CN201965211U - 质子交换膜燃料电池安全性能测试装置 - Google Patents

质子交换膜燃料电池安全性能测试装置 Download PDF

Info

Publication number
CN201965211U
CN201965211U CN2010206845174U CN201020684517U CN201965211U CN 201965211 U CN201965211 U CN 201965211U CN 2010206845174 U CN2010206845174 U CN 2010206845174U CN 201020684517 U CN201020684517 U CN 201020684517U CN 201965211 U CN201965211 U CN 201965211U
Authority
CN
China
Prior art keywords
exchange membrane
proton exchange
hydrogen
oxygen
membrane fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010206845174U
Other languages
English (en)
Inventor
赵黎华
贾晓川
栗建永
李翔
张颖
张江萍
施宇明
王娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Center For Safety Of Industrial Products Of Tianjin Entry-Exit Inspection & Quarantine
Original Assignee
Technical Center For Safety Of Industrial Products Of Tianjin Entry-Exit Inspection & Quarantine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Center For Safety Of Industrial Products Of Tianjin Entry-Exit Inspection & Quarantine filed Critical Technical Center For Safety Of Industrial Products Of Tianjin Entry-Exit Inspection & Quarantine
Priority to CN2010206845174U priority Critical patent/CN201965211U/zh
Application granted granted Critical
Publication of CN201965211U publication Critical patent/CN201965211U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

本实用新型涉及质子交换膜燃料电池测试装置,由质子交换膜燃料电池供气系统、增湿系统、冷却系统、电气监控系统和测试软件构成,燃料电池供气系统包括氢气管路和氧气管路;电气监控系统包括一组智能数字控制仪表、压力变送器、电磁阀和热电阻;智能数字显示控制仪可分别设置成温度控制仪TM1、TM2、TM3和压力控制仪PM1、PM2;对燃料电池进气口氢气温度、压力,氧气口温度、压力,电池的温度,输出电流,电压的输等关键参数的进行设置和改变,以观察质子交换膜燃料电池是否会发生破裂,漏气等;使质子交换膜燃料电池安全性能测试过程获得安全测试条件,提供一种操作简单、安全可靠、实用检测实验装置,对质子交换膜燃料电池的安全性能做出科学和正确评价,保障质子交换膜燃料电池的生产和使用安全。

Description

质子交换膜燃料电池安全性能测试装置
技术领域
本实用新型涉及燃料电池测试技术,特别涉及一种质子交换膜燃料电池安全性能测试装置。
背景技术
目前,处于高度发展中的燃料电池体系包括碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PEMFC)等。在这些燃料电池体系中,质子交换膜燃料电池具有最低的工作温度,其工作温度低于100℃,属于低温燃料电池。同时,还因为具有以下优点而成为电动车、不依赖空气推进的潜艇动力源、各种可移动电源和小型便携式电源的最佳候选者:
燃料电池(Fuel cell)是一种不经过燃烧直接以电化学反应方式将富氢燃料的化学能转化为电能的发电装置。其进料是极易燃烧甚至会爆炸的氢气或其它易燃气体。燃料电池作为清洁、高效、可再生的能源,其广阔的应用前景可与计算机技术相媲美,是解决资源匮乏和污染恶化这两大问题最重要的途径。各国政府以及各大公司相继投入大量人力和物力进行研究,已经取得了令人瞩目的突破。燃料电池将在世界能源构成中发挥越来越重要的作用,国际电气委员会(IEC)针对燃料电池模块安全和性能发布一系列标准,包括:“IEC 62282-2:燃料电池技术—第2部分:燃料电池模块, IEC 62282-3-2 2006 固定式燃料电池动力装置 性能试验方法”、“IEC 62282-6-1 2006微燃料电池电源系统 安全性”、“IEC 62282-3-1 2007 固定式燃料电池动力装置 安全性”、“IEC 62282-5-1 2007便携式燃料电池动力系统 安全性”。
2003年我国科技部提出对“质子交换膜燃料电池关键技术标准研究”项目给予重要技术标准研究专项支持。计划用三年时间,建立我国质子交换膜燃料电池标准体系,制定质子交换膜燃料电池术语标准、电池组和系统标准、便携式质子交换膜燃料电池标准并研究相应的检测技术。然而,我国与发达国家相比,研究工作还需进一步完善,尤其是针对各种燃料电池的安全方面,标准不够系统,缺乏对燃料电池检测的相关技术,不利于国家对燃料电池提供有效的监管。
目前,我国对燃料电池技术的研究,主要侧重于性能方面的研究,主要考虑通过质子膜的改进,如何提高能量转换比,对于安全性能的研究,虽然已经有IEC 62282-6-1 2006微燃料电池电源系统 安全性”、“IEC 62282-3-1 2007 固定式燃料电池动力装置 安全性”、“IEC 62282-5-1 2007便携式燃料电池动力系统 安全性” 等检测标准。但是,在燃料电池行业还没有生产出针对于燃料电池安全性能检测的、标准的检测仪器,因此不能对燃料电池的安全性能做出科学和正确评价,这种情况不利于保障燃料电池的生产和使用安全,燃料电池的商品化将成为必然趋势,迫切需要建立起与之相适应的检测实验室和生产用于检测实验室的燃料电池检测仪器,以便实现对进出口燃料电池进行有效检验和监管,以保证我国燃料电池行业的正常、持续发展。
发明内容
本实用新型的目的就是为针对现有技术的不足,提供燃料电池安全性能测试技术的解决方案,通过设计一种质子交换膜燃料电池(PEMFC)安全性能测试方法及装置,实现对质子交换膜燃料电池进气口氢气温度、压力,氧气口温度、压力,电池的温度,输出电流、电压等关键参数进行测试,通过对测试条件的进行设置和改变,以观察质子交换膜燃料电池是否会发生破裂,漏气等,对质子交换膜燃料电池的安全性能进行检测;
本实用新型是通过这样的技术方案实现的:一种质子交换膜燃料电池测试装置,由质子交换膜燃料电池供气系统、增湿系统、冷却系统、电气监控系统和测试软件构成,其特征在于, 所述质子交换膜燃料电池供气系统包括氢气管路和氧气管路;
氢气气源管路连接增湿系统的氢气加湿罐进气口,氢气加湿罐出气口处安装有一个气体稳压阀,气体稳压阀接入氢气管路,通过缠绕保温材料的氢气管路连接到质子交换膜燃料电池氢气进口;氢气加湿罐至质子交换膜燃料电池氢气进口之间的氢气管路中安装一个三通管件,并在三通管件上安装一个压力变送器;三通管件之后的氢气管路上还分别串接一个电磁阀和流量控制器;
氧气气源管路连接增湿系统的氧气加湿罐进气口,氧气加湿罐出气口处安装有一个气体稳压阀,气体稳压阀接入氧气管路,通过缠绕保温材料的氧气管路输送到连接到质子交换膜燃料电池氧气进口;氧气加湿罐至质子交换膜燃料电池氧气进口之间的氧气管路中安装一个三通管件,并在三通管件上安装一个压力变送器;三通管件之后的氧气管路上还分别串接一个电磁阀和流量控制器;流量控制器采用玻璃转子流量计。
所述电气监控系统包括一组智能数字控制仪表、压力变送器、电磁阀和热电阻;
所述智能数字显示控制仪可分别设置成温度控制仪TM1、TM2、TM3和压力控制仪PM1、PM2;
所述温度控制仪TM1、TM2、TM3的热电阻输入端子分别连接的热电阻PT100;
与温度控制仪TM2连接的热电阻PT100安装在被测质子交换膜燃料电池表面区域,通过热电阻PT100采集质子交换膜燃料电池工作温度;温度控制仪TM2报警点AL与质子交换膜燃料电池加热器的电源串接;控制质子交换膜燃料电池加热器电源的通断;
与温度控制仪TM1连接的热电阻PT100安装于质子交换膜燃料电池氢气进气口处;通过热电阻2采集氢气温度;温度控制仪TM1的报警点AL与氢气加热器电源串接,控制氢气加热器电源的通断; 氢气加热器置于氢气加湿罐中;
与温度控制仪TM3连接的热电阻PT100安装在质子交换膜燃料电池氧气进气口处;通过热电阻PT100采集氧气温度;温度控制仪TM3的报警点AL与氧气加热器电源串接,控制氧气加热器电源的通断;氧气加热器置于氧气加湿罐中;
压力控制仪PM1的电流信号输入端通过电缆连接的压力变送器P1接线端;压力变送器P1的压力传感器部分通过三通管件安装在氢气管路上;通过采集压力变送器反馈的4~20mA电流信号检测氢气背压压力;
压力控制仪PM2的电流信号输入端通过电缆连接的压力变送器P2接线端;压力变送器P2的压力传感器部分通过三通管件安装在氧气管路上;通过采集压力变送器反馈的4~20mA电流信号检测氧气背压压力;
所述氢气管路和氧气管路上分别安装电磁阀,由电磁阀控制燃料气体进入燃料电池的通路,电磁阀的正、反转接线端的分别连接中间继电器的常闭和常开触点的一端,中间继电器的常闭和常开触点的另一端连接到电源L端,电磁阀的中线接电源N 端 ,由中间继电器控制电磁阀的正、反转切换;中间继电器未通电时,电磁阀处于开启状态;中间继电器通电吸合时,电磁阀处于关闭状态;
压力控制仪PM1和压力控制仪PM2的报警点AL分别串联一个中间继电器的线圈并与电源构成回路; 设定AL气体压力信号上限报警值,当达到上限报警时,中间继电器吸合,电磁阀关闭,切断燃料气体气路。
本实用新型通过上述装置对燃料电池进气口氢气温度、压力,氧气口温度、压力,电池的温度,输出电流,电压的输等关键参数的进行设置和改变,以观察质子交换膜燃料电池是否会发生破裂,漏气等,对质子交换膜燃料电池的安全性能进行检测;使质子交换膜燃料电池安全性能测试过程获得安全测试条件,提供一种操作简单、安全可靠、实用检测实验装置,可对质子交换膜燃料电池的安全性能做出科学和正确评价,保障质子交换膜燃料电池的生产和使用安全,以便实现对进出口质子交换膜燃料电池进行有效检验和监管,以保证我国质子交换膜燃料电池行业的正常、持续发展。
附图说明
图1、质子交换膜燃料电池安全性能测试装置框图;
图2、电路原理图;
图3、仪表布局图。
具体实施方式
为了更清楚的理解本实用新型,结合附图和实施例详细描述本实用新型:
如图1、图2和图3所示,为了保证质子交换膜燃料电池正常运行,反应过程的工作条件必须始终保持在比较理想状态,包括运行时的电池温度、燃料气体的压力、温度,气体的流量等。
质子交换膜燃料电池运行环境温度是影响电池放电性能的最重要参数之一。
在一定范围内,提高电池运行环境温度,电池放电性能也会随之增加;
反应气体的压力和流量对质子交换膜燃料电池的放电性能也有影响。特别是氧气压力和流量的变化对质子交换膜燃料电池放电性能的影响更为强烈;
试验结果还表明:气体增湿温度发生变化,质子交换膜燃料电池的放电性能也会受到影响。特别是气体增湿温度高于质子交换膜燃料电池的环境运行温度后;
本实施例的质子交换膜燃料电池安全性能测试装置主要由以下几部分组成:供气系统、增湿系统、冷却系统、电气监控系统和测试软件。
质子交换膜燃料电池安全性能测试装置采用电气控制柜作为测试装置外壳,供气系统、增湿系统、冷却系统、电气监控系统的元件均安装在电气控制柜中,其中供气系统用于精确提供电堆运行反应所需要的气体。主要部件包括:流量控制器、气体稳压阀、分水器、氢气管路、氧气管路、管路阀件、管路接头和气体加湿罐。
电磁阀分别安装在氢气管路和氧气管路上,流量控制器采用玻璃转子流量计;分别连接到在氢气管路和氧气管路上;气体加湿罐分为氢气加湿罐和氧气加湿罐 ,分别在氢气加湿罐和氧气加湿罐的罐口处安装一个气体稳压阀,经气体稳压阀接入氢气管路和氧气管路;增湿系统用于独立对电堆反应气体进行增湿,保证燃料电池稳定运行;主要部件为增湿水罐和控制系统。
冷却系统用于控制电堆的运行温度,保证燃料电池稳定运行。冷却系统可采用风冷和水冷,可以根据电堆具体的工作要求设计和配置。
电气监控系统一组智能数字控制仪表、压力变送器、电磁阀和热电阻;
智能数字控制仪表安装在测试装置外壳前面板开孔内,仪表接线端子部分置于外壳柜体内部,智能数字控制仪表用于气体压力控制时,AL1用来设定上限报警值,AH1用来设定上限报警回差值。当上限报警时,切断电磁阀。
智能数字控制仪表用于燃料电池温度控制时,温度仪表的AL2和AH2共同设定工作温度区间。例如:在不考虑热惯性的前提下,AL2设定为40℃,AH2设定为10℃,则工作区间设定为40℃~50℃。当温度低于40℃时继电器闭合加热罐开始加热;当温度上升高于50℃(AL2+AH2)时继电器断开停止加热;温度再次降低到40℃时继电器再次闭合开始加热。
质子交换膜燃料电池安全性能测试方法包括如下步骤:
(1)为质子交换膜燃料电池(PEMFC)安全性能测试提供合适的安全测试条件,所述安全测试条件包括被测质子交换膜燃料电池工作温度和燃料气体温度;燃料气体包括氢气和氧气;
(2)单体质子交换膜燃料电池(PEMFC)的电压时间曲线测试时,其安全测试条件选择: PO2 =0.30MPa, PH2=0.28MPa,TO2 =75℃, TH2=85℃,Tcell =70℃;
其中:PO2为氧气背压压力, PH为氢气背压压力;TO2为氧气温度,TH2为氢气温度;
Tcell为质子交换膜燃料电池工作温度;
(3)单体质子交换膜燃料电池(PEMFC)的功率密度曲线测试时,其安全测试条件选择:PO2 =0.30MPa, PH2=0.28MPa,
T O2= 75℃, TH2=85℃, Tcell=70℃;
其中:PO2为氧气背压压力, PH为氢气背压压力;TO2为氧气温度,TH2为氢气温度;Tcell为质子交换膜燃料电池工作温度;
(4)用智能数字控制仪表的热电阻输入端子连接的热电阻,通过热电阻采集被测PEMFC工作温度;通过智能数字控制仪表报警点AL控制加热器来保持质子交换膜燃料电池工作温度;
(5)通过热电阻采集质子交换膜燃料电池氢气进口处的氢气温度;通过智能数字控制仪表报警点AL控制氢气加热器来保持氢气温度;氢气加热器被置于氢气加湿罐中,从氢气加湿罐输出的氢气通过管道直接输送到质子交换膜燃料电池氢气进口;氢气加热温度控制范围:15℃—90℃;
(6) 通过热电阻采集质子交换膜燃料电池氧气进口处的氧气温度;通过智能数字控制仪表报警点AL控制氧气加热器来保持氧气温度;氧气加热器被置于氧气加湿罐中,从氧气加湿罐输出的氧气通过管道直接输送到质子交换膜燃料电池氧气进口;氧气加热温度控制范围为15℃—90℃;
(7)用智能数字控制仪表的电流信号输入端连接安装在燃料气体气路中压力变送器接线端,通过采集压力变送器反馈的4~20mA电流信号检测燃料气体的背压压力;背压压力控制范围:0—50 PSIG;通过智能数字控制仪表报警点AL控制安装于燃料气体气路中的电磁阀 ,当背压压力超过50 PSIG时,令电磁阀关闭,切断燃料气体气路。
智能数字控制仪表通讯接口采用RS232转RS485模块。带有232串口的PC可以直接将转换器与232串口COM1连接,并设置好串口参数。波特率:9600 数据位:8 校验位:无 停止位:1;没有232串口的PC需要首先安装PCI串行卡及相应驱动程序,并设置好通讯口参数(同上)。程序默认通讯口为COM1,请将所用通讯口设置为COM1。

Claims (1)

1.一种质子交换膜燃料电池测试装置,由质子交换膜燃料电池供气系统、增湿系统、冷却系统、电气监控系统构成,其特征在于,所述质子交换膜燃料电池供气系统包括氢气管路和氧气管路;氢气气源管路连接增湿系统的氢气加湿罐进气口,氢气加湿罐出气口处安装有一个气体稳压阀,气体稳压阀接入氢气管路,通过缠绕保温材料的氢气管路连接到质子交换膜燃料电池氢气进口;氢气加湿罐至质子交换膜燃料电池氢气进口之间的氢气管路中安装一个三通管件,并在三通管件上安装一个压力变送器;三通管件之后的氢气管路上还分别串接一个电磁阀和流量控制器;氧气气源管路连接增湿系统的氧气加湿罐进气口,氧气加湿罐出气口处安装有一个气体稳压阀,气体稳压阀接入氧气管路,通过缠绕保温材料的氧气管路输送到连接到质子交换膜燃料电池氧气进口;氧气加湿罐至质子交换膜燃料电池氧气进口之间的氧气管路中安装一个三通管件,并在三通管件上安装一个压力变送器;三通管件之后的氧气管路上还分别串接一个电磁阀和流量控制器;流量控制器采用玻璃转子流量计;所述电气监控系统包括一组智能数字控制仪表、压力变送器、电磁阀和热电阻;所述智能数字显示控制仪包括温度控制仪TM1、TM2、TM3和压力控制仪PM1、PM2;所述温度控制仪TM1、TM2、TM3的热电阻输入端子分别连接的热电阻PT100;与温度控制仪TM2连接的热电阻PT100安装在被测质子交换膜燃料电池表面区域,通过热电阻PT100采集质子交换膜燃料电池工作温度;温度控制仪TM2报警点AL与质子交换膜燃料电池加热器的电源串接;与温度控制仪TM1连接的热电阻PT100安装于质子交换膜燃料电池氢气进气口处;温度控制仪TM1的报警点AL与氢气加热器电源串接, 氢气加热器置于氢气加湿罐中;与温度控制仪TM3连接的热电阻PT100安装在质子交换膜燃料电池氧气进气口处;温度控制仪TM3的报警点AL与氧气加热器电源串接,氧气加热器置于氧气加湿罐中;压力控制仪PM1的电流信号输入端通过电缆连接的压力变送器P1接线端;压力变送器P1的压力传感器部分通过三通管件安装在氢气管路上;压力控制仪PM2的电流信号输入端通过电缆连接的压力变送器P2接线端;压力变送器P2的压力传感器部分通过三通管件安装在氧气管路上;所述氢气管路和氧气管路上分别安装电磁阀,电磁阀的正、反转接线端的分别连接中间继电器的常闭和常开触点的一端,中间继电器的常闭和常开触点的另一端连接到电源L端,电磁阀的中线接电源N 端;压力控制仪PM1和压力控制仪PM2的报警点AL分别串联一个中间继电器的线圈并与电源构成回路。
CN2010206845174U 2010-12-28 2010-12-28 质子交换膜燃料电池安全性能测试装置 Expired - Fee Related CN201965211U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010206845174U CN201965211U (zh) 2010-12-28 2010-12-28 质子交换膜燃料电池安全性能测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010206845174U CN201965211U (zh) 2010-12-28 2010-12-28 质子交换膜燃料电池安全性能测试装置

Publications (1)

Publication Number Publication Date
CN201965211U true CN201965211U (zh) 2011-09-07

Family

ID=44527757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010206845174U Expired - Fee Related CN201965211U (zh) 2010-12-28 2010-12-28 质子交换膜燃料电池安全性能测试装置

Country Status (1)

Country Link
CN (1) CN201965211U (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062842A (zh) * 2010-12-28 2011-05-18 天津出入境检验检疫局工业产品安全技术中心 质子交换膜燃料电池安全性能测试方法及装置
CN103197253A (zh) * 2013-03-07 2013-07-10 上海电气钠硫储能技术有限公司 一种用于钠硫电池批量检测系统的采集控制器
CN104111425A (zh) * 2013-04-18 2014-10-22 同济大学 一种燃料电池冷启动分区性能测试系统及测试方法
CN106195635A (zh) * 2015-05-05 2016-12-07 中国科学院上海应用物理研究所 气体控制装置
CN108226789A (zh) * 2017-11-21 2018-06-29 东南大学 一种中低温固体氧化物燃料电池的性能测试方法
CN108896844A (zh) * 2018-05-08 2018-11-27 福建工程学院 一种可移动式整车辅件控制器测试柜
CN111564646A (zh) * 2020-05-18 2020-08-21 中国华能集团清洁能源技术研究院有限公司 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062842A (zh) * 2010-12-28 2011-05-18 天津出入境检验检疫局工业产品安全技术中心 质子交换膜燃料电池安全性能测试方法及装置
CN103197253A (zh) * 2013-03-07 2013-07-10 上海电气钠硫储能技术有限公司 一种用于钠硫电池批量检测系统的采集控制器
CN104111425A (zh) * 2013-04-18 2014-10-22 同济大学 一种燃料电池冷启动分区性能测试系统及测试方法
CN106195635A (zh) * 2015-05-05 2016-12-07 中国科学院上海应用物理研究所 气体控制装置
CN108226789A (zh) * 2017-11-21 2018-06-29 东南大学 一种中低温固体氧化物燃料电池的性能测试方法
CN108896844A (zh) * 2018-05-08 2018-11-27 福建工程学院 一种可移动式整车辅件控制器测试柜
CN108896844B (zh) * 2018-05-08 2023-08-04 福建工程学院 一种可移动式整车辅件控制器测试柜
CN111564646A (zh) * 2020-05-18 2020-08-21 中国华能集团清洁能源技术研究院有限公司 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法
CN111564646B (zh) * 2020-05-18 2021-09-21 中国华能集团清洁能源技术研究院有限公司 一种熔融碳酸盐燃料电池隔膜焙烧的在线评价方法
WO2021232664A1 (zh) * 2020-05-18 2021-11-25 中国华能集团清洁能源技术研究院有限公司 一种融碳酸盐燃料电池隔膜焙烧的在线评价方法

Similar Documents

Publication Publication Date Title
CN102062842B (zh) 质子交换膜燃料电池安全性能测试方法及装置
CN201965211U (zh) 质子交换膜燃料电池安全性能测试装置
CN106469819B (zh) 一种燃料电池参数控制系统及其工作方法
CN106450383B (zh) 一种质子交换膜燃料电池水管理系统及其工作方法
CN105702985A (zh) 一种水冷型质子交换膜燃料电池的状态监控方法及系统
CN107039667B (zh) 燃料电池堆发电系统的信号控制系统及控制方法
CN103887542A (zh) 一种固体氧化物燃料电池控制装置及控制方法
CN101477018B (zh) 一种全自动储氢材料性能测试仪及其测试方法
CN203339256U (zh) 一种1kW固体氧化物燃料电池测试系统
CN107069064B (zh) 一种基于现场制氢的燃料电池系统及方法
CN201397379Y (zh) 模块化燃料电池性能验证及测试机组
CN201820843U (zh) 高分子氢燃料电池制氢装置的自动供水系统
CN105446288A (zh) 燃料电池分布式控制系统及控制方法
CN207718598U (zh) 天然气漏气检测装置
CN201964994U (zh) 一种燃料电池用氮气压力简易检测装置
CN206116522U (zh) 一种燃料电池空气子系统测试台
CN111853753A (zh) 一种基于soec的蒸汽发生系统及其控制方法
CN202794478U (zh) 一种直接甲醇燃料电池测试系统
CN200990401Y (zh) 基于can总线的双机冗余控制系统
CN108091902A (zh) 一种质子交换膜燃料电池测控系统
CN100517405C (zh) 一种带有can接口的燃料电池发电系统氢气报警装置
CN202995506U (zh) 模具加热控制系统
CN109560309A (zh) 一种燃料电池及其自增湿水管理系统和方法
Kuo et al. Performance analysis of a stationary fuel cell thermoelectric cogeneration system
Li et al. Thermodynamic Analysis of the Performance of an Irreversible PEMFC

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110907

Termination date: 20121228