CN111564646B - 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法 - Google Patents

一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法 Download PDF

Info

Publication number
CN111564646B
CN111564646B CN202010421592.XA CN202010421592A CN111564646B CN 111564646 B CN111564646 B CN 111564646B CN 202010421592 A CN202010421592 A CN 202010421592A CN 111564646 B CN111564646 B CN 111564646B
Authority
CN
China
Prior art keywords
fuel cell
molten carbonate
carbonate fuel
roasting
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010421592.XA
Other languages
English (en)
Other versions
CN111564646A (zh
Inventor
张瑞云
程健
卢成壮
李�昊
许世森
王保民
杨冠军
黄华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
Original Assignee
Huaneng Clean Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute filed Critical Huaneng Clean Energy Research Institute
Priority to CN202010421592.XA priority Critical patent/CN111564646B/zh
Publication of CN111564646A publication Critical patent/CN111564646A/zh
Priority to PCT/CN2020/121189 priority patent/WO2021232664A1/zh
Priority to JP2022542776A priority patent/JP7358652B2/ja
Application granted granted Critical
Publication of CN111564646B publication Critical patent/CN111564646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/0447Concentration; Density of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开了一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法,包括以下步骤:1)估算熔融碳酸盐燃料电池隔膜所含的溶剂、粘结剂及增塑剂的质量;2)设定熔融碳酸盐燃料电池隔膜焙烧的升温程序;3)根据熔融碳酸盐燃料电池隔膜焙烧的升温程序,对组装后的熔融碳酸盐燃料电池进行升温焙烧,当熔融碳酸盐燃料电池内部经过活化反应后,对熔融碳酸盐燃料电池进行放电测试,其中,当熔融碳酸盐燃料电池的阴极与阳极未发生窜气或漏气危险,且单个电池的平均开路电压大于预设电压值时,则说明熔融碳酸盐燃料电池隔膜焙烧合格,完成熔融碳酸盐燃料电池隔膜焙烧的在线评价,该方法能够有效的保证熔融碳酸盐燃料电池的发电性能。

Description

一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法
技术领域
本发明属于熔融碳酸盐燃料电池技术领域,涉及一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法。
背景技术
熔融碳酸盐燃料电池(MCFC)是一种工作于650℃的高温燃料电池,具有不需要贵金属作催化剂、燃料来源广、噪音低、污染物基本达到近零排放、发电效率高、可实现热电联供等优点,适合于百千瓦级至兆瓦级分布式电站或固定电站,具有良好的发展前景。
熔融碳酸盐燃料电池的关键核心部件包括电极、隔膜、电解质、双极板等,其中隔膜性能的好坏对电池性能影响非常大。一般来说,隔膜的性能与其孔隙率和平均孔径有很大关系,定型后的隔膜的孔分布主要取决于定型前膜中所含的不易挥发的粘结剂和溶剂的含量及其分布的均匀程度。含量较高时,定型后膜的孔隙率和平均孔径较大,膜中浸入的电解质较多,膜电阻小,但由于平均孔径大,容易发生阴阳极窜气的危险;含量较低时,导致膜孔隙率和平均孔径减小,这虽然有利于阻气,却降低了膜中浸入的电解质,不利于离子导电。因此,要求隔膜有一个合理的孔隙率及孔径分布,一般要求隔膜的孔隙率为50~70%,孔径小于1μm,而且分布均匀。
熔融碳酸盐燃料电池隔膜是在电池首次启动时进行原位焙烧,因此首次的焙烧效果直接决定电池的性能。由于技术保密及技术封锁,我国在MCFC方面的研究还处于初级阶段。目前从事MCFC研究的单位主要有中国科学院大连化学物理研究所、中国华能集团清洁能源技术研究院有限公司以及一些高等院校,在熔融碳酸盐燃料电池隔膜焙烧效果的在线评价方面尚无相关的论述与著作,因此不能有效保证熔融碳酸盐燃料电池的发电性能。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法,该方法能够有效的保证熔融碳酸盐燃料电池的发电性能。
为达到上述目的,本发明所述的熔融碳酸盐燃料电池隔膜焙烧的在线评价方法包括以下步骤:
1)在组装熔融碳酸盐燃料电池之前,记录熔融碳酸盐燃料电池隔膜的重量,根据熔融碳酸盐燃料电池隔膜的配方,估算熔融碳酸盐燃料电池隔膜所含的溶剂、粘结剂及增塑剂的质量;
2)根据熔融碳酸盐燃料电池隔膜的热重曲线,设定熔融碳酸盐燃料电池隔膜焙烧的升温程序;
3)根据熔融碳酸盐燃料电池隔膜焙烧的升温程序,对组装后的熔融碳酸盐燃料电池进行升温焙烧,其中,在升温过程中,向熔融碳酸盐燃料电池的阴极通入空气,向熔融碳酸盐燃料电池的阳极通入氮气,同时在线监测阴极尾气出口的氧气浓度变化,当氧气浓度由大变小又逐渐变大时,则说明熔融碳酸盐燃料电池隔膜内的溶剂、粘结剂及增塑剂已燃烧完全,此时熔融碳酸盐燃料电池隔膜为多孔片状结构;
当熔融碳酸盐燃料电池稳定在490~500℃时,则关闭阴极的进气,此时电解质逐步熔解浸入熔融碳酸盐燃料电池隔膜中;
当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入氢气,向熔融碳酸盐燃料电池的阴极通入空气及二氧化碳,当熔融碳酸盐燃料电池内部经过活化反应后,对熔融碳酸盐燃料电池进行放电测试,其中,当熔融碳酸盐燃料电池的阴极与阳极未发生窜气或漏气危险,且单个电池的平均开路电压大于预设电压值时,则说明熔融碳酸盐燃料电池隔膜焙烧合格,否则,则说明熔融碳酸盐燃料电池隔膜焙烧不合格,完成熔融碳酸盐燃料电池隔膜焙烧的在线评价。
在升温过程中,向熔融碳酸盐燃料电池的阴极通入1L/min的空气,向熔融碳酸盐燃料电池的阳极通入0.5L/min的氮气。
当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入1L/min的氢气,向熔融碳酸盐燃料电池的阴极通入3L/min的空气及1L/min的二氧化碳。
预设电压值为1.1V。
本发明具有以下有益效果:
本发明所述的熔融碳酸盐燃料电池隔膜焙烧的在线评价方法在具体操作时,在对电池进行升温焙烧过程中,向阴极通入空气,向阳极通入氮气,以防止阳极氧化,同时在焙烧过程中,通过在线监测阴极尾气出口的氧气浓度变化,当氧气浓度由大变小又逐渐变大时,说明隔膜内的粘结剂及增塑剂已燃烧完全,此时隔膜形成一定的多孔片状结构;同时当电池已初步具备的发电能力时,向阳极通入氢气,向阴极通入空气和二氧化碳,当电池内部经过短暂的活化反应后,即可对电池进行放电测试,在测试过程中,当电池阴阳两极未发生窜气或漏气危险,且单电池的平均开路电压大于1.1V,则说明电池隔膜焙烧合格,以实现熔融碳酸盐燃料电池隔膜焙烧的在线评价,保证熔融碳酸盐燃料电池的发电性能,在优化MCFC发电性能等方面具有重要的指导意义。
附图说明
图1为本发明的流程图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,本发明所述的熔融碳酸盐燃料电池隔膜焙烧的在线评价方法包括以下步骤:
1)在组装熔融碳酸盐燃料电池之前,记录熔融碳酸盐燃料电池隔膜的重量,根据熔融碳酸盐燃料电池隔膜的配方,估算熔融碳酸盐燃料电池隔膜所含的溶剂、粘结剂及增塑剂的质量;
2)根据熔融碳酸盐燃料电池隔膜的热重曲线,设定熔融碳酸盐燃料电池隔膜焙烧的升温程序;
3)根据熔融碳酸盐燃料电池隔膜焙烧的升温程序,对组装后的熔融碳酸盐燃料电池进行升温焙烧,其中,在升温过程中,向熔融碳酸盐燃料电池的阴极通入空气,向熔融碳酸盐燃料电池的阳极通入氮气,同时在线监测阴极尾气出口的氧气浓度变化,当氧气浓度由大变小又逐渐变大时,则说明熔融碳酸盐燃料电池隔膜内的溶剂、粘结剂及增塑剂已燃烧完全,此时熔融碳酸盐燃料电池隔膜为多孔片状结构;
当熔融碳酸盐燃料电池稳定在490~500℃时,则关闭阴极的进气,此时电解质逐步熔解浸入熔融碳酸盐燃料电池隔膜中;
当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入氢气,向熔融碳酸盐燃料电池的阴极通入空气及二氧化碳,当熔融碳酸盐燃料电池内部经过活化反应后,对熔融碳酸盐燃料电池进行放电测试,其中,当熔融碳酸盐燃料电池的阴极与阳极未发生窜气或漏气危险,且单个电池的平均开路电压大于1.1V时,则说明熔融碳酸盐燃料电池隔膜焙烧合格,否则,则说明熔融碳酸盐燃料电池隔膜焙烧不合格,完成熔融碳酸盐燃料电池隔膜焙烧的在线评价。
实施例一
本实施例的具体操作过程为:
1)准备一对电极有效面积为0.2m2的熔融碳酸盐燃料电池单电池,选取一张隔膜,隔膜的厚度为0.7mm,重量为420g,根据隔膜制备的配方,估计偏铝酸锂粉末含量约为70~80%;
2)根据隔膜的热重曲线,制定出隔膜焙烧的升温程序;
3)按照升温程序,对组装的单电池进行升温焙烧,升温过程中,向阴极通入1L/min的空气,向阳极通入0.5L/min的氮气;
4)使用氧气浓度检测仪,对阴极尾气进行监测,当氧气浓度由刚开始的0.2L/min重新回至0.2L/min左右时,则说明隔膜内的粘结剂及增塑剂等基本焙烧完全;
当电池稳定达到490~500℃时,关闭阴极进气;
当电池稳定达到600~650℃时,电解质基本浸满隔膜,再向阳极通入1L/min的氢气,向阴极通入3L/min的空气及1L/min的二氧化碳,当电池内部经过短暂的活化反应后,即可对电池进行放电测试;
其中,隔膜焙烧好坏判断的依据是电池阴阳两极未发生窜气或漏气危险,单电池的开路电压达到1.12V,说明此次隔膜焙烧较好。

Claims (4)

1.一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法,其特征在于,包括以下步骤:
1)在组装熔融碳酸盐燃料电池之前,记录熔融碳酸盐燃料电池隔膜的重量,根据熔融碳酸盐燃料电池隔膜的配方,估算熔融碳酸盐燃料电池隔膜所含的溶剂、粘结剂及增塑剂的质量;
2)根据熔融碳酸盐燃料电池隔膜的热重曲线,设定熔融碳酸盐燃料电池隔膜焙烧的升温程序;
3)根据熔融碳酸盐燃料电池隔膜焙烧的升温程序,对组装后的熔融碳酸盐燃料电池进行升温焙烧,其中,在升温过程中,向熔融碳酸盐燃料电池的阴极通入空气,向熔融碳酸盐燃料电池的阳极通入氮气,同时在线监测阴极尾气出口的氧气浓度变化,当氧气浓度由大变小又逐渐变大时,则说明熔融碳酸盐燃料电池隔膜内的溶剂、粘结剂及增塑剂已燃烧完全,此时熔融碳酸盐燃料电池隔膜为多孔片状结构;
当熔融碳酸盐燃料电池稳定在490~500℃时,则关闭阴极的进气,此时电解质逐步熔解浸入熔融碳酸盐燃料电池隔膜中;
当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入氢气,向熔融碳酸盐燃料电池的阴极通入空气及二氧化碳,当熔融碳酸盐燃料电池内部经过活化反应后,对熔融碳酸盐燃料电池进行放电测试,其中,当熔融碳酸盐燃料电池的阴极与阳极未发生窜气或漏气危险,且单个电池的平均开路电压大于预设电压值时,则说明熔融碳酸盐燃料电池隔膜焙烧合格,否则,则说明熔融碳酸盐燃料电池隔膜焙烧不合格,完成熔融碳酸盐燃料电池隔膜焙烧的在线评价。
2.根据权利要求1所述的熔融碳酸盐燃料电池隔膜焙烧的在线评价方法,其特征在于,在升温过程中,向熔融碳酸盐燃料电池的阴极通入1L/min的空气,向熔融碳酸盐燃料电池的阳极通入0.5L/min的氮气。
3.根据权利要求1所述的熔融碳酸盐燃料电池隔膜焙烧的在线评价方法,其特征在于,当熔融碳酸盐燃料电池稳定在600~650℃时,电解质浸满熔融碳酸盐燃料电池,此时熔融碳酸盐燃料电池已具备发电能力,向熔融碳酸盐燃料电池的阳极通入1L/min的氢气,向熔融碳酸盐燃料电池的阴极通入3L/min的空气及1L/min的二氧化碳。
4.根据权利要求1所述的熔融碳酸盐燃料电池隔膜焙烧的在线评价方法,其特征在于,预设电压值为1.1V。
CN202010421592.XA 2020-05-18 2020-05-18 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法 Active CN111564646B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010421592.XA CN111564646B (zh) 2020-05-18 2020-05-18 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法
PCT/CN2020/121189 WO2021232664A1 (zh) 2020-05-18 2020-10-15 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法
JP2022542776A JP7358652B2 (ja) 2020-05-18 2020-10-15 溶融炭酸塩型燃料電池のセパレータ焙焼のオンライン評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010421592.XA CN111564646B (zh) 2020-05-18 2020-05-18 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法

Publications (2)

Publication Number Publication Date
CN111564646A CN111564646A (zh) 2020-08-21
CN111564646B true CN111564646B (zh) 2021-09-21

Family

ID=72074759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010421592.XA Active CN111564646B (zh) 2020-05-18 2020-05-18 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法

Country Status (3)

Country Link
JP (1) JP7358652B2 (zh)
CN (1) CN111564646B (zh)
WO (1) WO2021232664A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564646B (zh) * 2020-05-18 2021-09-21 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法
CN113782787B (zh) * 2021-09-13 2023-09-08 华能国际电力股份有限公司 一种熔融碳酸盐燃料电池进气系统的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059523A (ja) * 2001-08-14 2003-02-28 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2005174649A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池の加湿装置
CN201965211U (zh) * 2010-12-28 2011-09-07 天津出入境检验检疫局工业产品安全技术中心 质子交换膜燃料电池安全性能测试装置
CN103647093A (zh) * 2013-11-26 2014-03-19 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池的性能诊断方法
CN105702992A (zh) * 2016-03-29 2016-06-22 中国华能集团清洁能源技术研究院有限公司 一种基于熔融碳酸盐燃料电池合成氨的方法
CN106935887A (zh) * 2017-03-08 2017-07-07 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池堆的启动方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643964A (en) * 1987-06-26 1989-01-09 Hitachi Ltd Manufacture of molten carbonate fuel cell
US5021303A (en) * 1989-12-18 1991-06-04 Institute Of Gas Technology Molten carbonate fuel cell start-up process
US5399443A (en) * 1992-02-12 1995-03-21 Electric Power Research Institute, Inc. Fuel cells
JP3238764B2 (ja) 1992-11-10 2001-12-17 花王株式会社 新規尿素誘導体及びその製造方法
JPH07335235A (ja) * 1994-06-09 1995-12-22 Kawasaki Heavy Ind Ltd 溶融炭酸塩型燃料電池及びその製造方法
JP2000156235A (ja) * 1998-11-19 2000-06-06 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai 溶融炭酸塩型燃料電池集電部材の腐食抑制法
CN102306822B (zh) * 2011-09-01 2013-08-21 中国华能集团清洁能源技术研究院有限公司 一种气体送粉式熔融碳酸盐直接碳燃料电池堆
EP3694646A4 (en) 2017-10-10 2021-06-30 Metabolon, Inc. RATIONALIZED PROCEDURE FOR THE ANALYTICAL VALIDATION OF BIOCHEMICALS DETECTED WITH A NON-TARGETED MASS SPECTROMETRY PLATFORM
CN109696638A (zh) * 2018-12-18 2019-04-30 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池寿命预测方法
CN111564646B (zh) * 2020-05-18 2021-09-21 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059523A (ja) * 2001-08-14 2003-02-28 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2005174649A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池の加湿装置
CN201965211U (zh) * 2010-12-28 2011-09-07 天津出入境检验检疫局工业产品安全技术中心 质子交换膜燃料电池安全性能测试装置
CN103647093A (zh) * 2013-11-26 2014-03-19 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池的性能诊断方法
CN105702992A (zh) * 2016-03-29 2016-06-22 中国华能集团清洁能源技术研究院有限公司 一种基于熔融碳酸盐燃料电池合成氨的方法
CN106935887A (zh) * 2017-03-08 2017-07-07 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池堆的启动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熔融碳酸盐燃料电池电解质管理;王鹏杰等;《热力发电》;20160322;第42-45页 *

Also Published As

Publication number Publication date
CN111564646A (zh) 2020-08-21
JP7358652B2 (ja) 2023-10-10
JP2023509992A (ja) 2023-03-10
WO2021232664A1 (zh) 2021-11-25

Similar Documents

Publication Publication Date Title
AU2020101412A4 (en) Direct methanol fuel cell membrane electrode for improving catalyst utilization and preparation method thereof
CN111564646B (zh) 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法
CN110148759A (zh) 面向高电流密度的质子交换膜燃料电池气体扩散层的制备方法
CN109950581B (zh) 一种磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极快速活化方法
CN110911717B (zh) 一种熔融碳酸盐燃料电池堆电解质补充方法
CN105633421A (zh) 一种质子交换膜燃料电池用低铂催化层的制备方法
CN110911714A (zh) 一种质子交换膜燃料电池电堆活化方法
CN111769308A (zh) 一种质子交换膜燃料电池堆通用活化方法
CN112615033A (zh) 一种直接甲醇燃料电池催化层梯度化膜电极及其制备方法
CN112670537A (zh) 质子交换膜燃料电池金属双极板电堆的快速活化方法
CN114447380B (zh) 一种恢复质子交换膜燃料电池电堆性能的方法
CN115893405A (zh) 一种钠离子电池负极硬碳制造方法
CN108461758B (zh) 一种全钒液流电池用负极电极及其制备方法及全钒液流电池
WO2022193549A1 (zh) 一种无粘结剂的熔融碳酸盐燃料电池电解质膜及其制备方法
CN106898791B (zh) 一种经过电化学方法表面修饰的燃料电池气体扩散层及其制备方法
KR101913695B1 (ko) 바나듐 레독스 플로우 이차전지용 알칼리토금속 산화물 적용 전극 전처리 방법 및 이를 이용하여 제조된 바나듐 레독스 플로우 이차전지용 전극
CN113363511B (zh) 一种熔融碳酸盐燃料电池阴极材料及制备方法
CN110970641B (zh) 改善磷酸电解质高温膜燃料电池放电性能与运行寿命方法
JP2023522525A (ja) 溶融炭酸塩型電池の電解質添加方法
Kumada et al. Investigation of mechanical damage of SOFC caused by electrochemical oxidation using in-situ acoustic emission and electrochemical technique
CN114976480B (zh) 一种应用于锂-氧气电池的木质隔膜及其制备方法
CN110718708A (zh) 一种提高电池效率的变孔隙率电极结构液流电池
CN114221018B (zh) 一种石墨毡锂离子电池的制备方法
Zhang et al. Development and Performance Test of Molten Carbonate Fuel Cell Stack
CN112909268B (zh) 一种金属-空气电池的多孔碳空气电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant