WO2021109721A1 - 一种熔融碳酸盐燃料电池堆电解质补充方法 - Google Patents

一种熔融碳酸盐燃料电池堆电解质补充方法 Download PDF

Info

Publication number
WO2021109721A1
WO2021109721A1 PCT/CN2020/121292 CN2020121292W WO2021109721A1 WO 2021109721 A1 WO2021109721 A1 WO 2021109721A1 CN 2020121292 W CN2020121292 W CN 2020121292W WO 2021109721 A1 WO2021109721 A1 WO 2021109721A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
fuel cell
battery stack
molten carbonate
cell stack
Prior art date
Application number
PCT/CN2020/121292
Other languages
English (en)
French (fr)
Inventor
程健
张瑞云
卢成壮
李�昊
许世森
王保民
杨冠军
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to JP2021560179A priority Critical patent/JP7170909B2/ja
Publication of WO2021109721A1 publication Critical patent/WO2021109721A1/zh
Priority to US17/512,293 priority patent/US11728502B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • H01M8/145Fuel cells with fused electrolytes characterised by the electrolyte material comprising carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of molten carbonate fuel cells, in particular to an electrolyte supplement method for a molten carbonate fuel cell stack.
  • the fuel cell is a new power source with high efficiency and clean characteristics that integrates new technologies such as energy, chemical industry, materials and automatic control.
  • Molten carbonate fuel cells are composed of key components such as electrodes, electrolyte membranes, carbonate sheets, and bipolar plates.
  • the electrolyte diaphragm and the carbonate sheet are sintered together during the operation of the battery stack, and the molten carbonate penetrates into the pores of the sintered electrolyte diaphragm by capillary action, which acts as a gas barrier and conducts carbonate ions.
  • the electrolyte membrane must have the function of storing the molten carbonate electrolyte in the battery for a long time, but in the actual operation of the battery stack, there is a problem of electrolyte loss, which greatly affects the life and stable operation of the battery stack.
  • the loss of electrolyte is mainly due to corrosion reaction with metal parts, evaporation and migration of electrolyte, etc.
  • the loss of electrolyte causes the internal resistance of the battery to increase, and the coarse pores of the electrolyte diaphragm plate reduce the retention of the electrolyte and accelerate the loss of the electrolyte. Therefore, in order to ensure the long life and stable operation of the molten carbonate fuel cell stack, the electrolyte replenishment technology during operation can extend the service life of the molten carbonate fuel cell and increase the competitiveness of the molten carbonate fuel cell power generation technology.
  • the method for replenishing the electrolyte of a molten carbonate fuel cell stack includes the following steps:
  • Step 1 Prepare an electrolyte gel solution containing 10%-20% electrolyte, wherein the viscosity of the electrolyte gel solution is 200-800 Pa ⁇ s;
  • Step 2 Use the electrolyte gel solution prepared in Step 1 to supplement the battery stack electrolyte, so that the electrolyte adheres to the electrodes and the internal flow channels of the battery stack;
  • Step 4 Dry the moisture or organic solvent in the battery stack under the inert gas condition to discharge the battery stack electrolyte, and then perform the discharge performance test.
  • the preparation method of the electrolyte gel solution includes the following steps:
  • electrolyte gel solution containing 10% to 20% electrolyte.
  • the viscosity of the electrolyte gel solution is 200-800 Pa ⁇ s.
  • step 2 the electrolyte gel solution prepared in step 1 is used to supplement the battery stack electrolyte, the specific method is:
  • the anode or cathode inlet of the molten carbonate fuel cell, the container containing the electrolyte colloid solution prepared in step 1, the circulating pump, and the anode or cathode outlet of the molten carbonate fuel cell constitute a circulating loop for supplementing electrolyte;
  • the circulation pump is started to fully circulate the electrolyte gel solution in the internal flow channel of the battery stack, so that part of the electrolyte adheres to the electrodes and the internal flow channel of the battery stack during the circulation process.
  • step 3 the excess electrolyte colloid solution in the battery stack is discharged, and the specific method is:
  • Air or nitrogen with a cathode flow rate of 15%-30% of the full power of the battery stack is used to pass into the battery stack from the cathode or anode inlet on the upper part of the battery stack, and the excess electrolyte colloid solution in the battery stack is completely discharged from the cathode or anode outlet on the lower part of the battery stack .
  • step 4 the process conditions for drying and discharging the moisture or organic solvent in the battery stack are:
  • nitrogen or carbon dioxide inert gas is introduced into the battery stack, and heated and ventilated for 24 to 48 hours.
  • the invention provides a molten carbonate fuel cell stack electrolyte replenishment method, which can make use of the good fluidity and viscosity of the electrolyte colloid solution to uniformly adhere the electrolyte to the electrode and the channel inside the flow field, and use the molten electrolyte
  • the principle of capillary infiltration supplements the electrolyte loss in the stack. This method can effectively supplement the performance and lifespan of the molten carbonate fuel cell due to electrolyte loss during high-temperature operation, and is useful for improving the stability of the molten carbonate fuel cell. Performance and longevity have important guiding significance.
  • the molten carbonate electrolyte is generally solid. It melts into a liquid state under high temperature conditions and relies on capillary force to inhale into the micropores of the diaphragm to isolate the two-stage gas. It is difficult for the solid electrolyte to be evenly replenished into the battery stack. It may cause blockage of the internal pipeline of the battery, and the electrolyte, the binder and the solvent are dispersed into a liquid colloid, and the electrolyte can be evenly transported into the battery and distributed evenly through the continuous flow of the circulating pump.
  • the content of electrolyte supplemented to the battery stack is adjusted by adjusting the electrolyte content in the electrolyte gel, and the gel contains a small amount of binder, and the electrolyte can be evenly dispersed in the gel, ensuring that the electrolyte is evenly dispersed in the battery stack Various parts within.
  • Figure 1 is an electrolyte supplement circuit device related to the present invention
  • Electrolyte colloid solution container 2. Circulation pump 3. Anode or cathode inlet 4. Battery 5. Molten carbonate fuel cell 6. Anode or cathode outlet 7. Circulation pipeline.
  • the specific solution of the present invention is: an electrolyte replenishment method for a molten carbonate fuel cell stack, which includes the following specific steps:
  • the first is to mix lithium carbonate and sodium carbonate with a molar percentage of 53:47 to form an electrolyte
  • the second method is to mix lithium carbonate and potassium carbonate with a molar percentage of 62:38 to form an electrolyte
  • electrolyte gel solution aqueous solution of polyvinyl alcohol with a concentration of 0.5% to 3%, or a mixed solution formed by alcohol and polyvinyl butyral, and an electrolyte colloidal solution containing 10% to 20% electrolyte.
  • the viscosity of the electrolyte gel solution is 200-800 Pa ⁇ s.
  • the concentration of the mixed solution formed by alcohol and polyvinyl butyral is 3% to 5%, and the concentration of alcohol is 95%.
  • the anode or cathode inlet 3 of the molten carbonate fuel cell 5, the electrolyte colloid solution container 1, the liquid circulation pump 2, and the MCFC anode or cathode outlet 6 form a circulation loop that replenishes the electrolyte, and the circulation pump 2 is started to make the electrolyte
  • the colloidal solution is fully circulated in the internal flow channel of the battery stack for 24 to 48 hours to ensure that a part of the electrolyte adheres to the electrodes and the internal flow channel of the battery stack during the circulation process.
  • Air or nitrogen with a cathode flow rate of 15% to 30% of the full power of the battery stack is used to pass into the battery stack from the cathode or anode inlet on the upper part of the battery stack, and the excess electrolyte colloid solution in the battery stack is removed from the cathode or anode outlet on the lower part of the battery stack.
  • Exhaust, ventilation time is 24 to 48 hours; by controlling the air flow, on the one hand, the residual colloid is slowly blown out of the battery stack, and on the other hand, the electrolyte is slowly attached to the wall of the components inside the battery stack.
  • the present invention is an electrolyte replenishment method for molten carbonate fuel cell stack, which has important guiding significance in the field of MCFC research and application.
  • the following examples will illustrate the specific guiding effect of the present invention.
  • the volume of the flow field and flow channel in the cell stack is calculated to be about 0.036m 3 .
  • the amount of gel solution is the internal flow of the battery stack. 3 times the volume of field and flow channel;
  • the temperature is increased to 450°C at a heating rate of 1°C/3min, and the temperature is kept for 5 hours.
  • the temperature is increased to 550°C at a heating rate of 1°C/3min, and then to 650°C at a heating rate of 1°C/1min, and the anode is connected.
  • air and carbon dioxide can be introduced into the cathode to perform discharge performance test.
  • Lithium carbonate and sodium carbonate with a molar percentage of 53:47 were mixed, and then mixed with a 1.5% polyvinyl alcohol aqueous solution with stirring to prepare an electrolyte gel solution containing 15% electrolyte and a viscosity of 200 Pa ⁇ s.
  • Lithium carbonate and sodium carbonate with a molar percentage of 53:47 were mixed, and then mixed with a 3% polyvinyl alcohol aqueous solution with stirring to prepare an electrolyte gel solution containing 20% electrolyte and a viscosity of 200 Pa ⁇ s.
  • Lithium carbonate and sodium carbonate with a molar percentage of 53:47 are mixed, and then mixed with a 0.5% polyvinyl alcohol aqueous solution with stirring to prepare an electrolyte gel solution containing 13% electrolyte and a viscosity of 200 Pa ⁇ s.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供的一种熔融碳酸盐燃料电池堆电解质补充方法,包括以下步骤:步骤1,配制含10%~20%电解质的电解质胶体溶液,其中,所述电解质胶体溶液的粘度为200~800Pa·s;步骤2,利用步骤1配制得到的电解质胶体溶液进行电池堆电解质的补充,得电解质粘附在电极及电池堆内部流道;步骤3,将电池堆内多余的电解质胶体溶液排出;步骤4,在惰性气体条件下,将电池堆内的水分或有机溶剂烘干排出,即完成电池堆电解质的补充,之后升温并进行放电性能测试;本发明能够有效补充熔融碳酸盐燃料电池在高温运行过程中因电解质损失而造成的性能和寿命下降,对提高稳定熔融碳酸盐燃料电池性能和寿命具有重要的指导意义。

Description

一种熔融碳酸盐燃料电池堆电解质补充方法 技术领域
本发明涉及熔融碳酸盐燃料电池技术领域,具体涉及一种熔融碳酸盐燃料电池堆的电解质补充方法。
背景技术
燃料电池是一种不经过燃烧而以电化学反应方式将燃料的化学能直接变为电能的发电装置,其最大特点是反应过程不涉及燃烧,因此能量转化效率不受“卡诺循环”的限制,效率高达50%~60%。燃料电池工作时,氢气或其他燃料输入到阳极,并在电极和电解质的界面上发生氢气或其他燃料氧化与氧气还原的电化学反应,产生电流,输出电能。与火力发电方式相比,燃料电池的发电过程不经过燃料的直接燃烧CO、CO 2、SO 2、NOx及未燃尽的有害物质排放量极低,是公认的继火电、水电和核电之后的第四种发电方式。因此,燃料电池是集能源、化工、材料与自动化控制等新技术为一体的、具有高效与洁净特色的新电源。
熔融碳酸盐燃料电池在650℃工作,其优点有:(1)工作温度高,电极反应活化能小,不论氢的氧化还是氧的还原,都不需要高效催化剂,节省了贵金属的使用,一定程度上降低成本;(2)可以使用CO含量高的燃料气,如煤制气;(3)电池排放的余热温度高达673K之多,可用于底循环或回收使用,使总的效率高达80%。因此,熔融碳酸盐燃料电池在固定电站和分布式电站等方面的应用前景非常广阔。
熔融碳酸盐燃料电池由电极、电解质隔膜、碳酸盐片、双极板等关键部件组成。电解质隔膜和碳酸盐片在电池堆运行时烧结在一起,熔融的碳酸盐依靠毛细作用渗入烧结好的电解质隔膜微孔内,起到阻气、传导碳酸根离子的作用。电解质隔膜必须具有长时间容留电池中熔融碳酸盐电解质的功能,但在电池堆的实际运行过程中,存在电解质损失的问题,大大影响了电池堆的寿命和稳定运行。电解质的损失主要是由于与金属部件发生腐蚀反应,电解质的蒸发和迁 移等原因。电解质的损失造成了电池内阻增大,电解质隔膜板的粗孔化,使电解质的保持力降低,加速了电解质的损失。因此为保证熔融碳酸盐燃料电池堆的长寿命和稳定运行,运行过程中的电解质补充技术能够使熔融碳酸盐燃料电池能够延长使用寿命,增加熔融碳酸盐燃料电池发电技术的竞争力。
发明内容
本发明的目的在于提供一种熔融碳酸盐燃料电池堆电解质补充方法,解决了现有的熔融碳酸盐燃料电池堆电解质存在损失的缺陷,大大提高了电池堆的寿命和稳定运行。
为了达到上述目的,本发明采用的技术方案是:
本发明提供的一种熔融碳酸盐燃料电池堆电解质补充方法,包括以下步骤:
步骤1,配制含10%~20%电解质的电解质胶体溶液,其中,所述电解质胶体溶液的粘度为200~800Pa·s;
步骤2,利用步骤1配制得到的电解质胶体溶液进行电池堆电解质的补充,使得电解质粘附在电极及电池堆内部流道;
步骤3,将电池堆内多余的电解质胶体溶液排出;
步骤4,在惰性气体条件下,将电池堆内的水分或有机溶剂烘干排出,即完成电池堆电解质的补充,之后进行放电性能测试。
优选地,步骤1中,电解质胶体溶液的配制方法,包括以下步骤:
将摩尔百分比为62:38的碳酸锂和碳酸钾进行混合,形成电解质;
将得到的电解质与浓度为0.5~3%的聚乙烯醇水溶液,或与95%酒精与聚乙烯醇缩丁醛形成的溶液进行混合,含10%~20%电解质的电解质胶体溶液,其中,所述电解质胶体溶液的粘度为200~800Pa·s。
优选地,步骤1中,电解质胶体溶液的配制方法,包括以下步骤:
将摩尔百分比为53:47的碳酸锂和碳酸钠进行混合,形成电解质;
将得到的电解质与浓度为0.5~3%的聚乙烯醇水溶液,或与95%酒精与聚乙烯醇缩丁醛形成的溶液进行混合,含10%~20%电解质的电解质胶体溶液,其中,所述电解质胶体溶液的粘度为200~800Pa·s。
优选地,步骤2中,利用步骤1配制得到的电解质胶体溶液进行电池堆电解质的补充,具体方法是:
由熔融碳酸盐燃料电池的阳极或阴极入口、盛放有步骤1配制得到的电解质胶体溶液的容器、循环泵、以及熔融碳酸盐燃料电池的阳极或阴极出口组成补充电解质的循环回路;
之后启动循环泵,使电解质胶体溶液在电池堆内部流道中充分循环,使得部分电解质在循环过程中粘附在电极及电池堆内部流道。
优选地,步骤3中,将电池堆内多余的电解质胶体溶液排出,具体方法是:
采用电池堆全功率15%~30%阴极流量的空气或氮气从电池堆上部的阴极或阳极入口通入电池堆,从电池堆下部的阴极或阳极出口将电池堆内多余的电解质胶体溶液完全排出。
优选地,步骤4中,将电池堆内的水分或有机溶剂烘干排出的工艺条件是:
在66~80℃加热条件下,向电池堆内通入氮气或二氧化碳惰性气体,加热通气24~48小时。
与现有技术相比,本发明的有益效果是:
本发明提供的一种熔融碳酸盐燃料电池堆电解质补充方法,能够利用电解质胶体溶液良好的流动性和粘性,将电解质均匀地粘附在电极及流场内部的槽道中,利用电解质熔融后的毛细浸润原理对电池堆内损失的电解质进行补充,这一方法能够有效补充熔融碳酸盐燃料电池在高温运行过程中因电解质损失而造成的性能和寿命下降,对提高稳定熔融碳酸盐燃料电池性能和寿命具有重要的指导意义。
进一步的,熔融碳酸盐电解质一般为固态,在高温条件下熔融成液态依靠毛细作用力吸入隔膜的微孔内达到隔绝两级气体的作用,固态的电解质难以均匀补充到电池堆内部,还有可能造成电池内部管路的堵塞,而采用将电解质与粘结剂及溶剂分散成液态胶体,通过循环泵不断流动可以将电解质均匀输送至电池内部并均匀分布。
进一步的,通过调整电解质胶体中电解质的含量来调整补充至电池堆内电解质的含量,并且胶体中含有少量的粘结剂,且电解质还能够在胶体中均匀分散,保证了电解质均匀分散到电池堆内各个部位。
附图说明
图1是本发明涉及的电解质补充回路装置;
其中,1、电解质胶体溶液容器 2、循环泵 3、阳极或阴极入口 4、电池 5、熔融碳酸盐燃料电池 6、阳极或阴极出口 7、循环管路。
具体实施方式
下面结合附图,对本发明进一步详细说明。
本发明的具体方案为:一种熔融碳酸盐燃料电池堆的电解质补充方法,包括以下具体步骤:
1)根据电池堆双极板及电池端板的结构,计算电池堆内流场及流道的体积;
2)配制电解质胶体溶液
第一种,将摩尔百分比为53:47的碳酸锂和碳酸钠进行混合,形成电解质;
将得到的电解质与浓度为0.5%~3%的聚乙烯醇水溶液,或与95%酒精和聚乙烯醇缩丁醛形成的混合溶液进行混合,含10%~20%电解质的电解质胶体溶液,其中,所述电解质胶体溶液的粘度为200~800Pa·s。
第二种,将摩尔百分比为62:38的碳酸锂和碳酸钾进行混合,形成电解质;
将得到的电解质与浓度为0.5%~3%的聚乙烯醇水溶液,或与酒精与聚乙烯醇缩丁醛形成的混合溶液进行混合,含10%~20%电解质的电解质胶体溶液,其中,所述电解质胶体溶液的粘度为200~800Pa·s。
酒精与聚乙烯醇缩丁醛形成的混合溶液的浓度为3%~5%,其中,酒精的浓度为95%。
3)将熔融碳酸盐燃料电池5的阳极或阴极入口3、电解质胶体溶液容器1、液循环泵2、以及MCFC阳极或阴极出口6组成一个补充电解质的循环回路,启动循环泵2,使电解质胶体溶液在电池堆内部流道中充分循环24~48小时,保证一部分电解质在循环过程中粘附在电极及电池堆内部流道。
4)采用电池堆全功率15%~30%阴极流量的空气或氮气从电池堆上部的阴极或阳极入口通入电池堆,从电池堆下部的阴极或阳极出口将电池堆内多余的电解质胶体溶液排出,通气时间24~48小时;通过控制进气流量,一方面缓慢将残余胶体吹出电池堆,一方面使电解质缓慢附着在电池堆内部的部件壁上。
5)在66~80℃加热条件下,电池堆内通入氮气或二氧化碳惰性气体,通气24~48小时,将电池堆内的水分或有机溶剂排出并烘干,用以排除水和有机溶剂对电池性能的影响。
完成电解质补充后,对电池堆采用1℃/1~3min的升温速率升温至450℃,保温5小时,继续以1℃/3~5min的升温速率升温至550℃,再以1℃/1~3min的升温速率升温至650℃,并且阳极通入氢气进行还原电极。温度达到650℃以后,阴极通入空气和二氧化碳即可进行放电性能测试。
本发明是一种熔融碳酸盐燃料电池堆的电解质补充方法,在MCFC的研究与应用领域具有重要的指导意义,下面将以实例来说明本发明的具体指导作用。
实施例1
1)首先准备一个已经运行一定时间的性能有所下降的5kW的熔融碳酸盐燃料电池堆,电池 堆由36节、单电池有效面积为2000cm 2的单电池串联而成;
2)根据5kW MCFC电池堆双极板及电池端板的结构,计算电池堆内流场及流道的体积约为0.036m 3。将摩尔百分比62:38的碳酸锂和碳酸钾混合,之后与浓度为0.5%的聚乙烯醇水溶液混合搅拌配制含电解质10%,粘度200Pa·s的电解质胶体溶液,胶体溶液量为电池堆内流场与流道体积的3倍;
3)将配置好的电解质胶体溶液置入一个带进出口的密闭容器中,容器进出口分别与电池堆和溶液循环泵连接组成一个补充电解质的循环回路,启动循环泵,使电解质胶体溶液在电池堆内部流道中充分循环24小时,停止循环后在电池堆的底部将电池堆内的电解质胶体溶液排空;
4)从电池堆上部向电池堆持续通气时间24小时,吹入全功率阴极流量15%的空气或氮气,再次将电池堆内多余的电解质胶体溶液排出;
5)在80℃加热条件下电池堆内通入全功率阴极流量25%的氮气或二氧化碳惰性气体,加热通气30小时,将电池堆内的水分或有机溶剂烘干排出,即完成电解质的补充。
之后,采用1℃/3min的升温速率升温至450℃,保温5小时,继续以1℃/3min的升温速率升温至550℃,再以1℃/1min的升温速率升温至650℃,并且阳极通入氢气进行还原电极。温度达到650℃以后,阴极通入空气和二氧化碳即可进行放电性能测试。
实施例2
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比62:38的碳酸锂和碳酸钾混合,之后与浓度为1.5%的聚乙烯醇水溶液混合搅拌配制含电解质15%,粘度200Pa·s的电解质胶体溶液。
实施例3
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比62:38的碳酸锂和碳酸钾混合,之后与浓度为3%的聚乙烯醇水溶液混合搅 拌配制含电解质20%,粘度200Pa·s的电解质胶体溶液。
实施例4
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比62:38的碳酸锂和碳酸钾混合,之后与浓度为95%的酒精以及聚乙烯醇缩丁醛形成的混合溶液,混合搅拌配制含电解质20%,粘度200Pa·s的电解质胶体溶液。
实施例5
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比62:38的碳酸锂和碳酸钾混合,之后与浓度为95%的酒精以及聚乙烯醇缩丁醛形成的混合溶液,混合搅拌配制含电解质10%,粘度200Pa·s的电解质胶体溶液。
实施例6
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比62:38的碳酸锂和碳酸钾混合,之后与浓度为95%的酒精以及聚乙烯醇缩丁醛形成的混合溶液,混合搅拌配制含电解质13%,粘度200Pa·s的电解质胶体溶液。
实施例7
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比53:47的碳酸锂和碳酸钠混合,之后与浓度为1.5%的聚乙烯醇水溶液混合搅拌配制含电解质15%,粘度200Pa·s的电解质胶体溶液。
实施例8
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比53:47的碳酸锂和碳酸钠混合,之后与浓度为3%的聚乙烯醇水溶液混合搅拌配制含电解质20%,粘度200Pa·s的电解质胶体溶液。
实施例9
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比53:47的碳酸锂和碳酸钠混合,之后与浓度为95%的酒精以及聚乙烯醇缩丁醛形成的混合溶液,混合搅拌配制含电解质20%,粘度200Pa·s的电解质胶体溶液。
实施例10
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比53:47的碳酸锂和碳酸钠混合,之后与浓度为95%的酒精以及聚乙烯醇缩丁醛形成的混合溶液,混合搅拌配制含电解质10%,粘度200Pa·s的电解质胶体溶液。
实施例11
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比53:47的碳酸锂和碳酸钠混合,之后与浓度为95%的酒精以及聚乙烯醇缩丁醛形成的混合溶液,混合搅拌配制含电解质13%,粘度200Pa·s的电解质胶体溶液。
实施例12
与实施例1相同,不同点在于,电解质胶体溶液的配制:
将摩尔百分比53:47的碳酸锂和碳酸钠混合,之后与浓度为0.5%的聚乙烯醇水溶液混合搅拌配制含电解质13%,粘度200Pa·s的电解质胶体溶液。

Claims (6)

  1. 一种熔融碳酸盐燃料电池堆电解质补充方法,其特征在于,包括以下步骤:
    步骤1,配制含10%~20%电解质的电解质胶体溶液,其中,所述电解质胶体溶液的粘度为200~800Pa·s;
    步骤2,利用步骤1配制得到的电解质胶体溶液进行电池堆电解质的补充,使得电解质粘附在电极及电池堆内部流道;
    步骤3,将电池堆内多余的电解质胶体溶液排出;
    步骤4,在惰性气体条件下,将电池堆内的水分或有机溶剂烘干排出,即完成电池堆电解质的补充,之后进行放电性能测试。
  2. 根据权利要求1所述的一种熔融碳酸盐燃料电池堆电解质补充方法,其特征在于,步骤1中,电解质胶体溶液的配制方法,包括以下步骤:
    将摩尔百分比为62:38的碳酸锂和碳酸钾进行混合,形成电解质;
    将得到的电解质与浓度为0.5%~3%的聚乙烯醇水溶液,或与95%酒精与聚乙烯醇缩丁醛形成的混合溶液进行混合,含10%~20%电解质的电解质胶体溶液,其中,所述电解质胶体溶液的粘度为200~800Pa·s。
  3. 根据权利要求1所述的一种熔融碳酸盐燃料电池堆电解质补充方法,其特征在于,步骤1中,电解质胶体溶液的配制方法,包括以下步骤:
    将摩尔百分比为53:47的碳酸锂和碳酸钠进行混合,形成电解质;
    将得到的电解质与浓度为0.5%~3%的聚乙烯醇水溶液,或与95%酒精与聚乙烯醇缩丁醛形成的混合溶液进行混合,含10%~20%电解质的电解质胶体溶液,其中,所述电解质胶体溶液的粘度为200~800Pa·s。
  4. 根据权利要求1所述的一种熔融碳酸盐燃料电池堆电解质补充方法,其特征在于,步骤2中,利用步骤1配制得到的电解质胶体溶液进行电池堆电解质的补充,具体方法是:
    由熔融碳酸盐燃料电池的阳极或阴极入口、盛放有步骤1配制得到的电解质胶体溶液的容器、循环泵、以及熔融碳酸盐燃料电池的阳极或阴极出口组成补充电解质的循环回路;
    之后启动循环泵,使电解质胶体溶液在电池堆内部流道中充分循环,使得部分电解质在循环过程中粘附在电极及电池堆内部流道。
  5. 根据权利要求1所述的一种熔融碳酸盐燃料电池堆电解质补充方法,其特征在于,步骤3中,将电池堆内多余的电解质胶体溶液排出,具体方法是:
    采用电池堆全功率15%~30%阴极流量的空气或氮气从电池堆上部的阴极或阳极入口通入电池堆,从电池堆下部的阴极或阳极出口将电池堆内多余的电解质胶体溶液完全排出。
  6. 根据权利要求1所述的一种熔融碳酸盐燃料电池堆电解质补充方法,其特征在于,步骤4中,将电池堆内的水分或有机溶剂烘干排出的工艺条件是:
    在66~80℃加热条件下,向电池堆内通入氮气或二氧化碳惰性气体,加热通气24~48小时。
PCT/CN2020/121292 2019-12-03 2020-10-15 一种熔融碳酸盐燃料电池堆电解质补充方法 WO2021109721A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021560179A JP7170909B2 (ja) 2019-12-03 2020-10-15 溶融炭酸塩型燃料電池スタックの電解質補充方法
US17/512,293 US11728502B2 (en) 2019-12-03 2021-10-27 Electrolyte replenishment method for molten carbonate fuel cell stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911223026.1A CN110911717B (zh) 2019-12-03 2019-12-03 一种熔融碳酸盐燃料电池堆电解质补充方法
CN201911223026.1 2019-12-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/512,293 Continuation US11728502B2 (en) 2019-12-03 2021-10-27 Electrolyte replenishment method for molten carbonate fuel cell stack

Publications (1)

Publication Number Publication Date
WO2021109721A1 true WO2021109721A1 (zh) 2021-06-10

Family

ID=69822020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121292 WO2021109721A1 (zh) 2019-12-03 2020-10-15 一种熔融碳酸盐燃料电池堆电解质补充方法

Country Status (4)

Country Link
US (1) US11728502B2 (zh)
JP (1) JP7170909B2 (zh)
CN (1) CN110911717B (zh)
WO (1) WO2021109721A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911717B (zh) * 2019-12-03 2021-03-23 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池堆电解质补充方法
CN113471500B (zh) * 2021-07-16 2023-10-03 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池盐膜及其制备方法
CN116706347B (zh) * 2023-08-02 2023-10-20 德阳市东新机电有限责任公司 快速加热反应堆电解液的铝燃料电池及快速加热方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271754A (ja) * 1985-05-28 1986-12-02 Fuji Electric Co Ltd 溶融炭酸塩型燃料電池の電解質補給法
JPS643969A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Molten carbonate fuel cell
CN1656641A (zh) * 2002-02-27 2005-08-17 吉恩塞尔公司 用于mcfc的水基电解质浆料和使用方法
CN1723580A (zh) * 2003-01-15 2006-01-18 吉恩塞尔公司 含水电极粘合剂和电极及包括其的燃料电池
CN1791998A (zh) * 2003-04-14 2006-06-21 吉恩塞尔公司 用于将电解质加入到燃料电池中的设备和方法
CN101443942A (zh) * 2005-05-13 2009-05-27 燃料电池能有限公司 用于熔融碳酸盐燃料电池的电解质基体及其制造方法
CN110911717A (zh) * 2019-12-03 2020-03-24 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池堆电解质补充方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298568A (ja) * 1985-10-25 1987-05-08 Fuji Electric Co Ltd 溶融炭酸塩型燃料電池のセル構造
JPS63241868A (ja) * 1987-03-30 1988-10-07 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池スタツク
JPH06267557A (ja) * 1993-03-12 1994-09-22 Toshiba Corp 溶融炭酸塩型燃料電池の電解質含浸方法
US5468573A (en) * 1994-06-23 1995-11-21 International Fuel Cells Corporation Electrolyte paste for molten carbonate fuel cells
JPH08153529A (ja) * 1994-11-28 1996-06-11 Toshiba Corp 溶融炭酸塩型燃料電池の電解質補給装置およびその補給方法
JP3580455B2 (ja) * 1996-03-25 2004-10-20 石川島播磨重工業株式会社 溶融炭酸塩型燃料電池とこれを用いた発電装置
US20040121200A1 (en) * 2002-12-24 2004-06-24 Richard Johnsen Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact
US7524576B2 (en) * 2005-05-16 2009-04-28 Fuelcell Energy, Inc. High-lithium electrolyte for use in molten carbonate fuel cells and method for making same
US7939219B2 (en) * 2005-05-27 2011-05-10 Fuelcell Energy, Inc. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte
CN101459252B (zh) * 2009-01-07 2010-06-02 西安热工研究院有限公司 一种大面积熔融碳酸盐补盐燃料电池
KR101160979B1 (ko) * 2009-12-24 2012-06-29 재단법인 포항산업과학연구원 연료전지
CN104078698B (zh) * 2014-06-30 2016-03-30 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池电解质的储存与补偿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271754A (ja) * 1985-05-28 1986-12-02 Fuji Electric Co Ltd 溶融炭酸塩型燃料電池の電解質補給法
JPS643969A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Molten carbonate fuel cell
CN1656641A (zh) * 2002-02-27 2005-08-17 吉恩塞尔公司 用于mcfc的水基电解质浆料和使用方法
CN1723580A (zh) * 2003-01-15 2006-01-18 吉恩塞尔公司 含水电极粘合剂和电极及包括其的燃料电池
CN1791998A (zh) * 2003-04-14 2006-06-21 吉恩塞尔公司 用于将电解质加入到燃料电池中的设备和方法
CN101443942A (zh) * 2005-05-13 2009-05-27 燃料电池能有限公司 用于熔融碳酸盐燃料电池的电解质基体及其制造方法
CN110911717A (zh) * 2019-12-03 2020-03-24 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池堆电解质补充方法

Also Published As

Publication number Publication date
US20220052369A1 (en) 2022-02-17
US11728502B2 (en) 2023-08-15
JP2022527018A (ja) 2022-05-27
JP7170909B2 (ja) 2022-11-14
CN110911717A (zh) 2020-03-24
CN110911717B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021109721A1 (zh) 一种熔融碳酸盐燃料电池堆电解质补充方法
CN100495796C (zh) 自增湿微型热动自循环冷却质子交换膜燃料电池系统
JP2002289230A (ja) 高分子電解質型燃料電池
CN101682065B (zh) 燃料电池系统及其运行方法
CN116014160A (zh) 一种液流电池修复系统及修复方法
KR100439814B1 (ko) 물의 빙점 이하에서 고분자 전해질 연료전지의 운전방법및 장치
WO2021232664A1 (zh) 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法
CN102473946B (zh) 用于操作高温燃料电池的方法
JP2007018858A (ja) 燃料電池システム
JP2006244907A (ja) 燃料電池
JPH11214022A (ja) 燃料電池発電装置
RU160133U1 (ru) Твердополимерный топливный элемент
CN116053525A (zh) 燃料电池关机活化方法、燃料电池发动机及车辆
CN109935866A (zh) 一种用于液体燃料电池系统低温启动的方法
CN201956423U (zh) 一种质子交换膜燃料电池膜电极喷涂加热真空吸盘
CN110970641B (zh) 改善磷酸电解质高温膜燃料电池放电性能与运行寿命方法
CN209118591U (zh) 一种质子交换膜燃料电池实验装置
CN108390083B (zh) 一种组合再生式燃料电池系统放电工作模式启动方法
CN101826622A (zh) 一种通过添加氧化还原穿梭电对提高燃料电池寿命的方法
CN101409348A (zh) 一种直接甲醇燃料电池用抗气封效应阳极的制备方法
CN101630749B (zh) 一种在质子交换膜上负载催化剂的方法
Zhang et al. Development and Performance Test of Molten Carbonate Fuel Cell Stack
JPH0654674B2 (ja) 燃料電池発電装置
JPS63237363A (ja) メタノ−ル燃料電池
JP5776842B2 (ja) 2次電池型燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895993

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20895993

Country of ref document: EP

Kind code of ref document: A1