璃相和晶相的结构比例,继而导致3D微晶玻璃具有较差的尺寸精度和较低的翘曲。
在一些实施例中,还可以对预晶化微晶玻璃进行修边,CNC机床加工,粗磨、抛光处理。
在本申请中,进行3D热弯处理前,所述预晶化微晶玻璃已经完成了部分晶化处理,可以防止热弯再次受热导致玻璃晶相种类、晶体粒径、折射率、Lab(色度)值、雾度、透过率等发生变化,可以有效解决玻璃相与晶相结构上的差异,使3D微晶玻璃具有更高的尺寸精度和更低的翘曲,防止影响其应用在显示场景中的显示效果以及其它应用场景中的使用效果。
在一些实施例中,3D热弯处理包括预热工站、热压工站和冷却工站。在一些实施例中,预热工站为2~6个,可以是2个、3个、4个、5个或6个;热压工站为1~5个,可以是1个、2个、3个、4个或5个;冷却工站为2~6个,可以是2个、3个、4个、5个或6个。
在一些实施例中,所述预热工站工作温度为460℃~760℃,工作时间为160s~900s;在一些实施例中,工作温度为460℃、480℃、500℃、530℃、550℃、580℃、600℃、620℃、650℃、680℃、700℃、720℃、750℃或760℃,工作时间为160s、200s、250s、300s、350s、400s、450s、500s、550s、600s、650s、700s、750s、800s、850s或900s。
所述热压工站的工作温度为720℃~860℃,工作时间为80s~750s;在一些实施例中,工作温度为720℃、750℃、780℃、800℃、820℃、850℃或860℃,工作时间为80s、100s、150s、180s、200s、240s、250s、280s、300s、350s、400s、500s、550s、600s、650s、680s、700s、720s或750s。
所述热压工站的工作压力可以为0.05Mpa~0.7MPa,在一些实施例中,热压工站的工作压力为0.05Mpa、0.1MPa、0.2MPa、0.3MPa、0.4MPa、0.5MPa、0.6MPa或0.7MPa。
所述冷却工站的工作温度为350℃~600℃,工作时间为160s~900s,在一些实施例中,工作温度为350℃、400℃、450℃、480℃、500℃、520℃、550℃、580℃或600℃,工作时间为160s、200s、240s、250s、300s、400s、500s、550s、600s、650s、700s、750s、780s、800s、850s、880s或900s。
在上述的3D热弯处理条件的限定下,可以保证预晶化微晶玻璃在得到热弯处理的同时,也伴随着晶化处理,晶粒尺寸进一步变大,晶相进一步密集交叉互锁,且不会发生晶化过度的情况。
进一步地,完成了上述3D热弯处理得到的3D微晶玻璃,还可继续进行化学强化处理。所述化学强化处理的温度为450℃~520℃,化学强化时间为4h~8h。
在一些实施例中,在化学强化处理前,先在350~450℃条件下将3D微晶玻璃保温30~60min。
在一些实施例中,化学强化处理所用的浴盐包括10wt%~40wt%的NaNO3和59wt%~90wt%的KNO3;和/或0wt%~0.2wt%的LiNO3。可以理解的是,浴盐包括10wt%~40wt%的NaNO3和59wt%~90wt%的KNO3;或者,浴盐包括10wt%~40wt%的NaNO3和59wt%~90wt%的KNO3和0wt%~0.2wt%的LiNO3
在一些实施例中,所述浴盐包括10wt%的NaNO3,89.8wt%的KNO3和0.2wt%的LiNO3
在一些实施例中,所述浴盐包括40wt%的NaNO3,59.95wt%的KNO3和0.05wt%的LiNO3
在一些实施例中,所述浴盐包括10wt%的NaNO3和90wt%的KNO3
在一些实施例中,所述浴盐包括40wt%的NaNO3和60wt%的KNO3
完成化学强化处理后,还可对3D微晶玻璃进行清洗、烘干处理,避免残留污染物对强化效果造成影响。
经过化学强化处理的3D微晶玻璃,可以获得跌落高度≥1.5m的优良抗跌落性能。
以下结合具体实施例对本申请的技术方案作进一步详细说明,应当理解,以下具体实施例仅仅用于解释本申请,并不用于限定本申请。
实施例1
参照图1:
S10,制备素板玻璃:按表1所示的3D微晶玻璃成分比例分别配置玻璃原材料组分1至6,分别将组分1至6的玻璃原材料混合后在1380℃下进行化熔化,接着澄清、均化、成型、退火,制备得到6组厚度为0.6mm的素板玻璃。按以下步骤S20至步骤S40的条件分别对所述6组素板玻璃进行处理。
S20,制备预晶化微晶玻璃:在530℃对素板玻璃进行核化0.5h,然后再在630℃下晶化1h,冷却至室温,获得预晶化微晶玻璃。
S30,制备3D微晶玻璃:将预晶化微晶玻璃经过5个预热工站,工作温度和工作时间分别为:460℃/80s、520℃/80s、600/80s、660℃/80s、730℃/80S,然后经过3个热压工站,工作温度、时间和压力分别为800℃/80s/0.05Mpa、820℃/80s/0.1MPa、720℃/80s/0.2MPa,接着经过3个冷却工站,工作温度和时间分别为600℃/80s、540℃/80s、450℃/80s。得到3D微晶玻璃。
S40,制备化学强化3D微晶玻璃:将步骤S30的3D微晶玻璃在400℃条件下保温30min,然后于450℃条件下,在0.2wt%的LiNO3+40wt%的NaNO3+59.8wt%的KNO3组成的混合浴盐中浸泡强化4h,完成3D微晶玻璃的化学强化处理。
实施例1得到的预晶化微晶玻璃和3D微晶玻璃的性能如表1所示。
实施例2
按表1实施例1中组分1的3D微晶玻璃成分比例称取玻璃原材料,并按照实施例1中步骤S10的制备方法得到素板玻璃,然后按照表2步骤S20中实施例2的条件制备得到7组预晶化微晶玻璃,所述7组预晶化微晶玻璃的性能见表2。
实施例3
按表1实施例1中组分1的3D微晶玻璃成分比例称取玻璃原材料,并按照实施例1中步骤S10的制备方法得到素板玻璃,按表2步骤S20中实施例2的条件1制备得到预晶化微晶玻璃,然后按照表3步骤S30中实施例3的制备条件对预晶化微晶玻璃进行处理,得到2组3D微晶玻璃,所述2组3D微晶玻璃的性能见表3。
实施例4
按表1实施例1中组分1的3D微晶玻璃成分比例称取玻璃原材料,并按照实施例1中步骤S10的制备方法得到素板玻璃,按表2步骤S20中实施例2的条件1制备得到预晶化微晶玻璃,按表3步骤S30中实施例3的条件1制备得到3D微晶玻璃,然后按照表4步骤S40的条件制备得到6组化学强化后的3D微晶玻璃,所述6组化学强化后的3D微 晶玻璃的性能见表4。
对比例1
按照表1所示对比组分1的3D微晶玻璃成分比例称取玻璃原材料,并参照实施例1的制备方法分别制备得到预晶化微晶玻璃和3D微晶玻璃,对比例1预晶化微晶玻璃和3D微晶玻璃的性能见表1。
对比例2
按表1实施例1中组分1的3D微晶玻璃成分比例称取玻璃原材料,并按照实施例1中步骤S10的制备方法得到素板玻璃,然后按照表2步骤S20中对比例2的条件制备得到预晶化微晶玻璃,所述预晶化微晶玻璃的性能见表2。
对比例3
按表1实施例1中组分1的3D微晶玻璃成分比例称取玻璃原材料,并按照实施例1中步骤S10的制备方法得到素板玻璃,按照表2步骤S20中对比例2的条件制备得到预晶化微晶玻璃,然后按照表3步骤S30中对比例3的条件制备得到3D微晶玻璃,所述2组3D微晶玻璃的性能见表3。
性能测试
对实施例和对比例的产品进行性能测试,结果见表1至4。如无特别说明,各检测项目的检测方法均为本领域的常规方法。具体如下:
(1)晶相及结晶度:将XRD衍射峰与数据库图谱进行对比确定晶相,通过Rietveld方法计算结晶相衍射强度在整体图谱强度中所占比例得出结晶度。
(2)平均晶粒尺寸:利用SEM扫描电镜进行测定,微晶玻璃通过在HF酸中进行表面处理,再对微晶玻璃表面进行喷铬镀膜,在SEM扫描电镜下进行表面扫描,观察到颗粒的直径,并通过加总所有晶粒剖面的平均直径尺寸,除以SEM影像中的晶粒数。
(3)用Datacolor650超高精度台式分光光度测色仪进行颜色b值的测试。
(4)利用分光光度计参照标准ISO13468-1:1996进行可见光透过率测试。
(5)翘曲度:将0.6mm厚的玻璃板3D热弯成5.5寸,用塞尺测量3D热弯玻璃板与测量台(3D磨具)之间的缝隙。
(4)整机砂纸跌落性能:通过手机受控跌落试验机测得,具体测试条件为:80目砂纸,195g总重,60cm基高,10cm递增,每高度1次,直至破碎为止。
在本文中,在未作相反说明的情况下,使用日本折原FSM-6000LE+SLP1000表面应力仪分别对经过离子交换的各实施例和对比例的产品进行测试,其中,CS是指强化玻璃表面的压应力值;CS-30是指强化玻璃样品经过混合盐强化后,30微米深度位置的压应力值;DOC是指强化玻璃压应力层离子交换深度。
表1实施例1和对比例1的3D微晶玻璃成分比例及产品性能

表2实施例2和对比例2步骤S20的条件以及预晶化玻璃的性能

表3实施例3和对比例3步骤S30的条件及3D微晶玻璃的性能

表4实施例4步骤S40化学强化条件及化学强化3D微晶玻璃的理化性能
由表1至4可知,本申请对素板玻璃进行预晶化处理,得到结晶度≥35%,LiAlSi4O10的含量大于Li2Si2O5的含量,LiAlSi4O10的含量与Li2Si2O5的含量的比值≥1.33,厚度为0.3mm~0.8mm,在380nm~780nm波长光的平均透过率≥90.5%,b值≤0.55,雾度≤0.27的预晶化微晶玻璃,控制其玻璃相与晶相的结构比例,再结合本申请的3D热弯工艺,可以得到晶体的平均粒径≤50nm,结晶度为50%~85%,LiAlSi4O10的含量大于Li2Si2O5的含量,LiAlSi4O10的含量与Li2Si2O5的含量的比值≥1.5,在380nm~780nm波长光的平均透过率≥90.8%,翘曲≤0.1mm,b值≤0.45,雾度≤0.25的3D微晶玻璃,可以解决玻璃相与晶相结构上的差异,获得尺寸精度更高、翘曲更低的3D微晶玻璃。所述3D微晶玻璃经过热弯化学强化后还能获得跌落高度≥1.5m的优良抗跌落性能。
本申请技术方案获得的3D微晶玻璃具有优良的理化性能和机械性能,可应用于制备触控显示屏用的前盖或后盖,或者应用于其他电子智能终端和光伏发电器件,起到很好的保护作用。
从表1对比例1可知,P2O5在3D微晶玻璃中的占比较高,达到2.2mol%,而且Li2Si2O5的含量高于LiAlSi4O10的含量,导致玻璃相和晶相结构上的差异较大,获得的3D微晶玻璃具有0.25mm的翘曲,0.6mm微晶玻璃560nm透过率只有89.2%,且雾度和晶相平均粒径都较大。
对比例2的核化时间为2.5h,核化过度,得到的预晶化微晶玻璃LiAlSi4O10的含量与Li2Si2O5的含量的比值等于1,b值、雾度较大,0.6mm微晶玻璃560nm透过率只有89.8%。
对比例3在对比例2的预晶化微晶玻璃基础上,进行3D热弯处理得到的3D微晶玻璃体积变化较大,发生弯曲,翘曲达到了0.25mm和0.3mm,严重影响3D微晶玻璃的尺寸精度,而且b值、雾度较大,0.6mm微晶玻璃560nm透过率只有88.7%和88.1%。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种3D微晶玻璃,其中,所述3D微晶玻璃的晶相包含LiAlSi4O10和Li2Si2O5,其中,所述LiAlSi4O10的含量大于所述Li2Si2O5的含量。
  2. 根据权利要求1所述的3D微晶玻璃,其中,所述LiAlSi4O10的含量与所述Li2Si2O5的含量的比值≥1.5。
  3. 根据权利要求1所述的3D微晶玻璃,其中,所述3D微晶玻璃的晶相还包括Li2SiO3、Li3PO4和β-锂辉石中的至少一种。
  4. 根据权利要求1所述的3D微晶玻璃,其中,所述3D微晶玻璃的结晶度≥50%,其中,所述LiAlSi4O10的含量为30%~60%,所述Li2Si2O5的含量为20%~30%。
  5. 根据权利要求1所述的3D微晶玻璃,其中,所述3D微晶玻璃的晶体平均粒径≤50nm。
  6. 根据权利要求1所述的3D微晶玻璃,其中,所述3D微晶玻璃在380nm~780nm波长光的平均透过率≥90.8%。
  7. 根据权利要求1所述的3D微晶玻璃,其中,所述3D微晶玻璃翘曲≤0.1mm。
  8. 根据权利要求1所述的3D微晶玻璃,其中,所述3D微晶玻璃的b值≤0.45,所述b值是3D微晶玻璃厚度为0.6mm时的黄蓝值的绝对值。
  9. 根据权利要求1所述的3D微晶玻璃,其中,所述3D微晶玻璃的雾度≤0.25。
  10. 根据权利要求1至9任意一项所述的3D微晶玻璃,所述3D微晶玻璃的组分包括SiO2、Al2O3、P2O5、Li2O、Na2O、ZrO2
  11. 根据权利要求10所述的3D微晶玻璃,其中,按摩尔百分比计算,所述3D微晶玻璃包含以下组分:
    SiO2:60~80mol%;
    Al2O3:3~10mol%;
    P2O5:0.6~2mol%;
    Li2O:10~30mol%;
    Na2O:0.1~4mol%;
    ZrO2:0.5~5mol%。
  12. 根据权利要求11所述的3D微晶玻璃,其中,按摩尔百分比计算,所述3D微晶玻璃包含以下组分:
    SiO2:65~73mol%;
    Al2O3:3~6mol%;
    P2O5:0.7~2mol%;
    Li2O:19~25mol%;
    Na2O:0.1~2mol%;
    ZrO2:0.7~2.5mol%。
  13. 根据权利要求11所述的3D微晶玻璃,其中,按摩尔百分比计算,所述3D微晶玻璃还可以包含以下组分:
    K2O:0~1mol%;
    B2O3:0~1mol%;
    CaO:0~1mol%;
    MgO:0~1mol%;
    ZnO:0~1mol%;
    Y2O3:0~1mol%;
    澄清剂:0~1mol%。
  14. 一种预晶化微晶玻璃,其中,所述预晶化微晶玻璃的结晶度≥35%,晶相组成包括LiAlSi4O10和Li2Si2O5,所述LiAlSi4O10的含量大于所述Li2Si2O5的含量。
  15. 根据权利要求14所述的预晶化微晶玻璃,其中,所述预晶化微晶玻璃的晶体的平均粒径≤50nm;
    和/或,所述预晶化微晶玻璃的厚度为0.3mm~0.8mm;
    和/或,所述预晶化微晶玻璃在380nm~780nm波长光的平均透过率≥90.5%;
    和/或,所预晶化微晶玻璃的b值≤0.55,所述b值是3D微晶玻璃厚度为0.6mm时的黄蓝值的绝对值;
    和/或,所述预晶化微晶玻璃的雾度≤0.27。
  16. 一种权利要求1至13任意一项所述的3D微晶玻璃的制备方法,其中,所述制备方法包括以下步骤:
    将权利要求14或权利要求15所述的预晶化微晶玻璃进行3D热弯处理,得到3D微晶玻璃,其中,所述3D热弯处理过程中还伴随着晶化处理。
  17. 根据权利要求16所述的3D微晶玻璃的制备方法,其中,所述预晶化微晶玻璃的制备方法包括以下步骤:
    将玻璃原材料混合后熔化、澄清、均化、成型、退火得到素板玻璃;
    在530℃~580℃对所述素板玻璃进行核化处理0.5h~1.5h,然后在630℃~720℃进行晶化处理1h~3h,接着冷却至室温,得到预晶化微晶玻璃。
  18. 根据权利要求16所述的3D微晶玻璃的制备方法,其中,所述3D热弯处理包括预热工站、热压工站和冷却工站,所述预热工站工作温度为460℃~760℃,工作时间为160s~900s;所述热压工站的工作温度为720℃~860℃,工作时间为80s~750s;所述冷却工站的工作温度为350℃~600℃,工作时间为160s~900s。
  19. 根据权利要求16所述的3D微晶玻璃的制备方法,其中,所述3D微晶玻璃还经过化学强化处理,所述化学强化温度为450℃~520℃,化学强化时间为4h~8h;所述化学强化处理所用浴盐包括10wt%~40wt%的NaNO3和59wt%~90wt%的KNO3;和/或0wt%~0.2wt%的LiNO3
  20. 根据权利要求19所述的3D微晶玻璃的制备方法,其中,经过所述化学强化处理后的3D微晶玻璃的跌落高度≥1.5m。
PCT/CN2023/128792 2022-11-22 2023-10-31 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃 WO2024109495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211471719.4 2022-11-22
CN202211471719.4A CN115872622B (zh) 2022-11-22 2022-11-22 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃

Publications (1)

Publication Number Publication Date
WO2024109495A1 true WO2024109495A1 (zh) 2024-05-30

Family

ID=85760643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128792 WO2024109495A1 (zh) 2022-11-22 2023-10-31 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃

Country Status (2)

Country Link
CN (1) CN115872622B (zh)
WO (1) WO2024109495A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115872622B (zh) * 2022-11-22 2024-05-10 湖南旗滨新材料有限公司 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190169061A1 (en) * 2017-12-01 2019-06-06 Apple Inc. Controlled crystallization of glass ceramics for electronic devices
US20200346969A1 (en) * 2018-02-27 2020-11-05 AGC Inc. Crystallized glass of three-dimensional shape, chemically strengthened glass of three-dimensional shape, and method for producing crystallized glass of three-dimensional shape and chemically strengthened glass of three-dimensional shape
CN112041279A (zh) * 2018-11-05 2020-12-04 康宁公司 制作三维玻璃陶瓷制品的方法
CN112694258A (zh) * 2021-01-29 2021-04-23 重庆鑫景特种玻璃有限公司 一种憎水憎油性提高的镀膜微晶玻璃及其制法和应用
CN113248152A (zh) * 2021-05-21 2021-08-13 常熟佳合显示科技有限公司 一种三维微晶玻璃及其制备方法
CN113698082A (zh) * 2021-09-10 2021-11-26 成都光明光电股份有限公司 微晶玻璃成型体的制造方法
CN114436534A (zh) * 2020-10-30 2022-05-06 程珵 一种3d微晶玻璃及其热弯工艺和应用
CN114605074A (zh) * 2022-04-07 2022-06-10 深圳市新旗滨科技有限公司 微晶玻璃及其制备方法
WO2022156771A1 (zh) * 2021-01-25 2022-07-28 重庆鑫景特种玻璃有限公司 一种3d微晶玻璃及其制备方法和应用
CN115872622A (zh) * 2022-11-22 2023-03-31 湖南旗滨微晶新材料有限公司 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790085A (zh) * 2021-01-25 2022-07-26 程珵 一种3d微晶玻璃及其制备方法和应用
CN114790081A (zh) * 2021-01-25 2022-07-26 程珵 一种晶化玻璃原材及其制备方法和应用
CN116553830B (zh) * 2021-01-30 2024-01-30 华为技术有限公司 3d微晶玻璃及其制备方法和电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190169061A1 (en) * 2017-12-01 2019-06-06 Apple Inc. Controlled crystallization of glass ceramics for electronic devices
US20200346969A1 (en) * 2018-02-27 2020-11-05 AGC Inc. Crystallized glass of three-dimensional shape, chemically strengthened glass of three-dimensional shape, and method for producing crystallized glass of three-dimensional shape and chemically strengthened glass of three-dimensional shape
CN112041279A (zh) * 2018-11-05 2020-12-04 康宁公司 制作三维玻璃陶瓷制品的方法
CN114436534A (zh) * 2020-10-30 2022-05-06 程珵 一种3d微晶玻璃及其热弯工艺和应用
WO2022156771A1 (zh) * 2021-01-25 2022-07-28 重庆鑫景特种玻璃有限公司 一种3d微晶玻璃及其制备方法和应用
CN112694258A (zh) * 2021-01-29 2021-04-23 重庆鑫景特种玻璃有限公司 一种憎水憎油性提高的镀膜微晶玻璃及其制法和应用
CN113248152A (zh) * 2021-05-21 2021-08-13 常熟佳合显示科技有限公司 一种三维微晶玻璃及其制备方法
CN113698082A (zh) * 2021-09-10 2021-11-26 成都光明光电股份有限公司 微晶玻璃成型体的制造方法
CN114605074A (zh) * 2022-04-07 2022-06-10 深圳市新旗滨科技有限公司 微晶玻璃及其制备方法
CN115872622A (zh) * 2022-11-22 2023-03-31 湖南旗滨微晶新材料有限公司 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃

Also Published As

Publication number Publication date
CN115872622A (zh) 2023-03-31
CN115872622B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
CN114409260B (zh) 微晶玻璃、微晶玻璃制品及其制造方法
CN111268913B (zh) 电子设备盖板用微晶玻璃制品和微晶玻璃
CN110845153B (zh) 一种具有高压应力层深度的强化微晶玻璃及其制备方法
JP7048767B2 (ja) 電子デバイスカバープレート用ガラスセラミック物品およびガラスセラミック
CN111099829B (zh) 透明微晶玻璃、微晶玻璃制品及其制备方法
CN110104954B (zh) 一种低温晶化的可离子交换玻璃陶瓷
JP7498894B2 (ja) 強化ガラス及び強化用ガラス
TWI806355B (zh) 微晶玻璃、微晶玻璃製品及其製造方法
CN110627365B (zh) 一种透明的强化玻璃陶瓷及其制备方法
WO2024109495A1 (zh) 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃
CN109437555B (zh) 铝硅酸盐玻璃及其制备方法、盖板和显示装置
CN114605074A (zh) 微晶玻璃及其制备方法
CN110577364A (zh) 一种锂铝硅酸盐纳米晶玻璃陶瓷及其制备方法
WO2024109498A1 (zh) 一种微晶玻璃及其制备方法、微晶玻璃制品
TW202400535A (zh) 微晶玻璃、微晶玻璃製品及其製造方法
JP2024504395A (ja) 3d結晶化ガラス及びその製造方法と使用
WO2024017081A1 (zh) 一种耐酸碱性优异的微晶玻璃及其制备方法和用途
CN116969683A (zh) 一种可化学强化的微晶玻璃及其强化方法与应用
CN113831021A (zh) 微晶玻璃及其制备方法、玻璃保护层、玻璃盖板与电子器件
CN115745411B (zh) 用于制备低膨胀透明微晶玻璃的组合物、低膨胀透明微晶玻璃及其制备方法和应用
CN115028365B (zh) 玻璃陶瓷、玻璃陶瓷制品及其制造方法
WO2023090177A1 (ja) 結晶化ガラス
US20230406763A1 (en) Chemically-strengthened glass containing glass ceramic, and method for manufacturing same
CN116874190A (zh) 一种高强度透明微晶玻璃及其制备方法
CN117865488A (zh) 一种透明微晶玻璃和陶瓷玻璃及制备方法