WO2021244189A1 - 一种动力电池中石墨纯化及晶格重构方法 - Google Patents

一种动力电池中石墨纯化及晶格重构方法 Download PDF

Info

Publication number
WO2021244189A1
WO2021244189A1 PCT/CN2021/090331 CN2021090331W WO2021244189A1 WO 2021244189 A1 WO2021244189 A1 WO 2021244189A1 CN 2021090331 W CN2021090331 W CN 2021090331W WO 2021244189 A1 WO2021244189 A1 WO 2021244189A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
lattice
power battery
purification
reconstruction
Prior art date
Application number
PCT/CN2021/090331
Other languages
English (en)
French (fr)
Inventor
余海军
彭挺
谢英豪
张学梅
杨云广
王英男
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to EP21818444.8A priority Critical patent/EP4151593A4/en
Publication of WO2021244189A1 publication Critical patent/WO2021244189A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/215Purification; Recovery or purification of graphite formed in iron making, e.g. kish graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the field of battery graphite, and specifically relates to a method for graphite purification and lattice reconstruction in power batteries.
  • the traditional recycled graphite is coated with cellulose acetate as the surface modifier, and the surface is modified at 300-900°C in a nitrogen atmosphere, such as "A Recovery and Repair Method of Anode Material Graphite for Waste Lithium Ion Battery” (CN101710632A ).
  • this traditional recycling method cannot effectively remove metal impurities and organic impurities in the graphite anode material, and the recovered graphite has a low degree of graphitization, poor electrical properties and unstable, and backward technology.
  • the existing one-time leaching and purification of metals can effectively recover the metal, but it is difficult to ensure the purity of graphite, especially when the graphite waste is lattice repaired, impurities are introduced into the graphite lattice, which makes it difficult to ensure its purity. .
  • the purpose of the present invention is to provide a method for the purification and lattice reconstruction of graphite in a power battery, and graphite.
  • the purification and lattice reconstruction method uses raw materials with low cost and high efficiency.
  • the obtained graphite anode material is assembled into a battery after being assembled into a battery. 1600 cycles still have good electrochemical performance, which is higher than similar products in the market.
  • a method for graphite purification and lattice reconstruction in power batteries includes the following steps:
  • step (2) the purifying agent A is a mixed solution of hydrochloric acid, ethanol and acetone, and the purifying agent B is deionized water, A mixed solution of ethanol and acetone.
  • the pyrolysis in step (1) is carried out in an oxygen-free environment, the pyrolysis temperature is 350° C.-800° C., and the pyrolysis time is 1-20 h.
  • the metal extractant in step (2) is a mixture of aqua regia and oxidant, and one of aqua regia.
  • the oxidizing agent is at least one of hydrogen peroxide, sodium peroxide, potassium peroxide, sodium hypochlorite or potassium hypochlorite.
  • the concentration of the oxidant is 0.05-1 mol/L.
  • the concentration of the aqua regia is 10%-50%.
  • the mass ratio of the hydrochloric acid, ethanol and acetone is 1:(1-5):(1-5).
  • the mass ratio of the deionized water, ethanol and acetone is 1:(1-5):(1-5).
  • the process of the deorganization treatment in step (3) is to place the crude graphite in a vacuum furnace with a heating rate of 1-5°C/min to 200°C-250°C for deorganization treatment, and the time is 2 -4h.
  • the rotation speed of the graphite in step (3) is 100-3000 r/min, and the time is 20-60 minutes.
  • the replacement process in step (3) is to introduce replacement gas at a flow rate of 5-30 mL/min, and then heat up to 250°C-450°C at a heating rate of 1-5°C/min for replacement, and the replacement time is 20 -40min.
  • the replacement gas is a mixed gas of H 2 and N 2.
  • the rare gas in step (4) is He with a volume purity of 99.999%.
  • the specific process of repairing the graphite lattice in step (4) is to pass in the rare gas at a flow rate of 5-30 mL/min within 40-80 min, close the inlet and outlet valves, and set the temperature at 10-20°C/min.
  • the heating rate is increased to 2400°C-2600°C, kept for 10-30min, and then heated at 3-10°C/min to 2600°C-3200°C, the damaged lattice graphite is repaired within 6-10h, and battery-grade graphite is obtained. .
  • a kind of graphite is prepared by the above-mentioned method.
  • the present invention uses a method similar to vacuum evaporation to remove organic components in graphite.
  • the present invention uses high-temperature vacuum conditions to evaporate or sublimate organic impurities into gaseous particles.
  • the gaseous particles are completely separated from graphite under negative pressure, so Organic impurities can be removed. After the graphite is deorganized, it will no longer bond with organic impurities again, thereby obtaining high-purity graphite.
  • the present invention uses the replacement gas to deeply clean the graphite, so that the adsorbed species on the graphite surface are completely desorbed before the graphitization process, ensuring that no impurity atoms are arranged into the graphite lattice before the graphitization, and the impurity removal at the atomic level is realized. It effectively removes impurities and prevents the active functional groups on the graphite surface from changing the graphite surface activity to form graphite with intact crystal form.
  • the present invention adopts carbon-free repair, and rearranges atoms on the grid under He atmosphere and high temperature conditions to realize the self-repair of graphite negative electrode material, form a relatively intact graphite crystal form, and achieve the effect of self-healing of graphite defects; therefore
  • the obtained graphite anode material still has good electrochemical performance after 1600 cycles after being assembled into a battery, and is higher than similar products in the market.
  • Figure 1 is an SEM image of the graphite prepared in Example 1;
  • FIG. 2 is a flowchart of the method for graphite purification and lattice reconstruction in the power battery of the embodiment 1-3 of the present invention
  • Figure 3 is an XRD pattern of the graphite prepared in Example 1;
  • FIG. 4 is a graph of the cycle performance of graphite prepared in Example 1 and Comparative Example 1.
  • the raw materials, reagents or devices used in the following examples can be obtained from conventional commercial channels, or can be obtained by existing known methods.
  • the filter residue A and 20% aqua regia with a concentration of 0.15 mol/ L sodium hypochlorite is mixed in the metal extraction tank at a solid-liquid ratio of 1:3, and left to stand for 8 hours to extract the metal elements in the graphite anode again, and wash with deionized water, ethanol and acetone in a ratio of 1:3:3. Filter to obtain crude graphite;
  • the Helium with a purity of 99.999% is introduced within 60 minutes at a flow rate of 20 mL/min at 300°C, the inlet and outlet valves are closed, and the temperature rises at a rate of 15°C/min to 2500°C. Keep the temperature for 20 minutes, and then increase the temperature to 3000°C at 7°C/min, and repair the graphite of the damaged lattice within 8 hours to obtain battery-grade graphite.
  • a preparation method of artificial graphite negative electrode material includes the following steps:
  • a method for preparing graphite includes the following steps:
  • the waste power battery is discharged, coarsely broken, pyrolyzed, finely broken, and sorted in sequence, and the electrode material powder and 0.1 mol/L sulfuric acid are leached for 6 hours according to the solid-liquid volume ratio of 1:5, and washed with 2% hydrochloric acid , Filter, get graphite.
  • the graphite prepared in the foregoing Examples 1-3 and Comparative Example 1 was used as the negative electrode, and the lithium sheet was used as the positive electrode. It can be known from Table 1 that the regenerated graphite of Example 2 has less impurity content, and the graphitization degree reaches 96%, while the graphitization degree of Comparative Example 1 is only 92%. According to Table 2, at a rate of 1C, the first discharge specific capacity of the regenerated graphite anode material of the present invention is higher than that of graphite recovered by ordinary methods. The first discharge specific capacity of Example 2 is 362.3mAh/g, while the first discharge of the comparative example The specific capacity is only 333.1mAh/g.
  • the cycle life of the recycled graphite anode material of the present invention is higher than that of graphite recovered by ordinary methods.
  • the capacity retention rate of Example 2 is 96.6%, while that of Comparative Example 1
  • the capacity retention rate is only 92.8%.
  • Table 4 shows the impurity element concentration and ash content of the acid solution obtained in Example 2 and Comparative Example 2 after extracting metal elements. From Table 4, it can be seen that after two acid extractions in Example 2, the metal impurity content in graphite is significantly higher than that in the comparative example. The metal impurity content after the first acid extraction of 2 is low.

Abstract

提供一种动力电池中石墨纯化及晶格重构的方法,包括以下步骤:将废旧动力电池依次经过放电、粗破、热解、细破、分选,得到电极材料粉;将电极材料粉和金属提取剂混合,静置,再用纯化剂A洗涤,过滤,得滤渣A,将滤渣A和金属提取剂混合,静置,再用纯化剂B洗涤,过滤,得粗石墨;将粗石墨进行去有机化处理,冷却,球磨,通气置换,即得初纯化石墨;将稀有气体通入初纯化石墨中修复石墨晶格,即得。采用类似于真空蒸镀的方式除去石墨中的有机成分,利用在高温真空条件下使有机物杂质蒸发或升华为气态粒子,气态粒子在负压下与石墨实现彻底分离,可以除去有机物,从而得到高纯石墨。

Description

一种动力电池中石墨纯化及晶格重构方法 技术领域
本发明属于电池石墨领域,具体涉及一种动力电池中石墨纯化及晶格重构方法。
背景技术
在政策的推动下,新能源产业蓬勃发展。与此同时,动力电池退役数量逐年升高,之前装机的动力电池陆续在2018年至2025年进入退役期。按照乘用和商用动力电车电池使用寿命分别为8年和5年来估算,预计2022年退役动力电池将会达到32.94GWh,预计2020年市场规模将达到110亿元,到2025年将达到380亿元。因此,对退役动力电池进行回收再利用,具有极高的经济效益和社会价值。
近年来,锂电池报废高峰带来的海量报废电池,面对其中如此庞大的废弃石墨,若盲目地采用填埋或高温焚烧的处理方式,虽然可初步解决眼前的困境,但从长远来看,这样的做法不仅加剧了大气的粉尘污染与温室效应,而且影响了石墨行业的可持续发展。报废电池的回收技术、无害化处理技术已成为关注热点。
传统回收再生石墨是采用醋酸纤维素包覆作为表面修饰剂,在氮气气氛下在300-900℃条件下进行表面修饰,如《一种废旧锂离子电池阳极材料石墨的回收及修复方法》(CN101710632A)。然而,这种传统的回收方式不能有效地去除石墨负极材料中的金属杂质和有机杂质,并且回收得到的石墨的石墨化度较低,电性能差且不稳定,技术较落后。此外,现有的一次浸出提纯金属的处理,虽能有效回收金属,但却难以保证石墨的纯度,尤其是对石墨废料进行晶格修复时,会在石墨晶格内引入杂质,难以保证其纯度。
因此,亟需开发一种使用的原料成本低、效率高、得到的动力电池中石墨纯化及晶格重构方法。
发明内容
本发明的目的是提供一种动力电池中石墨纯化及晶格重构的方法和石墨,该纯化及晶格重构方法使用的原料成本低、效率高,得到的石墨负极材料组装成电池后经过1600次循环仍具有良好的电化学性能,且高于市场同类产品。
为了实现上述目的,本发明采取以下技术方案:
一种动力电池中石墨纯化及晶格重构的方法,包括以下步骤:
(1)将废旧动力电池依次经过放电、粗破、热解、细破、分选,分别得到电极材料粉、铜粉、铝粉、铁粉;
(2)将电极材料粉和金属提取剂混合,静置,再用纯化剂A洗涤,过滤,得滤渣A,将滤渣A和金属提取剂混合,静置,再用纯化剂B洗涤,过滤,得粗石墨;
(3)将粗石墨进行去有机化处理,冷却,球磨,通气置换,即得初纯化石墨;
(4)将稀有气体通入初纯化石墨中修复石墨晶格,即得;步骤(2)中所述纯化剂A为盐酸、乙醇和丙酮的混合溶液,所述纯化剂B为去离子水、乙醇和丙酮的混合溶液。
优选地,步骤(1)所述热解在无氧环境中进行,热解温度为350℃-800℃,热解的时间为1-20h。
优选地,步骤(2)所述金属提取剂为王水和氧化剂的混合液、王水中的一种。
进一步优选地,所述氧化剂为过氧化氢、过氧化钠、过氧化钾、次氯酸钠或次氯酸钾中的至少一种。
更优选地,所述氧化剂的浓度为0.05-1mol/L。
更优选地,所述王水的浓度为10%-50%。
优选地,所述盐酸、乙醇和丙酮的质量比为1:(1-5):(1-5)。
优选地,所述去离子水、乙醇和丙酮的质量比为1:(1-5):(1-5)。
优选地,步骤(3)所述去有机化处理的过程为将粗石墨置于升温速率为1-5℃/min的真空炉中升温至200℃-250℃进行去有机化处理,时间为2-4h。
优选地,步骤(3)所述石墨的转速为100-3000r/min,时间为20-60分钟。
优选地,步骤(3)所述置换的过程为以5-30mL/min的流速通入置换气,再以升温速率1-5℃/min升温至250℃-450℃进行置换,置换时间为20-40min。
更优选地,所述置换气为H 2和N 2的混合气。
优选地,步骤(4)中所述稀有气体为体积纯度为99.999%的He。
优选地,步骤(4)中所述修复石墨晶格的具体过程为在40-80min内以5-30mL/min的流速通入稀有气体,关闭进气和出气阀门,以10-20℃/min的升温速率升至2400℃-2600℃,保温10-30min,再以3-10℃/min升温至2600℃-3200℃,在6-10h内受损晶格的石墨进行修复,得到电池级石墨。
一种石墨,是由上述方法制得。
有益效果
1、本发明采用类似于真空蒸镀的方式除去石墨中的有机成分,本发明利用在高温真 空条件下使有机物杂质蒸发或升华为气态粒子,气态粒子在负压下与石墨实现彻底分离,因此可以除去有机物杂质,石墨去有机化处理后不会再与有机杂质发生二次粘结,从而得到高纯石墨。
2、本发明采用置换气深度洁净石墨,使石墨表面上的吸附物种在石墨化处理之前脱附完全,确保在石墨化之前没有杂质原子排列进入石墨晶格,进行原子级别上的除杂,实现有效除杂,并防止了石墨表面的活性官能团改变石墨表面活性,形成晶型完好的石墨。
3、本发明采用无碳源修复,在He气氛和高温条件下网格上的原子进行重新排列,实现石墨负极材料自修复,形成较完好的石墨晶型,达到石墨缺陷自身愈合的效果;因此得到的石墨负极材料组装成电池后经过1600次循环仍具有良好的电化学性能,且高于市场同类产品。
附图说明
图1是实施例1制备的石墨的SEM图;
图2是本发明实施例1-3的动力电池中石墨纯化及晶格重构的方法的流程图;
图3是实施例1制备的石墨的XRD图;
图4是实施例1和对比例1制备的石墨的循环性能图。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
实施例1
本实施例的动力电池中石墨纯化及晶格重构的方法,包括以下具体步骤:
(1)将废旧动力电池依次经过放电、粗破、热解、细破、分选,分别得到电极材料粉、铜箔、铝箔、铁粉;
(2)将电极材料粉和浓度为20%的王水、浓度为0.1mol/L的过氧化氢按固液比1:1混合在金属提取池中静置4小时,提取石墨负极中的金属元素,再用浓度为2%的盐酸、乙醇、丙酮按比例为1:1:1洗涤,过滤,取滤渣A,将滤渣A和浓度为10%的王水、浓度为0.05 mol/L的过氧化氢按固液比为1:1混合在金属提取池中,静置4小时,再次提取石墨负极中的金属元素,用比例为1:1:1的去离子水、乙醇和丙酮洗涤,过滤,得粗石墨;
(3)将粗石墨在200℃(升温速率1℃/min)真空炉中进行去有机化处理2h,待自然冷却后,以100r/min球磨20分钟,再将去有机化的粗石墨置于高温炉中,以5mL/min的流速通入置换气(浓度为2%的H 2),在温度为250℃(升温速率1℃/min)进行置换20min,去除表面吸附物种;
(4)置换结束后,在250℃下和40min内,以5mL/min的流速通入体积纯度为99.999%的He,关闭进气和出气阀门,以10℃/min的升温速率升至2400℃,保温10min,再以3℃/min升温至2600℃,再在6h内,对晶格受损的石墨进行修复,得到电池级石墨。
实施例2
本实施例的动力电池中石墨纯化及晶格重构的方法,包括以下具体步骤:
(1)将废旧动力电池依次经过放电、粗破、热解、细破、分选,分别得到电极材料粉、铜箔、铝箔、铁粉;
(2)将电极材料粉和浓度为35%的王水、浓度为0.5mol/L的次氯酸钠按固液比1:3混合在金属提取池中,在25℃下静置8小时,提取石墨负极中的金属元素,再用比例为1:3:3的浓度为15%的盐酸、乙醇和丙酮洗涤,过滤,得滤渣A,将滤渣A和浓度为20%的王水、浓度为0.15mol/L的次氯酸钠按固液比为1:3混合在金属提取池中,静置8小时,再次提取石墨负极中的金属元素,用比例为1:3:3的去离子水、乙醇和丙酮洗涤,过滤,得粗石墨;
(3)将粗石墨在230℃(升温速率3℃/min)真空炉中进行去有机化处理3h,待自然冷却后,以2000r/min球磨40分钟,再将去有机化的粗石墨置于高温炉中,以5mL/min的流速通入置换气(浓度为15%的H 2),在温度为300℃(升温速率3℃/min)进行置换30min,去除表面吸附物种;
(4)置换结束后,在300℃下以20mL/min的流速并在60min内通入纯度为99.999%的He,关闭进气和出气阀门,以15℃/min的升温速率升至2500℃,保温20min,再以7℃/min升温至3000℃,在8h内对受损晶格的石墨进行修复,得到电池级石墨。
实施例3
本实施例的动力电池中石墨纯化及晶格重构的方法,包括以下具体步骤:
(1)将废旧动力电池依次经过放电、粗破、热解、细破、分选,分别得到电极材料粉、铜箔、铝箔、铁粉;
(2)将电极材料粉和浓度为50%的王水、浓度为1mol/L的次氯酸钾按固液比1:5混合在金属提取池中,静置12小时,提取石墨负极中的金属元素,再用30%盐酸、乙醇和丙 酮按质量比为1:5:5洗涤,过滤,得滤渣A,将滤渣A和浓度为30%的王水、浓度为0.3mol/L的次氯酸钾按固液比为1:5混合在金属提取池中,静置12小时,再次提取石墨负极中的金属元素,再用去离子水、乙醇和丙酮按质量比为1:5:5进行洗涤,过滤,得粗石墨;
(3)将粗石墨在250℃(升温速率5℃/min)真空炉中进行去有机化处理4h,待自然冷却后,以3000r/min球磨60分钟,再将去有机化的粗石墨置于高温炉中,以30mL/min的流速通入置换气(浓度为30%的H 2),在温度为450℃(升温速率5℃/min)进行置换40min,去除表面吸附物种;
(4)置换结束后,在450℃下和40min内,以20mL/min的流速通入体积纯度为99.999%的He,关闭进气和出气阀门,以15℃/min的升温速率升至2600℃,保温30min,再以10℃/min升温至3200℃,再在10h内,对晶格受损的石墨进行修复,得到电池级石墨。
对比例1
一种人造石墨负极材料的制备方法,包括以下步骤:
(1)取废电池,经放电、拆解、破碎后,将涂覆有石墨负极的铜箔水热、离心进行固液分离,烘干后得到石墨和导电剂粉体混合材料;
(2)再加入石油沥青和碳化硅混合模压成型,并在N 2保护和800℃下处理8h得到修复再生人造石墨负极材料。
对比例2
一种石墨的制备方法,包括以下步骤:
(1)将废旧动力电池依次经过放电、粗破、热解、细破、分选,按固液体积比1:5取电极材料粉和0.1mol/L硫酸浸出6小时,用2%盐酸洗涤,过滤,得石墨。
性能检测:
分别以上述实施例1-3和对比例1制得的石墨为负极,以锂片为正极,组装成扣式电池,以1C倍率进行首次放电测试,结果见表2和表3。从表1可以得知实施例2的再生石墨杂质含量较少,石墨化度达到96%,而对比例1石墨化度只有92%。根据表2可知,在1C倍率下,本发明的再生石墨负极材料的首次放电比容量比普通方法回收石墨的高,实施例2的首次放电比容量为362.3mAh/g,而对比例的首次放电比容量只有333.1mAh/g。根据表3可知,在1C倍率下,本发明的再生石墨负极材料的循环寿命比普通方法回收石墨的高,1C循环1600次后,实施例2的容量保持率为96.6%,而对比例1的容量保持率为只有92.8%。表4为实施例2与对比例2得到的酸液提取金属元素后的杂质元素浓度和灰分,由表4可知,实施例2经过两次酸提取后,石墨中的金属杂质含量明显较对比例2的一次酸提取后的金属杂质含量低。
结果如表1所示:
表1石墨的成分分析及物理性能
项目 实施例1 实施例2 实施例3 对比例1
灰分% 0.046 0.043 0.041 0.088
水分% 0.0331 0.0335 0.0329 0.0656
挥发分% 0.0193 0.0198 0.0211 0.0466
D50μm 18.59 18.61 18.56 18.63
石墨化度% 95 96 94 92
固定碳含量% 99.96 99.98 99.95 99.70
表2石墨的扣式电池性能
Figure PCTCN2021090331-appb-000001
表3石墨的全电池循环性能
Figure PCTCN2021090331-appb-000002
表4金属提取后石墨的杂质含量
Figure PCTCN2021090331-appb-000003
从实施例1制备的石墨的XRD图(图3)中发现与PDF#65-6212的对比中发现,位于26.5°左右的峰对应于实施例1再生石墨的(002)晶面,这说明实施例1的再生石墨 样品晶型较好。从实施例1和对比例1制备的石墨循环性能图(图4)发现,实施例1的再生石墨的容量及循环稳定性均优于对比例1。
以上对本发明提供一种动力电池中石墨纯化及晶格重构的方法进行了详细的介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种动力电池中石墨纯化及晶格重构的方法,其特征在于,包括以下步骤:
    (1)将废旧电池依次经过放电、粗破、热解、细破、分选,分别得到电极材料粉、铜粉、铝粉、铁粉;
    (2)将电极材料粉和金属提取剂混合,静置,再用纯化剂A洗涤,过滤,得滤渣A,再将滤渣A和金属提取剂混合,静置,再用纯化剂B洗涤,过滤,得粗石墨;
    (3)将粗石墨进行去有机化处理,冷却,球磨,通气置换,即得初纯化石墨;
    (4)将稀有气体通入初纯化石墨中修复石墨晶格,即得;步骤(2)中所述纯化剂A为盐酸、乙醇和丙酮的混合溶液,所述纯化剂B为去离子水、乙醇和丙酮的混合溶液。
  2. 根据权利要求1所述的动力电池中石墨纯化及晶格重构的方法,其特征在于,步骤(1)中所述热解是在无氧环境中进行,热解的温度为350℃-800℃,热解的时间为1-20h。
  3. 根据权利要求1所述的动力电池中石墨纯化及晶格重构的方法,其特征在于,步骤(2)中所述金属提取剂为王水和氧化剂的混合液、王水中的一种。
  4. 根据权利要求3所述的动力电池中石墨纯化及晶格重构的方法,其特征在于,所述氧化剂为过氧化氢、过氧化钠、过氧化钾、次氯酸钠或次氯酸钾中的至少一种。
  5. 根据权利要求1所述的动力电池中石墨纯化及晶格重构的方法,其特征在于,步骤(3)中所述去有机化处理的过程为将粗石墨置于升温速率为1-5℃/min的真空炉中升温至200℃-250℃进行去有机化处理,去有机化处理的时间为2-4h。
  6. 根据权利要求1所述的动力电池中石墨纯化及晶格重构的方法,其特征在于,步骤(3)中所述置换的过程为以5-30mL/min的流速通入置换气,再以升温速率1-5℃/min升温至250℃-450℃进行置换,置换的时间为20-40min。
  7. 根据权利要求6所述的动力电池中石墨纯化及晶格重构的方法,其特征在于,所述置换气为H 2和N 2的混合气。
  8. 根据权利要求1所述的动力电池中石墨纯化及晶格重构的方法,其特征在于,步骤(4)中所述稀有气体为体积纯度为99.999%的He。
  9. 根据权利要求1所述的动力电池中石墨纯化及晶格重构的方法,其特征在于,步骤(4)中所述修复石墨晶格的具体过程为在40-80min内以5-30mL/min的流速通入稀有气体,关闭进气和出气阀门,以10-20℃/min的升温速率升至2400℃-2600℃,保温10-30min,再以3-10℃/min升温至2600℃-3200℃,在6-10h内,对受损晶格的石墨进行修复。
  10. 一种石墨,其特征在于,是由权利要求1-9任一项所述的方法制得。
PCT/CN2021/090331 2020-06-01 2021-04-27 一种动力电池中石墨纯化及晶格重构方法 WO2021244189A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21818444.8A EP4151593A4 (en) 2020-06-01 2021-04-27 GRAPHITE PURIFICATION METHOD AND NETWORK RECONSTRUCTION IN POWER BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010485582.2A CN111807359B (zh) 2020-06-01 2020-06-01 一种动力电池中石墨纯化及晶格重构方法
CN202010485582.2 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021244189A1 true WO2021244189A1 (zh) 2021-12-09

Family

ID=72848257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090331 WO2021244189A1 (zh) 2020-06-01 2021-04-27 一种动力电池中石墨纯化及晶格重构方法

Country Status (5)

Country Link
US (1) US20210376305A1 (zh)
EP (1) EP4151593A4 (zh)
CN (1) CN111807359B (zh)
CL (1) CL2022003392A1 (zh)
WO (1) WO2021244189A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807359B (zh) * 2020-06-01 2022-03-15 广东邦普循环科技有限公司 一种动力电池中石墨纯化及晶格重构方法
CN114221057A (zh) * 2021-12-09 2022-03-22 贵州安达科技能源股份有限公司 锂离子电池回收石墨的改性方法和改性石墨以及负极材料及锂离子电池
CN114614132A (zh) * 2022-03-08 2022-06-10 宜宾光原锂电材料有限公司 一种废旧锂电池放电方法
CN117367133B (zh) * 2023-12-06 2024-03-01 山西晋阳碳素有限公司 一种石墨化送电顶推装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323868A (ja) * 2006-05-31 2007-12-13 Toyota Motor Corp リチウム電池からの電極構成金属回収方法
WO2009129271A1 (en) * 2008-04-14 2009-10-22 Akridge James R System for the sustainable recovery of metals from electronic waste
CN101710632A (zh) 2009-12-18 2010-05-19 湖南邦普循环科技有限公司 一种废旧锂离子电池阳极材料石墨的回收及修复方法
CN103346365A (zh) * 2013-07-22 2013-10-09 田东 一种从废旧锂离子电池中对负极材料循环再生利用的方法
CN107887666A (zh) * 2016-09-29 2018-04-06 中国科学院过程工程研究所 一种废旧锂离子电池负极材料的回收方法
CN109837392A (zh) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 锂离子电池正极材料废料的回收及再生方法
CN110690519A (zh) * 2019-09-30 2020-01-14 中南大学 一种锂离子电池负极材料回收利用方法
CN111204757A (zh) * 2020-01-15 2020-05-29 广东邦普循环科技有限公司 一种退役动力电池中石墨净化修复再生的方法
CN111807359A (zh) * 2020-06-01 2020-10-23 广东邦普循环科技有限公司 一种动力电池中石墨纯化及晶格重构方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR580570A (fr) * 1924-04-23 1924-11-10 Procédé d'enrichissement des graphites
CN102544629B (zh) * 2012-01-17 2015-05-13 广东邦普循环科技有限公司 一种废旧石墨负极材料的再生方法
CN103618120B (zh) * 2013-12-06 2016-04-27 广东邦普循环科技有限公司 一种废旧锂离子电池负极材料中石墨与铜片的分离及回收方法
CN104241723B (zh) * 2014-07-11 2017-11-17 广东邦普循环科技有限公司 石墨体系的不合格锂离子电池中负极材料再生利用方法
CN107731566B (zh) * 2017-10-21 2019-09-13 福州大学 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用
KR102035908B1 (ko) * 2017-12-19 2019-10-24 주식회사 티씨케이 폐 흑연 물질의 재활용 방법, 폐 흑연 물질 및 이를 포함하는 제품
CN111072023B (zh) * 2019-12-27 2022-02-08 北京蒙京石墨新材料科技研究院有限公司 一种从报废锂离子电池中回收石墨的方法
IL273457A (en) * 2020-03-19 2021-09-30 Yeda Res & Dev A method for extracting valuable metals from lithium-ion batteries

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323868A (ja) * 2006-05-31 2007-12-13 Toyota Motor Corp リチウム電池からの電極構成金属回収方法
WO2009129271A1 (en) * 2008-04-14 2009-10-22 Akridge James R System for the sustainable recovery of metals from electronic waste
CN101710632A (zh) 2009-12-18 2010-05-19 湖南邦普循环科技有限公司 一种废旧锂离子电池阳极材料石墨的回收及修复方法
CN103346365A (zh) * 2013-07-22 2013-10-09 田东 一种从废旧锂离子电池中对负极材料循环再生利用的方法
CN107887666A (zh) * 2016-09-29 2018-04-06 中国科学院过程工程研究所 一种废旧锂离子电池负极材料的回收方法
CN109837392A (zh) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 锂离子电池正极材料废料的回收及再生方法
CN110690519A (zh) * 2019-09-30 2020-01-14 中南大学 一种锂离子电池负极材料回收利用方法
CN111204757A (zh) * 2020-01-15 2020-05-29 广东邦普循环科技有限公司 一种退役动力电池中石墨净化修复再生的方法
CN111807359A (zh) * 2020-06-01 2020-10-23 广东邦普循环科技有限公司 一种动力电池中石墨纯化及晶格重构方法

Also Published As

Publication number Publication date
CN111807359B (zh) 2022-03-15
CN111807359A (zh) 2020-10-23
US20210376305A1 (en) 2021-12-02
EP4151593A4 (en) 2023-11-15
CL2022003392A1 (es) 2023-06-30
EP4151593A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2021244189A1 (zh) 一种动力电池中石墨纯化及晶格重构方法
CN111439748B (zh) 再生石墨材料及其制备方法
CN104282962B (zh) 废旧锂离子电池电解液的回收方法
CN101710632A (zh) 一种废旧锂离子电池阳极材料石墨的回收及修复方法
CN111285366A (zh) 一种锂离子电池负极石墨的再生方法
CN106916956A (zh) 一种溶析结晶法回收磷酸铁锂废料中有价金属并再利用的方法
CN113540602B (zh) 一种报废正极浆料的处理方法和应用
CN112510280B (zh) 一种基于动力电池箔片中特征元散列的物理方法
CN114335781A (zh) 一种从废旧锂电池中提取贵金属的方法
CN112225191A (zh) 降解废旧磷酸铁锂电池正极中pvdf的方法
CN114614133A (zh) 一种槟榔渣和废旧正极材料的联合处理方法
CN113206227B (zh) 一种废旧镍钴锰锂离子电池正负极材料同时回收制备碳基金属硫化物负极材料的方法
CN109777957B (zh) 一种适用于废弃锂电池材料浸取分离的溶剂组合物及浸取分离方法
GB2621300A (en) Method for regenerating lithium battery positive electrode material
CN116404293B (zh) 基于油泥微波热解包覆的废旧锂电池石墨负极回收方法
CN116387497B (zh) 一种熔盐法处理硅废料制备锂离子电池负极材料的方法
CN117594899B (zh) 一种废旧电池负极材料的深度除杂及修复再生方法
TWI767284B (zh) 廢車用鋰鐵電池正負極混合物的回收方法
CN117293436A (zh) 一种正极片的回收方法
CN115149139A (zh) 一种废旧磷酸铁锂电池正负极活性物质耦合再生修复的方法
CN115472945A (zh) 一种废弃磷酸铁锂正极材料修复再生方法
CN116282000A (zh) 一种废旧电池石墨碳渣回收并联产再生石墨活性材料的方法
CN116093481A (zh) 一种废旧锂电材料剥离回收的方法
CN115636410A (zh) 一种锂电池负极废料回用再生反应系统的智能控制系统
CN115072716A (zh) 一种回收锂离子电池石墨负极材料的高效除铜工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021818444

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021818444

Country of ref document: EP

Effective date: 20221215

NENP Non-entry into the national phase

Ref country code: DE