WO2021246851A1 - 폴리에스테르 이형 필름 및 이의 제조 방법 - Google Patents

폴리에스테르 이형 필름 및 이의 제조 방법 Download PDF

Info

Publication number
WO2021246851A1
WO2021246851A1 PCT/KR2021/095069 KR2021095069W WO2021246851A1 WO 2021246851 A1 WO2021246851 A1 WO 2021246851A1 KR 2021095069 W KR2021095069 W KR 2021095069W WO 2021246851 A1 WO2021246851 A1 WO 2021246851A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
release film
binder
kcal
weight
Prior art date
Application number
PCT/KR2021/095069
Other languages
English (en)
French (fr)
Inventor
조은혜
김종원
이두현
박재봉
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210069182A external-priority patent/KR102675794B1/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to JP2022566334A priority Critical patent/JP7450760B2/ja
Priority to CN202180029378.2A priority patent/CN115443302A/zh
Publication of WO2021246851A1 publication Critical patent/WO2021246851A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a polyester release film and a method for producing the same.
  • polarizer protective material such as polyethylene terephthalate (PET) or triacetyl cellulose (TAC).
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • barrier coating layer a coating layer having barrier properties
  • the composition for forming the barrier coating layer is uniformly applied on an arbitrary substrate, cured and then peeled off.
  • the cured barrier coating layer In order to obtain the barrier coating layer of good quality, the cured barrier coating layer must be well peeled off from the substrate.
  • silicone-based release film when a silicone-based release film is used as the substrate, since the silicone-based release film has a low surface energy, it is difficult to form the barrier coating layer with a uniform thickness, and static electricity problems may occur due to silicone.
  • An object of the present invention is to provide a polyester release film having excellent peelability and low frictional electrification voltage.
  • the present invention is to provide a method of manufacturing the polyester release film.
  • the release layer includes a binder including a polyester resin and a polyolefin wax dispersed on the binder,
  • a polyester release film is provided.
  • the release layer includes a binder including a polyester resin and a polyolefin wax dispersed on the binder,
  • a polyester release film for a thin film polarizing plate is provided.
  • the step (iii) is performed while passing the laminate through a heat treatment device in which the total amount of heat of the air supplied to the passage section is 222,000 kcal/min to 229,000 kcal/min,
  • a method for producing the polyester release film is provided.
  • the release layer includes a binder including a polyester resin and a polyolefin wax dispersed on the binder,
  • a polyester release film is provided.
  • an aqueous coating composition including a polyester resin and polyolefin wax is applied on a uniaxially stretched base layer in an in-line coating method to form a release layer It was confirmed that when forming a polyester release film having excellent coating processability and peeling force can be provided.
  • the polyester release film can exhibit excellent peelability in post-processing (eg, a process of forming a barrier coating layer on the release film, etc.) It is possible to prevent the occurrence of contamination.
  • the polyester release film includes a polyester base layer and a release layer formed on at least one surface of the base layer.
  • the polyester base layer is made of a polyester resin.
  • the polyester base layer a conventional one in the art to which the present invention pertains may be used without particular limitation.
  • the polyester base layer may be made of polyethylene terephthalate, polyethylene naphthalate, or the like.
  • the base layer may be made of polyethylene terephthalate having an intrinsic viscosity of 0.6 to 0.8 dl/g in terms of securing weather resistance and hydrolysis resistance.
  • the release layer is formed on one or both surfaces of the polyester base layer. Preferably, the release layer is formed on one surface of the polyester base layer.
  • the release layer includes a binder including a polyester resin and polyolefin wax dispersed on the binder.
  • the polyester resin included in the binder is a resin obtained by condensation polymerization of an acid component containing dicarboxylic acid as a main component and a glycol component containing alkylene glycol as a main component.
  • acid component terephthalic acid or its alkyl ester or phenyl ester may be mainly used, and a part thereof is replaced with isophthalic acid, oxyethoxybenzoic acid, adipic acid, sebacic acid, 5-sodium sulfoisophthalic acid, sulfoterephthalic acid, etc.
  • As the glycol component ethylene glycol, diethylene glycol, etc.
  • propylene glycol may be mainly used, and some of them are propylene glycol, trimethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-bis It can be used instead of oxyethoxybenzene, bisphenol, polyoxyethylene glycol, and the like.
  • the polyester resin contains 50 mol% of a glycol component containing diethylene glycol and ethylene glycol in a molar ratio of 5: 5, and 50 mol% of terephthalic acid and sulfoterephthalic acid in a molar ratio of 8.5: 1.5. It can be obtained by polycondensation of an acid component.
  • the polyester resin has a weight average molecular weight of 2,000 to 25,000 g/mol, it may be advantageous for the release layer to have appropriate solvent resistance.
  • the weight average molecular weight of the polyester resin may be 2,000 to 25,000 g/mol, or 2,000 to 20,000 g/mol, or 3,000 to 20,000 g/mol, or 3,000 to 15,000 g/mol.
  • the weight average molecular weight means the weight average molecular weight in terms of polystyrene measured by the GPC method.
  • a commonly known analyzer and a detector such as a differential index detector and a column for analysis may be used, and a temperature that is normally applied Conditions, solvents, and flow rates can be applied.
  • a polymer resin such as a polyurethane resin is dissolved in tetrahydrofuran (THF) to a concentration of 1.0 (w/w)% in THF (about 0.5 (w/w)% based on solid content) to 0.45
  • THF tetrahydrofuran
  • 20 ⁇ l was injected into GPC, tetrahydrofuran (THF) was used as the mobile phase of GPC, and flowed at a flow rate of 1.0 mL/min, and the column was Agilent PLgel 5 ⁇ m Guard (7.5 x 50 mm) and Agilent PLgel 5 ⁇ m Mixed D (7.5 x 300 mm) are connected in series.
  • the Agilent 1260 Infinity II System, RI Detector can be used to measure at 40 °C.
  • Mw weight average molecular weight
  • the release layer may further include an acrylic resin as the binder.
  • the binder may include the polyester resin and the acrylic resin in a weight ratio of 1: 0.5 to 1: 1.5, preferably 1:1, solid content.
  • the acrylic resin may contain 20 to 80 mol% of a radically polymerizable unsaturated monomer containing a glycidyl group as a copolymerized monomer in an amount of 20 to 80 mol% of the total monomer component.
  • the glycidyl group-containing radically polymerizable unsaturated monomer improves the strength of the release layer by a crosslinking reaction and prevents leakage of the oligomer.
  • Examples of the glycidyl group-containing radically polymerizable unsaturated monomorph include glycidyl acrylate, glycidyl methacrylate, and aryl glycidyl ether.
  • Examples of the radically polymerizable unsaturated monomer copolymerizable with the glycidyl group-containing radical polymerizable unsaturated monomer include vinyl esters, unsaturated carboxylic acid esters, unsaturated carboxylic acid amides, unsaturated nitriles, unsaturated carboxylic acids, allyl compounds, nitrogen-containing vinyl monomers, and hydrocarbon vinyl monomers or vinyl silane compounds.
  • vinyl ester vinyl propionate, vinyl stearate, vinyl chloride, etc. may be used.
  • Examples of the unsaturated carboxylate ester include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate, butyl maleate, octyl maleate, butyl fumarate, octyl fumarate, hydroxyethyl methacrylate , hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, and the like can be used.
  • As the unsaturated carboxylic acid amide, acrylamide, methacrylamide, methylol acrylamide, butoxymethylol acrylamide, etc. may be used.
  • unsaturated nitrile acrylonitrile or the like may be used.
  • unsaturated carboxylic acid acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic acid acid ester, fumaric acid acid ester, itaconic acid acid ester, etc.
  • allyl compound allyl acetate, allyl methacrylate, allyl acrylate, allyl itaconic acid, diallyl itaconic acid, and the like may be used.
  • nitrogen-containing vinyl monomer vinyl pyridine, vinyl imidazole, or the like may be used.
  • hydrocarbon vinyl monomer ethylene, propylene, hexene, octene, styrene, vinyltoluene, butadiene, and the like may be used.
  • vinyl silane compound include dimethyl vinyl methoxy silane, dimethyl vinyl ethoxy silane, methyl vinyl dimethoxy silane, methyl vinyl diethoxy silane, gamma-methacryloxy propyl trimethoxysilane, and gamma-methacryloxy propyl dimethoxy silane. etc. can be used.
  • the acrylic resin may be a copolymer of 40 to 60 mol% of glycidyl acrylate and 40 to 60 mol% of propionic acid.
  • the acrylic resin may preferably have a weight average molecular weight of 20,000 to 70,000 g/mol. More preferably, the weight average molecular weight of the polyester resin may be 20,000 to 60,000 g/mol, or 30,000 to 60,000 g/mol, or 40,000 to 60,000 g/mol, or 45,000 to 55,000 g/mol.
  • the release layer includes polyolefin wax dispersed on the binder.
  • the specific kind of the polyolefin wax is not particularly limited, but at least one selected from the group consisting of polyethylene wax and polypropylene wax may be preferably used.
  • the polyolefin wax may be included in an amount of 10 to 40 parts by weight based on 100 parts by weight of the binder.
  • the polyolefin wax is preferably included in an amount of 10 parts by weight or more based on 100 parts by weight of the binder.
  • the polyolefin wax is preferably included in an amount of 40 parts by weight or less based on 100 parts by weight of the binder.
  • the polyolefin wax may be present in an amount of 10 parts by weight or more, or 15 parts by weight or more, or 20 parts by weight or more, or 25 parts by weight or more based on 100 parts by weight of the binder; And 40 parts by weight or less, or 35 parts by weight or less, or 30 parts by weight or less may be included.
  • the polyolefin wax contains 10 to 40 parts by weight, or 15 to 40 parts by weight, or 15 to 35 parts by weight, or 20 to 35 parts by weight, or 20 to 30 parts by weight, or 25 parts by weight based on 100 parts by weight of the binder. to 30 parts by weight.
  • the thickness of the base layer and the release layer is not particularly limited, and may be adjusted according to a specific application field of the polyester release film.
  • the base layer may have a thickness of 10 to 100 ⁇ m
  • the release layer may have a thickness of 20 to 200 nm.
  • the base layer may be biaxially stretched in the machine direction (MD) and transverse direction (TD), and the release layer may be uniaxially stretched in the transverse direction (TD).
  • the polyester release film may have excellent peelability and low frictional electrification voltage as it satisfies the above-described characteristics.
  • the polyester release film is 10 gf / inch or less, or 2 gf / inch to 10 gf / inch, or 5 gf / inch to 10 gf / inch, or 5 gf / inch to 8 gf / inch excellent It may have peelability.
  • the peel force may be measured according to the standard test method of ASTM D903. Specifically, the measurement of the peel force, preparing a first sample in which a UV resin cured layer having a thickness of 10 ⁇ m is formed on the release layer of the polyester release film; preparing a second sample by reciprocally rubbing the TESA tape on the cured UV resin layer of the first sample twice using a 2 kg rubber roll, and then cutting it into a size of 2.5 mm X 15 cm; and applying a load of 70 g/cm 2 to the second sample, leaving it at room temperature for 30 minutes, and then peeling the TESA tape 180 degrees at a peeling rate of 300 mm/min using a peel tester. It can be carried out including
  • the polyester release film has a low friction band of less than 500 V, or 150 V to 450 V, or 200 V to 450 V, or 200 V to 400 V, or 250 V to 400 V, or 250 V to 350 V. can have voltage.
  • the frictional electrification voltage is measured according to the standard test method of KS K 0555.
  • the measurement of the triboelectric voltage may be performed by using a conventional rotary static tester (rotary static tester) to measure the tribostatic static for the polyester release film.
  • a conventional rotary static tester rotary static tester
  • the amount of static electricity generated by rubbing side A (the side of the release layer in the polyester release film) and side B (the side of the polyester base layer sample on which the release layer is not formed) at a rotation speed of 300 rpm for 180 seconds measure
  • the polyester release film may exhibit excellent process coating properties while having a low haze value.
  • the polyester release film may have a haze of 3.90% or less.
  • the polyester release film may have a haze of 3.90% or less, or 3.50 to 3.90%, or 3.60 to 3.90%, or 3.60 to 3.85%, or 3.70 to 3.85%, or 3.75 to 3.85%.
  • polyester release film may have excellent processing coating properties satisfying the following formula 1:
  • NH is the number of pinholes generated per unit area (m 2 ) when a UV resin is applied to a thickness of 10 ⁇ m and cured on the release layer of the polyester release film.
  • the polyester release film may exhibit a total light transmittance of 90% to 95%, a water contact angle of 85° to 90°, a diiodomethane contact angle of 50° to 60°, and a surface energy of 30 to 35 mN/m.
  • the release layer includes a binder including a polyester resin and a polyolefin wax dispersed on the binder,
  • a polyester release film for a thin film polarizing plate is provided.
  • the specific content of the polyester base layer and the release layer is replaced with the content described above.
  • the release layer is formed by in-line coating on the polyester base layer.
  • the release layer may be formed by applying an aqueous coating composition including the binder and polyolefin wax on the polyester base layer by an in-line coating method.
  • the release layer is formed by the in-line coating method, it has a thin coating thickness and excellent adhesion to the polyester base layer, and may exhibit excellent resistance to moisture and solvents.
  • the polyester release film has excellent peelability and low frictional electrification voltage, it can be suitably used as a base film for release in the manufacture of a thin-film polarizing plate.
  • a barrier coating layer such as polyethylene terephthalate (PET), triacetyl cellulose (TAC), or polymethyl methacrylate (PMMA) may be sequentially laminated to form a laminate. And, the polyester release film may be removed from the laminate.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • PMMA polymethyl methacrylate
  • the step (iii) is performed while passing the laminate through a heat treatment device in which the total amount of heat of the air supplied to the passage section is 222,000 kcal/min to 229,000 kcal/min,
  • a method for producing the polyester release film is provided.
  • the polyester base layer is made of a polyester resin.
  • As the polyester base layer a conventional one in the art to which the present invention pertains may be used without particular limitation.
  • the polyester base layer is prepared by stretching in the machine direction (MD, or longitudinal direction).
  • the polyester base layer may be stretched 2 to 5 times in the machine direction (MD).
  • the polyester base layer preferably has a thickness of 10 to 300 ⁇ m.
  • a release layer by applying a binder including a polyester resin and an aqueous coating composition including a polyolefin wax dispersed on the binder to at least one surface of the polyester base layer is performed.
  • the water-based coating composition is for forming the release layer on the polyester base layer.
  • the water-based coating composition includes the binder and the polyolefin wax dispersed on the binder.
  • the binder includes the polyester resin.
  • the binder may further include an acrylic resin.
  • polyester release film> Replace with the contents described in the item.
  • the binder preferably includes the polyester resin and the acrylic resin in a weight ratio of solid content of 1: 0.5 to 1: 1.5.
  • the water-based coating composition preferably contains 10 to 40 parts by weight of the polyolefin wax based on 100 parts by weight of the binder.
  • the total content of the binder and the polyolefin wax included in the water-based coating composition on a solid content basis is 4.5 to 6.4 wt%, or 4.5 to 6.0 wt%, or 4.5 to 5.8 wt%, or 5.0 to 5.8 wt%, or 5.1 to 5.8 It is preferably weight %.
  • additives such as silicone-based wetting agents, fluorine-based wetting agents, curing agents, acid catalysts, slip agents, defoamers, wetting agents, surfactants, thickeners, plasticizers, antioxidants, ultraviolet absorbers, preservatives, and crosslinking agents may be further added.
  • the additive may be selectively used within a limit that does not impair the physical properties of the aqueous coating composition and the release layer.
  • the water-based coating composition may be prepared by uniformly mixing the above-described components and water.
  • the solid content of the water-based coating composition may be preferably 20 to 60% by weight in order to secure the efficiency of the coating process.
  • the release layer may be formed on at least one surface of the polyester base layer by an in-line coating method using the water-based coating composition.
  • the release layer is formed by the in-line coating method, although the coating thickness is thin, the adhesion to the polyester base layer is excellent, and excellent resistance to moisture and solvents can be exhibited.
  • the in-line coating method may be performed using a conventional apparatus.
  • the water-based coating composition may be applied to a thickness of 20 to 200 nm after final stretching and drying of the release layer.
  • the release layer is formed by removing and curing the moisture of the water-based coating composition.
  • the laminate may be stretched 2 to 5 times in the transverse direction (TD).
  • the polyester base layer is biaxially stretched in the machine direction and the transverse direction, and the release layer is uniaxially stretched in the transverse direction.
  • Step (iii) may be performed using a conventional heat treatment device such as a tenter.
  • the laminate is continuously passed through the tenter.
  • the laminate is preheated while passing through the front end of the tenter, stretched in the transverse direction (TD) while passing through the middle of the tenter, and heat-treated while passing through the rear end of the tenter.
  • the heat treatment means heating while maintaining the tension applied to the laminate during the transverse stretching.
  • step (iii) may be performed while passing the laminate through a heat treatment device having a total amount of heat of 222,000 kcal/min to 229,000 kcal/min of air supplied to the passing section.
  • the laminate passing through the heat treatment device is subjected to the transverse stretching and heat treatment while being exposed under the total calorific value range.
  • the total amount of heat supplied to the entire passage section is 222,000 kcal/min or more, or 225,000 kcal/min or more, or 226,000 kcal/min or more, and 229,000 kcal/min or less, or 228,000 kcal/min or more.
  • kcal/min, or 227,000 kcal/min or less may be performed while passing the laminate through a heat treatment apparatus.
  • the total amount of heat of the air supplied to the entire passage section is 222,000 kcal/min to 229,000 kcal/min, or 225,000 kcal/min to 229,000 kcal/min, or 226,000 kcal/min to 229,000 kcal/min. min, or 226,000 kcal/min to 228,000 kcal/min, or 226,000 kcal/min to 227,000 kcal/min, passing the laminate through a heat treatment apparatus may be performed.
  • the total amount of heat (kcal) of air supplied to the entire section through which the laminate passes in step (iii) is the temperature (°C) of the section, the mass of air supplied to the heat treatment device (kg/min), air It can be calculated from data such as the specific heat (kcal/kg°C) of The mass of air (kg/min) may be obtained from the volumetric flow rate of air (Nm 3 /min) and the density of air (kg/Nm 3 ).
  • the density of air supplied to an arbitrary zone in the heat treatment device is 1.286 kg/Nm 3
  • the specific heat of air is 0.24 kcal/kg°C
  • the volumetric flow rate of air is 380 Nm 3 /min
  • the total amount of heat (kcal) of the air supplied to the section can be obtained as 23,456.64 kcal/min by the following formulas 1 and 2 have.
  • Mass of air (kg/min) Volumetric flow rate of air (Nm 3 /min) X Density of air (kg/Nm 3 )
  • the process of preheating the laminate by passing it through a section in which heat of 44,000 kcal/min to 46,000 kcal/min is supplied; stretching the preheated laminate in the transverse direction (TD) while passing through a section in which heat of 62,000 kcal/min to 64,000 kcal/min is supplied; and heat-treating the stretched laminate while passing through a section in which heat of 114,000 kcal/min to 120,000 kcal/min is supplied.
  • TD transverse direction
  • the preheating process may be performed while passing the laminate through a section in which heat of 45,000 kcal/min to 46,000 kcal/min is supplied.
  • the stretching process in the transverse direction may be performed while passing the preheated laminate through a section in which heat of 63,000 kcal/min to 64,000 kcal/min is supplied.
  • the stretched laminate is 115,000 kcal/min to 120,000 kcal/min, or 115,000 kcal/min to 119,000 kcal/min, or 116,000 kcal/min to 119,000 kcal/min, Alternatively, 117,000 kcal/min to 118,500 kcal/min, or 118,000 kcal/min to 118,500 kcal/min may be performed while passing through a section in which heat is supplied.
  • step (iii) the preheating process, the transverse stretching process, and the heat treatment process include two or more zones in which the amount of heat to be supplied is varied within the above-described range as needed. can be performed separately.
  • transverse stretching and heat treatment may be performed while sequentially passing the laminate through two preheating zones, three drawing zones, and five heat treatment zones.
  • step (iii) If the total amount of heat supplied to the passage section in step (iii) (particularly, the heat treatment zone after transverse stretching) is too low, the peelability and transfer properties of the polyester release film may be poor and the frictional electrification voltage may increase. have. And, when the total amount of heat supplied to the passage section in step (iii) (particularly, the heat treatment zone after the transverse stretching) is too high, the surface energy of the polyester release film is lowered, so that the processing coatability may be lowered. have.
  • the laminate moves the heat treatment device at a speed of 80 m/min to 120 m/min, or 90 m/min to 110 m/min, or 90 m/min to 100 m/min. It is preferable to pass through
  • step (iii) in order to expose the laminate to an appropriate amount of heat in each section, and to sufficiently perform the transverse stretching and heat treatment, the laminate is subjected to the heat within the speed range. It is preferred to pass through the processing device.
  • Step (iii) may be carried out under 120 °C to 245 °C.
  • the step (iii) is a process of preheating the laminate under 120 °C to 150 °C; stretching the preheated laminate in the transverse direction under 130° C. to 150° C.; And it may be carried out as a process of heat-treating the stretched laminate under 215 °C to 245 °C.
  • the heat treatment of the stretched laminate may be performed at 215°C or higher, or 220°C or higher, or 225°C or higher, or 230°C or higher; And 245 °C or less, or 240 °C or less, or 235 °C or less may be performed.
  • the heat treatment process of the stretched laminate is 215 to 245 ° C, or 220 to 245 ° C, or 220 to 240 ° C, or 225 to 240 ° C, or 225 to 235 ° C, or 230 to 235 ° C. can
  • the peelability of the polyester release film may be poor and the frictional electrification voltage may increase.
  • processing coatability may deteriorate, such as fine pinholes occurring during the manufacture of the polyester release film.
  • step (iii) After performing step (iii), a process of relaxing by 2 to 10% in the machine direction and in the transverse direction at 150 ° C. to 200 ° C., respectively, may be performed.
  • the final thickness of the polyester release film obtained through the above processes may be 20 to 100 ⁇ m, or 30 to 80 ⁇ m, or 30 to 50 ⁇ m.
  • a polyester release film made of a non-silicone-based material and having excellent peelability and low frictional electrification voltage and a manufacturing method thereof are provided.
  • the polyester release film may be suitably used as a base film for release in the manufacture of a thin-film polarizing plate.
  • PET polyethylene terephthalate
  • MD machine direction
  • a laminate was formed by applying the aqueous coating composition to a thickness of 70 nm after final drying on the PET base layer using a gravure coater.
  • step ( iii) was performed.
  • the step (iii) was performed while passing the laminate through the tenter having a total calorific value of 226,400 kcal/min of air supplied to the passing section.
  • step (iii) the density of the air supplied to the tenter was 1.286 kg/Nm 3 , and the specific heat of the air was confirmed to be 0.24 kcal/kg° C., and the volumetric flow rate of air was in the range of 270 to 680 Nm 3 /min. was regulated in
  • the laminate passed through the preheating zone (passing length of 7.5 m) to which a calorific value of 45,000 kcal/min was supplied under a temperature of about 120 °C to 130 °C. Subsequently, the preheated laminate was stretched 4 times in the transverse direction while passing through the stretching zone (passage length 10.5 m) supplied with a calorific value of 63,200 kcal/min under a temperature of about 130°C to 140°C. Subsequently, the stretched laminate was heat-treated while passing through the heat treatment zone (passage length 15 m) to which 118,200 kcal/min of heat was supplied under a temperature of 230 to 235°C.
  • a polyester release film having a total thickness of 38 ⁇ m was prepared by heat-setting by relaxing 10% each in the machine direction and the transverse direction at 200°C.
  • Example 2 In the same manner as in Example 1, a PET substrate layer stretched 3.5 times in the machine direction (MD) was prepared.
  • a laminate was formed by applying the aqueous coating composition to a thickness of 70 nm after final drying on the PET base layer using a gravure coater.
  • transverse direction (TD) stretching and heat treatment were performed in the same manner as in Example 1.
  • a polyester release film having a total thickness of 38 ⁇ m was prepared by heat-setting by relaxing 10% each in the machine direction and the transverse direction at 200°C.
  • Example 2 In the same manner as in Example 1, a PET substrate layer stretched 3.5 times in the machine direction (MD) was prepared.
  • a laminate was formed by applying the aqueous coating composition to a thickness of 70 nm after final drying on the PET base layer using a gravure coater.
  • transverse direction (TD) stretching and heat treatment were performed in the same manner as in Example 1.
  • a polyester release film having a total thickness of 38 ⁇ m was prepared by heat-setting by relaxing 10% each in the machine direction and the transverse direction at 200°C.
  • Example 2 In the same manner as in Example 1, a PET substrate layer stretched 3.5 times in the machine direction (MD) was prepared.
  • a laminate was formed by applying the aqueous coating composition to a thickness of 70 nm after final drying on the PET base layer using a gravure coater.
  • transverse direction (TD) stretching and heat treatment were performed in the same manner as in Example 1.
  • a polyester release film having a total thickness of 38 ⁇ m was prepared by heat-setting by relaxing 10% each in the machine direction and the transverse direction at 200°C.
  • Example 2 In the same manner as in Example 1, a PET substrate layer stretched 3.5 times in the machine direction (MD) was prepared.
  • a laminate was formed by applying the aqueous coating composition to a thickness of 70 nm after final drying on the PET base layer using a gravure coater.
  • transverse direction (TD) stretching and heat treatment were performed in the same manner as in Example 1.
  • a polyester release film having a total thickness of 38 ⁇ m was prepared by heat-setting by relaxing 10% each in the machine direction and the transverse direction at 200°C.
  • Example 2 In the same manner as in Example 1, a PET substrate layer stretched 3.5 times in the machine direction (MD) was prepared.
  • a laminate was formed by applying the aqueous coating composition to a thickness of 70 nm after final drying on the PET base layer using a gravure coater.
  • transverse direction (TD) stretching and heat treatment were performed in the same manner as in Example 1.
  • a polyester release film having a total thickness of 38 ⁇ m was prepared by heat-setting by relaxing 10% each in the machine direction and the transverse direction at 200°C.
  • a polyester release film having a thickness of 38 ⁇ m was prepared in the same manner as in Example 1, except that the total amount of heat of the air supplied to the passage section in the tenter of step (iii) was 221,400 kcal/min.
  • the laminate passed through the preheating zone (passing length of 7.5 m) to which a calorific value of 45,000 kcal/min was supplied under a temperature of about 120 °C to 130 °C. Subsequently, the preheated laminate was stretched 4 times in the transverse direction while passing through the stretching zone (passage length 10.5 m) supplied with a calorific value of 63,200 kcal/min under a temperature of about 130°C to 140°C. Subsequently, the stretched laminate was heat-treated while passing through the heat treatment zone (passage length 15 m) to which a calorific value of 113,200 kcal/min was supplied under a temperature of 230 to 235°C.
  • a polyester release film having a thickness of 38 ⁇ m was prepared in the same manner as in Example 1, except that the total amount of heat of the air supplied to the passage section in the tenter of step (iii) was 229,200 kcal/min.
  • the laminate passed through the preheating zone (passing length of 7.5 m) to which a calorific value of 45,000 kcal/min was supplied under a temperature of about 120 °C to 130 °C. Subsequently, the preheated laminate was stretched 4 times in the transverse direction while passing through the stretching zone (passage length 10.5 m) supplied with a calorific value of 63,200 kcal/min under a temperature of about 130°C to 140°C. Subsequently, the stretched laminate was heat-treated while passing through the heat treatment zone (passage length 15 m) to which a calorific value of 121,000 kcal/min was supplied under a temperature of 230 to 235°C.
  • a polyester release film having a thickness of 38 ⁇ m was prepared in the same manner as in Example 2, except that the total amount of heat of air supplied to the passage in the tenter of step (iii) was 221,400 kcal/min.
  • the laminate passed through the preheating zone (passing length of 7.5 m) to which a calorific value of 45,000 kcal/min was supplied under a temperature of about 120 °C to 130 °C. Subsequently, the preheated laminate was stretched 4 times in the transverse direction while passing through the stretching zone (passage length 10.5 m) supplied with a calorific value of 63,200 kcal/min under a temperature of about 130°C to 140°C. Subsequently, the stretched laminate was heat-treated while passing through the heat treatment zone (passage length 15 m) to which a calorific value of 113,200 kcal/min was supplied under a temperature of 230 to 235°C.
  • a polyester release film having a thickness of 38 ⁇ m was prepared in the same manner as in Example 2, except that the total amount of heat of air supplied to the passage section in the tenter of step (iii) was 229,200 kcal/min.
  • the laminate passed through the preheating zone (passing length of 7.5 m) to which a calorific value of 45,000 kcal/min was supplied under a temperature of about 120 °C to 130 °C. Subsequently, the preheated laminate was stretched 4 times in the transverse direction while passing through the stretching zone (passage length 10.5 m) supplied with a calorific value of 63,200 kcal/min under a temperature of about 130°C to 140°C. Subsequently, the stretched laminate was heat-treated while passing through the heat treatment zone (passage length 15 m) to which a calorific value of 121,000 kcal/min was supplied under a temperature of 230 to 235°C.
  • the water contact angle of the film with respect to the release layer was measured using a contact angle measuring device (KR-SS, DSA 100). 3 ⁇ l of pure water (S1, Volume mode) was dropped on the film specimen and the average water contact angle for 15 seconds was measured. It was measured a total of 5 times, and the average value is shown.
  • the diiodomethane contact angle with respect to the release layer of the film was measured using a contact angle measuring device (KR-SS, DSA 100). Diiodomethane 1 ⁇ l (S1, Volume mode) was dropped on the film specimen, and the average diiodomethane contact angle for 15 seconds was measured. It was measured a total of 5 times, and the average value is shown.
  • the surface energy of the release layer of the film was calculated using the Owens-Wendt Method from the measurement results of the water contact angle and the diiodomethane contact angle.
  • a UV-cured sample was prepared by applying a UV resin (Miwon Specialty Chemical Co., MIRAMER M1130) to a thickness of 10 ⁇ m on the release layer of the film.
  • the process coatability of the sample was evaluated according to the following criteria.
  • a first sample in which a UV cured layer was formed by applying a UV resin (Miwon Specialty Chemical Co., MIRAMER M1130) to a thickness of 10 ⁇ m on the release layer of the film with reference to the standard test method of ASTM D903; preparing a second sample by reciprocally rubbing the TESA tape on the cured UV resin layer of the first sample twice using a 2 kg rubber roll, and then cutting it into a size of 2.5 mm X 15 cm; And after applying a load of 70 g/cm 2 to the second sample and leaving it at room temperature for 30 minutes, the TESA tape was peeled off at a peeling rate of 300 mm/min using a peel tester (Chem Instrument, AR-1000). Peel force was measured by a method including a 180 degree peeling step.
  • a UV resin Mowon Specialty Chemical Co., MIRAMER M1130
  • Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 7 Comparative Example 8 S* (wt%) 5.15 3.86 6.44 5.15 5.15 T* (°C) 235 235 235 210 250 H* (kcal) 7545 7545 7545 7390 7625 A* (%) 3.76 3.70 3.79 4.02 3.80 B* (%) 90.51 90.35 90.52 90.45 90.44 C* (°) 85.4 83.0 89.1 80.3 85.4 D* (°) 57.3 49.2 49.7 61.9 57.3 E* (mN/m) 34 38 36 34 34 34 F* (grade) One One 2 One 2 G* (gf/inch) 8 12 7 12 8 H* None None None have None I* (V) 310 672 699 513 423
  • T* heat treatment temperature in tenter (°C)
  • polyester release films according to Examples have excellent releasability and low frictional electrification voltage while having excellent transfer properties and processing coating properties, compared to the release films of Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

본 발명은 폴리에스테르 이형 필름 및 이의 제조 방법에 관한 것이다. 본 발명에 따르면 비-실리콘계 소재로 이루어지면서도 우수한 박리성과 낮은 마찰 대전압을 가지는 폴리에스테르 이형 필름과 이의 제조 방법이 제공된다. 상기 폴리에스테르 이형 필름은 박막 편광판의 제조시 이형용 기재 필름으로 적합하게 사용될 수 있다.

Description

폴리에스테르 이형 필름 및 이의 제조 방법
본 발명은 폴리에스테르 이형 필름 및 이의 제조 방법에 관한 것이다.
화상 표시 장치에서 디스플레이부의 대형화 및 박형화 추세에 따라, 편광판에 대한 박형화 요구가 커지고 있다.
편광판의 박형화를 위한 하나의 방안은 폴리에틸렌 테레프탈레이트(PET), 트리아세틸 셀룰로오스(TAC) 등인 전형적인 편광자 보호 소재를 박막화하는 것이다. 편광판을 박형화하기 위한 또 하나의 방안은 상기 편광자 보호 소재를 베리어성을 갖는 코팅층(이하 "베리어 코팅층")으로 대체하는 것이다.
상기 베리어 코팅층을 형성시키기 위해서는 상기 베리어 코팅층 형성용 조성물을 임의의 기재 상에 균일하게 도포하고 이를 경화한 후 박리하는 공정을 거친다.
양질의 상기 베리어 코팅층을 얻기 위해서는 경화된 상기 베리어 코팅층이 상기 기재로부터 잘 박리되어야 한다.
그런데, 상기 기재로 실리콘계 이형 필름을 사용하게 되면, 상기 실리콘계 이형 필름은 낮은 표면 에너지를 갖기 때문에 상기 베리어 코팅층이 균일한 두께로 형성되기 어렵고, 실리콘에 의한 정전기 문제가 발생할 수 있다.
본 발명은 우수한 박리성과 낮은 마찰 대전압을 가지는 폴리에스테르 이형 필름을 제공하기 위한 것이다.
그리고, 본 발명은 상기 폴리에스테르 이형 필름의 제조 방법을 제공하기 위한 것이다.
본 발명의 일 구현 예에 따르면,
폴리에스테르 기재층 및 상기 기재층의 적어도 일 면에 형성된 이형층을 포함하고,
상기 이형층은 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하고,
10 gf/inch 이하의 박리력 및 500 V 미만 마찰 대전압을 가지는,
폴리에스테르 이형 필름이 제공된다.
본 발명의 다른 일 구현 예에 따르면,
두께 20 내지 200 nm인 폴리에스테르 기재층 및 상기 기재층 상에 인-라인 코팅에 의해 형성된 두께 20 내지 200 nm인 이형층을 포함하고,
상기 이형층은 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하고,
10 gf/inch 이하의 박리력 및 500 V 미만 마찰 대전압을 가지는,
박막 편광판용 폴리에스테르 이형 필름이 제공된다.
그리고, 본 발명의 또 다른 일 구현 예에 따르면,
(i) 기계방향(MD)으로 연신된 폴리에스테르 기재층을 준비하는 단계,
(ii) 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 상기 폴리에스테르 기재층의 적어도 일 면에 도포하여 이형층을 형성하는 단계, 및
(iii) 상기 폴리에스테르 기재층과 상기 폴리에스테르 기재층 상에 형성된 상기 이형층을 포함한 적층체를 횡방향(TD)으로 연신하면서 열 처리하는 단계를 포함하고;
상기 단계(iii)은 통과 구간에 공급되는 공기의 총 열량이 222,000 kcal/min 내지 229,000 kcal/min인 열 처리 장치에 상기 적층체를 통과시키며 수행되는,
상기 폴리에스테르 이형 필름의 제조 방법이 제공된다.
이하, 본 발명의 구현 예들에 따른 폴리에스테르 이형 필름 및 이의 제조 방법에 대하여 보다 상세히 설명하기로 한다.
본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 "포함"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
I. 폴리에스테르 이형 필름
발명의 일 구현 예에 따르면,
폴리에스테르 기재층 및 상기 기재층의 적어도 일 면에 형성된 이형층을 포함하고,
상기 이형층은 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하고,
10 gf/inch 이하의 박리력 및 500 V 미만 마찰 대전압을 가지는,
폴리에스테르 이형 필름이 제공된다.
본 발명자들의 계속적인 연구 결과, 박막 편광판의 제조시 사용되는 이형용 기재 필름에 있어서, 일축 연신된 기재층 상에 폴리에스테르 수지와 폴리올레핀 왁스를 포함한 수계 코팅 조성물을 인-라인 코팅 방식으로 도포하여 이형층을 형성시킬 경우 코팅 가공성과 박리력이 우수한 폴리에스테르 이형 필름이 제공될 수 있음이 확인되었다.
상기 폴리에스테르 이형 필름은, 이를 사용한 후-가공(예를 들어, 상기 이형 필름 상에 베리어 코팅층을 형성시키는 공정 등)에서 우수한 박리성을 나타낼 수 있을 뿐 아니라, 낮은 마찰 대전압을 가져 정전기로 인한 오염의 발생을 방지할 수 있다.
상기 폴리에스테르 이형 필름은 폴리에스테르 기재층 및 상기 기재층의 적어도 일 면에 형성된 이형층을 포함한다.
상기 폴리에스테르 기재층은 폴리에스테르 수지로 이루어진 것이다. 상기 폴리에스테르 기재층으로는 본 발명이 속하는 기술분야에서 통상적인 것이 특별한 제한 없이 사용될 수 있다. 예를 들어, 상기 폴리에스테르 기재층은 폴리에틸렌 테레프탈레이트, 폴리에틸렌 나프탈레이트 등으로 이루어진 것일 수 있다. 비제한적인 예로, 상기 기재층은 고유 점도가 0.6 내지 0.8 dl/g인 범위의 폴리에틸렌 테레프탈레이트로 이루어진 것이 내후성 및 내가수분해성의 확보 측면에서 유리할 수 있다.
상기 이형층은 상기 폴리에스테르 기재층의 일 면 또는 양 면에 형성된다. 바람직하게는, 상기 이형층은 상기 폴리에스테르 기재층의 일 면에 형성된다.
상기 이형층은 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함한다.
상기 바인더에 포함된 상기 폴리에스테르 수지는 디카르복실산을 주성분으로 하는 산성분과 알킬렌글리콜을 주성분으로 하는 글리콜 성분을 축중합하여 얻어지는 수지이다. 상기 산 성분으로는 테레프탈산 또는 그의 알킬에스테르나 페닐에스테르 등이 주로 사용될 수 있고, 그 일부를 이소프탈산, 옥시에톡시 안식향산, 아디핀산, 세바식산, 5-나트륨설포이소프탈산, 술포테레프탈산 등으로 대체하여 사용할 수 있다. 상기 글리콜 성분으로는 에틸렌글리콜, 디에틸렌글리콜 등이 주로 사용될 수 있고, 그 일부를 프로필렌 글리콜, 트리메틸렌 글리콜, 1,4-사이클로헥산디올, 1,4-사이클로헥산디메탄올, 1,4-비스옥시에톡시벤젠, 비스페놀, 폴리옥시에틸렌 글리콜 등으로 대체하여 사용할 수 있다.
비제한적인 예로, 상기 폴리에스테르 수지는 디에틸렌글리콜과 에틸렌글리콜을 5: 5의 몰 비로 포함하는 50 몰%의 글리콜 성분, 및 테레프탈산과 술포테레프탈산을 8.5: 1.5의 몰 비로 포함하는 50 몰%의 산 성분을 축중합하여 얻어질 수 있다.
상기 폴리에스테르 수지는 2,000 내지 25,000 g/mol의 중량 평균 분자량을 가지는 것이, 상기 이형층이 적절한 내용제성을 가지도록 하는데 유리할 수 있다. 바람직하게는, 상기 폴리에스테르 수지의 중량 평균 분자량은 2,000 내지 25,000 g/mol, 혹은 2,000 내지 20,000 g/mol, 혹은 3,000 내지 20,000 g/mol, 혹은 3,000 내지 15,000 g/mol일 수 있다.
본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(refractive index detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다.
상기 측정 조건의 구체적인 예로, 폴리우레탄 수지 등의 고분자 수지는 1.0 (w/w)% in THF (고형분 기준 약 0.5 (w/w)%)의 농도가 되도록 테트라히드로퓨란(THF)에 용해시켜 0.45 ㎛ pore size의 syringe filter를 이용하여 여과 후 GPC에 20 ㎕를 주입하고, GPC의 이동상은 테트라히드로퓨란(THF)을 사용하고, 1.0 mL/분의 유속으로 유입하였으며, 컬럼은 Agilent PLgel 5 ㎛ Guard (7.5 x 50 mm) 1개와 Agilent PLgel 5㎛ Mixed D (7.5 x 300 mm) 2개를 직렬로 연결하고, 검출기로는 Agilent 1260 Infinity Ⅱ System, RI Detector를 이용하여 40 ℃에서 측정할 수 있다.
이를, 테트라히드로퓨란에 0.1 (w/w)% 농도로 아래와 같이 다양한 분자량을 갖는 폴리스티렌을 용해시킨 폴리스티렌 표준품 시료(STD A, B, C, D)를 0.45 ㎛ pore size의 syringe filter로 여과 후 GPC에 주입하여 형성된 검정 곡선을 이용하여 고분자의 중량 평균 분자량(Mw) 값을 구할 수 있다.
STD A (Mp) : 791,000 / 27,810 / 945
STD B (Mp) : 282,000 / 10,700 / 580
STD C (Mp) : 126,000 / 4,430 / 370
STD D (Mp) : 51,200 / 1,920 / 162
상기 이형층은 상기 바인더로 아크릴계 수지를 더 포함할 수 있다.
예를 들어, 상기 바인더는 상기 폴리에스테르 수지 및 상기 아크릴계 수지를 1: 0.5 내지 1: 1.5, 바람직하게는 1: 1인 고형분의 중량비로 포함할 수 있다.
바람직하게는, 상기 아크릴계 수지는 공중합 모노머로 글리시딜기 함유 라디칼 중합성 불포화 모노머를 전체 모노머 성분 중 20 내지 80 몰%로 함유하는 것일 수 있다. 상기 글리시딜기 함유 라디칼 중합성 불포화 모노머는 가교 반응에 의해 상기 이형층의 강도를 향상시키고 올리고머의 유출을 방지할 수 있도록 한다. 상기 글리시딜기 함유 라디칼 중합성 불포화 모노모로는 아크릴산 글리시딜, 메타크릴산 글리시딜, 아릴글리시딜에테르 등을 예로 들 수 있다.
상기 글리시딜기 함유 라디칼 중합성 불포화 모노머와 공중합 가능한 리디칼 중합성 불포화 모노머로는 비닐에스테르, 불포화카르본산에스테르, 불포화 카르본산 아미드, 불포화 니트릴, 불포화 카르본산, 알릴화합물, 함질소계 비닐 모노머, 탄화수소 비닐 모노머 또는 비닐 실란화합물 등을 들 수 있다. 상기 비닐에스테르로는 프로피온산비닐, 스테아린산비닐, 염화비닐등을 사용할 수 있다. 상기 불포화카르본산에스테르로는 아크릴산메틸, 아크릴산에틸, 아크릴산부틸, 아크릴산 2-에틸헥실, 메타크릴산 에틸, 메타크릴산 부틸, 말레인산 부틸, 말레인산 옥틸, 푸마르산부틸, 푸마르산 옥틸, 메타크릴산 히드록시 에틸, 아크릴산 히드록시에틸, 메타크릴산 히드록시 프로필, 아크릴산 히드록시 프로필 등을 사용할 수 있다. 상기 불포화 카르본산 아미드로는 아크릴아미드, 메타크릴아미드, 메티롤아크릴아미드, 부톡시 메티롤 아크릴아미드 등을 사용할 수 있다. 상기 불포화 니트릴로는 아크릴로니트릴 등을 사용할 수 있다. 불포화 카르본산으로는 아크릴산, 메타크릴산, 말레인산, 푸마르산, 이타콘산, 말레인산 산성 에스테르, 푸마르산 산성 에스테르, 이타콘산 산성 에스테르 등을 사용할 수 있다. 상기 알릴화합물로는 초산알릴, 메타크릴산 알릴, 아크릴산 알릴, 이타콘산 알릴, 이타콘산 디알릴 등을 사용할 수 있다. 상기 함질소계 비닐 모노머로는 비닐피리딘, 비닐 이미다졸 등을 사용할 수 있다. 상기 탄화수소 비닐 모노머로는 에틸렌, 프로필렌, 헥센, 옥텐, 스티렌, 비닐톨루엔, 부타디엔 등을 사용할 수 있다. 상기 비닐 실란화합물로는 디메틸 비닐 메톡시 실란, 디메틸 비닐에톡시 실란, 메틸 비닐 디메톡시 실란, 메틸 비닐 디에톡시 실란, 감마-메타크릴옥시 프로필 트리 메톡시실란, 감마-메타크릴록시 프로필 디메톡시 실란 등을 사용할 수 있다.
비제한적인 예로, 상기 아크릴계 수지는 아크릴산 글리시딜 40 내지 60 몰%와 프로피온산 40 내지 60 몰%가 공중합된 것일 수 있다.
상기 아크릴계 수지는 20,000 내지 70,000 g/mol의 중량 평균 분자량을 가지는 것이 바람직할 수 있다. 보다 바람직하게는, 상기 폴리에스테르 수지의 중량 평균 분자량은 20,000 내지 60,000 g/mol, 혹은 30,000 내지 60,000 g/mol, 혹은 40,000 내지 60,000 g/mol, 혹은 45,000 내지 55,000 g/mol일 수 있다.
상기 이형층은 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함한다.
상기 폴리올레핀 왁스의 구체적인 종류는 특별히 제한되지 않지만, 폴리에틸렌 왁스 및 폴리프로필렌 왁스로 이루어진 군에서 선택된 1종 이상이 바람직하게 사용될 수 있다.
상기 폴리올레핀 왁스는 상기 바인더 100 중량부에 대하여 10 내지 40 중량부로 포함될 수 있다. 상기 이형층이 적절한 박리력을 나타낼 수 있도록 하기 위하여 상기 폴리올레핀 왁스는 상기 바인더 100 중량부에 대하여 10 중량부 이상으로 포함되는 것이 바람직하다. 다만, 상기 이형층에 상기 폴리올레핀 왁스가 과량으로 첨가될 경우 배면 전사 문제와 가공 코팅성의 저하가 유발될 수 있다. 그러므로, 상기 폴리올레핀 왁스는 상기 바임더 100 중량부에 대하여 40 중량부 이하로 포함되는 것이 바람직하다.
예를 들어, 상기 폴리올레핀 왁스는 상기 바인더 100 중량부에 대하여 10 중량부 이상, 혹은 15 중량부 이상, 혹은 20 중량부 이상, 혹은 25 중량부 이상; 그리고 40 중량부 이하, 혹은 35 중량부 이하, 혹은 30 중량부 이하로 포함될 수 있다. 구체적으로, 상기 폴리올레핀 왁스는 상기 바인더 100 중량부에 대하여 10 내지 40 중량부, 혹은 15 내지 40 중량부, 혹은 15 내지 35 중량부, 혹은 20 내지 35 중량부, 혹은 20 내지 30 중량부, 혹은 25 내지 30 중량부로 포함될 수 있다.
상기 기재층과 이형층의 두께는 특별히 제한되지 않으며, 상기 폴리에스테르 이형 필름의 구체적인 적용 분야에 따라 조절될 수 있다. 예를 들어, 상기 기재층은 10 내지 100 ㎛의 두께를 가지고, 상기 이형층은 20 내지 200 nm의 두께를 가질 수 있다.
상기 폴리에스테르 이형 필름에서, 상기 기재층은 기계방향(MD) 및 횡방향(TD)으로 이축 연신된 것이고, 상기 이형층은 횡방향(TD)으로 일축 연신된 것일 수 있다.
상기 폴리에스테르 이형 필름은 상술한 특성들을 충족함에 따라 우수한 박리성과 낮은 마찰 대전압을 가질 수 있다.
예를 들어, 상기 폴리에스테르 이형 필름은 10 gf/inch 이하, 혹은 2 gf/inch 내지 10 gf/inch, 혹은 5 gf/inch 내지 10 gf/inch, 혹은 5 gf/inch 내지 8 gf/inch의 우수한 박리성을 가질 수 있다.
본 명세서에서, 상기 박리력은 ASTM D903의 표준 시험법에 따라 측정될 수 있다. 구체적으로, 상기 박리력의 측정은, 상기 폴리에스테르 이형 필름의 이형층 위에 두께 10 ㎛인 UV 수지 경화층을 형성시킨 제1 샘플을 준비하는 단계; 상기 제1 샘플의 상기 UV 수지 경화층 위에 TESA 테이프를 2 kg 고무롤을 사용하여 2회 왕복하여 문지른 다음 2.5 mm X 15 cm 크기로 잘라 제2 샘플을 준비하는 단계; 및 상기 제2 샘플 상에 70 g/cm2의 하중을 가하여 상온에 30 분 동안 방치한 후 박리 시험기(peel tester)를 이용하여 300 mm/min의 박리 속도로 상기 TESA 테이프를 180 도 박리하는 단계를 포함하여 수행될 수 있다.
그리고, 상기 폴리에스테르 이형 필름은 500 V 미만, 혹은 150 V 내지 450 V, 혹은 200 V 내지 450 V, 혹은 200 V 내지 400 V, 혹은 250 V 내지 400 V, 혹은 250 V 내지 350 V의 낮은 마찰 대전압을 가질 수 있다.
본 명세서에서, 상기 마찰 대전압은 KS K 0555의 표준 시험법에 따라 측정된 것이다. 구체적으로, 상기 마찰 대전압의 측정은, 통상적인 로타리 스태틱 테스터(rotary static tester)를 이용하여 상기 폴리에스테르 이형 필름에 대한 마찰 정전기를 측정하는 방법으로 수행될 수 있다. 이때, A 면(상기 폴리에스테르 이형 필름에서 상기 이형층 면) 및 B 면(상기 이형층이 형성되어 있지 않은 폴리에스테르 기재층 샘플 면)을 회전속도 300 rpm으로 180 초 동안 마찰시켜 발생하는 정전기량을 측정한다.
나아가, 상기 폴리에스테르 이형 필름은 낮은 헤이즈 값을 가지면서도 우수한 가공 코팅성을 나타낼 수 있다.
예를 들어, 상기 폴리에스테르 이형 필름은 3.90 % 이하의 헤이즈를 가질 수 있다. 바람직하게는, 상기 폴리에스테르 이형 필름은 3.90 % 이하, 혹은 3.50 내지 3.90 %, 혹은 3.60 내지 3.90 %, 혹은 3.60 내지 3.85 %, 혹은 3.70 내지 3.85 %, 혹은 3.75 내지 3.85 %의 헤이즈를 가질 수 있다.
그리고, 상기 폴리에스테르 이형 필름은 하기 식 1을 충족하는 우수한 가공 코팅성을 가질 수 있다:
[식 1]
NH = 0
상기 식 1에서, NH는 상기 폴리에스테르 이형 필름의 상기 이형층 상에 UV 수지를 두께 10 ㎛로 도포하여 경화시켰을 때 단위 면적(m2)당 생성되는 핀홀의 개수이다.
즉, 상기 폴리에스테르 이형 필름을 기재로 사용하는 임의의 제조 공정에서, 상기 이형층 상에 임의의 수지층을 형성시킬 때, 상기 이형층 상에는 핀홀이 실질적으로 형성되지 않아, 우수한 가공 코팅성을 나타낼 수 있다.
그리고, 상기 폴리에스테르 이형 필름은 90 % 내지 95 %의 전광선 투과율, 85° 내지 90°의 수 접촉각, 50° 내지 60°의 diiodomethane 접촉각, 및 30 내지 35 mN/m의 표면 에너지를 나타낼 수 있다.
한편, 발명의 다른 일 구현 예에 따르면,
두께 10 내지 300 ㎛인 폴리에스테르 기재층 및 상기 기재층 상에 인-라인 코팅에 의해 형성된 두께 20 내지 200 nm인 이형층을 포함하고,
상기 이형층은 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하고,
10 gf/inch 이하의 박리력 및 500 V 미만 마찰 대전압을 가지는,
박막 편광판용 폴리에스테르 이형 필름이 제공된다.
상기 폴리에스테르 이형 필름에 있어서, 상기 폴리에스테르 기재층, 상기 이형층에 대한 구체적인 내용은 앞서 설명한 내용으로 갈음한다.
상기 폴리에스테르 이형 필름에서, 특히, 상기 이형층은 상기 폴리에스테르 기재층 상에 인-라인 코팅에 의해 형성된 것이다. 상기 이형층은 상기 바인더 및 폴리올레핀 왁스를 포함한 수계 코팅 조성물을 상기 폴리에스테르 기재층 상에 인-라인 코팅 방법에 의해 도포하여 형성될 수 있다.
상기 이형층은 상기 인-라인 코팅 방법에 의해 형성됨에 따라 도포 두께가 얇으면서도 상기 폴리에스테르 기재층과의 접착력이 우수하고, 수분 및 용제에 대한 우수한 내성을 나타낼 수 있다.
상기 폴리에스테르 이형 필름은 우수한 박리성과 낮은 마찰 대전압을 가짐에 따라 박막 편광판의 제조시 이형용 기재 필름으로 적합하게 사용될 수 있다.
비제한적인 예로, 상기 박막 편광판의 제조시 상기 폴리에스테르 이형 필름의 상기 기재층 상에는, 베리어 코팅층; 폴리비닐알코올 수지층; 접착층; 및 폴리에틸렌 테레프탈레이트(PET), 트리아세틸 셀룰로오스(TAC), 또는 폴리메틸메타크릴레이트(PMMA) 등의 수지층이 순차로 적층하여 적층체를 형성할 수 있다. 그리고, 상기 폴리에스테르 이형 필름은 상기 적층체로부터 제거될 수 있다.
II. 폴리에스테르 이형 필름의 제조 방법
발명의 또 다른 일 구현 예에 따르면,
(i) 기계방향(MD)으로 연신된 폴리에스테르 기재층을 준비하는 단계,
(ii) 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 상기 폴리에스테르 기재층의 적어도 일 면에 도포하여 이형층을 형성하는 단계, 및
(iii) 상기 폴리에스테르 기재층과 상기 폴리에스테르 기재층 상에 형성된 상기 이형층을 포함한 적층체를 횡방향(TD)으로 연신하면서 열 처리하는 단계를 포함하고;
상기 단계(iii)은 통과 구간에 공급되는 공기의 총 열량이 222,000 kcal/min 내지 229,000 kcal/min인 열 처리 장치에 상기 적층체를 통과시키며 수행되는,
상기 폴리에스테르 이형 필름의 제조 방법이 제공된다.
(i) 기계방향(MD)으로 연신된 폴리에스테르 기재층을 준비하는 단계가 수행된다.
상기 폴리에스테르 기재층은 폴리에스테르 수지로 이루어진 것이다. 상기 폴리에스테르 기재층으로는 본 발명이 속하는 기술분야에서 통상적인 것이 특별한 제한 없이 사용될 수 있다.
상기 폴리에스테르 기재층은 기계방향(MD, 혹은 길이방향)으로 연신된 것으로 준비된다. 바람직하게는, 상기 폴리에스테르 기재층은 기계방향(MD)으로 2 배 내지 5 배 연신된 것일 수 있다.
상기 폴리에스테르 기재층은 10 내지 300 ㎛의 두께를 갖는 것이 바람직하다.
이어서, (ii) 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 상기 폴리에스테르 기재층의 적어도 일 면에 도포하여 이형층을 형성하는 단계가 수행된다.
상기 수계 코팅 조성물은 상기 폴리에스테르 기재층 상에 상기 이형층을 형성시키기 위한 것이다.
상기 수계 코팅 조성물은 상기 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함한다.
상기 바인더로는 상기 폴리에스테르 수지가 포함된다. 상기 바인더로는 아크릴계 수지가 더 포함될 수 있다.
상기 폴리에스테르 수지, 상기 아크릴계 수지, 및 상기 폴리올레핀 왁스에 대한 구체적인 내용은 <I. 폴리에스테르 이형 필름> 항목에서 설명한 내용으로 갈음한다.
일 예로, 상기 바인더는 상기 폴리에스테르 수지 및 상기 아크릴계 수지를 1: 0.5 내지 1: 1.5인 고형분의 중량비로 포함하는 것이 바람직하다.
그리고, 상기 수계 코팅 조성물은 100 중량부의 상기 바인더에 대하여 10 내지 40 중량부의 상기 폴리올레핀 왁스를 포함하는 것이 바람직하다.
상기 수계 코팅 조성물에 포함된 상기 바인더 및 상기 폴리올레핀 왁스의 고형분 기준 총 함량은 4.5 내지 6.4 중량%, 혹은 4.5 내지 6.0 중량%, 혹은 4.5 내지 5.8 중량%, 혹은 5.0 내지 5.8 중량%, 혹은 5.1 내지 5.8 중량%인 것이 바람직하다.
상기 수계 코팅 조성물에 포함된 상기 바인더 및 상기 폴리올레핀 왁스의 고형분 기준 총 함량이 너무 낮을 경우 전사 특성과 박리성이 열악해지고 마찰 대전압이 커질 수 있다. 그리고, 상기 고형분 기준 총 함량이 너무 높을 경우 상기 폴리에스테르 이형 필름의 제조시 미세 핀홀이 발생하는 등 가공 코팅성이 저하할 수 있다.
상기 수계 코팅 조성물에는, 필요에 따라, 실리콘계 웨팅제, 불소계 웨팅제, 경화제, 산 촉매, 슬립제, 소포제, 습윤제, 계면활성제, 증점제, 가소제, 산화방지제, 자외선 흡수제, 방부제, 및 가교제와 같은 첨가제가 더 부가될 수 있다. 상기 첨가제는 상기 수계 코팅 조성물 및 상기 이형층의 물성을 저해하지 않는 한도 내에서 선택적으로 사용될 수 있다.
상기 수계 코팅 조성물은 상술한 성분들과 물을 균일하게 혼합하는 방법으로 준비될 수 있다. 상기 수계 코팅 조성물의 고형분 함량은 20 내지 60 중량%인 것이 코팅 공정의 효율성 확보를 위해 바람직할 수 있다.
상기 이형층은 상기 수계 코팅 조성물을 사용한 인-라인 코팅법에 의해 상기 폴리에스테르 기재층의 적어도 일 면에 형성될 수 있다. 상기 인-라인 코팅법에 의해 상기 이형층을 형성함에 따라, 도포 두께가 얇으면서도 상기 폴리에스테르 기재층과의 접착력이 우수하고, 수분 및 용제에 대한 우수한 내성을 나타낼 수 있다.
상기 인-라인 코팅법은 통상의 장치를 이용하여 수행될 수 있다.
상기 인-라인 코팅을 수행함에 있어서, 상기 수계 코팅 조성물은 상기 이형층의 최종 연신 및 건조 후 두께가 20 내지 200 nm가 되도록 도포될 수 있다.
상기 수계 코팅 조성물을 상기 폴리에스테르 기재층 상에 도포한 후, 상기 수계 코팅 조성물의 수분을 제거하고 경화시킴으로써 상기 이형층이 형성된다.
이어서, (iii) 상기 폴리에스테르 기재층과 상기 폴리에스테르 기재층 상에 형성된 상기 이형층을 포함한 적층체를 횡방향(TD, 혹은 폭 방향)으로 연신하면서 열 처리하는 단계가 수행된다.
상기 단계(iii)에서 상기 적층체는 횡방향(TD)으로 2 배 내지 5 배 연신될 수 있다.
예를 들어, 기계방향(MD)으로 일축 연신된 상기 폴리에스테르 기재층 상에 상기 이형층을 형성한 후, 이것을 횡방향(TD)으로 연신한다. 이러한 연신 공정을 통해 상기 폴리에스테르 기재층은 기계방향 및 횡방향으로 이축 연신되고, 상기 이형층은 횡방향으로 일축 연신된다.
상기 단계(iii)은 텐터(tenter)와 같은 통상적인 열 처리 장치를 이용하여 수행될 수 있다. 상기 단계(iii)에서 상기 적층체는 텐터를 연속적으로 통과한다.
상기 적층체는 상기 텐터의 전단부를 통과하면서 예열되고, 상기 텐터의 중단부를 통과하면서 횡방향(TD) 연신되고, 상기 텐터의 후단부를 통과하면서 열 처리된다. 상기 열 처리는 상기 횡방향 연신시 상기 적층체에 가해진 장력을 유지한 상태에서 가열되는 것을 의미한다.
바람직하게는, 상기 단계(iii)은 통과 구간에 공급되는 공기의 총 열량이 222,000 kcal/min 내지 229,000 kcal/min인 열 처리 장치에 상기 적층체를 통과시키며 수행될 수 있다. 상기 열 처리 장치를 통과하는 상기 적층체는 상기 총 열량 범위 하에 노출되면서 상기 횡방향 연신 및 열 처리된다.
예를 들어, 상기 단계(iii)은 전체 통과 구간에 공급되는 공기의 총 열량이 222,000 kcal/min 이상, 혹은 225,000 kcal/min 이상, 혹은 226,000 kcal/min 이상, 그리고 229,000 kcal/min 이하, 혹은 228,000 kcal/min, 혹은 227,000 kcal/min 이하인 열 처리 장치에 상기 적층체를 통과시키며 수행될 수 있다.
구체적으로, 상기 단계(iii)은 전체 통과 구간에 공급되는 공기의 총 열량이 222,000 kcal/min 내지 229,000 kcal/min, 혹은 225,000 kcal/min 내지 229,000 kcal/min, 혹은 226,000 kcal/min 내지 229,000 kcal/min, 혹은 226,000 kcal/min 내지 228,000 kcal/min, 혹은 226,000 kcal/min 내지 227,000 kcal/min인 열 처리 장치에 상기 적층체를 통과시키며 수행될 수 있다.
상기 단계(iii)에서 상기 적층체가 통과하는 전체 구간에 공급되는 공기의 총 열량(kcal)은, 상기 구간의 온도(℃), 상기 열 처리 장치에 공급되는 공기의 질량(kg/min), 공기의 비열(kcal/kg℃)과 같은 데이터들로부터 계산될 수 있다. 상기 공기의 질량(kg/min)은 공기의 체적유량(Nm3/min) 및 공기의 밀도(kg/Nm3)로부터 얻어질 수 있다.
예를 들어, 상기 열 처리 장치에서 임의의 구간(zone)에 공급되는 공기의 밀도가 1.286 kg/Nm3이고, 공기의 비열이 0.24 kcal/kg℃이고, 공기의 체적유량이 380 Nm3/min, 공기의 초기 온도가 20 ℃이고, 상기 구간의 설정 온도가 220 ℃ 라고 할 때, 상기 구간에 공급되는 공기의 총 열량(kcal)은 하기 계산식 1 및 2에 의해 23,456.64 kcal/min으로 얻어질 수 있다.
[계산식 1]
공기의 질량(kg/min) = 공기의 체적유량(Nm3/min) X 공기의 밀도(kg/Nm3)
[계산식 2]
공기의 열량(kcal/min) = 공기의 질량(kg/min) X 공기의 비열(kcal/kg℃) X 온도 변화(℃)
그리고, 상기 구간의 통과 길이가 3 m이고 상기 적층체가 100 m/min의 속도로 상기 구간을 통과할 때, 상기 구간에서 상기 적층체가 노출되는 열량은 하기 계산식 3에 의해 7,037 kacl/zone으로 얻어질 수 있다.
[계산식 3]
적층체가 노출되는 열량(kcal/zone) = 공기의 열량(kcal/min) X 구간의 통과 길이(m/zone) X 적층체의 속도(m/min)
발명의 일 실시예에 따르면, 상기 적층체를 44,000 kcal/min 내지 46,000 kcal/min의 열량이 공급되는 구간을 통과시켜 예열하는 공정; 예열된 상기 적층체를 62,000 kcal/min 내지 64,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 상기 횡방향(TD)으로 연신하는 공정; 및 연신된 상기 적층체를 114,000 kcal/min 내지 120,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 상기 열 처리하는 공정을 포함하여 수행될 수 있다.
바람직하게는, 상기 예열하는 공정은, 상기 적층체를 45,000 kcal/min 내지 46,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 수행될 수 있다.
바람직하게는, 상기 횡방향으로 연신하는 공정은, 예열된 상기 적층체를 63,000 kcal/min 내지 64,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 수행될 수 있다.
그리고, 바람직하게는, 상기 열 처리하는 공정은 연신된 상기 적층체를 115,000 kcal/min 내지 120,000 kcal/min, 혹은 115,000 kcal/min 내지 119,000 kcal/min, 혹은 116,000 kcal/min 내지 119,000 kcal/min, 혹은 117,000 kcal/min 내지 118,500 kcal/min, 혹은 118,000 kcal/min 내지 118,500 kcal/min의 열량이 공급되는 구간을 통과시키면서 수행될 수 있다.
상기 단계(iii)에 있어서, 상기 예열하는 공정, 상기 횡방향으로 연신하는 공정, 및 상기 열 처리하는 공정은, 필요에 따라 공급되는 열량을 상술한 범위 내에서 달리한 2 개 이상의 존들(zones)로 각각 나누어 수행될 수 있다.
비제한적인 예로, 상기 단계(iii)에서는, 상기 적층체를 2 개의 예열 존, 3 개의 연신 존, 및 5 개의 열 처리 존에 순차로 통과시키면서 횡방향 연신과 열 처리가 수행될 수 있다.
상기 단계(iii) (특히, 상기 횡방향 연신 후 열 처리 존)에서 통과 구간에 공급되는 공기의 총 열량이 너무 낮을 경우 상기 폴리에스테르 이형 필름의 박리성과 전사 특성이 열악해지고 마찰 대전압이 커질 수 있다. 그리고, 상기 단계(iii) (특히, 상기 횡방향 연신 후 열 처리 존)에서 통과 구간에 공급되는 공기의 총 열량이 너무 높을 경우 상기 폴리에스테르 이형 필름의 표면 에너지가 낮아져 가공 코팅성이 저하될 수 있다.
그리고, 상기 단계(iii)에서 상기 적층체는 상기 열 처리 장치를 80 m/min 내지 120 m/min, 혹은 90 m/min 내지 110 m/min, 혹은 90 m/min 내지 100 m/min의 속도로 통과하는 것이 바람직하다.
상기 단계(iii)를 수행함에 있어서, 상기 각 구간에서 상기 적층체를 적절한 열량 하에 노출시키고, 상기 횡 방향 연신과 열 처리가 충분히 이루어질 수 있도록 하기 위하여, 상기 적층체는 상기 속도 범위 내에서 상기 열 처리 장치를 통과하는 것이 바람직하다.
상기 단계(iii)은 120 ℃ 내지 245 ℃ 하에서 수행될 수 있다.
예를 들어, 상기 단계(iii)은 120 ℃ 내지 150 ℃ 하에서 상기 적층체를 예열하는 공정; 130 ℃ 내지 150 ℃ 하에서 상기 예열된 적층체를 횡방향으로 연신하는 공정; 및 215 ℃ 내지 245 ℃ 하에서 상기 연신된 적층체를 열 처리하는 공정으로 수행될 수 있다.
특히, 상기 연신된 적층체를 열 처리하는 공정은 215 ℃ 이상, 혹은 220 ℃ 이상, 혹은 225 ℃ 이상, 혹은 230 ℃ 이상; 그리고 245 ℃ 이하, 혹은 240 ℃ 이하, 혹은 235 ℃ 이하에서 수행될 수 있다. 구체적으로, 상기 연신된 적층체를 열 처리 공정은 215 내지 245 ℃, 혹은 220 내지 245 ℃, 혹은 220 내지 240 ℃, 혹은 225 내지 240 ℃, 혹은 225 내지 235 ℃, 혹은 230 내지 235 ℃ 하에서 수행될 수 있다.
상기 연신된 적층체를 열 처리 공정의 온도가 너무 낮을 경우 상기 폴리에스테르 이형 필름의 박리성이 열악해지고 마찰 대전압이 커질 수 있다. 그리고, 상기 열 처리 온도가 너무 높을 경우 상기 폴리에스테르 이형 필름의 제조시 미세 핀홀이 발생하는 등 가공 코팅성이 저하할 수 있다.
상기 단계(iii)의 수행 후 150 ℃ 내지 200 ℃ 하에서 기계방향 및 횡방향으로 각각 2 내지 10 % 만큼 이완시키는 공정이 수행될 수 있다.
상기 공정들을 통해 얻어지는 상기 폴리에스테르 이형 필름의 최종 두께는 20 내지 100 ㎛, 혹은 30 내지 80 ㎛, 혹은 30 내지 50 ㎛일 수 있다.
본 발명에 따르면 비-실리콘계 소재로 이루어지면서도 우수한 박리성과 낮은 마찰 대전압을 가지는 폴리에스테르 이형 필름과 이의 제조 방법이 제공된다. 상기 폴리에스테르 이형 필름은 박막 편광판의 제조시 이형용 기재 필름으로 적합하게 사용될 수 있다.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
제조예 1
디에틸렌글리콜과 에틸렌글리콜을 5: 5의 몰 비로 포함하는 50 몰%의 글리콜 성분, 및 테레프탈산과 술포테레프탈산을 8.5: 1.5의 몰 비로 포함하는 50 몰%의 산 성분을 축중합하여 제1 폴리에스테르 수지를 얻었다(중량 평균 분자량 10,000 g/mol).
증류수에 100 중량부의 상기 제1 폴리에스테르 수지 및 25 중량부의 폴리에틸렌 왁스를 첨가하고 30 분 동안 교반하여 제1 수지 조성물(고형분 20 중량%)을 제조하였다.
제조예 2
디에틸렌글리콜과 에틸렌글리콜을 5: 5의 몰 비로 포함하는 50 몰%의 글리콜 성분, 및 테레프탈산과 술포테레프탈산을 8.5: 1.5의 몰 비로 포함하는 50 몰%의 산 성분을 축중합하여 제2 폴리에스테르 수지를 얻었다(중량 평균 분자량 3,000 g/mol).
아크릴산 글리시딜 60 몰% 및 프로피온산비닐 40 몰%를 공중합하여 아크릴계 수지를 얻었다(중량 평균 분자량 50,000 g/mol).
증류수에 50 중량부의 상기 제2 폴리에스테르 수지, 50 중량부의 상기 아크릴계 수지, 및 25 중량부의 폴리에틸렌 왁스를 첨가하고 30 분 동안 교반하여 제2 수지 조성물(고형분 20 중량%)을 제조하였다.
실시예 1
(i) 기계방향(MD)으로 3.5 배 연신된 폴리에틸렌 테레프탈레이트(PET) 기재층을 준비하였다. 구체적으로, 수분이 100 ppm 이하로 제거된 PET 칩을 용융압출기에 주입하여 용융한 후, T-다이를 통해 압출하면서 표면온도 20 ℃인 캐스팅 드럼으로 급냉 및 고화시켜 PET 시트를 제조하였다. 제조된 PET 시트를 110 ℃에서 기계방향으로 3.5 배 연신한 후 상온으로 냉각하여 상기 PET 기재층을 얻었다.
(ii) 상기 제조예 1에 따른 제1 수지 조성물 14.3 중량% (고형분 20 중량%), 상기 제조예 2에 따른 제2 수지 조성물 14.3 중량% (고형분 20 중량%), 실리콘계 웨팅제 0.2 중량% (Dow Corning 社, Q2-5212, 고형분 90 중량%), 불소계 웨팅제 0.2 중량% (DuPont 社, FS-31, 고형분 25 중량%), 및 증류수 71 중량%를 혼합하여 수계 코팅 조성물을 제조하였다.
그라비아 코터를 이용하여 상기 수계 코팅 조성물을 상기 PET 기재층 상에 최종 건조 후 두께 70 nm가 되도록 도포하여 적층체를 형성하였다.
(iii) 이어서, 예열 존, 연신 존, 및 열 처리 존으로 구획된 텐터(tenter)에서 상기 적층체를 횡방향(TD)으로 4 배 연신하면서 열 처리하는 단계가 수행되었다.
예열 존, 연신 존, 및 열 처리 존을 순차로 포함한 총 길이 33 m의 상기 텐터에 상기 적층체(초기 폭 5.12 m, 초기 두께 152 ㎛)가 100 m/min의 이동 속도로 통과하면서 상기 단계(iii)이 수행되었다.
상기 단계(iii)은 통과 구간에 공급되는 공기의 총 열량이 226,400 kcal/min인 상기 텐터에 상기 적층체를 통과시키며 수행되었다.
상기 단계(iii)에서 상기 텐터에 공급되는 공기의 밀도는 1.286 kg/Nm3이고, 공기의 비열은 0.24 kcal/kg℃으로 확인되었고, 공기의 체적유량은 270 내지 680 Nm3/min의 범위 내에서 조절되었다.
구체적으로, 상기 적층체는 약 120 ℃ 내지 130 ℃의 온도 하에서 45,000 kcal/min의 열량이 공급되는 상기 예열 존(통과 길이 7.5 m)을 통과하였다. 연속하여, 예열된 상기 적층체는 약 130 ℃ 내지 140 ℃의 온도 하에서 63,200 kcal/min의 열량이 공급되는 상기 연신 존(통과 길이 10.5 m)을 통과하면서 횡방향으로 4 배 연신되었다. 연속하여, 연신된 상기 적층체는 230 내지 235 ℃의 온도 하에서 118,200 kcal/min의 열량이 공급되는 상기 열 처리 존(통과 길이 15 m)을 통과하면서 열 처리되었다.
상기 열 처리 단계 후, 200 ℃에서 기계방향 및 횡방향으로 각각 10 %씩 이완시켜 열 고정함으로써, 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
실시예 2
상기 실시예 1과 동일한 방법으로, 기계방향(MD)으로 3.5 배 연신된 PET 기재층을 준비하였다.
상기 제조예 1에 따른 제1 수지 조성물 25.75 중량% (고형분 20 중량%), 멜라민 경화제 0.81 중량% (DIC 社, J-101LF, 고형분 70 중량%), 산 촉매 0.48 중량% (KING INDUSTRY 社, Nacure 8924, 고형분 25 중량%), 실리콘계 웨팅제 0.2 중량% (Dow Corning 社, Q2-5212, 고형분 90 중량%), 및 증류수 72.8 중량%를 혼합하여 수계 코팅 조성물을 제조하였다.
그라비아 코터를 이용하여 상기 수계 코팅 조성물을 상기 PET 기재층 상에 최종 건조 후 두께 70 nm가 되도록 도포하여 적층체를 형성하였다.
이어서, 상기 실시예 1과 동일한 방법으로 횡방향(TD) 연신과 열 처리가 수행되었다.
상기 열 처리 단계 후, 200 ℃에서 기계방향 및 횡방향으로 각각 10 %씩 이완시켜 열 고정함으로써, 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
비교예 1
상기 실시예 1과 동일한 방법으로, 기계방향(MD)으로 3.5 배 연신된 PET 기재층을 준비하였다.
상기 제조예 1에 따른 제1 수지 조성물 10.75 중량% (고형분 20 중량%), 상기 제조예 2에 따른 제2 수지 조성물 10.75 중량% (고형분 20 중량%), 실리콘계 웨팅제 0.2 중량% (Dow Corning 社, Q2-5212, 고형분 90 중량%), 불소계 웨팅제 0.2 중량% (DuPont 社, FS-31, 고형분 25 중량%), 및 증류수 78.1 중량%를 혼합하여 수계 코팅 조성물을 제조하였다.
그라비아 코터를 이용하여 상기 수계 코팅 조성물을 상기 PET 기재층 상에 최종 건조 후 두께 70 nm가 되도록 도포하여 적층체를 형성하였다.
이어서, 상기 실시예 1과 동일한 방법으로 횡방향(TD) 연신과 열 처리가 수행되었다.
상기 열 처리 단계 후, 200 ℃에서 기계방향 및 횡방향으로 각각 10 %씩 이완시켜 열 고정함으로써, 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
비교예 2
상기 실시예 1과 동일한 방법으로, 기계방향(MD)으로 3.5 배 연신된 PET 기재층을 준비하였다.
상기 제조예 1에 따른 제1 수지 조성물 17.9 중량% (고형분 20 중량%), 상기 제조예 2에 따른 제2 수지 조성물 17.9 중량% (고형분 20 중량%), 실리콘계 웨팅제 0.2 중량% (Dow Corning 社, Q2-5212, 고형분 90 중량%), 불소계 웨팅제 0.2 중량% (DuPont 社, FS-31, 고형분 25 중량%), 및 증류수 63.8 중량%를 혼합하여 수계 코팅 조성물을 제조하였다.
그라비아 코터를 이용하여 상기 수계 코팅 조성물을 상기 PET 기재층 상에 최종 건조 후 두께 70 nm가 되도록 도포하여 적층체를 형성하였다.
이어서, 상기 실시예 1과 동일한 방법으로 횡방향(TD) 연신과 열 처리가 수행되었다.
상기 열 처리 단계 후, 200 ℃에서 기계방향 및 횡방향으로 각각 10 %씩 이완시켜 열 고정함으로써, 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
비교예 3
상기 실시예 1과 동일한 방법으로, 기계방향(MD)으로 3.5 배 연신된 PET 기재층을 준비하였다.
상기 제조예 1에 따른 제1 수지 조성물 19.3 중량% (고형분 20 중량%), 멜라민 경화제 0.61 중량% (DIC 社, J-101LF, 고형분 70 중량%), 산 촉매 0.36 중량% (KING INDUSTRY 社, Nacure 8924, 고형분 25 중량%), 실리콘계 웨팅제 0.2 중량% (Dow Corning 社, 고형분 90 중량%), 및 증류수 79.5 중량%를 혼합하여 수계 코팅 조성물을 제조하였다.
그라비아 코터를 이용하여 상기 수계 코팅 조성물을 상기 PET 기재층 상에 최종 건조 후 두께 70 nm가 되도록 도포하여 적층체를 형성하였다.
이어서, 상기 실시예 1과 동일한 방법으로 횡방향(TD) 연신과 열 처리가 수행되었다.
상기 열 처리 단계 후, 200 ℃에서 기계방향 및 횡방향으로 각각 10 %씩 이완시켜 열 고정함으로써, 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
비교예 4
상기 실시예 1과 동일한 방법으로, 기계방향(MD)으로 3.5 배 연신된 PET 기재층을 준비하였다.
상기 제조예 1에 따른 제1 수지 조성물 32.2 중량% (고형분 20 중량%), 멜라민 경화제 1.03 중량% (DIC 社, J-101LF, 고형분 70 중량%), 산 촉매 0.56 중량% (KING INDUSTRY 社, Nacure 8924, 고형분 25 중량%), 실리콘계 웨팅제 0.2 중량% (Dow Corning 社, Q2-5212, 고형분 90 중량%), 및 증류수 66 중량%를 혼합하여 수계 코팅 조성물을 제조하였다.
그라비아 코터를 이용하여 상기 수계 코팅 조성물을 상기 PET 기재층 상에 최종 건조 후 두께 70 nm가 되도록 도포하여 적층체를 형성하였다.
이어서, 상기 실시예 1과 동일한 방법으로 횡방향(TD) 연신과 열 처리가 수행되었다.
상기 열 처리 단계 후, 200 ℃에서 기계방향 및 횡방향으로 각각 10 %씩 이완시켜 열 고정함으로써, 총 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
비교예 5
상기 단계(iii)의 상기 텐터에서 통과 구간에 공급되는 공기의 총 열량이 221,400 kcal/min가 되도록 한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
구체적으로, 상기 적층체는 약 120 ℃ 내지 130 ℃의 온도 하에서 45,000 kcal/min의 열량이 공급되는 상기 예열 존(통과 길이 7.5 m)을 통과하였다. 연속하여, 예열된 상기 적층체는 약 130 ℃ 내지 140 ℃의 온도 하에서 63,200 kcal/min의 열량이 공급되는 상기 연신 존(통과 길이 10.5 m)을 통과하면서 횡방향으로 4 배 연신되었다. 연속하여, 연신된 상기 적층체는 230 내지 235 ℃의 온도 하에서 113,200 kcal/min의 열량이 공급되는 상기 열 처리 존(통과 길이 15 m)을 통과하면서 열 처리되었다.
비교예 6
상기 단계(iii)의 상기 텐터에서 통과 구간에 공급되는 공기의 총 열량이 229,200 kcal/min가 되도록 한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
구체적으로, 상기 적층체는 약 120 ℃ 내지 130 ℃의 온도 하에서 45,000 kcal/min의 열량이 공급되는 상기 예열 존(통과 길이 7.5 m)을 통과하였다. 연속하여, 예열된 상기 적층체는 약 130 ℃ 내지 140 ℃의 온도 하에서 63,200 kcal/min의 열량이 공급되는 상기 연신 존(통과 길이 10.5 m)을 통과하면서 횡방향으로 4 배 연신되었다. 연속하여, 연신된 상기 적층체는 230 내지 235 ℃의 온도 하에서 121,000 kcal/min의 열량이 공급되는 상기 열 처리 존(통과 길이 15 m)을 통과하면서 열 처리되었다.
비교예 7
상기 단계(iii)의 상기 텐터에서 통과 구간에 공급되는 공기의 총 열량이 221,400 kcal/min가 되도록 한 것을 제외하고, 상기 실시예 2와 동일한 방법으로 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
구체적으로, 상기 적층체는 약 120 ℃ 내지 130 ℃의 온도 하에서 45,000 kcal/min의 열량이 공급되는 상기 예열 존(통과 길이 7.5 m)을 통과하였다. 연속하여, 예열된 상기 적층체는 약 130 ℃ 내지 140 ℃의 온도 하에서 63,200 kcal/min의 열량이 공급되는 상기 연신 존(통과 길이 10.5 m)을 통과하면서 횡방향으로 4 배 연신되었다. 연속하여, 연신된 상기 적층체는 230 내지 235 ℃의 온도 하에서 113,200 kcal/min의 열량이 공급되는 상기 열 처리 존(통과 길이 15 m)을 통과하면서 열 처리되었다.
비교예 8
상기 단계(iii)의 상기 텐터에서 통과 구간에 공급되는 공기의 총 열량이 229,200 kcal/min가 되도록 한 것을 제외하고, 상기 실시예 2와 동일한 방법으로 두께 38 ㎛의 폴리에스테르 이형 필름을 제조하였다.
구체적으로, 상기 적층체는 약 120 ℃ 내지 130 ℃의 온도 하에서 45,000 kcal/min의 열량이 공급되는 상기 예열 존(통과 길이 7.5 m)을 통과하였다. 연속하여, 예열된 상기 적층체는 약 130 ℃ 내지 140 ℃의 온도 하에서 63,200 kcal/min의 열량이 공급되는 상기 연신 존(통과 길이 10.5 m)을 통과하면서 횡방향으로 4 배 연신되었다. 연속하여, 연신된 상기 적층체는 230 내지 235 ℃의 온도 하에서 121,000 kcal/min의 열량이 공급되는 상기 열 처리 존(통과 길이 15 m)을 통과하면서 열 처리되었다.
시험예
(1) 광학 특성
: Haze meter(Nipon denshoku, NDH 5000)를 이용하여 상기 실시예 및 비교예의 필름에 대한 헤이즈(haze) 및 전광선 투과율(TT)을 측정하였다.
(2) 전사 특성 (Transfer test)
: 폴리에스테르 이형 필름의 이형층 상에 무-처리된 PET 기재 필름을 적층시키고 50 gf/inch의 하중을 주고 45 ℃의 오븐에 24 시간 방치 한 후, 수 접촉각의 차이가 △2 이상이면 전사 有 (혹은 O)로 표기하고, 수 접촉각의 차이가 없을 경우 전사 無 (혹은 X)로 표기하였다.
(3) 수 접촉각
: 접촉각 측정기(KR?SS, DSA 100)를 이용하여 상기 필름의 이형층에 대한 수 접촉각을 측정하였다. 순수 3 ㎕ (S1, Volume mode)를 상기 필름 시편에 떨어뜨리고 15 초 동안의 수 접촉각 평균을 측정하였다. 총 5회 측정하여 그 평균값을 나타내었다.
(4) Diiodomethane 접촉각
: 접촉각 측정기(KR?SS, DSA 100)를 이용하여 상기 필름의 이형층에 대한 diiodomethane 접촉각을 측정하였다. Diiodomethane 1 ㎕ (S1, Volume mode)를 상기 필름 시편에 떨어뜨리고 15 초 동안의 diiodomethane 접촉각 평균을 측정하였다. 총 5회 측정하여 그 평균값을 나타내었다.
(5) 표면 에너지
: 상기 수 접촉각과 diiodomethane 접촉각의 측정 결과로부터 Owens-Wendt Method로 이용하여 상기 필름의 이형층의 표면 에너지를 계산하였다.
(6) 가공 코팅성
: 상기 필름의 이형층 위에 UV 수지(Miwon Specialty Chemical Co., MIRAMER M1130)를 두께 10 ㎛로 도포하여 UV 경화시킨 샘플을 준비하였다. 상기 샘플의 가공 코팅성을 아래의 기준에 따라 평가하였다.
* 1 등급 - 단위 면적(m2)당 핀홀 없음
* 2 등급 - 단위 면적(m2)당 핀홀 2 개 이하
* 3 등급 - 단위 면적(m2)당 핀홀 5 개 이하
* 4 등급 - 단위 면적(m2)당 핀홀 10 개 이하
* 5 등급 - 단위 면적(m2)당 핀홀 10 개 초과
(7) 박리력
: ASTM D903의 표준 시험법을 참고하여, 상기 필름의 이형층 위에 UV 수지(Miwon Specialty Chemical Co., MIRAMER M1130)를 두께 10 ㎛로 도포하여 UV 경화층을 형성시킨 제1 샘플을 준비하는 단계; 상기 제1 샘플의 상기 UV 수지 경화층 위에 TESA 테이프를 2 kg 고무롤을 사용하여 2회 왕복하여 문지른 다음 2.5 mm X 15 cm 크기로 잘라 제2 샘플을 준비하는 단계; 및 상기 제2 샘플 상에 70 g/cm2의 하중을 가하여 상온에 30 분 동안 방치한 후 박리 시험기(Chem Instrument사, AR-1000)를 이용하여 300 mm/min의 박리 속도로 상기 TESA 테이프를 180 도 박리하는 단계를 포함한 방법으로 박리력을 측정하였다.
(8) 마찰 대전압
: 로타리 스태틱 테스터(Daiei Kagaku Seiki MFG, RST-300a)를 이용하여 상기 폴리에스테르 이형 필름에 대한 마찰 정전기를 측정하였다. A 면(상기 폴리에스테르 이형 필름에서 상기 이형층 면)을 회전 드럼에 부착하고 B 면(상기 이형층이 형성되어 있지 않은 폴리에스테르 기재층 샘플 면)을 마찰대에 고정시킨다. 기계적 제어 하에 상기 A 면을 회전속도 300 rpm으로 회전시키면서 상기 B 면을 상기 마찰대에 180 초 동안 문지른 후 대전량을 측정한다.
실시예 1 비교예 1 비교예 2 비교예 5 비교예 6
S* (wt%) 5.72 4.30 7.16 5.72 5.72
T* (℃) 235 235 235 210 250
H* (kcal) 7545 7545 7545 7390 7625
A* (%) 3.85 3.10 3.99 4.13 3.98
B* (%) 90.34 90.01 90.38 90.30 90.23
C* (°) 87.0 87.0 90.8 79.5 79.5
D* (°) 53.4 45.7 49.3 54.0 54.0
E* (mN/m) 35 39 36 37 37
F* (등급) 1 1 3 1 2
G* (gf/inch) 7 16 3 11 8
H*
I* (V) 274 770 243 503 387
실시예 2 비교예 3 비교예 4 비교예 7 비교예 8
S* (wt%) 5.15 3.86 6.44 5.15 5.15
T* (℃) 235 235 235 210 250
H* (kcal) 7545 7545 7545 7390 7625
A* (%) 3.76 3.70 3.79 4.02 3.80
B* (%) 90.51 90.35 90.52 90.45 90.44
C* (°) 85.4 83.0 89.1 80.3 85.4
D* (°) 57.3 49.2 49.7 61.9 57.3
E* (mN/m) 34 38 36 34 34
F* (등급) 1 1 2 1 2
G* (gf/inch) 8 12 7 12 8
H*
I* (V) 310 672 699 513 423
S*: 수계 코팅 조성물에 포함된 바인더 및 폴리올레핀 왁스의 총 함량 (고형분 기준)
T*: 텐터에서의 열 처리 온도 (℃)
H*: 텐터에서의 총 열량 (kcal)
A*: Haze (%)
B*: 전광선 투과율 (%)
C*: 수 접촉각 (°)
D*: Diiodomethane 접촉각 (°)
E*: 표면 에너지 (mN/m)
F*: 가공 코팅성 (등급)
G*: 박리력 (gf/inch)
H*: 전사 특성
I*: 마찰 대전압 (V)
상기 표 1 및 2를 참고하면, 실시예들에 따른 폴리에스테르 이형 필름은 비교예들의 이형 필름에 비하여 전사 특성과 가공 코팅성이 우수하면서도 우수한 박리성과 낮은 마찰 대전압을 갖는 것으로 확인되었다.

Claims (20)

  1. 폴리에스테르 기재층 및 상기 기재층의 적어도 일 면에 형성된 이형층을 포함하고,
    상기 이형층은 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하고,
    10 gf/inch 이하의 박리력 및 500 V 미만 마찰 대전압을 가지는,
    폴리에스테르 이형 필름.
  2. 제 1 항에 있어서,
    상기 바인더에 포함된 상기 폴리에스테르 수지는 2,000 내지 25,000 g/mol의 중량 평균 분자량을 가지는, 폴리에스테르 이형 필름.
  3. 제 1 항에 있어서,
    상기 바인더는 아크릴계 수지를 더 포함하는, 폴리에스테르 이형 필름.
  4. 제 3 항에 있어서,
    상기 바인더는 상기 폴리에스테르 수지 및 상기 아크릴계 수지를 1: 0.5 내지 1: 1.5인 고형분의 중량비로 포함하는, 폴리에스테르 이형 필름.
  5. 제 3 항에 있어서,
    상기 바인더에 포함된 상기 아크릴계 수지는 20,000 내지 70,000 g/mol의 중량 평균 분자량을 가지는, 폴리에스테르 이형 필름.
  6. 제 1 항에 있어서,
    상기 이형층은 100 중량부의 상기 바인더에 대하여 10 내지 40 중량부의 상기 폴리올레핀 왁스를 포함하는, 폴리에스테르 이형 필름.
  7. 제 1 항에 있어서,
    상기 폴리올레핀 왁스는 폴리에틸렌 왁스 및 폴리프로필렌 왁스로 이루어진 군에서 선택된 1종 이상의 왁스인, 폴리에스테르 이형 필름.
  8. 제 1 항에 있어서,
    3.90 % 이하의 헤이즈 및 하기 식 1을 충족하는 가공 코팅성을 가지는, 폴리에스테르 이형 필름:
    [식 1]
    NH = 0
    상기 식 1에서, NH는 상기 폴리에스테르 이형 필름의 상기 이형층 상에 UV 수지를 두께 10 ㎛로 도포하여 경화시켰을 때 단위 면적(m2)당 생성되는 핀홀의 개수이다.
  9. 제 1 항에 있어서,
    상기 기재층은 10 내지 300 ㎛의 두께를 가지고,
    상기 이형층은 20 내지 200 nm의 두께를 가지는,
    폴리에스테르 이형 필름.
  10. 제 1 항에 있어서,
    상기 기재층은 기계방향(MD) 및 횡방향(TD)으로 이축 연신된 것이고,
    상기 이형층은 횡방향(TD)으로 일축 연신된 것인,
    폴리에스테르 이형 필름.
  11. 두께 10 내지 300 ㎛인 폴리에스테르 기재층 및 상기 기재층 상에 인-라인 코팅에 의해 형성된 두께 20 내지 200 nm인 이형층을 포함하고,
    상기 이형층은 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하고,
    10 gf/inch 이하의 박리력 및 500 V 미만 마찰 대전압을 가지는,
    박막 편광판용 폴리에스테르 이형 필름.
  12. (i) 기계방향(MD)으로 연신된 폴리에스테르 기재층을 준비하는 단계,
    (ii) 폴리에스테르 수지를 포함한 바인더 및 상기 바인더 상에 분산된 폴리올레핀 왁스를 포함하는 수계 코팅 조성물을 상기 폴리에스테르 기재층의 적어도 일 면에 도포하여 이형층을 형성하는 단계, 및
    (iii) 상기 폴리에스테르 기재층과 상기 폴리에스테르 기재층 상에 형성된 상기 이형층을 포함한 적층체를 횡방향(TD)으로 연신하면서 열 처리하는 단계를 포함하고;
    상기 단계(iii)은 통과 구간에 공급되는 공기의 총 열량이 222,000 kcal/min 내지 229,000 kcal/min인 열 처리 장치에 상기 적층체를 통과시키며 수행되는,
    제 1 항에 따른 폴리에스테르 이형 필름의 제조 방법.
  13. 제 12 항에 있어서,
    상기 수계 코팅 조성물은 상기 바인더로 아크릴계 수지를 더 포함하는, 폴리에스테르 이형 필름의 제조 방법.
  14. 제 13 항에 있어서,
    상기 바인더는 상기 폴리에스테르 수지 및 상기 아크릴계 수지를 1: 0.5 내지 1: 1.5인 고형분의 중량비로 포함하는, 폴리에스테르 이형 필름의 제조 방법.
  15. 제 12 항에 있어서,
    상기 수계 코팅 조성물은 100 중량부의 상기 바인더에 대하여 10 내지 40 중량부의 상기 폴리올레핀 왁스를 포함하는, 폴리에스테르 이형 필름의 제조 방법.
  16. 제 12 항에 있어서,
    상기 수계 코팅 조성물에 포함된 상기 바인더 및 상기 폴리올레핀 왁스의 총 함량은 4.5 내지 6.4 중량% (고형분)인, 폴리에스테르 이형 필름의 제조 방법.
  17. 제 12 항에 있어서,
    상기 이형층은 상기 수계 코팅 조성물을 사용한 인-라인 코팅법에 의해 상기 폴리에스테르 기재층의 적어도 일 면에 형성되는, 폴리에스테르 이형 필름의 제조 방법.
  18. 제 12 항에 있어서,
    상기 기계방향(MD) 및 횡방향(TD)의 연신은 각각 2 배 내지 5 배 연신인, 폴리에스테르 이형 필름의 제조 방법.
  19. 제 12 항에 있어서,
    상기 단계(iii)에서 상기 적층체는 상기 열 처리 장치를 80 m/min 내지 120 m/min의 속도로 통과하는, 폴리에스테르 이형 필름의 제조 방법.
  20. 제 12 항에 있어서,
    상기 단계(iii)은, 상기 적층체를 44,000 kcal/min 내지 46,000 kcal/min의 열량이 공급되는 구간을 통과시켜 예열하는 공정;
    예열된 상기 적층체를 62,000 kcal/min 내지 64,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 상기 횡방향(TD)으로 연신하는 공정; 및
    연신된 상기 적층체를 114,000 kcal/min 내지 120,000 kcal/min의 열량이 공급되는 구간을 통과시키면서 상기 열 처리하는 공정
    을 포함하여 수행되는, 폴리에스테르 이형 필름의 제조 방법.
PCT/KR2021/095069 2020-06-02 2021-05-31 폴리에스테르 이형 필름 및 이의 제조 방법 WO2021246851A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022566334A JP7450760B2 (ja) 2020-06-02 2021-05-31 ポリエステル離型フィルムおよびその製造方法
CN202180029378.2A CN115443302A (zh) 2020-06-02 2021-05-31 聚酯离型膜及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0066556 2020-06-02
KR20200066556 2020-06-02
KR10-2021-0069182 2021-05-28
KR1020210069182A KR102675794B1 (ko) 2020-06-02 2021-05-28 폴리에스테르 이형 필름 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2021246851A1 true WO2021246851A1 (ko) 2021-12-09

Family

ID=78830514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/095069 WO2021246851A1 (ko) 2020-06-02 2021-05-31 폴리에스테르 이형 필름 및 이의 제조 방법

Country Status (4)

Country Link
JP (1) JP7450760B2 (ko)
CN (1) CN115443302A (ko)
TW (1) TWI765728B (ko)
WO (1) WO2021246851A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612401A (zh) * 2022-10-27 2023-01-17 广东鑫瑞新材料科技有限公司 一种电化铝烫印箔的水性离型涂料及制备方法及应用工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212848A (ja) * 2010-03-31 2011-10-27 Sumitomo Bakelite Co Ltd 離型フィルム
KR20130003393A (ko) * 2011-06-30 2013-01-09 코오롱인더스트리 주식회사 이형필름 및 이의 제조방법
JP2016175229A (ja) * 2015-03-19 2016-10-06 東レ株式会社 離型用二軸配向ポリエステルフィルム
JP2016210041A (ja) * 2015-05-01 2016-12-15 三菱樹脂株式会社 離型フィルム
KR101992704B1 (ko) * 2015-02-24 2019-06-25 린텍 코포레이션 박리제 조성물, 박리 시트, 편면 점착 시트 및 양면 점착 시트

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687405B (zh) * 2007-08-22 2013-01-02 尤尼吉可株式会社 脱模用片
JP6165141B2 (ja) * 2012-07-02 2017-07-19 ユニチカ株式会社 離型用二軸延伸ポリエステルフィルム
CN105473649B (zh) * 2013-06-27 2019-06-07 可隆工业株式会社 聚酯膜及其制备方法
JP6147223B2 (ja) 2014-05-15 2017-06-14 藤森工業株式会社 帯電防止表面保護フィルムの製造方法、および帯電防止表面保護フィルム
JP6308235B2 (ja) 2016-03-09 2018-04-11 三菱ケミカル株式会社 積層ポリエステルフィルム
KR101801689B1 (ko) 2017-01-18 2017-11-27 (주)이녹스첨단소재 Oled 패널 하부 보호필름 및 이를 포함하는 oled 패널
KR20180097873A (ko) * 2017-02-24 2018-09-03 최진호 나노 카본 소재를 함유한 투명한 점착성 대전방지 박리 필름 및 테이프

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212848A (ja) * 2010-03-31 2011-10-27 Sumitomo Bakelite Co Ltd 離型フィルム
KR20130003393A (ko) * 2011-06-30 2013-01-09 코오롱인더스트리 주식회사 이형필름 및 이의 제조방법
KR101992704B1 (ko) * 2015-02-24 2019-06-25 린텍 코포레이션 박리제 조성물, 박리 시트, 편면 점착 시트 및 양면 점착 시트
JP2016175229A (ja) * 2015-03-19 2016-10-06 東レ株式会社 離型用二軸配向ポリエステルフィルム
JP2016210041A (ja) * 2015-05-01 2016-12-15 三菱樹脂株式会社 離型フィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612401A (zh) * 2022-10-27 2023-01-17 广东鑫瑞新材料科技有限公司 一种电化铝烫印箔的水性离型涂料及制备方法及应用工艺

Also Published As

Publication number Publication date
TW202204143A (zh) 2022-02-01
JP7450760B2 (ja) 2024-03-15
TWI765728B (zh) 2022-05-21
CN115443302A (zh) 2022-12-06
JP2023524491A (ja) 2023-06-12

Similar Documents

Publication Publication Date Title
WO2010095905A2 (ko) 변성 폴리비닐알코올계 수지, 이를 포함하는 접착제, 편광판 및 표시장치
WO2017047917A1 (ko) 변성 폴리이미드 및 이를 포함하는 경화성 수지 조성물
WO2018034411A1 (ko) 필름 터치 센서 및 필름 터치 센서용 구조체
WO2011122842A2 (en) Polyimide film
WO2014209056A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2016052951A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2015016456A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2021154057A1 (ko) 플렉서블 디스플레이 표면을 보호하는 초 박막 글라스
WO2014185685A1 (ko) 편광판
WO2017086567A1 (ko) 플렉서블 터치스크린 패널 모듈 및 이를 포함하는 플렉서블 디스플레이 장치
WO2013051831A2 (ko) 배향막 형성용 조성물, 그로부터 제조된 배향막 및 위상차 필름
WO2021246851A1 (ko) 폴리에스테르 이형 필름 및 이의 제조 방법
WO2015046713A1 (ko) 편광판
WO2018004288A2 (ko) 폴리에스테르 다층필름
WO2014193072A1 (ko) 자외선 차단 기능이 우수한 광학 필름 및 이를 포함하는 편광판
WO2013055015A1 (ko) 점착제 조성물, 점착필름, 그 제조방법 및 이를 이용한 디스플레이 부재
WO2023167562A1 (ko) 광학 필름, 코팅층 형성용 조성물, 및 전자 기기
WO2022173083A1 (ko) 표면에너지 조절용 유무기 입자, 이를 포함하는 이형필름, 및 상기 표면에너지 조절용 유무기 입자의 제조방법
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2021221374A1 (ko) 폴리아마이드계 복합 필름 및 이를 포함한 디스플레이 장치
WO2017171272A1 (ko) 컬러필터 및 이를 포함하는 화상표시장치
WO2021071152A1 (ko) 플렉서블 윈도우 필름 및 이를 포함하는 디스플레이 장치
WO2020218879A1 (ko) 실리콘계 점착성 보호 필름 및 이를 포함하는 광학 부재
WO2014204142A1 (ko) 라디칼 경화형 접착제 조성물 및 이를 포함하는 편광판
WO2019245251A1 (ko) 실리콘 이형 필름, 이를 포함하는 점착 필름용 및 점착 테이프용 보호 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818088

Country of ref document: EP

Kind code of ref document: A1