WO2021232664A1 - 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法 - Google Patents

一种融碳酸盐燃料电池隔膜焙烧的在线评价方法 Download PDF

Info

Publication number
WO2021232664A1
WO2021232664A1 PCT/CN2020/121189 CN2020121189W WO2021232664A1 WO 2021232664 A1 WO2021232664 A1 WO 2021232664A1 CN 2020121189 W CN2020121189 W CN 2020121189W WO 2021232664 A1 WO2021232664 A1 WO 2021232664A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
carbonate fuel
molten carbonate
roasting
cathode
Prior art date
Application number
PCT/CN2020/121189
Other languages
English (en)
French (fr)
Inventor
张瑞云
程健
卢成壮
李�昊
许世森
王保民
杨冠军
黄华
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to JP2022542776A priority Critical patent/JP7358652B2/ja
Publication of WO2021232664A1 publication Critical patent/WO2021232664A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/0447Concentration; Density of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of molten carbonate fuel cells, and relates to an online evaluation method for the roasting of a molten carbonate fuel cell diaphragm.
  • Molten carbonate fuel cell is a high-temperature fuel cell that works at 650°C. It does not require precious metals as a catalyst, has a wide range of fuel sources, low noise, basically achieves nearly zero emissions of pollutants, high power generation efficiency, and can realize thermoelectricity. Combined supply and other advantages are suitable for distributed power stations or fixed power stations ranging from hundreds of kilowatts to megawatts, and have good development prospects.
  • the key core components of molten carbonate fuel cells include electrodes, diaphragms, electrolytes, bipolar plates, etc.
  • the performance of the diaphragm has a great impact on battery performance.
  • the performance of the diaphragm has a great relationship with its porosity and average pore size.
  • the pore distribution of the diaphragm after setting mainly depends on the content and uniform distribution of the non-volatile binder and solvent contained in the film before setting. degree. When the content is higher, the porosity and average pore size of the film after setting are larger, the electrolyte is more immersed in the membrane, and the membrane resistance is small.
  • the diaphragm is required to have a reasonable porosity and pore size distribution.
  • the diaphragm is required to have a porosity of 50-70%, a pore size of less than 1 ⁇ m, and a uniform distribution.
  • the molten carbonate fuel cell membrane is roasted in situ when the battery is first started, so the first roasting effect directly determines the performance of the battery. Due to technical secrecy and technical blockade, my country's research on MCFC is still in its infancy. At present, the main units engaged in MCFC research are the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China Huaneng Group Clean Energy Technology Research Institute Co., Ltd., and some colleges and universities. There is no relevant online evaluation of the roasting effect of molten carbonate fuel cell membranes. Arguments and writings, therefore, cannot effectively guarantee the power generation performance of the molten carbonate fuel cell.
  • the purpose of the present invention is to overcome the above shortcomings of the prior art and provide an online evaluation method for the roasting of a molten carbonate fuel cell membrane, which can effectively ensure the power generation performance of the molten carbonate fuel cell.
  • the online evaluation method for the roasting of a molten carbonate fuel cell membrane of the present invention includes the following steps:
  • thermogravimetric curve of the molten carbonate fuel cell diaphragm set the heating program for the roasting of the molten carbonate fuel cell diaphragm
  • the assembled molten carbonate fuel cell is heated and roasted.
  • air is introduced into the cathode of the molten carbonate fuel cell to
  • the anode of the molten carbonate fuel cell is filled with nitrogen, and the oxygen concentration at the cathode tail gas outlet is monitored online.
  • the oxygen concentration changes from large to small and gradually increases, it indicates that the solvent and viscosity in the molten carbonate fuel cell membrane
  • the binder and plasticizer have been completely burned, and the molten carbonate fuel cell membrane has a porous sheet structure at this time;
  • the air inlet to the cathode is turned off, and the electrolyte is gradually melted and immersed into the membrane of the molten carbonate fuel cell;
  • the electrolyte When the molten carbonate fuel cell is stable at 600-650°C, the electrolyte is flooded with the molten carbonate fuel cell. At this time, the molten carbonate fuel cell has the ability to generate electricity, and hydrogen is fed to the anode of the molten carbonate fuel cell. , Inject air and carbon dioxide into the cathode of the molten carbonate fuel cell. After the inside of the molten carbonate fuel cell undergoes an activation reaction, conduct a discharge test on the molten carbonate fuel cell.
  • the electrolyte When the molten carbonate fuel cell is stable at 600 ⁇ 650°C, the electrolyte is flooded with the molten carbonate fuel cell. At this time, the molten carbonate fuel cell has the power generation capacity, and 1L is passed to the anode of the molten carbonate fuel cell. /min of hydrogen, 3L/min of air and 1L/min of carbon dioxide are introduced into the cathode of the molten carbonate fuel cell.
  • the preset voltage value is 1.1V.
  • the on-line evaluation method of the fused carbonate fuel cell diaphragm roasting of the present invention is in specific operation.
  • air is introduced to the cathode and nitrogen is introduced to the anode to prevent anodic oxidation.
  • the roasting process through online monitoring of the oxygen concentration change at the cathode tail gas outlet, when the oxygen concentration changes from large to small and gradually increases, it indicates that the binder and plasticizer in the diaphragm have been completely burned, and the diaphragm has formed a certain degree of porosity. Sheet structure;
  • hydrogen gas is introduced into the anode, and air and carbon dioxide are introduced into the cathode.
  • the battery After a short activation reaction inside the battery, the battery can be discharged and tested.
  • the battery diaphragm is qualified to achieve the online evaluation of the fused carbonate fuel cell diaphragm baking to ensure the molten carbon
  • the power generation performance of the acid salt fuel cell has important guiding significance in optimizing the power generation performance of the MCFC.
  • Figure 1 is a flow chart of the present invention.
  • the on-line evaluation method for the roasting of a molten carbonate fuel cell membrane includes the following steps:
  • thermogravimetric curve of the molten carbonate fuel cell diaphragm set the heating program for the roasting of the molten carbonate fuel cell diaphragm
  • the assembled molten carbonate fuel cell is heated and roasted.
  • air is introduced into the cathode of the molten carbonate fuel cell to
  • the anode of the molten carbonate fuel cell is filled with nitrogen, and the oxygen concentration at the cathode tail gas outlet is monitored online.
  • the oxygen concentration changes from large to small and gradually increases, it indicates that the solvent and viscosity in the molten carbonate fuel cell membrane
  • the binder and plasticizer have been completely burned, and the molten carbonate fuel cell membrane has a porous sheet structure at this time;
  • the air inlet to the cathode is turned off, and the electrolyte is gradually melted and immersed into the membrane of the molten carbonate fuel cell;
  • the electrolyte When the molten carbonate fuel cell is stable at 600-650°C, the electrolyte is flooded with the molten carbonate fuel cell. At this time, the molten carbonate fuel cell has the ability to generate electricity, and hydrogen is fed to the anode of the molten carbonate fuel cell. , Inject air and carbon dioxide into the cathode of the molten carbonate fuel cell. After the inside of the molten carbonate fuel cell undergoes an activation reaction, conduct a discharge test on the molten carbonate fuel cell.
  • thermogravimetric curve of the diaphragm formulate the heating program for the baking of the diaphragm
  • the assembled single cell is heated and roasted.
  • 1L/min of air is introduced to the cathode and 0.5L/min of nitrogen is introduced to the anode;
  • the electrolyte When the battery reaches 600 ⁇ 650°C stably, the electrolyte is basically filled with the diaphragm, and then 1L/min of hydrogen is introduced to the anode, and 3L/min of air and 1L/min of carbon dioxide are introduced to the cathode.
  • 1L/min of hydrogen is introduced to the anode
  • 3L/min of air and 1L/min of carbon dioxide are introduced to the cathode.
  • the basis for judging whether the diaphragm baking is good or not is that there is no risk of gas leakage or leakage at the anode and the anode of the battery, and the open circuit voltage of the single cell reaches 1.12V, indicating that the diaphragm baking is better this time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cell Separators (AREA)

Abstract

一种融碳酸盐燃料电池隔膜焙烧的在线评价方法,包括以下步骤:1)估算熔融碳酸盐燃料电池隔膜所含的溶剂、粘结剂及增塑剂的质量;2)设定熔融碳酸盐燃料电池隔膜焙烧的升温程序;3)根据熔融碳酸盐燃料电池隔膜焙烧的升温程序,对组装后的熔融碳酸盐燃料电池进行升温焙烧,当熔融碳酸盐燃料电池内部经过活化反应后,对熔融碳酸盐燃料电池进行放电测试,其中,当熔融碳酸盐燃料电池的阴极与阳极未发生窜气或漏气危险,且单个电池的平均开路电压大于预设电压值时,则说明熔融碳酸盐燃料电池隔膜焙烧合格,完成融碳酸盐燃料电池隔膜焙烧的在线评价,该方法能够有效的保证熔融碳酸盐燃料电池的发电性能。

Description

一种融碳酸盐燃料电池隔膜焙烧的在线评价方法 技术领域
本发明属于熔融碳酸盐燃料电池技术领域,涉及一种融碳酸盐燃料电池隔膜焙烧的在线评价方法。
背景技术
熔融碳酸盐燃料电池(MCFC)是一种工作于650℃的高温燃料电池,具有不需要贵金属作催化剂、燃料来源广、噪音低、污染物基本达到近零排放、发电效率高、可实现热电联供等优点,适合于百千瓦级至兆瓦级分布式电站或固定电站,具有良好的发展前景。
熔融碳酸盐燃料电池的关键核心部件包括电极、隔膜、电解质、双极板等,其中隔膜性能的好坏对电池性能影响非常大。一般来说,隔膜的性能与其孔隙率和平均孔径有很大关系,定型后的隔膜的孔分布主要取决于定型前膜中所含的不易挥发的粘结剂和溶剂的含量及其分布的均匀程度。含量较高时,定型后膜的孔隙率和平均孔径较大,膜中浸入的电解质较多,膜电阻小,但由于平均孔径大,容易发生阴阳极窜气的危险;含量较低时,导致膜孔隙率和平均孔径减小,这虽然有利于阻气,却降低了膜中浸入的电解质,不利于离子导电。因此,要求隔膜有一个合理的孔隙率及孔径分布,一般要求隔膜的孔隙率为50~70%,孔径小于1μm,而且分布均匀。
熔融碳酸盐燃料电池隔膜是在电池首次启动时进行原位焙烧,因此首次的焙烧效果直接决定电池的性能。由于技术保密及技术封锁,我国 在MCFC方面的研究还处于初级阶段。目前从事MCFC研究的单位主要有中国科学院大连化学物理研究所、中国华能集团清洁能源技术研究院有限公司以及一些高等院校,在熔融碳酸盐燃料电池隔膜焙烧效果的在线评价方面尚无相关的论述与著作,因此不能有效保证熔融碳酸盐燃料电池的发电性能。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种融碳酸盐燃料电池隔膜焙烧的在线评价方法,该方法能够有效的保证熔融碳酸盐燃料电池的发电性能。
为达到上述目的,本发明所述的融碳酸盐燃料电池隔膜焙烧的在线评价方法包括以下步骤:
1)在组装融碳酸盐燃料电池之前,记录熔融碳酸盐燃料电池隔膜的重量,根据熔融碳酸盐燃料电池隔膜的配方,估算熔融碳酸盐燃料电池隔膜所含的溶剂、粘结剂及增塑剂的质量;
2)根据熔融碳酸盐燃料电池隔膜的热重曲线,设定熔融碳酸盐燃料电池隔膜焙烧的升温程序;
3)根据熔融碳酸盐燃料电池隔膜焙烧的升温程序,对组装后的熔融碳酸盐燃料电池进行升温焙烧,其中,在升温过程中,向熔融碳酸盐燃料电池的阴极通入空气,向熔融碳酸盐燃料电池的阳极通入氮气,同时在线监测阴极尾气出口的氧气浓度变化,当氧气浓度由大变小又逐渐变大时,则说明熔融碳酸盐燃料电池隔膜内的溶剂、粘结剂及增塑剂已燃烧完全,此时熔融碳酸盐燃料电池隔膜为多孔片状结构;
当熔融碳酸盐燃料电池稳定在490~500℃时,则关闭阴极的进气,此时电解质逐步熔解浸入熔融碳酸盐燃料电池隔膜中;
当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入氢气,向熔融碳酸盐燃料电池的阴极通入空气及二氧化碳,当熔融碳酸盐燃料电池内部经过活化反应后,对熔融碳酸盐燃料电池进行放电测试,其中,当熔融碳酸盐燃料电池的阴极与阳极未发生窜气或漏气危险,且单个电池的平均开路电压大于预设电压值时,则说明熔融碳酸盐燃料电池隔膜焙烧合格,否则,则说明熔融碳酸盐燃料电池隔膜焙烧不合格,完成融碳酸盐燃料电池隔膜焙烧的在线评价。
在升温过程中,向熔融碳酸盐燃料电池的阴极通入1L/min的空气,向熔融碳酸盐燃料电池的阳极通入0.5L/min的氮气。
当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入1L/min的氢气,向熔融碳酸盐燃料电池的阴极通入3L/min的空气及1L/min的二氧化碳。
预设电压值为1.1V。
本发明具有以下有益效果:
本发明所述的融碳酸盐燃料电池隔膜焙烧的在线评价方法在具体操作时,在对电池进行升温焙烧过程中,向阴极通入空气,向阳极通入氮气,以防止阳极氧化,同时在焙烧过程中,通过在线监测阴极尾气出口的氧气浓度变化,当氧气浓度由大变小又逐渐变大时,说明隔膜内的粘 结剂及增塑剂已燃烧完全,此时隔膜形成一定的多孔片状结构;同时当电池已初步具备的发电能力时,向阳极通入氢气,向阴极通入空气和二氧化碳,当电池内部经过短暂的活化反应后,即可对电池进行放电测试,在测试过程中,当电池阴阳两极未发生窜气或漏气危险,且单电池的平均开路电压大于1.1V,则说明电池隔膜焙烧合格,以实现融碳酸盐燃料电池隔膜焙烧的在线评价,保证熔融碳酸盐燃料电池的发电性能,在优化MCFC发电性能等方面具有重要的指导意义。
附图说明
图1为本发明的流程图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,本发明所述的融碳酸盐燃料电池隔膜焙烧的在线评价方法包括以下步骤:
1)在组装融碳酸盐燃料电池之前,记录熔融碳酸盐燃料电池隔膜的重量,根据熔融碳酸盐燃料电池隔膜的配方,估算熔融碳酸盐燃料电池隔膜所含的溶剂、粘结剂及增塑剂的质量;
2)根据熔融碳酸盐燃料电池隔膜的热重曲线,设定熔融碳酸盐燃料电池隔膜焙烧的升温程序;
3)根据熔融碳酸盐燃料电池隔膜焙烧的升温程序,对组装后的熔融碳酸盐燃料电池进行升温焙烧,其中,在升温过程中,向熔融碳酸盐燃料电池的阴极通入空气,向熔融碳酸盐燃料电池的阳极通入氮气,同时在线监测阴极尾气出口的氧气浓度变化,当氧气浓度由大变小又逐渐变 大时,则说明熔融碳酸盐燃料电池隔膜内的溶剂、粘结剂及增塑剂已燃烧完全,此时熔融碳酸盐燃料电池隔膜为多孔片状结构;
当熔融碳酸盐燃料电池稳定在490~500℃时,则关闭阴极的进气,此时电解质逐步熔解浸入熔融碳酸盐燃料电池隔膜中;
当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入氢气,向熔融碳酸盐燃料电池的阴极通入空气及二氧化碳,当熔融碳酸盐燃料电池内部经过活化反应后,对熔融碳酸盐燃料电池进行放电测试,其中,当熔融碳酸盐燃料电池的阴极与阳极未发生窜气或漏气危险,且单个电池的平均开路电压大于1.1V时,则说明熔融碳酸盐燃料电池隔膜焙烧合格,否则,则说明熔融碳酸盐燃料电池隔膜焙烧不合格,完成融碳酸盐燃料电池隔膜焙烧的在线评价。
实施例一
本实施例的具体操作过程为:
1)准备一对电极有效面积为0.2m 2的熔融碳酸盐燃料电池单电池,选取一张隔膜,隔膜的厚度为0.7mm,重量为420g,根据隔膜制备的配方,估计偏铝酸锂粉末含量约为70~80%;
2)根据隔膜的热重曲线,制定出隔膜焙烧的升温程序;
3)按照升温程序,对组装的单电池进行升温焙烧,升温过程中,向阴极通入1L/min的空气,向阳极通入0.5L/min的氮气;
4)使用氧气浓度检测仪,对阴极尾气进行监测,当氧气浓度由刚开始的0.2L/min重新回至0.2L/min左右时,则说明隔膜内的粘结剂及增塑 剂等基本焙烧完全;
当电池稳定达到490~500℃时,关闭阴极进气;
当电池稳定达到600~650℃时,电解质基本浸满隔膜,再向阳极通入1L/min的氢气,向阴极通入3L/min的空气及1L/min的二氧化碳,当电池内部经过短暂的活化反应后,即可对电池进行放电测试;
其中,隔膜焙烧好坏判断的依据是电池阴阳两极未发生窜气或漏气危险,单电池的开路电压达到1.12V,说明此次隔膜焙烧较好。

Claims (4)

  1. 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法,其特征在于,包括以下步骤:
    1)在组装融碳酸盐燃料电池之前,记录熔融碳酸盐燃料电池隔膜的重量,根据熔融碳酸盐燃料电池隔膜的配方,估算熔融碳酸盐燃料电池隔膜所含的溶剂、粘结剂及增塑剂的质量;
    2)根据熔融碳酸盐燃料电池隔膜的热重曲线,设定熔融碳酸盐燃料电池隔膜焙烧的升温程序;
    3)根据熔融碳酸盐燃料电池隔膜焙烧的升温程序,对组装后的熔融碳酸盐燃料电池进行升温焙烧,其中,在升温过程中,向熔融碳酸盐燃料电池的阴极通入空气,向熔融碳酸盐燃料电池的阳极通入氮气,同时在线监测阴极尾气出口的氧气浓度变化,当氧气浓度由大变小又逐渐变大时,则说明熔融碳酸盐燃料电池隔膜内的溶剂、粘结剂及增塑剂已燃烧完全,此时熔融碳酸盐燃料电池隔膜为多孔片状结构;
    当熔融碳酸盐燃料电池稳定在490~500℃时,则关闭阴极的进气,此时电解质逐步熔解浸入熔融碳酸盐燃料电池隔膜中;
    当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入氢气,向熔融碳酸盐燃料电池的阴极通入空气及二氧化碳,当熔融碳酸盐燃料电池内部经过活化反应后,对熔融碳酸盐燃料电池进行放电测试,其中,当熔融碳酸盐燃料电池的阴极与阳极未发生窜气或漏气危险,且单个电池的平均开路电压大于预设电压值时,则说明熔融碳酸盐燃料电池隔膜焙烧合格,否则,则说明熔融碳酸盐燃料电池隔膜焙烧不合格,完成融碳酸盐燃料电池隔膜焙烧的在线评价。
  2. 根据权利要求1所述的融碳酸盐燃料电池隔膜焙烧的在线评价方法,其特征在于,在升温过程中,向熔融碳酸盐燃料电池的阴极通入1L/min的空气,向熔融碳酸盐燃料电池的阳极通入0.5L/min的氮气。
  3. 根据权利要求1所述的融碳酸盐燃料电池隔膜焙烧的在线评价方法,其特征在于,当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入1L/min的氢气,向熔融碳酸盐燃料电池的阴极通入3L/min的空气及1L/min的二氧化碳。
  4. 根据权利要求1所述的融碳酸盐燃料电池隔膜焙烧的在线评价方法,其特征在于,预设电压值为1.1V。
PCT/CN2020/121189 2020-05-18 2020-10-15 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法 WO2021232664A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022542776A JP7358652B2 (ja) 2020-05-18 2020-10-15 溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010421592.X 2020-05-18
CN202010421592.XA CN111564646B (zh) 2020-05-18 2020-05-18 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法

Publications (1)

Publication Number Publication Date
WO2021232664A1 true WO2021232664A1 (zh) 2021-11-25

Family

ID=72074759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121189 WO2021232664A1 (zh) 2020-05-18 2020-10-15 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法

Country Status (3)

Country Link
JP (1) JP7358652B2 (zh)
CN (1) CN111564646B (zh)
WO (1) WO2021232664A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564646B (zh) * 2020-05-18 2021-09-21 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法
CN113782787B (zh) * 2021-09-13 2023-09-08 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池进气系统的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284519A2 (en) * 2001-08-14 2003-02-19 Nissan Motor Co., Ltd. Solid electrolyte fuel cell and related manufacturing method
JP2005174649A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池の加湿装置
CN201965211U (zh) * 2010-12-28 2011-09-07 天津出入境检验检疫局工业产品安全技术中心 质子交换膜燃料电池安全性能测试装置
CN103647093A (zh) * 2013-11-26 2014-03-19 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池的性能诊断方法
CN105702992A (zh) * 2016-03-29 2016-06-22 中国华能集团清洁能源技术研究院有限公司 一种基于熔融碳酸盐燃料电池合成氨的方法
CN106935887A (zh) * 2017-03-08 2017-07-07 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池堆的启动方法
CN111564646A (zh) * 2020-05-18 2020-08-21 中国华能集团清洁能源技术研究院有限公司 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399443A (en) 1992-02-12 1995-03-21 Electric Power Research Institute, Inc. Fuel cells
JP3238764B2 (ja) 1992-11-10 2001-12-17 花王株式会社 新規尿素誘導体及びその製造方法
JP2000156235A (ja) 1998-11-19 2000-06-06 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai 溶融炭酸塩型燃料電池集電部材の腐食抑制法
CN102306822B (zh) * 2011-09-01 2013-08-21 中国华能集团清洁能源技术研究院有限公司 一种气体送粉式熔融碳酸盐直接碳燃料电池堆
WO2019074757A1 (en) 2017-10-10 2019-04-18 Metabolon, Inc. SIMPLIFIED METHOD FOR THE ANALYTICAL VALIDATION OF BIOCHEMICALS DETECTED WITH A NON-TARGETED MASS SPECTROMETRY PLATFORM
CN109696638A (zh) * 2018-12-18 2019-04-30 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池寿命预测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284519A2 (en) * 2001-08-14 2003-02-19 Nissan Motor Co., Ltd. Solid electrolyte fuel cell and related manufacturing method
JP2005174649A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池の加湿装置
CN201965211U (zh) * 2010-12-28 2011-09-07 天津出入境检验检疫局工业产品安全技术中心 质子交换膜燃料电池安全性能测试装置
CN103647093A (zh) * 2013-11-26 2014-03-19 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池的性能诊断方法
CN105702992A (zh) * 2016-03-29 2016-06-22 中国华能集团清洁能源技术研究院有限公司 一种基于熔融碳酸盐燃料电池合成氨的方法
CN106935887A (zh) * 2017-03-08 2017-07-07 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池堆的启动方法
CN111564646A (zh) * 2020-05-18 2020-08-21 中国华能集团清洁能源技术研究院有限公司 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法

Also Published As

Publication number Publication date
JP7358652B2 (ja) 2023-10-10
CN111564646B (zh) 2021-09-21
JP2023509992A (ja) 2023-03-10
CN111564646A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2021189836A1 (zh) 高性能锂离子电池石墨负极材料及其制备方法
WO2021232664A1 (zh) 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法
CN105870449B (zh) 一种全固态锂-空气电池复合正极材料及全固态锂-空气电池
CN109950581B (zh) 一种磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极快速活化方法
WO2021109721A1 (zh) 一种熔融碳酸盐燃料电池堆电解质补充方法
CN109524621A (zh) 一种预锂化程度可控的锂离子电池负极极片的预锂化方法及装置
CN112670537A (zh) 质子交换膜燃料电池金属双极板电堆的快速活化方法
CN112615033A (zh) 一种直接甲醇燃料电池催化层梯度化膜电极及其制备方法
CN101814613A (zh) 一种锂亚硫酰氯电池及其制造方法
CN115893405A (zh) 一种钠离子电池负极硬碳制造方法
JP2001006698A (ja) 固体高分子電解質型燃料電池と同燃料電池用拡散層の製造方法
CN108461758B (zh) 一种全钒液流电池用负极电极及其制备方法及全钒液流电池
WO2021142853A1 (zh) 一种铅酸蓄电池的制造方法
CN103456501A (zh) 石墨烯-纳米碳纤维复合集流体的制备方法
WO2023082842A1 (zh) 一种碱性负极电解液及其组装的碱性锌铁液流电池
CN104716338A (zh) 一种液流电池用电极的处理方法
CN115010941B (zh) 一种离子型共价有机框架纳米片保护层电沉积制备方法和应用
CN114447380B (zh) 一种恢复质子交换膜燃料电池电堆性能的方法
CN116169366A (zh) 固态锂电池及其制备方法和用电设备
WO2022193551A1 (zh) 一种熔融碳酸盐燃料电池电解质添加方法
CN112952109A (zh) 一种具有双层扩散层的空气电极及其制备方法和应用
CN112242575A (zh) 锂金属电池的化成方法及锂金属电池的制作方法
CN109286007A (zh) 石墨烯复合碳包覆Ga2O3锂离子电池负极的制备方法
CN114221018B (zh) 一种石墨毡锂离子电池的制备方法
TWI792610B (zh) 多孔隙鉛碳複合極片及其製作方法與鉛碳複合電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936360

Country of ref document: EP

Kind code of ref document: A1