WO2021228114A1 - 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件 - Google Patents

一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件 Download PDF

Info

Publication number
WO2021228114A1
WO2021228114A1 PCT/CN2021/093220 CN2021093220W WO2021228114A1 WO 2021228114 A1 WO2021228114 A1 WO 2021228114A1 CN 2021093220 W CN2021093220 W CN 2021093220W WO 2021228114 A1 WO2021228114 A1 WO 2021228114A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
alkyl
alkoxy
aryl
Prior art date
Application number
PCT/CN2021/093220
Other languages
English (en)
French (fr)
Inventor
王悦
李志强
宋小贤
毕海
Original Assignee
季华实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 季华实验室 filed Critical 季华实验室
Priority to KR1020227011417A priority Critical patent/KR102660654B1/ko
Priority to JP2022516685A priority patent/JP7461466B2/ja
Publication of WO2021228114A1 publication Critical patent/WO2021228114A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1055Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention belongs to the technical field of organic electroluminescence, and specifically relates to a boron nitrogen compound, an organic electroluminescence composition, and an organic electroluminescence device containing the foregoing compound or composition.
  • Organic electroluminescence technology has shown great application prospects in the field of full-color display and solid-state white light lighting, and has received extensive research and attention in scientific research and industry circles.
  • Organic small molecule optoelectronic materials are widely used as high-performance electroluminescent materials because of their clear structure, easy modification, simple purification and processing.
  • traditional fluorescent dye molecules often have a high photoluminescence quantum yield, but electroluminescence devices based on these fluorescent materials are subject to the limitation of 25% internal quantum efficiency, and the external quantum efficiency of electroluminescence devices is generally lower than 5%, there is still a big gap with the efficiency of phosphorescent devices.
  • Delayed fluorescence mechanisms mainly include two types: (1) TTA (Triplet-Triplet Annihilation) mechanism; (2) TADF (Thermally Activated Delayed Fluorescence) mechanism.
  • the TTA mechanism is a mechanism that uses the fusion of two triplet excitons to generate singlet excitons to increase the rate of singlet exciton generation, but the maximum internal quantum efficiency of the device is only 40% to 62.5%.
  • the TADF mechanism uses small organic molecular materials with a small singlet-triplet energy level difference ( ⁇ E ST ).
  • the triplet excitons can be transformed into a reverse intersystem crossing (RISC) process under ambient thermal energy.
  • RISC reverse intersystem crossing
  • the mechanism of singlet excitons. Theoretically, the internal quantum efficiency of the device can reach 100%. However, its device has a large roll-off in efficiency at high brightness, which limits its application in full-color display and white light illumination.
  • TADF molecules are mainly used as guest materials and doped into wide-bandgap host materials to achieve high-efficiency thermally activated delayed fluorescence (see J.Am.Chem.Soc.2012,134,14706; Nature,2012,492,234; Mater.Horiz., 2014, 1,264).
  • TADF emission is mainly derived from the transition of intramolecular charge transfer (ICT: intramolecular charge transfer) state. Since most TADF light-emitting molecular structures adopt the form of conjugated or non-conjugated connection between the electron donor (D: donor) group and the electron acceptor (A; acceptor) group, the so-called DA structure (structure 1) , The electron donor group and the electron acceptor group are spatially separated, and this type of molecule is defined as a separated DA structure.
  • ICT intramolecular charge transfer
  • This D-A type structure is conducive to the spatial separation of the highest occupied molecular orbital (HOMO: the highest occupied molecular orbital) and the lowest unoccupied molecular orbital (LUMO: the lowest unoccupied molecular orbital) of the molecule, thereby making it easy to obtain TADF luminescence.
  • HOMO the highest occupied molecular orbital
  • LUMO the lowest unoccupied molecular orbital
  • the TADF molecular emission spectrum band shown in structure 1 is relatively high based on the structure shown in structure 1.
  • the half-width of the emission spectrum of most of these light-emitting molecules exceeds 100 nm. Although a wider spectrum is beneficial for lighting applications, it cannot meet the requirements of high color purity in the display field.
  • the main purpose of OLED light is to display, so the narrow spectrum design (that is, a smaller half-width) of TADF materials is very necessary.
  • some luminescent compounds based on tri-coordinated B boron
  • B tri-coordinated B
  • the chromophore has a core structure, and the three benzene rings coordinated with B are covalently connected to N.
  • This type of molecule is called BN complex (structure 2), that is, the compound is formed by the coordination of aromatic amine organic molecules with B The luminescent compound.
  • the frontier molecular orbitals of such three-coordinate B complexes have a characteristic, that is, the highest occupied molecular orbital (HOMO: the highest occupied molecular orbital) and the lowest unoccupied molecular orbital (LUMO: the lowest unoccupied molecular orbital) are respectively populated alternately (the so-called The resonance structure of) is distributed in the coordination system, B is on the LUMO orbital, and N is on the HOMO orbital.
  • HOMO the highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • This type of BN complex has the unique electronic structure (resonance structure) of the alternating arrangement of HOMO and LUMO so that this type of material has excited state charge transfer and TADF luminescence properties (this type of molecule is defined as a resonance type DA molecule), and it is very important
  • the emission spectrum band is very narrow, and the half-peak width of the emission spectrum can reach about 20nm.
  • high-performance blue or sky blue the peak of the luminescence light spectrum is between 450-490nm
  • organic electroluminescent devices can be prepared, and the electroluminescence spectrum is very narrow (the half-value width is about 25nm).
  • the present disclosure provides a method that emits light in the green to red light region and has a narrow emission spectrum.
  • Organic compounds, compositions and organic electroluminescent devices with spectral TADF luminescence characteristics are provided.
  • the present disclosure provides a boron nitrogen compound, which is an organic compound represented by general formula (I):
  • E represents a single bond
  • m and n independently represent the number of single bonds
  • m and n are each independently 0 or 1;
  • R and R 0 are independently H, D (deuterium), C 3 -C 6 cycloalkyl, C 6 aryl, C 1 ⁇ C 12 alkyl, or C 1 ⁇ C 12 alkoxy;
  • R 11 , R 22 , R 33 and R 44 are independently H, D (deuterium), fluorine, CN, C 1 ⁇ C 20 alkyl, C 1 ⁇ C 20 alkoxy, C 3 -C 10 cycloalkyl , C 6 ⁇ C 14 aryl group, substituted with one or more R a C 6 ⁇ C 14 aryl group, a 5- to 18- membered heteroaryl, substituted with one or more R a 5- to 18- membered heteroaryl group, diphenylamino group, or with one or more substituents R a diphenyl group; or R 11, R 22 connected thereto together form a benzene ring fused bicyclic, tricyclic or tetracyclic; or R 33 , R 44 and the connected benzene ring together form a fused bicyclic, tricyclic or tetracyclic ring;
  • Each occurrence of R a is independently D (deuterium), fluorine, CN, C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy, C 3 -C 10 cycloalkyl, C 6 ⁇ C 14 aromatic Group, C 6 ⁇ C 14 aryl group substituted by one or more R b , 5- to 18-membered heteroaryl group, 5- to 18-membered heteroaryl group substituted by one or more R b , diphenylamine Group, or diphenylamino group substituted by one or more R b;
  • R b is independently D (deuterium), fluorine, CN, C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy, C 3 -C 10 cycloalkyl, C 6 ⁇ C 14 aromatic Group, C 6 ⁇ C 14 aryl group substituted by one or more R c , 5- to 18-membered heteroaryl group, 5- to 18-membered heteroaryl group substituted by one or more R c , diphenylamine Group, or diphenylamino group substituted by one or more R c;
  • R c is independently D (deuterium), fluorine, CN, C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy, C 3 -C 10 cycloalkyl, C 6 ⁇ C 14 aromatic Group, 5- to 18-membered heteroaryl group, or diphenylamino group;
  • the alkyl group, alkoxy group, cycloalkyl group, aryl group, heteroaryl group is optionally substituted by one or more fluorine, -CN, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 fluoroalkyl, C 2 -C 6 alkenyl, C 3 -C 10 cycloalkyl, C 6 -C 14 aryl, or 5- to 18-membered heteroaryl substitution.
  • the present disclosure provides an organic electroluminescent composition containing the above-mentioned boron nitrogen compound. Furthermore, the present disclosure also provides an organic electroluminescent composition, which comprises the above-mentioned boron nitrogen compound and a host material.
  • the present disclosure provides an organic electroluminescent device, which comprises the above-mentioned boron nitrogen compound or organic electroluminescent composition.
  • Figure 1 is a schematic diagram of the device structure used in Effect Example 2, in which 1 is an ITO anode, 2 is a hole injection layer, 3 is a first hole transport layer, 4 is a second hole transport layer, and 5 is a light-emitting layer , 6 is the electron transport layer, 7 is the electron injection layer, and 8 is the metal cathode.
  • Figure 2 shows the photoluminescence spectrum of the compound D5-7 doped film, where the composition of the doped film is H1-1 (99 wt%): D5-7 (1 wt%).
  • Fig. 3 is the electroluminescence spectrum of the compound D5-7 doped film in Effect Example 2, wherein the composition of the doped film is H1-48 (99wt%): D5-7 (1wt%).
  • Figure 4 shows the temperature-varying time-resolved spectrum of the compound D5-7 doped film, where the composition of the doped film is H1-48 (99 wt%): D5-7 (1 wt%).
  • Fig. 5 is a graph showing the variation of external quantum efficiency with brightness of a compound D5-7 doped device, in which the light-emitting layer doped weight percentage composition is H1-48 (99 wt%): D5-7 (1 wt%).
  • part refers to specific fragments or functional groups in a molecule.
  • the chemical moiety is generally considered to be a chemical entity embedded or attached to a molecule.
  • this disclosure adopts standard nomenclature and standard laboratory procedures and techniques for analytical chemistry, synthetic organic chemistry, and optics. In some cases, standard techniques are used for chemical synthesis, chemical analysis, and performance testing of light-emitting devices. Unless otherwise specified, the present disclosure adopts traditional methods of mass spectrometry and elemental analysis, and each step and condition can refer to the conventional operating steps and conditions in the art.
  • the compounds of the present disclosure may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as deuterium (2H). All changes in the isotopic composition of the compounds of the present disclosure, whether radioactive or not, are included in the scope of the present invention.
  • the reagents and raw materials used in the present disclosure are commercially available or can be prepared by conventional chemical synthesis methods.
  • optionally fused with a certain ring means that it is fused with a certain ring or not fused with a certain ring.
  • optionally substituted refers to being unsubstituted or having at least one non-hydrogen substituent that does not destroy the luminescence properties possessed by the unsubstituted analog.
  • the number of “substitutions” can be one or more; when there are more than one, it can be 2, 3 or 4. In addition, when the number of the "substitution” is more than one, the “substitution” may be the same or different.
  • substitution can be any position unless otherwise specified.
  • the hydrogen or H is a hydrogen element in its natural abundance, that is, a mixture of the isotopes protium, deuterium, and tritium, in which the abundance of protium is 99.98%.
  • the deuterium is D or 2 H, which is also called deuterium.
  • the abundance of deuterium at the deuterium substitution site is greater than 95%.
  • groups and their substituents can be selected by those skilled in the art to provide stable structural parts and compounds.
  • substituent When a substituent is described by a conventional chemical formula written from left to right, the substituent also includes the chemically equivalent substituent obtained when the structural formula is written from right to left.
  • -CH 2 O- is equivalent to -OCH 2 -.
  • halogen or halo as used herein refers to fluorine, chlorine, bromine or iodine. In one embodiment, the halogen or halo is preferably fluorine or fluoro.
  • alkyl is meant to include branched and straight-chain ones having the specified number of carbon atoms.
  • Saturated aliphatic hydrocarbon group for example, the C 1 to C 20 alkyl group includes a straight-chain or branched-chain alkyl group having 1-20 carbon atoms.
  • C 1 -C 6 alkyl it includes groups having 1, 2, 3, 4, 5, or 6 carbon atoms in a linear or branched structure.
  • the C 1 to C 6 alkyl groups are each independently a methyl, ethyl, propyl, butyl, pentyl or hexyl group; wherein, propyl is a C 3 alkyl group (including the same group).
  • Isomers such as n-propyl or isopropyl
  • butyl is C 4 alkyl (including isomers, such as n-butyl, sec-butyl, isobutyl or tert-butyl)
  • pentyl is C 5 alkyl (including isomers, such as n-pentyl, 1-methyl-butyl, 1-ethyl-propyl, 2-methyl-1-butyl, 3-methyl-1- butyl, isopentyl, tert-pentyl or neopentyl); for the hexyl group C 6 alkyl group (including isomers, e.g. n-hexyl or isohexyl).
  • Substituted alkyl refers to an alkyl group substituted with one or more substituents, preferably 1 to 4 substituents, at any available point of attachment.
  • haloalkyl refers to an alkyl group with one or more halogen substituents.
  • halomethyl includes, but is not limited to, -CH 2 Br, -CH 2 I, -CH 2 Cl, -CH 2 F,- Groups such as CHF 2 and -CF 3.
  • alkoxy refers to an alkyl group as defined above connected via an oxygen bond (-O-), respectively.
  • substituted alkoxy refers to a substituted alkyl group as defined above attached via an oxygen bond.
  • Cn-m aryl refers to a monocyclic or polycyclic aromatic group having n to m ring carbon atoms (the ring atoms are only Carbon atom), which has at least one carbocyclic ring with a conjugated ⁇ -electron system.
  • aryl unit examples include phenyl, naphthyl, indenyl, azulenyl, fluorenyl, phenanthryl, or anthracenyl.
  • the aryl group is preferably a C 6-14 aryl group, such as phenyl and naphthyl, and more preferably phenyl.
  • the term "nm-membered heteroaryl group” means that the ring atom contains one or more (for example, 1, 2, 3, and 4) selected from nitrogen, oxygen, and sulfur.
  • the heteroatomic aromatic group has n to m ring atoms, and the heteroaryl group is a monocyclic, bicyclic, tricyclic or tetracyclic ring system, wherein at least one ring is an aromatic ring.
  • Heteroaryl groups within the scope of this definition include but are not limited to: acridinyl, carbazolyl, cinnolinyl, quinoxalinyl, pyrazolyl, indolyl, benzotriazolyl, furyl, thienyl , Benzothienyl, benzofuranyl, quinolinyl, isoquinolinyl, oxazolyl, isoxazolyl, pyrazinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrahydroquinoline , Imidazolyl, triazolyl, tetrazolyl, thiazolyl, isothiazolyl, furazanyl, thiadiazolyl, oxadiazolyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl , Pur
  • furyl, thienyl, pyrrolyl, imidazolyl, thiazolyl, pyrazolyl, oxazolyl, and isoxazolyl can be cited.
  • fused means that two or more carbocyclic or heterocyclic rings form a polycyclic ring in a manner of sharing ring edges.
  • C n -C m cycloalkyl refers to a monocyclic or polycyclic alkyl group having n to m carbon atoms, such as C 3 -C 10 cycloalkyl and C 3 -C 6 cycloalkyl. Examples include adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and bicycloheptyl. In one embodiment, the C 3 -C 10 cycloalkyl group is preferably an adamantyl group or a cyclohexyl group.
  • the present disclosure provides a method for designing and synthesizing organic light-emitting molecules with narrow emission spectrum characteristics at the emission peak position between 520-700nm. 1) and HOMO and LUMO alternate layout electronic structure (resonant structure, as shown in structure 2) is different.
  • the specific molecular design adopted in this disclosure is as follows:
  • Structure 3 Representative model molecular structure.
  • Structure 3 presents the four representative molecular design model structures provided by the present disclosure.
  • the overall method and principle of molecular design provided are: introducing an additional aroma on the functional framework with the characteristics of the electronic structure (resonance structure) alternately arranged by HOMO and LUMO Amine or carbazole derivative electron donor group, the N (nitrogen) atom on the introduced aromatic amine or carbazole derivative is connected to a C (carbon) atom on the resonance structure group through a single bond, and the aromatic is added The amine or carbazole derivative is in an ortho-substituted state with respect to the aromatic amine or carbazole derivative in the resonance structure.
  • the HOMO orbital of the molecule provided in the present disclosure is composed of the HOMO orbital of the resonance structure part and the additional aromatic amine or carbazole.
  • the HOMO orbitals of the azole derivative donors are combined, and the LUMO orbitals of the molecules provided in the present disclosure are the same as the LUMO orbitals of the resonance structure part of the molecule.
  • the organic light-emitting molecules provided by the present disclosure are spatially separated from the molecular structure to the front-line orbital electronic structure and the existing electron donor groups and electron acceptor groups in a DA type structure and an alternating arrangement of HOMO and LUMO electronic structures (resonance Structure) are all different.
  • the advantage of the organic light-emitting molecule design method provided by the present disclosure is that it combines the advantages of the separated D-A structure and the resonance D-A molecule, and overcomes the disadvantages of the two types of molecules. Since the additional aromatic amine or carbazole derivative donor and the aromatic amine or carbazole derivative on the tri-coordinate B take the form of ortho position substitution, the luminescent molecule provided in the present disclosure has strong rigidity and distortion due to the steric hindrance effect of the substituents Structural characteristics (that is, the additional aromatic amine or carbazole derivative donor group has a large twist angle above 50 planes relative to the plane of the tricoordinate B).
  • This structural characteristic determines the high fluorescence of this type of luminescent molecule Quantum efficiency and strong intramolecular charge transfer characteristics, and strong intramolecular charge transfer characteristics are conducive to the realization of long-wavelength emission.
  • organic light-emitting materials with a narrow emission spectrum with an emission peak wavelength from 520 nm to 700 nm can be obtained, for example, the half-width of the emission spectrum is less than or equal to 60 nm.
  • the technical methods provided in the present disclosure can effectively design and synthesize organic molecules that emit light from the green region to the red region and have narrow-spectrum TADF luminescence characteristics.
  • This organic molecule and the combination of some materials can be used as luminescent materials to prepare organic electroluminescence.
  • the light-emitting layer of the light-emitting device, the organic electroluminescent device prepared thereon has the advantages of narrow emission spectrum, high efficiency, good device stability and the like.
  • the present disclosure provides a boron nitrogen compound, which is a compound represented by general formula (I):
  • E represents a single bond
  • m and n independently represent the number of single bonds
  • m and n are each independently 0 or 1;
  • R and R 0 are independently H, D (deuterium), C 3 -C 6 cycloalkyl, C 6 aryl, C 1 ⁇ C 12 alkyl, or C 1 ⁇ C 12 alkoxy;
  • R 11 , R 22 , R 33 and R 44 are independently H, D (deuterium), fluorine, CN, C 1 ⁇ C 20 alkyl, C 1 ⁇ C 20 alkoxy, C 3 -C 10 cycloalkyl , C 6 ⁇ C 14 aryl group, substituted with one or more R a C 6 ⁇ C 14 aryl group, a 5- to 18- membered heteroaryl, substituted with one or more R a 5- to 18- membered heteroaryl group, diphenylamino group, or with one or more substituents R a diphenyl group; or R 11, R 22 connected thereto together form a benzene ring fused bicyclic, tricyclic or tetracyclic; or R 33 , R 44 and the connected benzene ring together form a fused bicyclic, tricyclic or tetracyclic ring;
  • Each occurrence of R a is independently D (deuterium), fluorine, CN, C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy, C 3 -C 10 cycloalkyl, C 6 ⁇ C 14 aromatic Group, C 6 ⁇ C 14 aryl group substituted by one or more R b , 5- to 18-membered heteroaryl group, 5- to 18-membered heteroaryl group substituted by one or more R b , diphenylamine Group, or diphenylamino group substituted by one or more R b;
  • R b is independently D (deuterium), fluorine, CN, C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy, C 3 -C 10 cycloalkyl, C 6 ⁇ C 14 aromatic Group, C 6 ⁇ C 14 aryl group substituted by one or more R c , 5- to 18-membered heteroaryl group, 5- to 18-membered heteroaryl group substituted by one or more R c , diphenylamine Group, or diphenylamino group substituted by one or more R c;
  • R c is independently D (deuterium), fluorine, CN, C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy, C 3 -C 10 cycloalkyl, C 6 ⁇ C 14 aromatic Group, 5- to 18-membered heteroaryl group, or diphenylamino group;
  • the alkyl group, alkoxy group, cycloalkyl group, aryl group, heteroaryl group is optionally substituted by one or more fluorine, -CN, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 fluoroalkyl, C 2 -C 6 alkenyl, C 3 -C 10 cycloalkyl, C 6 -C 14 aryl, or 5- to 18-membered heteroaryl substitution.
  • n is 0, which means that the a ring and the c ring are not directly bonded, and the a ring and the c ring and the connected N form a diphenylamino group; or the b ring and the e ring are not directly bonded, the b ring and the e ring It forms a diphenylamino group together with the N connected to it.
  • n 1 means that the a ring and the c ring are connected by a single bond, and the a ring and the c ring and the connected N together form a carbazole group; or the b ring and the e ring are connected by a single bond, and the b ring and the e ring are connected to it The N together form a carbazole group.
  • m is 0, which means that the g ring and the f ring are not directly bonded, and the g ring and the f ring together with the connected N form a diphenylamino group.
  • m is 1, which means that the g ring and the f ring are connected by a single bond, and the g ring and the f ring and the connected N together form a carbazolyl group.
  • the emission peak of the emission spectrum of the compound of formula (I) is located at 520-700 nm, and the half-width of the emission spectrum is less than or equal to 60 nm.
  • the luminescence peak position and half-width include all values, ranges, and sub-ranges therebetween.
  • the half-width can be 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25nm.
  • the half-width is preferably 30-55 nm.
  • the frontier molecular orbital of the compound of formula (I) is as shown in structure 3.
  • the frontier molecular orbital of the compound of formula (I) is characterized in that HOMO and LUMO are distributed in an alternating manner on the ring atoms of ring a, ring b, ring c, ring d, and ring e of formula I and simultaneously with three of them.
  • HOMO is also distributed on the ring atoms of ring f and ring g on one B and two N connected by two rings, and HOMO is distributed on three N in formula I.
  • R and R 0 are H;
  • R 11 , R 22 , R 33 and R 44 are H, F, CF 3 , C 1 ⁇ C 20 alkyl, C 1 ⁇ C 20 alkoxy group, a cyclohexyl group, an adamantyl group, a phenyl group, a naphthyl group, substituted with one or more R a substituted phenyl group, carbazolyl group, substituted with one or more R a carbazolyl, diphenylamine group, or with one or more substituents R a diphenyl group, said R a is selected from C 1 ⁇ C 6 alkyl, C 1 -C 6 fluoroalkyl group and a C 1 ⁇ C 6 alkoxy group.
  • R and R 0 are H; at least one of R 11 and R 22 is H; at least one of R 33 and R 44 is H; R 11 , R 22 , R 33 and R 44 is selected from H, fluoro, CF 3, C 1 ⁇ C 12 alkyl group, C 1 ⁇ C 12 alkoxy group, a cyclohexyl group, adamantyl, phenyl, substituted with one or more R a phenyl , carbazolyl, substituted with one or more R a substituted carbazolyl group, diphenylamino group, and with one or more substituents R a diphenyl group, said R a is selected from C 1 ⁇ C 6 alkyl, C 1 -C 6 fluoroalkyl and C 1 -C 6 alkoxy.
  • the compound of formula (I) can be further specifically decomposed into the following six types: (I-1), (I-2), (I-3), (I-4), (I-5 ) And (I-6):
  • R and R 0 are independently H, D (deuterium), C 3 -C 6 cycloalkyl, C 6 aryl, C 1 ⁇ C 12 alkyl, or C 1 ⁇ C 12 alkoxy;
  • R 1 , R 2 , R 5 and R 6 is independently H, D (deuterium), fluorine, CN, C 1 ⁇ C 20 alkyl, C 1 ⁇ C 20 alkoxy, C 3 -C 10 cycloalkyl group, C 6 ⁇ C 14 aryl group, substituted with one or more R a C 6 ⁇ C 14 aryl group, a 5- to 18- membered heteroaryl, substituted with one or more R a of 5 - to 18-membered heteroaryl group, diphenylamino group, or with one or more R a substituted diphenyl amine;
  • R 1 , R 2 and the benzene ring to which they are connected together form a fused bicyclic, tricyclic or tetracyclic ring;
  • R 5 , R 6 and the benzene ring to which they are connected together form a fused bicyclic, tricyclic or tetracyclic ring;
  • Each occurrence of R a is independently D (deuterium), fluorine, CN, C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy, C 3 -C 10 cycloalkyl, C 6 ⁇ C 14 aromatic Group, C 6 ⁇ C 14 aryl group substituted by one or more R b , 5- to 18-membered heteroaryl group, 5- to 18-membered heteroaryl group substituted by one or more R b , diphenylamine Group, or diphenylamino group substituted by one or more R b;
  • R b is independently D (deuterium), fluorine, CN, C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy, C 3 -C 10 cycloalkyl, C 6 ⁇ C 14 aromatic Group, C 6 ⁇ C 14 aryl group substituted by one or more R c , 5- to 18-membered heteroaryl group, 5- to 18-membered heteroaryl group substituted by one or more R c , diphenylamine Group, or diphenylamino group substituted by one or more R c;
  • R c is independently D (deuterium), fluorine, CN, C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy, C 3 -C 10 cycloalkyl, C 6 ⁇ C 14 aromatic Group, 5- to 18-membered heteroaryl group, or diphenylamino group;
  • the alkyl group, alkoxy group, cycloalkyl group, aryl group, heteroaryl group is optionally substituted by one or more fluorine, -CN, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 fluoroalkyl, C 2 -C 6 alkenyl, C 3 -C 10 cycloalkyl, C 6 -C 14 aryl, or 5- to 18-membered heteroaryl substitution.
  • R 1 and R 2 in formulas (I-1), (I-2), (I-3), (I-4), (I-5) and (I-6) are the same , At least one of R 5 and R 6 is different from R 1.
  • R and R 0 are independently Is H or D (deuterium), at least one of R 1 and R 2 appearing in a pair is hydrogen, and at least one of R 5 and R 6 appearing in a pair is hydrogen.
  • R, R 0 , R 1 , and R 5 are all hydrogen.
  • the groups "appearing in pairs" here refer to two groups attached to the same aromatic ring (especially the same benzene ring).
  • R 1 , R 2 , R 5 and R 6 is H, F, CF 3, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxy group, a cyclohexyl group, an adamantyl group, a phenyl group, a naphthyl group, substituted with one or more R a a substituted phenyl group, carbazolyl group, substituted with one or more R a substituted carbazolyl group, diphenylamino group, or with one or more substituents R a diphenyl group, said R a is selected from C 1 ⁇ C 6 alkyl groups, C 1 -C 6 fluoroalkyl groups and C 1 -C 6 alkoxy groups.
  • R and R 0 are H;
  • R 1 , R 2 , R 5 and R 6 are H, F, CF 3 , C 1 ⁇ C 20 alkyl, C 1 ⁇ C 20 alkoxy, cyclohexyl, adamantyl, phenyl, naphthyl , substituted with one or more R a phenyl group, carbazolyl group, substituted with one or more R a carbazolyl group, diphenylamino group, or with one or more substituents R a diphenyl group, a R a is selected from C 1 ⁇ C 6 alkyl, C 1 -C 6 fluoroalkyl group and a C 1 ⁇ C 6 alkoxy group.
  • R and R 0 are H; at least one of R 1 and R 2 is H; at least one of R 5 and R 6 is H; R 1 , R 2 , R 5 and R 6 are selected from H, CF 3 , C 1 ⁇ C 12 alkyl, C 1 ⁇ C 12 alkoxy group, a cyclohexyl group, an adamantyl group, a phenyl group, substituted with one or more R a phenyl group, carbazolyl group, substituted with one or more R a carbazolyl, diphenylamine groups, and with one or more substituents R a diphenyl group, said R a is selected from C 1 ⁇ C 6 alkyl, C 1 -C 6 fluoroalkyl group and a C 1 ⁇ C 6 alkoxy group.
  • the compound represented by formula (I-1) is any one of the following compounds:
  • the compound represented by formula (I) is preferably any one of the following compounds:
  • the compound of formula (I) described in the present disclosure can be prepared according to conventional chemical synthesis methods in the art, and its steps and conditions can refer to the steps and conditions of similar reactions in the art.
  • the present disclosure provides a method for preparing compounds represented by formula (I-1), (I-2), (I-3), (I-4), (I-5) and (I-6) , which can include any of the following schemes:
  • R, R 0 , R 1 , R 2 , R 5 and R 6 are as defined above.
  • the above method can produce deuterated formula (I-1), (I-2) , (I-3), (I-4), (I-5) and (I-6). .
  • the present disclosure provides a boron-nitrogen compound represented by formula (I), which can be used as a functional material for the light-emitting layer, electron injection layer, electron transport layer, hole transport layer, and air-emitting layer of organic electroluminescent devices. In at least one of the hole injection layers.
  • the present disclosure also provides an organic electroluminescent device comprising an anode, a light-emitting layer, an optional hole injection layer, an optional hole transport layer, an optional electron transport layer, an optional electron injection layer, and a cathode , Wherein at least one of the light-emitting layer, the electron injection layer, the electron transport layer, the hole transport layer, and the hole injection layer contains the boron nitrogen compound as described above.
  • the organic electroluminescent device of the present disclosure may further include an optional hole blocking layer, an optional electron blocking layer, an optional capping layer, and the like. In one embodiment, the organic electroluminescent device has the structure shown in FIG.
  • 1 is an ITO anode
  • 2 is a hole injection layer
  • 3 is a first hole transport layer
  • 4 is a second hole
  • 5 is a light-emitting layer
  • 6 is an electron transport layer
  • 7 is an electron injection layer
  • 8 is a metal cathode.
  • the boron nitrogen compound represented by formula I is used to prepare the light-emitting layer in an organic electroluminescent device.
  • the formula (I-1), (I-2), (I-3), (I-4), (I-5) or (I-6) The boron nitrogen compound shown is used to prepare the light-emitting layer in an organic electroluminescence device.
  • the formulae D1-1 to D1-37, D2-1 to D2-96, D3-1 to D3-75, D4-1 to D4-64, D5-1 The boron nitrogen compounds shown in D5-27 or D6-1 to D6-57 are used to prepare the light-emitting layer in the organic electroluminescence device.
  • the organic electroluminescent device further includes a substrate, and an anode layer, an organic light-emitting functional layer, and a cathode layer sequentially formed on the substrate;
  • the organic light-emitting functional layer includes
  • the light-emitting layer containing the boron nitrogen compound as described above may also include any one or a combination of a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer, and an electron injection layer .
  • the present disclosure provides an organic electroluminescent composition, which includes a boron nitrogen compound (as a dopant material) as shown in formula (I) and a host material; the host material has electron and/or hole transport capabilities And its triplet excited state energy is higher than or close to the triplet excited state energy of the doped material.
  • a boron nitrogen compound as shown in formula (I)
  • the host material has electron and/or hole transport capabilities
  • its triplet excited state energy is higher than or close to the triplet excited state energy of the doped material.
  • the host material in the organic electroluminescent composition may be carbazole derivatives and/or carbolines represented by formulas (H-1) to (H-6) derivative.
  • the organic electroluminescence composition preferably contains 0.3-30.0wt% (weight percentage) of any compound represented by formula (I) as a dopant material, and the remaining 99.7-70.0wt% of the composition is of formula (H -1)
  • the host material contains two compounds of formula (H-1) to (H-6), and the weight ratio of the two compounds is 1:5 to 5:1.
  • X 1 , Y 1 and Z 1 are CH or N, and at most one of X 1 , Y 1 and Z 1 is N.
  • R 1H and R 2H are independently any of the following groups:
  • X 1 , Y 1 and Z 1 are CH or N, and at most one of X 1 , Y 1 and Z 1 is N.
  • R aH and R bH are independently H, C 1 -C 20 alkyl, C 1 -C 20 alkoxy, C 6 -C 20 aryl, C 1 -C 20 alkyl substituted C 6 -C 20 Aryl or C 6 -C 20 aryl substituted with C 1 -C 20 alkoxy.
  • the host material in the organic electroluminescent composition is 1-2 of compounds H1-1 to H1-427; in the organic electroluminescent composition, Containing 0.3-30.0wt% (weight percentage) of any compound represented by formula (I), and the remaining 99.7-70.0wt% ingredients are 1-2 compounds among compounds H1-1 to H1-427.
  • the organic electroluminescent composition contains two compounds of formulas H1-1 to H1-427 as host materials, and the weight ratio of the two compounds is 1:5 to 5: 1.
  • the dopant material in the organic electroluminescent composition is any compound represented by formula (I) (content is 0.3wt%-30.0wt%); the host material ( The content is 99.7wt-70.0wt%) is composed of any one of 1,3,5-triazine derivatives shown in formulas Trz1-A, Trz2-A and Trz3-A and formulas H-1 to H-6 Shows the composition of any one of the compounds.
  • the 1,3,5-triazine derivative represented by Trz1-A, Trz2-A or Trz3-A in the host material is combined with H-1, H-2, H-3, H- 4.
  • the weight ratio between the compounds represented by H-5 or H-6 is 1:5 to 5:1.
  • R 1a , R 1b , R 2a , R 2b , R 3a and R 3b are independently R Tz , and the rest are the same or different independently of hydrogen, deuterium, C 1 -C 8 alkyl, C 1 -C 8 alkoxy, C 6 -C 18 aryl, C 1 -C 8 alkyl substituted C 6 -C 18 aryl or C 1 -C 8 alkoxy substituted C 6 -C 18 Aryl;
  • R Tz is any one of the substituent groups shown in the following formula:
  • the dopant material in the organic electroluminescent composition is any compound represented by formula (I) (content is 0.3wt%-30.0wt%); the host material ( The content is 99.7wt-70.0wt%) is composed of any one of the 1,3,5-triazine derivatives shown in formulas TRZ-1 to TRZ-38 and the carbazole or carbazole shown in formulas H1-1 to H1-427 Any one of morpholine derivatives is constituted.
  • the weight ratio between the 1,3,5-triazine derivative and the carbazole or carboline derivative in the host material is 1:5 to 5:1.
  • the present disclosure provides an application of the organic electroluminescent composition as described above as an organic electroluminescent material.
  • the organic electroluminescent composition is used to prepare the light-emitting layer in an organic electroluminescent device.
  • the present disclosure also provides an organic electroluminescent device comprising an anode, a light-emitting layer, an optional hole injection layer, an optional hole transport layer, an optional electron transport layer, an optional electron injection layer, and a cathode , Wherein at least one of the light-emitting layer, the electron injection layer, the electron transport layer, the hole transport layer, and the hole injection layer comprises the organic electroluminescent composition as described above.
  • the light-emitting layer of the organic electroluminescent device comprises an organic electroluminescent composition as described above.
  • the organic electroluminescent composition is a light-emitting layer, and the light-emitting principle of the light-emitting layer is based on the energy transfer from the host material to any compound represented by formula (I) or the support of the light-emitting material itself. Flow sub-capture.
  • the organic electroluminescent composition is a light-emitting layer; the host material in the organic electroluminescent composition may be as shown in formulas (H-1) to (H-6) Carbazole derivatives and/or carboline derivatives shown.
  • the organic electroluminescent composition contains 0.3-30.0% by weight of any compound represented by formula (I), and the remaining 99.7-70.0% by weight of components are of formula (H-1) To (H-6) 1-2 kinds of compounds constitute the main body.
  • the host contains two compounds of formula (H-1) to (H-6), the weight ratio of the two compounds is 1:5 to 5:1.
  • the organic electroluminescent composition is a light-emitting layer; the host material in the composition is 1-2 of compounds H1-1 to H1-427.
  • the organic electroluminescent composition contains 0.3-30.0% by weight of any compound represented by formula (I), and the remaining 99.7-70.0% by weight components are compounds H1-1 to 1-2 compounds in H1-427.
  • the weight ratio of the two compounds is 1:5 to 5:1.
  • the organic electroluminescent composition is a light-emitting layer;
  • the doping material in the organic electroluminescent composition is any compound represented by formula (I) ( The content is 0.3wt-30.0wt%);
  • the host material (the content is 99.7wt-70.0wt%) is selected from any 1,3,5-triazine derivatives shown in the formula Trz1-A, Trz2-A and Trz3-A
  • One is composed of any one of the compounds represented by formulas H-1 to H-6.
  • the 1,3,5-triazine derivatives represented by Trz1-A, Trz2-A or Trz3-A are compatible with H-1, H-2, H-3, H-4, H
  • the weight ratio between the compounds shown in -5 or H-6 is 1:5 to 5:1.
  • the organic electroluminescent composition is a light-emitting layer;
  • the doping material in the organic electroluminescent composition is any compound represented by formula (I) ( The content is 0.3wt-30.0wt%);
  • the host material (the content is 99.7wt-70.0wt%) is composed of any one of the 1,3,5-triazine derivatives shown in the formula TRZ-1 to TRZ-38 and the formula Any one of the carbazole or carboline derivatives represented by H1-1 to H1-427 is constituted.
  • the weight ratio between the 1,3,5-triazine derivative and the carbazole or carboline derivative is 1:5 to 5:1.
  • the organic electroluminescent composition is a light-emitting layer;
  • the doping material in the organic electroluminescent composition is formula D1-1 to D1-37, D2-1 To D2-96, D3-1 to D3-75, D4-1 to D4-64, D5-1 to D5-27 or D6-1 to D6-57 any one of the compounds (content is 0.3wt-30.0 wt%);
  • the host material content 99.7wt-70.0wt%) is composed of any one of 1,3,5-triazine derivatives shown in formulas TRZ-1 to TRZ-38 and formulas H1-1 to H1- Any one of carbazole or carboline derivatives shown in 427 is constituted.
  • the weight ratio between the 1,3,5-triazine derivative and the carbazole or carboline derivative is 1:5 to 5:1.
  • the organic electroluminescent device further includes a substrate, and an anode layer, an organic light-emitting functional layer, and a cathode layer sequentially formed on the substrate;
  • the organic light-emitting functional layer includes
  • the light-emitting layer containing the organic electroluminescent composition as described above may further include any one of a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer, and an electron injection layer, or Multiple combinations.
  • the present disclosure provides an application of the organic electroluminescence device in an organic electroluminescence display or an organic electroluminescence illumination light source.
  • the present disclosure provides a molecular structure design method for designing and synthesizing organic light-emitting materials, which has the advantage of combining the advantages of the separated D-A structure and the resonance D-A molecule, and overcoming the shortcomings of the two types of molecules. Based on this molecular design method, it can effectively overcome the defect of the existing green and red organic electroluminescent materials (referring to the organic light-emitting materials with the emission peak position above 520nm) that the emission spectrum is too wide, and provides a green light to red light.
  • a technical method for designing and synthesizing organic molecules with narrow-spectrum luminescence characteristics and further provides an organic compound, composition and composition that emit light in the green to red region as shown in formula (I) and have narrow-spectrum luminescence characteristics.
  • the organic molecules provided by the present disclosure and the combination with some materials can be used as light-emitting materials to prepare the light-emitting layer of an organic electroluminescent device.
  • the organic electroluminescent device prepared here has the advantages of narrow emission spectrum and high efficiency.
  • Mass Spectra: MS Molecular mass spectrometry data with a relative molecular weight below 1000 is measured by Thermo Fisher’s ITQ1100 ion trap gas chromatography-mass spectrometer, and molecular mass spectrometry data with a relative molecular weight above 1000 is determined by Bruker’s Autoflex Speed matrix. Measured by the auxiliary group of laser analysis time-of-flight mass spectrometer. The machine used for elemental analysis of the final product is Flash EA1112 from Elemental Analysis.
  • the ultraviolet-visible absorption spectrum of the sample film was measured by PerkinElmer's LAMBDA 35 ultraviolet-visible spectrophotometer. Fluorescence spectrum is measured by RF-5301PC fluorophotometer of Shimadzu Company, Japan, and the excitation wavelength selected during the test is the maximum absorption wavelength.
  • the raw material-1 used specifically includes the following molecules:
  • the specific raw material-2 used includes the following molecules:
  • anhydrous DMF N,N-dimethylformamide
  • raw material diphenylamine or its derivatives: raw material S2
  • anhydrous DMF solution of potassium 72.0mmol
  • 20ml of anhydrous containing 3..4g 2-bromo-1,3,4-trifluorobenzene (16.0mmol) was added dropwise to it DMF solution.
  • the reaction system was stirred at 140°C for 24 hours, then cooled to room temperature, and poured into ice water (2L).
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether to obtain intermediate D1-a as a white solid.
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether (1:3) to obtain 9.5 g of intermediate D1-1-a as a white solid (The yield is 90%).
  • anhydrous DMF N,N-dimethylformamide
  • raw material diphenylamine or its derivatives: raw material S2, which is different from the diphenylamine or its derivatives used in the first step
  • the solution was slowly added dropwise to 50ml of anhydrous DMF solution containing 4.9g of potassium tert-butoxide (43.8mmol), and after stirring for 2 hours at room temperature, 20ml of anhydrous DMF containing 16.0mmol of intermediate D2-a was added dropwise to it Solution.
  • the reaction system was stirred at 140°C for 24 hours, then cooled to room temperature, and poured into ice water (2L).
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether to obtain intermediate D2-b as a white solid.
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether (1:3) to obtain 10.3 g of white solid D2-1-b (yield 90 %).
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether (1:3) to obtain 8.8 g of white solid D3-1-b (yield 90 %).
  • Example 4 the specific synthetic route is as follows:
  • anhydrous DMF N, N-dimethylformamide
  • raw material carbazole or its derivatives: raw material S2
  • 20 ml of anhydrous DMF solution containing 16.0 mmol of intermediate D4-a was added dropwise thereto.
  • the reaction system was stirred at 140°C for 24 hours, then cooled to room temperature, and poured into ice water (2L).
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether to obtain intermediate D4-b as a white solid.
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether (1:3) to obtain 8.8g of white solid D4-1-b (yield 90 %).
  • Example 5 the specific synthesis route is as follows:
  • anhydrous DMF N,N-dimethylformamide
  • raw material carbazole or its derivative: raw material S3
  • anhydrous DMF solution of potassium (72.0mmol) After stirring for 2 hours at room temperature, 20ml of anhydrous containing 3..4g 2-bromo-1,3,4-trifluorobenzene (16.0mmol) was added dropwise to it DMF solution.
  • the reaction system was stirred at 140°C for 24 hours, then cooled to room temperature, and poured into ice water (2L).
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether to obtain intermediate D5-a as a white solid.
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether (1:3) to obtain 9.6 g of intermediate D5-1-a as a white solid (The yield is 92%).
  • Example 6 the specific synthetic route is as follows:
  • anhydrous DMF N,N-dimethylformamide
  • raw material carbazole or its derivatives: raw material S3, which is different from the carbazole or its derivatives used in the first step
  • the solution was slowly added dropwise to 50ml of anhydrous DMF solution containing 4.9g of potassium tert-butoxide (43.8mmol), and after stirring for 2 hours at room temperature, 20ml of anhydrous DMF containing 16.0mmol of intermediate D6-a was added dropwise to it Solution.
  • the reaction system was stirred at 140°C for 24 hours, then cooled to room temperature, and poured into ice water (2L).
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether to obtain intermediate D6-b as a white solid.
  • the white solid was filtered off with suction, dried in vacuum, and then further purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether (1:3) to obtain 10.2 g of white solid D6-1-b (yield 90 %).
  • the compound represented by the formula (Dn-m) is the molecular structure of the material provided by this disclosure (the specific molecular structure is as shown above), and the compound represented by (Dn-mR) is the molecular structure of the comparative material.
  • the comparison of the luminescence peak positions of the luminescent compounds provided by the present disclosure and the luminescence peak positions of the corresponding comparative compounds listed in Table 7 shows that the luminescence peak positions of the luminescent compounds provided by the present disclosure are red-shifted 27- to that of the corresponding comparative compounds. 33nm, that is, a shift of 27-33nm to the long wavelength.
  • the above-mentioned effect examples prove that the luminescence peak of the boron nitrogen compound of the present disclosure has a significant red shift relative to its isomers, and the half-value width of the luminescence spectrum is not significantly degraded (still narrow). Therefore, the luminescent molecule design provided by the present disclosure The principle and method are effective in providing a luminescent material with a narrow emission peak from the green region to the red region.
  • the following embodiments of electroluminescent devices are prepared using the materials of the present disclosure.
  • the specific device preparation process is as follows: transparent ITO glass is used as the base material for the preparation of the device, and then ultrasonically treated with 5% ITO lotion for 30 minutes, and then distilled water (2 times) ), acetone (2 times), isopropanol (2 times) ultrasonic washing, and finally the ITO glass is stored in isopropanol. Before each use, carefully wipe the surface of the ITO glass with an acetone cotton ball and an isopropyl alcohol cotton ball, rinse it with isopropyl alcohol and dry it, and then treat it with plasma for 5 minutes.
  • the device is prepared by vacuum coating equipment using vacuum evaporation process.
  • the deposition rate is measured by Sainz Film Thickness Meter, and vacuum evaporation is used.
  • the process deposits various organic layers, LiF electron injection layers and metal Al electrodes on ITO glass in sequence (see the following effect examples for specific device structures), where the deposition rate of organic materials is The deposition rate of LiF is The deposition rate of Al is The current, voltage, brightness, luminescence spectrum and other characteristics of the device are tested simultaneously with Photo Research PR 655 spectral scanning luminance meter and Keithley K 2400 digital source meter system.
  • the performance test of the device is carried out at room temperature and ambient atmosphere.
  • the external quantum efficiency (EQE) of the device is calculated based on the current density, brightness, and electro-spectroscopy combined with the visual function under the condition that the luminescence has a Lambertian distribution.
  • HATCN is used as the hole injection layer
  • DBBA is used as the first hole transport layer
  • TCTA is used as the second hole transport layer
  • H1-48 is used as a host material in the light-emitting layer
  • D1-1 to D1-37, D2-1 to D2-96, D3-1 to D3-77, D4-1 to D4-64, D5-1 to D5- 31 or D6-1 to D6-59 are used as doped luminescent materials (doping concentration is 1 wt%)
  • TmPyPB is used as an electron transport material
  • LiF is used as an electron injection layer
  • Al is used as a metal cathode.
  • the structure of the organic electroluminescent device is [ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/H1-48+1wt%Dn-m/TmPyPB(30nm)/LiF(1nm)/Al( 100nm)].
  • Table 8 The results of the effect examples are shown in Table 8.
  • the electroluminescence device effect implementation data listed in Table 8 proves that the luminescent material provided by the present disclosure can be used to prepare high-efficiency organic electroluminescence devices, and the electroluminescence spectrum has narrow band characteristics, half of the electroluminescence spectrum The peak width is less than 60nm.
  • Fig. 5 is a graph showing the variation of external quantum efficiency with brightness of a compound D5-7 doped device, in which the light-emitting layer doped weight percentage composition is H1-48 (99 wt%): D5-7 (1 wt%).
  • HATCN is used as the hole injection layer
  • DBBA is used as the first hole transport layer
  • TCTA is used as the second hole transport layer
  • the mixture of H1-33 and TRZ-1 in the light-emitting layer is used as the host material (the weight mixing ratio of H1-33 and TRZ-1 is 1:1)
  • D1-1 to D1-37, D2-1 to D2-96, D3 -1 to D3-77, D4-1 to D4-64, D5-1 to D5-31 or D6-1 to D6-59 are used as doped luminescent materials (doping concentration is 1wt%)
  • TmPyPB is used as Electron transport materials are used
  • LiF is used as an electron injection layer
  • Al is used as a metal cathode.
  • the structure of the organic electroluminescent device is [ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/H1-33:TRZ-1+1wt%Dn-m/TmPyPB(30nm)/LiF(1nm) )/Al(100nm)].
  • Table 9 The results of the effect examples are shown in Table 9.
  • the electroluminescence device effect implementation data listed in Table 9 proves that the luminescent material provided by the present disclosure can be used to prepare high-efficiency organic electroluminescence devices, and the electroluminescence spectrum has narrow band characteristics, half of the electroluminescence spectrum The peak width is less than 60nm.
  • Figure 2 shows the photoluminescence spectrum of the compound D5-7 doped film, where the composition of the doped film is H1-1 (99 wt%): D5-7 (1 wt%).
  • Fig. 3 is the electroluminescence spectrum of the compound D5-7 doped film in Effect Example 2, wherein the composition of the doped film is H1-48 (99wt%): D5-7 (1wt%).
  • Figure 4 shows the temperature-varying time-resolved spectrum of the compound D5-7 doped film, where the composition of the doped film is H1-48 (99 wt%): D5-7 (1 wt%).
  • Figure 4 shows that as the temperature increases, the proportion of the long-lived part of the excited state increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inorganic Chemistry (AREA)

Abstract

提供一种式(I)的硼氮化合物、包含所述化合物的组合物及它们在有机电致发光领域中的应用。通过采用所提供的化合物或组合物制备的有机电致发光器件能实现具有窄光谱发射的高效绿光和红光电致发光。

Description

一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件 技术领域
本发明属于有机电致发光技术领域,具体涉及一种硼氮化合物、有机电致发光组合物及包含前述化合物或组合物的有机电致发光器件。
背景技术
有机电致发光技术在全色显示和固态白光照明领域展示出巨大的应用前景,在科研界以及产业界都得到了广泛的研究和关注。有机小分子光电材料因其结构明确、易于修饰、提纯加工简单等优点而被大量的用作高性能电致发光材料。目前来说,传统荧光染料分子往往具有很高的光致荧光量子产率,但基于这些荧光材料的电致发光器件受制于25%内量子效率的限制,电致荧光器件外量子效率普遍低于5%,与磷光器件的效率还有很大差距。目前能实现突破25%的内量子效率限制的荧光电致发光器件主要采用了延迟荧光机制,利用该机制能有效利用器件内的三重激发态能量。延迟荧光机制主要包括两类:(1)TTA(Triplet-Triplet Annihilation,三重态-三重态湮灭)机制;(2)TADF(Thermally Activated Delayed Fluorescence,热活化延迟荧光)机制。。TTA机制是利用两个三重态激子融合产生单重态激子,提高单重态激子生成比率的机制,但其器件最大内量子效率只有40%~62.5%。TADF机制是利用具有较小单重态-三重态能级差(ΔE ST)的有机小分子材料,其三重态激子在环境热能下可通过反向系间窜越(RISC)这一过程转化为单重态激子的机制。理论上其器件内量子效率能达到100%。但其器件在高亮度下效率滚降较大,限制了其在全色显示和白光照明中的应用。TADF分子主要作为客体材料掺杂在宽禁带主体材料中实现高效率的热活化延迟荧光(见J.Am.Chem.Soc.2012,134,14706;Nature,2012,492,234;Mater.Horiz.,2014,1,264)。
和传统荧光分子局域态(LE)发光不同,TADF发射主要源自分子内电荷转移(ICT:intramolecular charge transfer)态的跃迁。由于绝大多数TADF发光分子结构采用电子给体(D:donor)基团与电子受体(A;acceptor)基团通过共轭或者非共轭连接的形式,即所谓的D-A结构(结构1),其电子给体基团和电子受体基团空间上是分离的,将该类分子定义为:分离型D-A结构。这种D-A型结构有利于分子的最高占有轨道(HOMO:the highest occupied molecular orbital)和最低空轨道(LUMO:the lowest unoccupied molecular orbital)实现空间上的分离,进而容易获得TADF发光。而且,基于D-A型结构很容易实现发射光谱峰位(波长)即发光颜色的调控,其原因在于电子给体和电子受体的结构及相对得失电子能力容易优化。但是,如结构1所示的D-A结构很容易导致分子处于基态和激发态时的构型和构象变化、产生丰富的分子振动模式,因此基于结构如结构1所示的TADF分子发射光谱谱带较宽,多数这类发光分子的发射光谱半峰宽超过100nm。较宽的光谱虽然有利于照明上的应用,但却不能够满足显示领域高色纯度的要求。而OLED发光最主要的用途在于显示,所以TADF材料的窄光谱设计(即较小半峰宽)显得十分必要。
Figure PCTCN2021093220-appb-000001
结构1.D-A型分子结构
近年来报道(见Angew.Chem.2018,130,11486;J.Am.Chem.Soc.,2018,140,1195;Adv.Mater.2016,28,2777;CN109155368A;WO2016/152544A1;WO2017/188111A1;WO2018/150832A1;WO2018/186374A1;WO2018/216990A1)了一些基于三配位B(硼)的发光化合物,其结构特征在于发光化合物至少含有一个B原子与三个苯环配位形成的刚性非常强的生色基核心结构,而且与B配位的三个苯环与N共价连接,这类分子被称为B-N配合物(结构2),即化合物是由芳香胺类有机分子与B配位形成的发光化合物。
Figure PCTCN2021093220-appb-000002
结构2.基于三配位B-N配合物分子模型结构。
这类三配位B配合物的前线分子轨道具有一个特点,即最高占有轨道(HOMO:the highest occupied molecular orbital)和最低空轨道(LUMO:the lowest unoccupied molecular orbital)分别以交替布居(即所谓的共振结构)的方式分布在配位体系中,B处于LUMO轨道上,N处于HOMO轨道上。这类B-N配合物由于其独特HOMO和LUMO交替布局电子结构(共振结构)使该类材料具有激发态电荷转移及TADF发光性能(将该类分子定义为:共振型D-A分子),而且十分重要的是其发射光谱谱带很窄,发射光谱半峰宽可以达到20nm左右。基于此类化合物可以制备出高性能蓝光或者天蓝光(发光光光谱的峰值处于450-490nm之间)有机电致发光器件,而且电致发光光谱很窄(半峰宽为25nm左右)。然而,尚未有基于这种B-N配位结构制备出发射光谱较窄的绿光(发光峰位处于520-535nm之间)及红光(发光峰位处于625-640nm之间)材料的报道。其主要原因在于,虽然通过扩大芳香胺共轭程度可以获得发光峰位处于绿光甚至红光区的分子,但是共轭体系扩大以后会破坏HOMO和LUMO交替布局的电子结构,因此导致发射光谱变宽,无法获得窄光谱发射材料。
因此,仍然存在对具有窄光谱发射特性的新型绿光和红光有机电致发光材料的需求。
发明内容
为了克服现有绿光和红光有机电致发光材料(发光峰位处于520nm以上的有机发光材料)发射光谱过宽的缺陷,本公开提供了一种在绿光至红光区发光且具有窄光谱TADF发光特性的有机化合物、组合物及其有机电致发光器件。
一方面,本公开提供一种硼氮化合物,其为如通式(I)所表示的有机化合物:
Figure PCTCN2021093220-appb-000003
其中,E代表单键,m和n独立地代表单键的数目,m和n各自独立地为0或1;
R和R 0独立地为H、D(氘)、C 3-C 6环烷基、C 6芳基、C 1~C 12烷基或C 1~C 12烷氧基;
R 11、R 22、R 33和R 44独立地为H、D(氘)、氟、CN、C 1~C 20烷基、C 1~C 20烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R a取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R a取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R a取代的二苯胺基;或者R 11、R 22与其相连的苯环一起形成稠合的双环、三环或四环;或者R 33、R 44与其相连的苯环一起形成稠合的双环、三环或四环;
R a每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R b取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R b取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R b取代的二苯胺基;
R b每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R c取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R c取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R c取代的二苯胺基;
R c每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、5-至18-元杂芳基、或者二苯胺基;
所述烷基、烷氧基、环烷基、芳基、杂芳基任选被一个或多个氟、-CN、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6氟代烷基、C 2-C 6烯基、C 3-C 10环烷基、C 6-C 14芳基、或者5-至18-元杂芳基取代。
另一方面,本公开提供一种包含上述硼氮化合物的有机电致发光组合物。进一步,本公开还提供一种有机电致发光组合物,其包含上述硼氮化合物和主体材料。
再一方面,本公开提供一种有机电致发光器件,其包含上述硼氮化合物或有机电致发光组合物。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为效果实施例2所采用的器件结构示意图,其中,1为ITO阳极,2为空穴注入层,3为第一空穴传输层,4为第二空穴传输层,5为发光层,6为电子传输层,7为电子注入层,8为金属阴极。
图2为化合物D5-7掺杂薄膜的光致发光光谱,其中掺杂薄膜的组成为 H1-1(99wt%):D5-7(1wt%)。
图3为效果实施例2中化合物D5-7掺杂薄膜的电致发光光谱,其中掺杂薄膜的组成为H1-48(99wt%):D5-7(1wt%)。
图4为化合物D5-7掺杂薄膜的变温时间分辨光谱,其中掺杂薄膜的组成为H1-48(99wt%):D5-7(1wt%)。
图5为化合物D5-7掺杂器件的外量子效率随亮度变化曲线图,其中发光层掺杂重量百分比含量组成为H1-48(99wt%):D5-7(1wt%)。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
应该理解的是,在不冲突的前提下,本发明的任一和所有实施方案都可与任一其它实施方案或多个其它实施方案中的技术特征进行组合以得到另外的实施方案。本发明包括这样的组合得到另外的实施方案。
本公开中提及的所有出版物和专利在此通过引用以它们的全部内容纳入本公开。如通过引用纳入的任何出版物和专利中使用的用途或术语与本公开中使用的用途或术语冲突,以本公开的用途和术语为准。
本文所用的章节标题仅用于组织文章的目的,而不应被解释为对所述主题的限制。
除非另有规定,本文使用的所有技术术语和科学术语具有要求保护主题所属领域的通常含义。倘若对于某术语存在多个定义,则以本文定义为准。
除非另有说明,当公开或要求保护任何类型的范围(例如波长、半峰宽和取代基个数)时,意图单独公开或要求保护该范围可有理由涵盖的各可能的数值,包括涵盖在其中的任何子范围。例如在本文中取代基中定义的数值范围如0至6、1-4、1至3等表明该范围内的整数,其中0-6应理解包括0、1、2、3、4、5、6,也包括1-4和1-3。
本公开中使用的“包括”、“含有”或者“包含”等类似的词语意指出现该词前面的要素涵盖出现在该词后面列举的要素及其等同,而不排除未记载的要素。本文所用的术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由…组成”、或“由…组成”。
本文所用术语“部分”、“结构部分”、“化学部分”、“基团”、“化学基团”是指分子中的特定片段或官能团。化学部分通常被认为是嵌入或附加到分子上的化学实体。
应该理解,在本公开中使用的单数形式(如“一种”)可包括复数指代,除非另有规定。
除非另有指明,本公开采用分析化学、有机合成化学和光学的标准命名及标准实验室步骤和技术。在某些情况下,标准技术被用于化学合成、化学分析、发光器件性能检测。除非另有说明,本公开采用质谱、元素分析的传统方法,各步骤和条件可参照本领域常规的操作步骤和条件。
本公开的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氘(2H)。本公开的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
本公开所用试剂和原料是市售可得的或者可通过常规化学合成方法制得的。
本文使用术语“任选”来描述某一情形是指该情形可发生也可不发生。例如,任选地 与某环稠合表示其与某环稠合或者不与某环稠合。例如,本文使用的术语“任选取代的”是指为未取代的或者具有至少一个不破坏由未取代的类似物所拥有的发光性能的非氢取代基。
本公开中,如无特殊说明,所述的“取代”的个数可为一个或多个;当为多个时,可为2个、3个或4个。并且,当所述的“取代”的个数为多个时,所述的“取代”可相同或不同。
本公开中,“取代”的位置,如未做特别说明,位置可为任意。
本公开中,如无特殊说明,所述的氢或H为自然丰度下的氢元素,即同位素氕、氘和氚的混合物,其中为氕的丰度为99.98%。
本公开中,所述的氘为D或 2H,也被称为重氢。
本公开中,氘取代位点的氘的丰度大于95%。
可在参考文献(包括Carey and Sundberg"ADVANCED ORGANIC CHEMISTRY 4TH ED."Vols.A(2000)and B(2001),Plenum Press,New York)中找到对标准化学术语的定义。
在本说明书中,可由本领域技术人员选择基团及其取代基以提供稳定的结构部分和化合物。当通过从左向右书写的常规化学式描述取代基时,该取代基也同样包括从右向左书写结构式时所得到的在化学上等同的取代基。例如-CH 2O-等同于-OCH 2-。
本文使用的术语“卤素”或“卤代”是指氟、氯、溴或碘。在一种实施方案中,所述卤素或卤代优选为氟或氟代。
在本公开中,作为基团或是其它基团的一部分(例如用在卤素取代的烷基等基团中),术语“烷基”意指包括具有指定碳原子数目的支链和直链的饱和脂族烃基。例如,C 1~C 20烷基包括直链或者支链的具有1-20个碳原子的烷基。如在“C 1~C 6烷基”中定义为包括在直链或者支链结构中具有1、2、3、4、5、或者6个碳原子的基团。例如,本公开中,所述的C 1~C 6烷基各自独立地为甲基、乙基、丙基、丁基、戊基或己基;其中,丙基为C 3烷基(包括同分异构体,例如正丙基或异丙基);丁基为C 4烷基(包括同分异构体,例如正丁基、仲丁基、异丁基或叔丁基);戊基为C 5烷基(包括同分异构体,例如正戊基、1-甲基-丁基、1-乙基-丙基、2-甲基-1-丁基、3-甲基-1-丁基、异戊基、叔戊基或新戊基);己基为C 6烷基(包括同分异构体,例如正己基或异己基)。
“经取代的烷基”指在任何可用连接点处经一个或多个取代基优选1至4个取代基取代的烷基。术语“卤代烷基”是指具有一个或多个卤素取代基的烷基,例如卤代甲基包括但不限于如-CH 2Br、-CH 2I、-CH 2Cl、-CH 2F、-CHF 2及-CF 3那样的基团。
本文使用的术语“烷氧基”指分别经由氧键(-O-)连接的如上定义的烷基。术语“经取代的烷氧基”指经由氧键连接的如上定义的经取代的烷基。
在本公开中,作为基团或是其它基团的一部分,术语“Cn-m芳基”是指具有n个至m个环碳原子的单环或多环芳族基团(环原子仅为碳原子),其具有至少一个具有共轭π电子体系的碳环。上述芳基单元的实例包括苯基、萘基、茚基、薁基、芴基、菲基、或者蒽基。在一种实施方案中,所述芳基优选为C 6-14芳基,例如苯基和萘基,更优选为苯基。
在本公开中,作为基团或是其它基团的一部分,术语“n-m元杂芳基”是指环原子包含一个或者多个(例如1、2、3和4个)选自氮、氧和硫的杂原子的芳族基团,其环原子为n个至m个,所述杂芳基为单环、二环、三环或者四环体系,其中至少一个环为芳环。在此定义范围内的杂芳基包括但不限于:吖啶基、咔唑基、噌啉基、喹喔啉基、吡唑基、吲哚基、苯并三唑基、呋喃基、噻吩基、苯并噻吩基、苯并呋喃基、喹啉基、异喹啉基、噁唑基、异噁唑基、吡嗪基、哒嗪基、吡啶基、嘧啶基、吡咯基、四氢喹啉、咪唑基、 三唑基、四唑基、噻唑基、异噻唑基、呋咱基、噻二唑基、噁二唑基、吡啶基、吡嗪基、哒嗪基、嘧啶基、三嗪基、嘌呤基、喋啶基、萘啶基、喹唑啉基、酞嗪基、咪唑并吡啶基、咪唑并噻唑基、咪唑并噁唑基、苯并噻唑基、苯并噁唑基、苯并咪唑基、异吲哚基、吲唑基、吡咯并吡啶基、噻吩并吡啶基、呋喃并吡啶基、苯并噻二唑基、苯并噁二唑基、吡咯并嘧啶基、噻吩并呋喃基。在一种实施方案中,作为“5~18元杂芳基”的优选实例,可列举呋喃基、噻吩基、吡咯基、咪唑基、噻唑基、吡唑基、噁唑基、异噁唑基、异噻唑基、吡啶基、嘧啶基和咔唑基,更优选为咔唑基。
本文所用术语”稠合”是指两个或两个以上的碳环或杂环以共有环边方式构成多环。
本文所用术语C n-C m环烷基是指具有n至m个碳原子的单环或者多环烷基,例如C 3-C 10环烷基和C 3-C 6环烷基。实例包括金刚烷基、环丙基、环丁基、环戊基、环己基、环庚基和二环庚基。在一个实施方案中,C 3-C 10环烷基优选为金刚烷基或者环己基。
本公开提供了一种发光峰位处于520-700nm之间具有窄发射光谱特性有机发光分子设计合成方法,其原理与电子给体基团和电子受体基团在空间上采取分离结构(如结构1所示)及HOMO和LUMO交替布局电子结构(共振结构,如结构2所示)不同。本公开采取的具体分子设计如下:
Figure PCTCN2021093220-appb-000004
结构3.代表性的模型分子结构。
结构3给出了本公开提供的四种代表性分子设计模型结构,提供的分子设计的总体方法和原理是:在HOMO和LUMO交替布局电子结构(共振结构)特性的功能骨架上引入一个附加芳香胺或者咔唑衍生物电子给体基团,被引入的芳香胺或者咔唑衍生物上的N(氮)原子与共振结构基团上的一个C(碳)原子通过单键相连,并且附加芳香胺或者咔唑衍生物相对于共振结构中的芳香胺或者咔唑衍生物处于邻位取代状态。由于附加芳香胺或者咔唑衍生物的N原子与共振结构基团上的HOMO轨道布局的C相连,因此本公开所提供的分子的HOMO轨道是由共振结构部分的HOMO轨道与附加芳香胺或者咔唑衍生物给体的HOMO轨道合并形成的,而本公开所提供的分子的LUMO轨道与分子中共振结构部分的LUMO轨道相同。因此,本公开提供的有机发光分子从分子结 构到前线轨道电子结构与现有的电子给体基团和电子受体基团空间上是分离的D-A型结构及HOMO和LUMO交替布局电子结构(共振结构)均不同。
本公开提供的有机发光分子设计方法优势在于,将分离型D-A结构和共振型D-A分子具有的优点结合起来,并且克服了这两类分子存在的缺点。由于附加芳香胺或者咔唑衍生物给体与三配位B上的芳香胺或者咔唑衍生物采取邻位取代形式,由于取代基的空阻效应,本公开提供的发光分子具有强刚性及扭曲结构特性(即附加芳香胺或者咔唑衍生物给体基团相对于三配位B的平面具有很大的扭曲角在50面以上),这种结构特性决定了该类发光分子具有高的荧光量子效率及较强的分子内电荷转移特性,强的分子内电荷转移特性有利于长波长发射的实现。利用本公开提供的分子设计方法可以获得发射峰值波长从520nm至700nm的发光光谱较窄的有机发光材料,例如发射光谱半峰宽小于等于60nm。
利用本公开提供的技术方法可以有效设计合成绿光区至红光区发光且具有窄光谱TADF发光特性的有机分子,这种有机分子及其与一些材料的组合物可以作为发光材料制备有机电致发光器件的发光层,于此制备的有机电致发光器件具有发射光谱窄、效率高、器件稳定性好等优点。
本公开提供了一种硼氮化合物,其为如通式(I)所表示的化合物:
Figure PCTCN2021093220-appb-000005
其中,E代表单键,m和n独立地代表单键的数目,m和n各自独立地为0或1;
R和R 0独立地为H、D(氘)、C 3-C 6环烷基、C 6芳基、C 1~C 12烷基或C 1~C 12烷氧基;
R 11、R 22、R 33和R 44独立地为H、D(氘)、氟、CN、C 1~C 20烷基、C 1~C 20烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R a取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R a取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R a取代的二苯胺基;或者R 11、R 22与其相连的苯环一起形成稠合的双环、三环或四环;或者R 33、R 44与其相连的苯环一起形成稠合的双环、三环或四环;
R a每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R b取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R b取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R b取代的二苯胺基;
R b每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R c取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R c取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R c取代的二苯胺基;
R c每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷 基、C 6~C 14芳基、5-至18-元杂芳基、或者二苯胺基;
所述烷基、烷氧基、环烷基、芳基、杂芳基任选被一个或多个氟、-CN、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6氟代烷基、C 2-C 6烯基、C 3-C 10环烷基、C 6-C 14芳基、或者5-至18-元杂芳基取代。
式I中的a、b、c、d、e、f、g仅用于方便描述苯环。
式I中的n为0即表示a环与c环不直接键接,a环和c环与其相连的N一起形成二苯胺基;或者b环与e环不直接键接,b环和e环与其相连的N一起形成二苯胺基。
式I中的n为1即表示a环与c环单键连接,a环和c环与其相连的N一起形成咔唑基;或者b环与e环单键连接,b环和e环与其相连的N一起形成咔唑基。
式I中的m为0即表示g环与f环不直接键接,g环和f环与其相连的N一起形成二苯胺基。
式I中的m为1即表示g环与f环单键连接,g环和f环与其相连的N一起形成咔唑基。
在一种实施方案中,式(I)的化合物的发射光谱的发光峰位在520-700nm,且发射光谱的半峰宽小于等于60nm。所述发光峰位和半峰宽包括其间所有的值、范围、和子范围。例如半峰宽可以为60、59、58、57、56、55、54、53、52、51、50、49、48、47、46、45、44、43、42、41、40、39、38、37、36、35、34、33、32、31、30、29、28、27、26、25nm。在一种实施方案中,半峰宽优选为30-55nm。
在一种实施方案中,式(I)的化合物的前线分子轨道如结构3所示。例如,式(I)的化合物的前线分子轨道的特点在于:HOMO与LUMO以交替的方式分布于式I的环a、环b、环c、环d、环e的环原子以及同时与其中三个环相连的一个B和两个N上,HOMO还分布在环f和环g的环原子上,式I中的三个N上分布HOMO。
在一种实施方案中,式(I)中,R和R 0为H;R 11、R 22、R 33和R 44为H、F、CF 3、C 1~C 20烷基、C 1~C 20烷氧基、环己基、金刚烷基、苯基、萘基、被一个或多个R a取代的苯基、咔唑基、被一个或多个R a取代的咔唑基、二苯胺基、或者被一个或多个R a取代的二苯胺基,所述R a选自C 1~C 6烷基、C 1-C 6氟代烷基和C 1~C 6烷氧基。
在一种实施方案中,式(I)中,R和R 0为H;R 11和R 22中至少一个为H;R 33和R 44中至少一个为H;R 11、R 22、R 33和R 44选自H、氟、CF 3、C 1~C 12烷基、C 1~C 12烷氧基、环己基、金刚烷基、苯基、被一个或多个R a取代的苯基、咔唑基、被一个或多个R a取代的咔唑基、二苯胺基和被一个或多个R a取代的二苯胺基,所述R a选自C 1~C 6烷基、C 1-C 6氟代烷基和C 1~C 6烷氧基。
在一种实施方案中,式(I)的化合物可以进一步具体分解为下列六种即(I-1)、(I-2)、(I-3)、(I-4)、(I-5)和(I-6):
Figure PCTCN2021093220-appb-000006
Figure PCTCN2021093220-appb-000007
其中,
R和R 0独立地为H、D(氘)、C 3-C 6环烷基、C 6芳基、C 1~C 12烷基或C 1~C 12烷氧基;
R 1、R 2、R 5和R 6每次出现时独立地为H、D(氘)、氟、CN、C 1~C 20烷基、C 1~C 20烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R a取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R a取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R a取代的二苯胺基;
或者R 1、R 2与其相连的苯环一起形成稠合的双环、三环或四环;
或者R 5、R 6与其相连的苯环一起形成稠合的双环、三环或四环;
R a每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R b取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R b取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R b取代的二苯胺基;
R b每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R c取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R c取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R c取代的二苯胺基;
R c每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、5-至18-元杂芳基、或者二苯胺基;
所述烷基、烷氧基、环烷基、芳基、杂芳基任选被一个或多个氟、-CN、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6氟代烷基、C 2-C 6烯基、C 3-C 10环烷基、C 6-C 14芳基、或者5-至18-元杂芳基取代。
在一种实施方案中,式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)和(I-6)中R 1和R 2相同,R 5和R 6中的至少一个与R 1不同。
在一种实施方案中,式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)和(I-6)中R和R 0独立地为H 或D(氘),成对出现的R 1和R 2中至少一个是氢,成对出现的R 5和R 6中的至少一个是氢。例如R、R 0、R 1、R 5均是氢。此处的“成对出现”的基团指的是连在同一个芳环(特别是同一个苯环)上的两个基团。
在一种实施方案中,式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)和(I-6)中R 1、R 2、R 5和R 6为H、F、CF 3、C 1~C 20烷基、C 1~C 20烷氧基、环己基、金刚烷基、苯基、萘基、被一个或多个R a取代的苯基、咔唑基、被一个或多个R a取代的咔唑基、二苯胺基、或者被一个或多个R a取代的二苯胺基,所述R a选自C 1~C 6烷基、C 1-C 6氟代烷基和C 1~C 6烷氧基。
在一种实施方案中,式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)和(I-6)中,R和R 0为H;R 1、R 2、R 5和R 6为H、F、CF 3、C 1~C 20烷基、C 1~C 20烷氧基、环己基、金刚烷基、苯基、萘基、被一个或多个R a取代的苯基、咔唑基、被一个或多个R a取代的咔唑基、二苯胺基、或者被一个或多个R a取代的二苯胺基,所述R a选自C 1~C 6烷基、C 1-C 6氟代烷基和C 1~C 6烷氧基。
在一种实施方案中,式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)和(I-6)中,R和R 0为H;R 1和R 2中至少一个为H;R 5和R 6中至少一个为H;R 1、R 2、R 5和R 6选自H、CF 3、C 1~C 12烷基、C 1~C 12烷氧基、环己基、金刚烷基、苯基、被一个或多个R a取代的苯基、咔唑基、被一个或多个R a取代的咔唑基、二苯胺基和被一个或多个R a取代的二苯胺基,所述R a选自C 1~C 6烷基、C 1-C 6氟代烷基和C 1~C 6烷氧基。
在本公开的某一实施方案中,所述的如式(I-1)所示的化合物为如下任何一个化合物:
Figure PCTCN2021093220-appb-000008
Figure PCTCN2021093220-appb-000009
Figure PCTCN2021093220-appb-000010
Figure PCTCN2021093220-appb-000011
Figure PCTCN2021093220-appb-000012
Figure PCTCN2021093220-appb-000013
Figure PCTCN2021093220-appb-000014
Figure PCTCN2021093220-appb-000015
Figure PCTCN2021093220-appb-000016
Figure PCTCN2021093220-appb-000017
Figure PCTCN2021093220-appb-000018
Figure PCTCN2021093220-appb-000019
Figure PCTCN2021093220-appb-000020
Figure PCTCN2021093220-appb-000021
Figure PCTCN2021093220-appb-000022
Figure PCTCN2021093220-appb-000023
Figure PCTCN2021093220-appb-000024
Figure PCTCN2021093220-appb-000025
Figure PCTCN2021093220-appb-000026
Figure PCTCN2021093220-appb-000027
Figure PCTCN2021093220-appb-000028
Figure PCTCN2021093220-appb-000029
Figure PCTCN2021093220-appb-000030
Figure PCTCN2021093220-appb-000031
Figure PCTCN2021093220-appb-000032
Figure PCTCN2021093220-appb-000033
Figure PCTCN2021093220-appb-000034
Figure PCTCN2021093220-appb-000035
Figure PCTCN2021093220-appb-000036
Figure PCTCN2021093220-appb-000037
Figure PCTCN2021093220-appb-000038
Figure PCTCN2021093220-appb-000039
Figure PCTCN2021093220-appb-000040
Figure PCTCN2021093220-appb-000041
在本公开的某一实施方案中,所述的如式(I)所示的化合物优选为如下任何一个化合物:
Figure PCTCN2021093220-appb-000042
Figure PCTCN2021093220-appb-000043
Figure PCTCN2021093220-appb-000044
Figure PCTCN2021093220-appb-000045
Figure PCTCN2021093220-appb-000046
Figure PCTCN2021093220-appb-000047
Figure PCTCN2021093220-appb-000048
Figure PCTCN2021093220-appb-000049
Figure PCTCN2021093220-appb-000050
Figure PCTCN2021093220-appb-000051
Figure PCTCN2021093220-appb-000052
Figure PCTCN2021093220-appb-000053
Figure PCTCN2021093220-appb-000054
Figure PCTCN2021093220-appb-000055
Figure PCTCN2021093220-appb-000056
Figure PCTCN2021093220-appb-000057
Figure PCTCN2021093220-appb-000058
Figure PCTCN2021093220-appb-000059
Figure PCTCN2021093220-appb-000060
Figure PCTCN2021093220-appb-000061
Figure PCTCN2021093220-appb-000062
Figure PCTCN2021093220-appb-000063
Figure PCTCN2021093220-appb-000064
Figure PCTCN2021093220-appb-000065
Figure PCTCN2021093220-appb-000066
本公开所述式(I)的化合物可按照本领域常规的化学合成方法制备得到,其步骤和条件可参考本领域类似反应的步骤和条件。本公开提供了一种如式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)和(I-6)所示的化合物的制备方法,其可包括如下任一方案:
方案一,合成路线如下所示:
Figure PCTCN2021093220-appb-000067
方案二,合成路线如下所示:
Figure PCTCN2021093220-appb-000068
方案三,成路线如下所示:
Figure PCTCN2021093220-appb-000069
方案四,合成路线如下所示:
Figure PCTCN2021093220-appb-000070
方案五,合成路线如下所示:
Figure PCTCN2021093220-appb-000071
方案六,合成路线如下所示:
Figure PCTCN2021093220-appb-000072
其中R、R 0、R 1、R 2、R 5和R 6的定义如上所述。
当上述反应原料中的R、R 0、R 1、R 2、R 5和R 6中的至少一个为氘时,上述方法可以制得氘代的式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)和(I-6)所示的化合物。。
本公开提供了一种如式(I)所示的硼氮化合物,该类化合物可作为功能材料用于有机电致发光器件的发光层、电子注入层、电子传输层、空穴传输层、空穴注入层中的至少一层中。
本公开还提供一种有机电致发光器件,其包含阳极、发光层、任选的空穴注入层、任选的空穴传输层、任选的电子传输层、任选的电子注入层和阴极,其中发光层、电子注入层、电子传输层、空穴传输层、空穴注入层中的至少一层包含如上所述的硼氮化合物。本公开的有机电致发光器件还可以包括任选的空穴阻挡层、任选的电子阻挡层和任选的封盖层等。在一种实施方案中,有机电致发光器件具有如图1所示的结构,其中,1为ITO阳极,2为空穴注入层,3为第一空穴传输层,4为第二空穴传输层,5为发光层,6为电子传输层,7为电子注入层,8为金属阴极。
在本公开的某一实施方案中,所述的如式I所示的硼氮化合物用于制备有机电致发光器件中的发光层。
在本公开的某一实施方案中,所述的如式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)或(I-6)所示的硼氮化合物用于制备有机电致发光器件中的发光层。
在本公开的某一实施方案中,所述的如式D1-1至D1-37、D2-1至D2-96、D3-1至D3-75、D4-1至D4-64、D5-1至D5-27或D6-1至D6-57所示的硼氮化合物用于制备有机电致发光器件中的发光层。
在本公开的某一实施方案中,所述有机电致发光器件中还包括基板,以及依次形成在基板上的阳极层、有机发光功能层和阴极层;所述的有机发光功能层中,包括含如上所述硼氮化合物的发光层,还可包括空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层和电子注入层中的任意一种或者多种的组合。
本公开提供了一种有机电致发光组合物,其包括如式(I)所示的硼氮化合物(作为掺杂材料)和主体材料;所述主体材料是具有电子和/或空穴传输能力并且其三重激发态能量要高于或接近掺杂材料的三重激发态能量。
在本公开的某一实施方案中,所述的有机电致发光组合物中的主体材料可为如式(H-1)至(H-6)所示的咔唑衍生物和/或咔啉衍生物。所述的有机电致发光组合物中,优选含有0.3-30.0wt%(重量百分含量)式(I)所示的任一化合物作为掺杂材料,其余99.7-70.0wt%成分是式(H-1)至(H-6)中的1-2种化合物构成的主体材料。在一种实施方案中,所述主体材料含有2种式(H-1)至(H-6)中的化合物,两种化合物的重量比为1:5至5:1。
Figure PCTCN2021093220-appb-000073
其中X 1、Y 1和Z 1为CH或N,并且X 1、Y 1和Z 1中至多有一个为N。
其中R 1H和R 2H独立地为下面的任一基团:
Figure PCTCN2021093220-appb-000074
其中X 1、Y 1和Z 1为CH或N,并且X 1、Y 1和Z 1中至多有一个为N。
其中R aH和R bH独立地为H、C 1-C 20烷基、C 1-C 20烷氧基、C 6-C 20芳基、C 1-C 20烷基取代的C 6-C 20芳基或C 1-C 20烷氧基取代的C 6-C 20芳基。
在本公开的某一实施方案中,所述的有机电致发光组合物中的主体材料为化合物H1-1至H1-427中的1-2种;所述的有机电致发光组合物中,含有0.3-30.0wt%(重量百分含量)式(I)所示的任一化合物,其余99.7-70.0wt%成分是化合物H1-1至H1-427中的1-2种化合物。在本公开的一种优选实施方案中,有机电致发光组合物中含有式H1-1至H1-427中的2种化合物作为主体材料,这两种化合物的重量比为1:5至5:1。
Figure PCTCN2021093220-appb-000075
Figure PCTCN2021093220-appb-000076
Figure PCTCN2021093220-appb-000077
Figure PCTCN2021093220-appb-000078
Figure PCTCN2021093220-appb-000079
Figure PCTCN2021093220-appb-000080
Figure PCTCN2021093220-appb-000081
Figure PCTCN2021093220-appb-000082
Figure PCTCN2021093220-appb-000083
Figure PCTCN2021093220-appb-000084
Figure PCTCN2021093220-appb-000085
Figure PCTCN2021093220-appb-000086
Figure PCTCN2021093220-appb-000087
Figure PCTCN2021093220-appb-000088
Figure PCTCN2021093220-appb-000089
Figure PCTCN2021093220-appb-000090
Figure PCTCN2021093220-appb-000091
Figure PCTCN2021093220-appb-000092
在本公开的某一实施方案中,所述的有机电致发光组合物中的掺杂材料为式(I)所示的任一种化合物(含量为0.3wt-30.0wt%);主体材料(含量为99.7wt-70.0wt%)为由如式Trz1-A、Trz2-A和Trz3-A所示1,3,5-三嗪衍生物中任一种和式H-1至H-6所示化合物中任一种构成。在一种优选的实施方案中,主体材料中Trz1-A、Trz2-A或Trz3-A所示1,3,5-三嗪衍生物与H-1、H-2、H-3、H-4、H-5或H-6所示化合物之间的重量比为1:5至5:1。
Figure PCTCN2021093220-appb-000093
其中R 1a、R 1b、R 2a、R 2b、R 3a和R 3b中的1个或2个独立为R Tz,余者相同或者不同独立地为氢、氘、C 1-C 8烷基、C 1-C 8烷氧基、C 6-C 18芳基、C 1-C 8烷基取代的C 6-C 18芳基或C 1-C 8烷氧基取代的C 6-C 18的芳基;R Tz为如下式所示的取代基团中的任何一种:
Figure PCTCN2021093220-appb-000094
Figure PCTCN2021093220-appb-000095
在本公开的某一实施方案中,所述的有机电致发光组合物中的掺杂材料为式(I)所示的任一种化合物(含量为0.3wt-30.0wt%);主体材料(含量为99.7wt-70.0wt%)由如式TRZ-1至TRZ-38所示1,3,5-三嗪衍生物中任一种和式H1-1至H1-427所示咔唑或咔啉衍生物中任一种构成。在一种优选的实施方案中,主体材料中所述1,3,5-三嗪衍生物与所述咔唑或咔啉衍生物之间的重量比为1:5至5:1。
Figure PCTCN2021093220-appb-000096
Figure PCTCN2021093220-appb-000097
Figure PCTCN2021093220-appb-000098
本公开提供了一种如上所述的有机电致发光组合物作为有机电致发光材料的应用。
在本公开的某一实施方案中,所述的有机电致发光组合物用于制备有机电致发光器件中的发光层。
本公开还提供一种有机电致发光器件,其包含阳极、发光层、任选的空穴注入层、任选的空穴传输层、任选的电子传输层、任选的电子注入层和阴极,其中发光层、电子注入层、电子传输层、空穴传输层、空穴注入层中的至少一层包含如上所述的有机电致发光组合物。在一种优选的实施方案中,有机电致发光器件的发光层包含含如上所述的有机电致发光组合物。
在本公开的某一实施方案中,所述的有机电致发光组合物为发光层,发光层的发光原理是基于主体材料到式(I)所示任一化合物能量转移或发光材料本身的载流子捕获。
在本公开的某一实施方案中,所述的有机电致发光组合物为发光层;所述有机电致发光组合物中的主体材料可为如式(H-1)至(H-6)所示的咔唑衍生物和/或咔啉衍生物。在一种优选的实施方案中,所述有机电致发光组合物中,含有0.3-30.0wt%式(I)所示的任一化合物,其余99.7-70.0wt%成分是式(H-1)至(H-6)中的1-2种化合物构成的主体。例如,当主体含有2种式(H-1)至(H-6)中的化合物时,两种化合物的重量比为1:5至5:1。
在本公开的某一实施方案中,所述的有机电致发光组合物为发光层;所述组合物中的主体材料为化合物H1-1至H1-427中的1-2种。在一种优选的实施方案中,所述的有机电致发光组合物中,含有0.3-30.0wt%式(I)所示的任一化合物,其余99.7-70.0wt%成分是化合物H1-1至H1-427中的1-2种化合物。例如,当组合物中含式H1-1至H1-427中的2种化合物时,这两种化合物的重量比为1:5至5:1。
在本公开的某一实施方案中,所述的有机电致发光组合物为发光层;所述的有机电致发光组合物中的掺杂材料为式(I)所示的任一种化合物(含量为0.3wt-30.0wt%);主体材料(含量为99.7wt-70.0wt%)由如式Trz1-A、Trz2-A和Trz3-A所示1,3,5-三嗪衍生物中任一种和式H-1至H-6所示化合物中任一种构成。例如,在所述主体材料中,Trz1-A、Trz2-A或Trz3-A所示1,3,5-三嗪衍生物与H-1、H-2、H-3、H-4、H-5或H-6所示化合物之间的重量比为1:5至5:1。
在本公开的某一实施方案中,所述的有机电致发光组合物为发光层;所述的有机电致发光组合物中的掺杂材料为式(I)所示的任一种化合物(含量为0.3wt-30.0wt%);主体材料(含量为99.7wt-70.0wt%)由如式TRZ-1至TRZ-38所示1,3,5-三嗪衍生物中任一种和式H1-1至H1-427所示咔唑或咔啉衍生物中任一种构成。例如在所述主体材料中,1,3,5-三嗪衍生物与咔唑或咔啉衍生物之间的重量比为1:5至5:1。
在本公开的某一实施方案中,所述的有机电致发光组合物为发光层;所述的有机电致发光组合物中的掺杂材料为式D1-1至D1-37、D2-1至D2-96、D3-1至D3-75、D4-1 至D4-64、D5-1至D5-27或D6-1至D6-57所示的任一种化合物(含量为0.3wt-30.0wt%);主体材料(含量为99.7wt-70.0wt%)由如式TRZ-1至TRZ-38所示1,3,5-三嗪衍生物中任一种和式H1-1至H1-427所示咔唑或咔啉衍生物中任一种构成。例如在所述主体材料中,1,3,5-三嗪衍生物与咔唑或咔啉衍生物之间的重量比为1:5至5:1。
在本公开的某一实施方案中,所述有机电致发光器件中还包括基板,以及依次形成在基板上的阳极层、有机发光功能层和阴极层;所述的有机发光功能层中,包括含如上所述的有机电致发光组合物的发光层,还可包括空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层和电子注入层中的任意一种或者多种的组合。
本公开提供了一种所述的有机电致发光器件在有机电致发光显示器或有机电致发光照明光源中的应用。
本公开提供了一种设计合成有机发光材料的分子结构设计方法,其优势在于:将分离型D-A结构和共振型D-A分子具有的优点结合起来,并且克服了这两类分子存在的缺点。基于该分子设计方法能够有效克服现有绿光和红光有机电致发光材料(指发光峰位处于520nm以上的有机发光材料)发射光谱过宽的缺陷,提供了一种在绿光至红光区发光且具有窄光谱发光特性的有机分子设计合成技术方法;并进一步提供了一种如式(I)所示在绿光至红光区发光且具有窄光谱发光特性的有机化合物、组合物及其在有机电致发领域中的应用。利用本公开提供的有机分子及其与一些材料的组合物可以最为发光材料制备有机电致发光器件的发光层,于此制备的有机电致发光器件具有发射光谱窄、效率高等优点。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面通过实施例的方式进一步说明本公开,但并不因此将本公开限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
相对分子量在1000以下的分子质谱数据(Mass Spectra:MS)由Thermo Fisher公司的ITQ1100离子阱型气相色谱-质谱联用仪测得,相对分子量在1000以上的分子质谱数据由Bruker公司的Autoflex Speed基质辅组激光解析飞行时间质谱联用仪测得。终产物的元素分析采用的机器为Elemental analysis公司的Flash EA1112。
样品薄膜的紫外-可见吸收光谱由PerkinElmer公司的LAMBDA 35型紫外可见分光光度计测得。荧光光谱由日本Shimadzu公司的RF-5301PC荧光光度计测得,测试时选取的激发波长为最大吸收波长。
具体采用的原料-1包括以下分子:
Figure PCTCN2021093220-appb-000099
具体采用的原料-2包括以下分子:
Figure PCTCN2021093220-appb-000100
Figure PCTCN2021093220-appb-000101
Figure PCTCN2021093220-appb-000102
Figure PCTCN2021093220-appb-000103
Figure PCTCN2021093220-appb-000104
合成实施例
合成实施例1,具体合成路线如下所示:
Figure PCTCN2021093220-appb-000105
化合物的具体制备方法如下:
第一步,将60ml含有52.8mmol的原料(二苯胺或其衍生物:原料S2)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有8.1g叔丁醇钾(72.0mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有3..4g 2-溴-1,3,4-三氟苯(16.0mmol)的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,得到中间体D1-a,为白色固体。
第二步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含12.6mmol中间体D1-a的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2..4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr3。将反应体系真空浓缩,,并通过柱色谱法 用二氯甲烷/石油醚混合物洗脱液纯化,得到目标产物D1。获得的目标化合物有关数据见表1。
以化合物D1-1为例说明合成实施例实验具体细节:第一步,将60ml含有8.9g二苯胺(52.8mmol)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有8.1g叔丁醇钾(72.0mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有3.4g 2-溴-1,3,4-三氟苯(16.0mmol)的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚(1:3)的混合洗脱液通过柱色谱法进一步纯化,得到9.5g中间体D1-1-a,为白色固体(产率90%)。
第二步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含中间体D1-1-a 8.3g(12.6mmol)的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr 3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚(1:20)的混合物洗脱液纯化,得到2.5克亮黄色固体物D1-1(产率34%)。
Figure PCTCN2021093220-appb-000106
Figure PCTCN2021093220-appb-000107
Figure PCTCN2021093220-appb-000108
Figure PCTCN2021093220-appb-000109
表1.化合物D1-1至D1-37的元素分析(化合物中C、H和N百分含量)、质谱测试分子量及合成反应产率数据。
化合物 原料-1 原料-2 分子量 元素分析(%)(C,H,N) 产率(%)
D1-1 S1-1 S2-1 587.53 C,85.86;H,5.15;N,7.15 34
D1-2 S1-1 S2-2 671.70 C,85.83;H,6.30;N,6.26 35
D1-3 S1-1 S2-3 755.86 C,85.81;H,7.20;N,5.56 31
D1-4 S1-1 S2-4 840.02 C,85.79;H,7.92;N,5.00 33
D1-5 S1-1 S2-5 938.21 C,85.77;H,8.60;N,4.48 35
D1-6 S1-1 S1-6 924.18 C,85.78;H,8.51;N,4.55 28
D1-7 S1-1 S2-7 1044.12 C,89.73;H,5.21;N,4.02 30
D1-8 S1-1 S2-8 1128.28 C,89.42;H,5.90;N,3.72 28
D1-9 S1-1 S2-9 1380.77 C,88.73;H,7.45;N,3.04 28
D1-10 S1-1 S2-10 1296.61 C,88.93;H,7.00;N,3.24 30
D1-11 S1-1 S2-11 1080.41 C,86.71;H,8.40;N,3.89 27
D1-12 S1-1 S2-12 1392.87 C,87.96;H,8.25;N,3.02 31
D1-13 S1-1 S2-13 737.71 C,87.92;H,4.92;N,5.70 30
D1-14 S1-1 S2-14 767.69 C,75.10;H,5.51;N,5.47 28
D1-15 S1-1 S2-15 671.70 C,85.83;H,6.30;N,6.26 30
D1-16 S1-1 S2-16 1590.80 C,86.07;H,5.32;N,7.92 28
D1-17 S1-1 S2-17 2264.10 C,85.94;H,8.01;N,5.57 27
D1-18 S1-1 S2-18 1578.70 C,86.73;H,4.60;N,7.99 31
D1-19 S1-1 S2-19 2252.00 C,86.40;H,7.52;N,5.60 31
D1-20 S1-1 S2-20 1044.12 C,89.73;H,5.21;N,4.02 27
D1-21 S1-1 S2-21 1080.41 C,86.71;H,8.40;N,3.89 27
D1-22 S1-1 S2-22 1380.77 C,88.73;H,7.45;N,3.04 31
D1-23 S1-1 S2-23 1089.17 C,86.02;H,5.28;N,7.72 27
D1-24 S1-1 S2-24 1425..81 C,85.92;H,7.42;N,5.89 33
D1-25 S1-1 S2-25 1083..12 C,86.50;H,4.75;N,7.76 27
D1-26 S1-1 S2-26 1419..77 C,86.29;H,7.03;N,5.92 30
D1-27 S1-1 S2-27 1092..51 C,85.75;H,9.41;N,3.85 30
D1-28 S1-1 S2-28 1597..48 C,85.71;H,10.98;N,2.63 33
D1-29 S1-1 S2-29 1188..50 C,78.83;H,8.65;N,3.54 30
D1-30 S1-1 S2-30 1692..35 C,80.85;H,10.36;N,2.48 31
D1-31 S1-1 S2-31 1212..45 C,89.16;H,6.48;N,3.47 31
D1-32 S1-1 S2-32 1296..61 C,88.93;H,7.00;N,3.24 27
D1-33 S1-1 S2-33 2054..07 C,87.71;H,9.72;N,2.05 31
D1-34 S1-1 S2-34 2559..04 C,87.30;H,10.64;N,1.64 32
D1-35 S1-1 S2-35 1404..43 C,76.97;H,5.60;N,2.99 31
D1-36 S1-1 S2-36 1584..59 72.77;H,5.73;N,2.65 33
D1-37 S1-1 S2-37 2246..05 C,80.21;H,8.89;N,1.87 27
合成实施例2,具体合成路线如下所示:
Figure PCTCN2021093220-appb-000110
化合物的具体制备方法如下:
第一步,将4.1g 1-溴-3-氯-2,4-二氟苯(18mmol)、19.8mmol原料有机芳胺(二苯胺或其衍生物:原料S2)、19.0g叔丁醇钠(19.8mmol)、330mg三(二亚苄基丙酮)二钯(0.36mmol)、182mg三叔丁基膦(0.9mmol)加入90mL甲苯中,体系反复抽真空充氮气三次,然后在氮气的保护下加热回流24小时后,冷却至室温,将反应液过滤,向滤液中加入0.5L水,用1L二氯甲烷等量分为分三次萃取有机相,分离出有机相后真空浓缩,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,,得到中间体D2-a,为白色固体。
第二步,将60ml含有35.2mmol原料(二苯胺或其衍生物:原料S2,,与第一步所用二 苯胺或其衍生物不同)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有4.9g叔丁醇钾(43.8mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有16.0mmol中间体D2-a的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,得到中间体D2-b,为白色固体。
第三步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含12.6mmol中间体D2-b的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr 3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚混合物洗脱液纯化,得到目标产物。获得的目标化合物有关数据见表2。
以化合物D2-1为例说明合成实施例实验具体细节:第一步,将4.1g 1-溴-3-氯-2,4-二氟苯(18mmol)、3.4g二苯胺(19.8mmol)、19.0g叔丁醇钠(19.8mmol)、330mg三(二亚苄基丙酮)二钯(0.36mmol)、182mg三叔丁基膦(0.9mmol)加入90mL甲苯中,体系反复抽真空充氮气三次,然后在氮气的保护下加热回流24小时后,冷却至室温,将反应液过滤,向滤液中加入0.5L水,用1L二氯甲烷等量分为分三次萃取有机相,分离出有机相后真空浓缩,然后使用二氯甲烷/石油醚(1:8)的混合洗脱液通过柱色谱法进一步纯化,得到5.2g白色固体D2-1-a(产率92%)。
第二步,将60ml含有7.0g 3,6-二甲基二苯胺(35.2mmol)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有4.9g叔丁醇钾(43.8mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有5.1g D2-1-a(16.0mmol)的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚(1:3)的混合洗脱液通过柱色谱法进一步纯化,得到10.3g白色固体D2-1-b(产率90%)。
第三步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含9.0g化合物D2-1-b(12.6mmol)的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr 3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚(1:20)的混合物洗脱液纯化,得到2.5克亮黄色固体(产率31%)。
Figure PCTCN2021093220-appb-000111
Figure PCTCN2021093220-appb-000112
Figure PCTCN2021093220-appb-000113
Figure PCTCN2021093220-appb-000114
Figure PCTCN2021093220-appb-000115
Figure PCTCN2021093220-appb-000116
Figure PCTCN2021093220-appb-000117
Figure PCTCN2021093220-appb-000118
表2.化合物D2-1至D2-96的元素分析(化合物中C、H和N百分含量)、质谱测试分子量及合成反应产率数据。
化合物 原料-1 原料-2 原料-3 分子量 元素分析(%)(C,H,N) 产率(%)
D2-1 S1-2 S2-1 S2-2 643.32 C,85.84;H,5.95;N,6.53 31
D2-2 S1-2 S2-1 S2-3 699.75 C,85.82;H,6.63;N,6.01 29
D2-3 S1-2 S2-1 S2-38 755.86 C,85.81;H,7.20;N,5.56 27
D2-4 S1-2 S2-1 S2-4 755.86 C,85.81;H,7.20;N,5.56 26
D2-5 S1-2 S2-1 S2-39 825.99 C,85.79;H,7.81;N,5.09 29
D2-6 S1-2 S2-1 S2-6 811.97 C,85.80;H,7.70;N,5.18 26
D2-7 S1-2 S2-1 S2-14 707.64 C,78.08;H,5.41;N,5.94 34
D2-8 S1-2 S2-1 S2-7 891.93 C,88.88;H,5.20;N,4.71 26
D2-9 S1-2 S2-1 S2-8 948.03 C,88.69;H,5.74;N,4.43 34
D2-10 S1-2 S2-1 S2-9 1116.36 C,88.22;H,7.04;N,3.76 31
D2-11 S1-2 S2-1 S2-10 1060.25 C,88.36;H,6.66;N,3.96 30
D2-12 S1-2 S2-1 S2-11 916.12 C,86.53;H,7.70;N,4.59 29
D2-13 S1-2 S2-1 S2-12 1124.42 C,87.59;H,7.71;N,3.74 34
D2-14 S1-2 S2-1 S2-16 1256.38 C,86.04;H,5.30;N,7.80 29
D2-15 S1-2 S2-1 S2-17 1705.24 C,85.93;H,7.68;N,5.75 26
D2-16 S1-2 S2-1 S2-18 1248.31 C,86.60;H,4.68;N,7.85 29
D2-17 S1-2 S2-1 S2-19 1697.18 C,86.34;H,7.25;N,5.78 34
D2-18 S1-2 S2-1 S2-20 891.93 C,88.88;H,5.20;N,4.71 29
D2-19 S1-2 S2-1 S2-21 916.12 C,86.53;H,7.70;N,4.59 33
D2-20 S1-2 S2-1 S2-22 1116.36 C,88.22;H,7.04;N,3.76 30
D2-21 S1-2 S2-1 S2-23 921.96 C,85.98;H,5.25;N,7.60 30
D2-22 S1-2 S2-1 S2-24 1146.39 C,85.91;H,7.03;N,6.11 31
D2-23 S1-2 S2-1 S2-25 917.92 C,86.36;H,4.83;N,7.63 34
D2-24 S1-2 S2-1 S2-26 1142.36 C,86.22;H,6.71;N,6.13 26
D2-25 S1-2 S2-1 S2-26 1083.12 C,86.50;H,4.75;N,7.76 27
D2-26 S1-2 S2-1 S2-40 917.92 C,86.36;H,4.83;N,7.63 27
D2-27 S1-2 S2-1 S2-41 767.70 C,84.49;H,4.46;N,5.47 30
D2-28 S1-2 S2-6 S2-1 699.75 C,85.82;H,6.63;N,6.01 31
D2-29 S1-2 S2-6 S2-2 755.86 C,85.81;H,7.20;N,5.56 29
D2-30 S1-2 S2-6 S2-4 868.07 C,85.79;H,8.13;N,4.84 32
D2-31 S1-2 S2-6 S2-7 1004.14 C,88.51;H,6.22;N,4.18 31
D2-32 S1-2 S2-6 S2-14 819.85 C,79.11;H,6.64;N,5.13 34
D2-33 S1-2 S2-6 S2-10 1172.47 C,88.10;H,7.39;N,3.58 31
D2-34 S1-2 S2-6 S2-11 1028.33 C,86.43;H,8.43;N,4.09 27
D2-35 S1-2 S2-6 S2-20 1004.14 C,88.51;H,6.22;N,4.18 30
D2-36 S1-2 S2-6 S2-21 1028.33 C,86.43;H,8.43;N,4.09 29
D2-37 S1-2 S2-6 S2-16 1368.59 C,86.01;H,6.04;N,7.16 28
D2-38 S1-2 S2-6 S2-17 1817.46 C,85.91;H,8.10;N,5.39 33
D2-39 S1-2 S2-6 S2-18 1360.53 C,86.52;H,5.48;N,7.21 27
D2-40 S1-2 S2-6 S2-19 1809.39 C,86.30;H,7.69;N,5.42 29
D2-41 S1-2 S2-10 S2-1 823.89 C,87.47;H,6.12;N,5.10 33
D2-42 S1-2 S2-10 S2-2 880.00 C,87.35;H,6.64;N,4.78 26
D2-43 S1-2 S2-10 S2-4 992.22 C,87.16;H,7.52;N,4.24 27
D2-44 S1-2 S2-10 S2-6 1048.32 C,87.08;H,7.88;N,4.01 29
D2-45 S1-2 S2-10 S2-7 1128.28 C,89.42;H,5.90;N,3.72 27
D2-46 S1-2 S2-1 S2-42 811.97 C,85.80;H,7.70;N,5.18 28
D2-47 S1-2 S2-1 S2-27 924.18 C,85.78;H,8.51;N,4.55 35
D2-48 S1-2 S2-1 S2-14 707.64 C,78.08;H,5.41;N,5.94 29
D2-49 S1-2 S2-1 S2-43 875.96 C,79.53;H,7.13;N,4.80 25
D2-50 S1-2 S2-2 S2-42 840.02 C,85.79;H,7.92;N,5.00 33
D2-51 S1-2 S2-2 S2-14 735.69 C,78.37;H,5.75;N,5.71 34
D2-52 S1-2 S2-2 S2-43 904.02 C,79.72;H,7.36;N,4.65 35
D2-53 S1-2 S2-7 S2-42 964.16 C,87.20;H,7.32;N,4.36 35
D2-54 S1-2 S2-7 S2-47 1188.59 C,86.90;H,8.65;N,3.54 27
D2-55 S1-2 S2-7 S2-14 859.83 C,81.02;H,5.39;N,4.89 29
D2-56 S1-2 S2-4 S2-1 671.70 C,85.83;H,6.30;N,6.26 25
D2-57 S1-2 S2-4 S2-2 727.80 C,85.82;H,6.92;N,5.77 25
D2-58 S1-2 S2-4 S2-6 896.13 C,85.78;H,8.32;N,4.69 30
D2-59 S1-2 S2-4 S2-7 976.09 C,88.60;H,5.99;N,4.31 33
D2-60 S1-2 S2-4 S2-9 1200.52 C,88.04;H,7.56;N,3.50 25
D2-61 S1-2 S2-4 S2-14 791.80 C,78.88;H,6.37;N,5.31 33
D2-62 S1-2 S2-7 S2-1 739.73 C,87.68;H,5.18;N,5.68 27
D2-63 S1-2 S2-7 S2-2 795.84 C,87.54;H,5.83;N,5.28 24
D2-64 S1-2 S2-7 S2-4 908.05 C,87.30;H,6.88;N,4.63 27
D2-65 S1-2 S2-7 S2-6 964.16 C,87.20;H,7.32;N,4.36 29
D2-66 S1-2 S2-7 S2-9 1268.55 C,89.00;H,6.83;N,3.31 29
D2-67 S1-2 S2-7 S2-14 859.83 C,81.02;H,5.39;N,4.89 30
D2-68 S1-2 S2-9 S2-1 851.95 C,87.41;H,6.39;N,4.93 35
D2-69 S1-2 S2-9 S2-2 908.05 C,87.30;H,6.88;N,4.63 25
D2-70 S1-2 S2-9 S2-4 1020.27 C,87.12;H,7.71;N,4.12 29
D2-71 S1-2 S2-9 S2-6 1076.38 C,87.04;H,8.05;N,3.90 27
D2-72 S1-2 S2-9 S2-7 1156.34 C,89.33;H,6.10;N,3.63 30
D2-73 S1-2 S2-9 S2-14 972.05 C,81.55;H,6.43;N,4.32 35
D2-74 S1-2 S2-19 S2-1 1158.40 C,86.06;H,6.96;N,6.05 30
D2-75 S1-2 S2-19 S2-2 1214.51 C,86.04;H,7.30;N,5.77 25
D2-76 S1-2 S2-19 S2-4 1326.72 C,86.00;H,7.90;N,5.28 24
D2-77 S1-2 S2-19 S2-6 1382.83 C,85.99;H,8.16;N,5.06 24
D2-78 S1-2 S2-17 S2-1 1162.43 C,85.76;H,7.28;N,6.02 27
D2-79 S1-2 S2-17 S2-2 1218.54 C,85.75;H,7.61;N,5.75 30
D2-80 S1-2 S2-17 S2-4 1330.75 C,85.74;H,8.18;N,5.26 29
D2-81 S1-2 S2-17 S2-6 1386.86 C,85.74;H,8.43;N,5.05 24
D2-82 S1-2 S2-44 S2-1 880.99 C,85.89;H,6.52;N,6.36 30
D2-83 S1-2 S2-44 S2-2 937.10 C,85.88;H,6.99;N,5.98 29
D2-84 S1-2 S2-44 S2-4 1049.31 C,85.85;H,7.78;N,5.34 32
D2-85 S1-2 S2-44 S2-6 1105.42 C,85.84;H,8.12;N,5.07 30
D2-86 S1-2 S2-45 S2-1 883.00 C,85.70;H,6.74;N,6.35 31
D2-87 S1-2 S2-45 S2-2 939.11 C,85.69;H,7.19;N,5.97 33
D2-88 S1-2 S2-45 S2-4 1051.33 C,85.68;H,7.96;N,5.33 24
D2-89 S1-2 S2-45 S2-6 1107.44 C,85.68;H,8.28;N,5.06 30
D2-90 S1-2 S2-34 S2-1 1244.70 C,86.85;H,8.91;N,3.38 33
D2-91 S1-2 S2-34 S2-6 1469.13 C,86.66;H,9.74;N,2.86 27
D2-92 S1-2 S2-46 S2-1 1356.74 C,80.56;H,8.47;N,3.10 33
D2-93 S1-2 S2-33 S2-1 1076.38 C,87.04;H,8.05;N,3.90 30
D2-94 S1-2 S2-33 S2-6 1300.81 C,86.79;H,9.14;N,3.23 33
D2-95 S1-2 S2-37 S2-1 1156.42 C,82.05;H,7.84;N,3.63 27
D2-96 S1-2 S2-37 S2-6 1380.85 C,82.63;H,8.91;N,3.04 29
合成实施例3,具体成路线如下所示:
Figure PCTCN2021093220-appb-000119
化合物的具体制备方法如下:
第一步,将4.1g 1-溴-3-氯-2,4-二氟苯(18mmol)、19.8mmol原料有机芳胺(咔唑或其衍生物:原料S3)、19.0g叔丁醇钠(19.8mmol)、330mg三(二亚苄基丙酮)二钯(0.36mmol)、182mg三叔丁基膦(0.9mmol)加入90mL甲苯中,体系反复抽真空充氮气三次,然后在氮气的保护下加热回流24小时后,冷却至室温,将反应液过滤,向滤液中加入0.5L水,用1L二氯甲烷等量分为分三次萃取有机相,分离出有机相后真空浓缩,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,得到中间体D3-a,为白色固体。
第二步,将60ml含有35.2mmol原料(二苯胺或其衍生物:原料S2))的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有4.9g叔丁醇钾(43.8mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有16.0mmol中间体D3-a的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,得到中间体D3-b,为白色固体。
第三步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含12.6mmol中间体D3-b的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr 3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚混合物洗脱液纯化,得到目标产物。获得的目标化合物有关数据见表3。
以化合物D3-1为例说明合成实施例实验具体细节:第一步,将4.1g 1-溴-3-氯-2,4-二氟苯(18mmol)、3.4g咔唑(19.8mmol)、19.0g叔丁醇钠(19.8mmol)、330mg三(二亚苄基丙酮)二钯(0.36mmol)、182mg三叔丁基膦(0.9mmol)加入90mL甲苯中,体系反复抽真空充氮气三次,然后在氮气的保护下加热回流24小时后,冷却至室温,将反应液过滤,向滤液中加入0.5L水,用1L二氯甲烷等量分为分三次萃取有机相,分离出有机相后真空浓缩,然后使用二氯甲烷/石油醚(1:8)的混合洗脱液通过柱色谱法进一步纯化,得到5.2g白色固体D3-1-a(产率92%)。
第二步,将60ml含有6.0g二苯胺(35.2mmol)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有4.9g叔丁醇钾(43.8mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有5.1g D3-1-a(16.0mmol)的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚(1:3)的混合洗脱液通过柱色谱法进一步纯化,得到8.8g白色固体D3-1-b(产率90%)。
第三步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含7.7g化合物D3-1-b(12.6mmol)的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚(1:20)的混合物洗脱液纯化,得到2.3克亮黄色固体(产率31%)。
Figure PCTCN2021093220-appb-000120
Figure PCTCN2021093220-appb-000121
Figure PCTCN2021093220-appb-000122
Figure PCTCN2021093220-appb-000123
Figure PCTCN2021093220-appb-000124
Figure PCTCN2021093220-appb-000125
表3.化合物D3-1至D3-75的元素分析(化合物中C、H和N百分含量)、质谱测试分子量及合成反应产率数据。
化合物 原料-1 原料-2 原料-3 分子量 元素分析(%)(C,H,N) 产率(%)
D3-1 S1-2 S3-1 S2-1 585.52 C,86.16;H,4.82;N,7.18 31
D3-2 S1-2 S3-1 S2-2 641.63 C,86.11;H,5.66;N,6.55 31
D3-3 S1-2 S3-1 S2-3 697.73 C,86.07;H,6.36;N,6.02 34
D3-4 S1-2 S3-1 S2-38 753.84 C,86.04;H,6.95;N,5.57 26
D3-5 S1-2 S3-1 S2-4 753.84 C,86.04;H,6.95;N,5.57 27
D3-6 S1-2 S3-1 S2-6 809.95 C,86.01;H,7.47;N,5.19 27
D3-7 S1-2 S3-1 S2-7 889.91 C,89.08;H,4.98;N,4.72 30
D3-8 S1-2 S3-1 S2-8 946.02 C,88.87;H,5.54;N,4.44 31
D3-9 S1-2 S3-1 S2-9 1114.34 C,88.38;H,6.87;N,3.77 29
D3-10 S1-2 S3-1 S2-10 1058.23 C,88.53;H,6.48;N,3.97 32
D3-11 S1-2 S3-1 S2-11 914.10 C,86.72;H,7.50;N,4.60 31
D3-12 S1-2 S3-1 S2-12 1122.41 C,87.75;H,7.54;N,3.74 34
D3-13 S1-2 S3-1 S2-18 1246.30 C,86.74;H,4.53;N,7.87 31
D3-14 S1-2 S3-1 S2-16 1254.36 C,86.18;H,5.14;N,7.82 27
D3-15 S1-2 S3-1 S2-17 1703.23 C,86.03;H,7.58;N,5.76 30
D3-16 S1-2 S3-1 S2-19 1695.16 C,86.44;H,7.14;N,5.78 29
D3-17 S1-2 S3-1 S2-20 889.91 C,89.08;H,4.98;N,4.72 28
D3-18 S1-2 S3-1 S2-21 914.10 C,86.72;H,7.50;N,4.60 33
D3-19 S1-2 S3-1 S2-22 1114.34 C,88.38;H,6.87;N,3.77 27
D3-20 S1-2 S3-1 S2-23 919.94 C,86.17;H,5.04;N,7.61 29
D3-21 S1-2 S3-1 S2-24 1144.37 C,86.06;H,6.87;N,6.12 33
D3-22 S1-2 S3-1 S2-25 915.91 C,86.55;H,4.62;N,7.65 26
D3-23 S1-2 S3-1 S2-26 1140.34 C,86.37;H,6.54;N,6.14 27
D3-24 S1-2 S3-7 S2-1 697.73 C,86.07;H,6.36;N,6.02 29
D3-25 S1-2 S3-7 S2-2 753.84 C,86.04;H,6.95;N,5.57 27
D3-26 S1-2 S3-7 S2-4 866.06 C,85.99;H,7.91;N,4.85 28
D3-27 S1-2 S3-7 S2-10 1170.45 C,88.25;H,7.23;N,3.59 35
D3-28 S1-2 S3-7 S2-6 922.17 C,85.96;H,8.31;N,4.56 29
D3-29 S1-2 S3-7 S2-7 1002.13 C,88.69;H,6.04;N,4.19 25
D3-30 S1-2 S3-7 S2-11 1026.32 C,86.60;H,8.25;N,4.09 33
D3-31 S1-2 S3-7 S2-20 1002.13 C,88.69;H,6.04;N,4.19 34
D3-32 S1-2 S3-7 S2-21 1026.32 C,86.60;H,8.25;N,4.09 35
D3-33 S1-2 S3-7 S2-16 1366.58 C,86.13;H,5.90;N,7.17 35
D3-34 S1-2 S3-7 S2-17 1815.44 C,86.01;H,8.00;N,5.40 34
D3-35 S1-2 S3-7 S2-18 1358.51 C,86.64;H,5.34;N,7.22 35
D3-36 S1-2 S3-7 S2-19 1807.38 C,86.39;H,7.58;N,5.42 31
D3-37 S1-2 S3-1 S2-42 809.95 C,86.01;H,7.47;N,5.19 33
D3-38 S1-2 S3-1 S2-27 922.17 C,85.96;H,8.31;N,4.56 35
D3-39 S1-2 S3-1 S2-14 705.62 C,78.30;H,5.14;N,5.96 28
D3-40 S1-2 S3-1 S2-43 873.95 C,79.71;H,6.92;N,4.81 30
D3-41 S1-2 S3-2 S2-14 733.68 C,78.58;H,5.50;N,5.73 28
D3-42 S1-2 S3-8 S2-42 962.15 C,87.38;H,7.12;N,4.37 28
D3-43 S1-2 S3-8 S2-14 857.82 C,81.21;H,5.17;N,4.90 30
D3-44 S1-2 S3-5 S2-1 669.68 C,86.09;H,6.02;N,6.27 27
D3-45 S1-2 S3-5 S2-6 894.11 C,85.97;H,8.12;N,4.70 31
D3-46 S1-2 S3-5 S2-7 974.07 C,88.78;H,5.80;N,4.31 30
D3-47 S1-2 S3-5 S2-9 1198.50 C,88.19;H,7.40;N,3.51 28
D3-48 S1-2 S3-8 S2-1 737.71 C,87.92;H,4.92;N,5.70 30
D3-49 S1-2 S3-8 S2-2 793.82 C,87.86;H,5.59;N,5.29 28
D3-50 S1-2 S3-8 S2-6 962.15 C,87.38;H,7.12;N,4.37 28
D3-51 S1-2 S3-5 S2-2 725.79 C,86.05;H,6.67;N,5.79 35
D3-52 S1-2 S3-8 S2-9 1266.54 C,89.14;H,6.69;N,3.32 29
D3-53 S1-2 S3-10 S2-1 849.93 C,87.62;H,6.17;N,4.94 25
D3-54 S1-2 S3-10 S2-2 906.04 C,87.49;H,6.68;N,4.64 33
D3-55 S1-2 S3-10 S2-6 1074.36 C,87.20;H,7.88;N,3.91 34
D3-56 S1-2 S3-10 S2-7 1154.32 C,89.49;H,5.94;N,3.64 35
D3-57 S1-2 S3-16 S2-1 1156.38 C,86.21;H,6.80;N,6.60 35
D3-58 S1-2 S3-16 S2-2 1212.49 C,86.18;H,7.15;N,5.78 28
D3-59 S1-2 S3-16 S2-6 1380.81 C,86.12;H,8.03;N,5.07 28
D3-60 S1-2 S3-14 S2-1 1160.41 C,85.91;H,7.12;N,6.04 30
D3-61 S1-2 S3-14 S2-2 1216.52 C,85.90;H,7.46;N,5.76 27
D3-62 S1-2 S3-14 S2-6 1384.85 C,85.86;H,8.30;N,5.06 31
D3-63 S1-2 S3-28 S2-1 878.97 C,86.09;H,6.31;N,6.37 30
D3-64 S1-2 S3-28 S2-6 1103.40 C,85.99;H,7.95;N,5.08 28
D3-65 S1-2 S3-29 S2-1 880.99 C,85.89;H,6.52;N,6.36 30
D3-66 S1-2 S3-29 S2-6 1105.42 C,85.84;H,8.12;N,5.07 28
D3-67 S1-2 S3-23 S2-1 1242.69 C,86.99;H,8.76;N,3.38 27
D3-68 S1-2 S3-23 S2-6 1467.12 C,86.78;H,9.62;N,2.86 31
D3-69 S1-2 S3-30 S2-1 1354.72 C,80.68;H,8.33;N,3.10 31
D3-70 S1-2 S3-30 S2-2 1410.83 C,80.88;H,8.57;N,2.98 27
D3-71 S1-2 S3-30 S2-6 1579.15 C,81.38;H,9.19;N,2.66 27
D3-72 S1-2 S3-24 S2-1 1074.36 C,87.20;H,7.88;N,3.91 31
D3-73 S1-2 S3-24 S2-6 1298.79 C,86.93;H,9.00;N,3.24 27
D3-74 S1-2 S3-27 S2-1 1154.40 C,82.20;H,7.68;N,3.64 33
D3-75 S1-2 S3-27 S2-6 1378.83 C,82.75;H,8.77;N,3.05 27
D3-76 S1-2 S2-1 S3-15 931.95 C,86.35;H,4.98;N,7.51 31
D3-77 S1-2 S2-1 S3-13 935.98 C,85.98;H,5.38;N,7.48 30
实施例4,具体合成路线如下所示:
Figure PCTCN2021093220-appb-000126
化合物的具体制备方法如下:
第一步,将4.1g 1-溴-3-氯-2,4-二氟苯(18mmol)、19.8mmol原料有机芳胺(二苯胺或其衍生物:原料S3)、19.0g叔丁醇钠(19.8mmol)、330mg三(二亚苄基丙酮)二钯(0.36mmol)、182mg三叔丁基膦(0.9mmol)加入90mL甲苯中,,体系反复抽真空充氮气三次,然后在氮气的保护下加热回流24小时后,冷却至室温,,将反应液过滤,向滤液中加入0.5L水,用1L二氯甲烷等量分为分三次萃取有机相,分离出有机相后真空浓缩,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,得到中间体D4-a,为白色固体。
第二步,将60ml含有35.2mmol原料(咔唑或其衍生物:原料S2)的无水DMF(N, N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有4.9g叔丁醇钾(43.8mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有16.0mmol中间体D4-a的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,得到中间体D4-b,为白色固体。
第三步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含12.6mmol中间体D4-b的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr 3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚混合物洗脱液纯化,得到目标产物。获得的目标化合物有关数据见表4。
以化合物D4-1为例说明合成实施例实验具体细节:第一步,将4.1g 1-溴-3-氯-2,4-二氟苯(18mmol)、3.4g二苯胺(19.8mmol)、19.0g叔丁醇钠(19.8mmol)、330mg三(二亚苄基丙酮)二钯(0.36mmol)、182mg三叔丁基膦(0.9mmol)加入90mL甲苯中,体系反复抽真空充氮气三次,然后在氮气的保护下加热回流24小时后,冷却至室温,将反应液过滤,向滤液中加入0.5L水,用1L二氯甲烷等量分为分三次萃取有机相,分离出有机相后真空浓缩,然后使用二氯甲烷/石油醚(1:8)的混合洗脱液通过柱色谱法进一步纯化,得到5.2g白色固体D4-1-a(产率92%)。
第二步,将60ml含有6.0g咔唑(35.2mmol)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有4.9g叔丁醇钾(43.8mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有5.1g D4-1-a(16.0mmol)的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚(1:3)的混合洗脱液通过柱色谱法进一步纯化,得到8.8g白色固体D4-1-b(产率90%)。
第三步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含7.7g化合物D4-1-b(12.6mmol)的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr 3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚(1:20)的混合物洗脱液纯化,得到2.3克亮黄色固体(产率31%)。
Figure PCTCN2021093220-appb-000127
Figure PCTCN2021093220-appb-000128
Figure PCTCN2021093220-appb-000129
Figure PCTCN2021093220-appb-000130
Figure PCTCN2021093220-appb-000131
表4.化合物D4-1至D4-64的元素分析(化合物中C、H和N百分含量)、质谱测试分子量及合成反应产率数据。
化合物 原料-1 原料-2 原料-3 分子量 元素分析(%)(C,H,N) 产率(%)
D4-1 S1-2 S2-1 S3-1 583.50 C,86.45;H,4.49;N,7.20 31
D4-2 S1-2 S2-1 S3-2 639.61 C,86.38;H,5.36;N,6.57 29
D4-3 S1-2 S2-1 S3-3 695.72 C,86.32;H,6.09;N,6.04 27
D4-4 S1-2 S2-1 S3-4 751.83 C,86.27;H,6.70;N,5.59 26
D4-5 S1-2 S2-1 S3-5 751.83 C,86.27;H,6.70;N,5.59 29
D4-6 S1-2 S2-1 S3-6 807.93 C,86.22;H,7.24;N,5.20 26
D4-7 S1-2 S2-1 S3-7 887.89 C,89.28;H,4.77;N,4.73 34
D4-8 S1-2 S2-1 S3-8 1112.33 C,88.54;H,6.71;N,3.78 26
D4-9 S1-2 S2-1 S3-9 944.00 C,89.06;H,5.34;N,4.45 34
D4-10 S1-2 S2-18 S3-1 929.93 C,86.54;H,4.77;N,7.53 34
D4-11 S1-2 S2-1 S3-11 912.09 C,86.91;H,7.29;N,4.61 30
D4-12 S1-2 S2-1 S3-12 1120.39 C,87.91;H,7.38;N,3.75 29
D4-13 S1-2 S2-16 S3-1 933.97 C,86.16;H,5.18;N,7.50 33
D4-14 S1-2 S2-1 S3-13 1252.35 C,86.32;H,4.99;N,7.83 29
D4-15 S1-2 S2-1 S3-14 1701.21 C,86.14;H,7.47;N,5.76 26
D4-16 S1-2 S2-1 S3-15 1244.28 C,86.88;H,4.37;N,7.88 29
D4-17 S1-2 S2-1 S3-16 1693.15 C,86.55;H,7.03;N,5.79 34
D4-18 S1-2 S2-1 S3-32 917.92 C,86.36;H,4.83;N,7.63 29
D4-19 S1-2 S2-6 S3-1 695.72 C,86.32;H,6.09;N,6.04 33
D4-20 S1-2 S2-6 S3-2 751.83 C,86.27;H,6.70;N,5.59 30
D4-21 S1-2 S2-6 S3-5 864.04 C,86.19;H,7.70;N,4.86 30
D4-22 S1-2 S2-6 S3-7 920.15 C,86.15;H,8.11;N,4.57 31
D4-23 S1-2 S2-6 S3-8 1000.11 C,88.87;H,5.85;N,4.20 34
D4-24 S1-2 S2-6 S3-11 1024.30 C,86.77;H,8.07;N,4.10 26
D4-25 S1-2 S2-6 S3-13 1364.56 C,86.26;H,5.76;N,7.19 27
D4-26 S1-2 S2-6 S3-14 1813.43 C,86.10;H,7.89;N,5.41 27
D4-27 S1-2 S2-6 S3-15 1328.44 C,86.80;H,5.01;N,7.38 30
D4-28 S1-2 S2-6 S3-16 1805.36 C,86.49;H,7.48;N,5.43 31
D4-29 S1-2 S2-10 S3-1 819.86 C,87.90;H,5.66;N,5.13 29
D4-30 S1-2 S2-10 S3-2 875.97 C,87.75;H,6.21;N,4.80 32
D4-31 S1-2 S2-10 S3-5 988.18 C,87.51;H,7.14;N,4.25 31
D4-32 S1-2 S2-10 S3-7 1044.29 C,87.41;H,7.53;N,4.02 34
D4-33 S1-2 S2-10 S3-8 1124.25 C,89.74;H,5.56;N,3.74 31
D4-34 S1-2 S2-7 S3-1 735.70 C,88.16;H,4.66;N,5.71 29
D4-35 S1-2 S2-7 S3-2 791.81 C,87.98;H,5.35;N,5.31 32
D4-36 S1-2 S2-7 S3-5 904.02 C,87.69;H,6.47;N,4.65 31
D4-37 S1-2 S2-7 S3-7 960.13 C,87.57;H,6.93;N,4.38 34
D4-38 S1-2 S2-1 S3-8 920.15 C,86.15;H,8.11;N,4.57 31
D4-39 S1-2 S2-2 S3-10 835.99 C,86.20;H,7.48;N,5.03 29
D4-40 S1-2 S2-4 S3-2 723.77 C,86.29;H,6.41;N,5.81 25
D4-41 S1-2 S2-4 S3-7 892.10 C,86.17;H,7.91;N,4.71 25
D4-42 S1-2 S2-4 S3-1 972.06 C,88.97;H,5.60;N,4.32 30
D4-43 S1-2 S2-4 S3-10 1196.49 C,88.34;H,7.25;N,3.51 33
D4-44 S1-2 S2-7 S3-2 791.81 C,87.98;H,5.35;N,5.31 25
D4-45 S1-2 S2-7 S3-7 960.13 C,87.57;H,6.93;N,4.38 33
D4-46 S1-2 S2-7 S3-10 1264.52 C,89.29;H,6.54;N,3.32 27
D4-47 S1-2 S2-9 S3-2 904.02 C,87.69;H,6.47;N,4.65 24
D4-48 S1-2 S2-9 S3-7 1072.35 C,87.37;H,7.71;N,3.92 27
D4-49 S1-2 S2-9 S3-8 1152.31 C,89.64;H,5.77;N,3.65 29
D4-50 S1-2 S2-19 S3-1 1138.32 C,86.52;H,6.38;N,6.15 29
D4-51 S1-2 S2-19 S3-2 1194.43 C,86.48;H,6.75;N,5.86 30
D4-52 S1-2 S2-19 S3-5 1306.65 C,86.41;H,7.41;N,5.36 35
D4-53 S1-2 S2-19 S3-7 1362.76 C,86.37;H,7.69;N,5.14 25
D4-54 S1-2 S2-17 S3-1 1142.36 C,86.22;H,6.71;N,6.13 29
D4-55 S1-2 S2-17 S3-2 1198.46 C,86.19;H,7.07;N,5.84 27
D4-56 S1-2 S2-17 S3-5 1310.68 C,86.14;H,7.69;N,5.34 30
D4-57 S1-2 S2-17 S3-7 1366.79 C,86.12;H,7.96;N,5.12 35
D4-58 S1-2 S2-24 S3-7 1087.36 C,86.16;H,7.69;N,5.15 30
D4-59 S1-2 S2-34 S3-1 1240.67 C,87.13;H,8.61;N,3.39 25
D4-60 S1-2 S2-34 S3-2 1296.78 C,87.06;H,8.86;N,3.24 24
D4-61 S1-2 S2-24 S3-7 1465.10 C,86.90;H,9.49;N,2.87 24
D4-62 S1-2 S2-33 S3-7 1296.78 C,87.06;H,8.86;N,3.24 27
D4-63 S1-2 S2-37 S3-1 1136.34 C,82.45;H,7.27;N,3.70 30
D4-64 S1-2 S2-37 S3-7 1376.82 C,82.88;H,8.64;N,3.05 29
实施例5,具体合成路线如下所示:
Figure PCTCN2021093220-appb-000132
化合物的具体制备方法如下:
第一步,将60ml含有52.8mmol的原料(咔唑或其衍生物:原料S3)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有8.1g叔丁醇钾(72.0mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有3..4g 2-溴-1,3,4-三氟苯(16.0mmol)的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,得到中间体D5-a,为白色固体。
第二步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含12.6mmol中间体D5-a的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2..4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr3。将反应体系真空浓缩,,并通过柱色谱法用二氯甲烷/石油醚混合物洗脱液纯化,得到目标产物D5。获得的目标化合物有关数据见表5。
以化合物D5-1为例说明合成实施例实验具体细节:第一步,将60ml含有8.8g咔唑(52.8mmol)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有8.1g叔丁醇钾(72.0mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有3.4g 2-溴-1,3,4-三氟苯(16.0mmol)的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚(1:3)的混合洗脱液通过柱色谱法进一步纯化,得到9.6g中间体D5-1-a,为白色固体(产率92%)。
第二步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含中间体D5-1-a 8.2g(12.6mmol)的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr 3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚(1:20)的混合物洗脱液纯化,得到2.8克亮黄色固体 物D5-1(产率38%)。
Figure PCTCN2021093220-appb-000133
Figure PCTCN2021093220-appb-000134
Figure PCTCN2021093220-appb-000135
表5.化合物D5-1至D5-31的元素分析(化合物中C、H和N百分含量)、质谱测试分子量及合成反应产率数据。
化合物 原料-1 原料-3 分子量 元素分析(%)(C,H,N) 产率(%)
D5-1 S1-1 S3-1 581.49 C,86.75;H,4.16;N,7.23 38
D5-2 S1-1 S3-2 665.30 C,86.61;H,5.45;N,6.31 29
D5-3 S1-1 S3-3 749.81 C,86.50;H,6.45;N,5.60 27
D5-4 S1-1 S3-4 833.97 C,86.41;H,7.25;N,5.04 30
D5-5 S1-1 S3-5 833.97 C,86.41;H,7.25;N,5.04 35
D5-6 S1-1 S3-6 932.16 C,86.33;H,8.00;N,4.51 30
D5-7 S1-1 S3-7 918.13 C,86.34;H,7.90;N,4.58 25
D5-8 S1-1 S3-8 1038.07 C,90.25;H,4.66;N,4.05 24
D5-9 S1-1 S3-9 1122.24 C,89.90;H,5.39;N,3.74 24
D5-10 S1-1 S3-10 1360.69 C,89.15;H,6.96;N,3.09 27
D5-11 S1-1 S3-11 1074.36 C,87.20;H,7.88;N,3.91 30
D5-12 S1-1 S3-12 1386.82 C,88.34;H,7.85;N,3.03 29
D5-13 S1-1 S3-13 1584.75 C,86.40;H,4.96;N,7.95 24
D5-14 S1-1 S3-14 2258.05 C,86.17;H,7.77;N,5.58 30
D5-15 S1-1 S3-15 1572.66 C,87.07;H,4.23;N,8.02 29
D5-16 S1-1 S3-16 2245.95 C,86.64;H,7.27;N,5.61 32
D5-17 S1-1 S3-17 918.13 C,86.34;H,7.90;N,4.58 30
D5-18 S1-1 S3-18 1086.46 C,86.23;H,8.91;N,3.87 27
D5-19 S1-1 S3-19 1254.78 C,86.15;H,9.64;N,3.35 31
D5-20 S1-1 S3-20 761.64 C,75.70;H,4.76;N,5.52 31
D5-21 S1-1 S3-21 1290.56 C,89.35;H,6.56;N,3.26 27
D5-22 S1-1 S3-22 1206.40 C,89.60;H,6.02;N,3.48 27
D5-23 S1-1 S3-23 2552.99 C,87.51;H,10.42;N,1.65 31
D5-24 S1-1 S3-24 2048.02 C,87.97;H,9.45;N,2.05 27
D5-25 S1-1 S3-25 1578.54 C,73.05;H,5.36;N,2.66 33
D5-26 S1-1 S3-26 1398.39 C,77.30;H,5.19;N,3.00 27
D5-27 S1-1 S3-27 2240.01 C,80.43;H,8.64;N,1.88 30
D5-28 S1-1 S3-33 1077.07 C,86.98;H,4.21;N,7.80 27
D5-29 S1-1 S3-28 1413.72 C,86.66;H,6.63;N,5.94 29
D5-30 S1-1 S3-32 1083.12 C,86.50;H,4.75;N,7.76 27
D5-31 S1-1 S3-29 1419.77 C,86.29;H,7.03;N,5.92 25
实施例6,具体合成路线如下所示:
Figure PCTCN2021093220-appb-000136
化合物的具体制备方法如下:
第一步,将4.1g 1-溴-3-氯-2,4-二氟苯(18mmol)、19.8mmol原料有机芳胺(咔唑或其衍生物:原料S3)、19.0g叔丁醇钠(19.8mmol)、330mg三(二亚苄基丙酮)二钯(0.36mmol)、182mg三叔丁基膦(0.9mmol)加入90mL甲苯中,体系反复抽真空充氮气三次,然后在氮气的保护下加热回流24小时后,冷却至室温,将反应液过滤,向滤液中加入0.5L水,用1L二氯甲烷等量分为分三次萃取有机相,分离出有机相后真空浓缩,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,得到中间体D6-a,为白色固体。
第二步,将60ml含有35.2mmol原料(咔唑或其衍生物:原料S3,,与第一步所用咔唑或其衍生物不同)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有4.9g叔丁醇钾(43.8mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有16.0mmol中间体D6-a的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚混合洗脱液通过柱色谱法进一步纯化,得到中间体D6-b,为白色固体。
第三步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含12.6mmol中间体D6-b的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr 3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚混合物洗脱液纯化,得到目标产物。获得的目标化合物有关数据见表6。
以化合物D6-1为例说明合成实施例实验具体细节:第一步,将4.1g 1-溴-3-氯-2,4-二氟苯(18mmol)、3.4g咔唑(19.8mmol)、19.0g叔丁醇钠(19.8mmol)、330mg三(二亚苄基丙酮)二钯(0.36mmol)、182mg三叔丁基膦(0.9mmol)加入90mL甲苯中,体系反复抽真空充氮气三次,然后在氮气的保护下加热回流24小时后,冷却至室温,将反应液过滤,向滤液中加入0.5L水,用1L二氯甲烷等量分为分三次萃取有机相,分离出有机相后真空浓缩,然后使用二氯甲烷/石油醚(1:8)的混合洗脱液通过柱色谱法进一步纯化,得到5.2g白色固体D6-1-a(产率93%)。
第二步,将60ml含有7.0g 3,6-二甲基咔唑(35.2mmol)的无水DMF(N,N-二甲基甲酰胺)溶液缓慢滴加到含有50ml含有4.9g叔丁醇钾(43.8mmol)的无水DMF溶液中,在室温下搅拌2小时后,向其中滴加20ml含有5.1g D6-1-a(16.0mmol)的无水DMF溶液。反应体系在140℃下搅拌24小时,然后冷却至室温,倒入冰水(2L)中。抽滤出白色固体,在真空中干燥,然后使用二氯甲烷/石油醚(1:3)的混合洗脱液通过柱色谱法进一步纯化,得到10.2g白色固体D6-1-b(产率90%)。
第三步,在氮气氛围保护下,将19.4mL叔丁基锂的正己烷溶液(25.2mmol)缓慢加入到含8.9g化合物D6-1-b(12.6mmol)的100mL叔丁基苯溶液中(-30℃)。缓慢升温到60℃,搅拌2小时后,真空除去正己烷,然后冷却到-30℃,加入2.4mL三溴化硼(6.3mmol),将反应混合物在室温下搅拌1小时。接着在0℃下加入15.6mL N,N-二异丙基乙胺(91.1mmol),然后将反应混合物升至130℃下继续搅拌5小时后,冷却至室温。向反应混合物中加入5ml甲醇以淬灭残留的BBr 3。将反应体系真空浓缩,并通过柱色谱法用二氯甲烷/石油醚(1:20)的混合物洗脱液纯化,得到2.4克亮黄色固体(产率31%)。
Figure PCTCN2021093220-appb-000137
Figure PCTCN2021093220-appb-000138
Figure PCTCN2021093220-appb-000139
Figure PCTCN2021093220-appb-000140
Figure PCTCN2021093220-appb-000141
表6.化合物D6-1至D6-59的元素分析(化合物中C、H和N百分含量)、质谱测试分子量及合成反应产率数据。
化合物 原料-1 原料-2 原料-3 分子量 元素分析(%)(C,H,N) 产率(%)
D6-1 S1-2 S3-1 S3-2 637.59 C,86.65;H,5.06;N,6.59 31
D6-2 S1-2 S3-1 S3-3 693.70 C,86.57;H,5.81;N,6.06 31
D6-3 S1-2 S3-1 S3-4 749.81 C,86.50;H,6.45;N,5.60 33
D6-4 S1-2 S3-1 S3-5 749.81 C,86.50;H,6.45;N,5.60 24
D6-5 S1-2 S3-1 S3-6 819.94 C,86.43;H,7.13;N,5.12 30
D6-6 S1-2 S3-1 S3-20 701.59 C,78.75;H,4.60;N,5.99 33
D6-7 S1-2 S3-1 S3-7 805.92 C,86.44;H,7.00;N,5.21 27
D6-8 S1-2 S3-1 S3-8 885.88 C,89.48;H,4.55;N,4.74 33
D6-9 S1-2 S3-1 S3-9 941.99 C,89.26;H,5.14;N,4.46 30
D6-10 S1-2 S3-1 S3-10 1110.31 C,88.71;H,6.54;N,3.78 33
D6-11 S1-2 S3-1 S3-11 910.07 C,87.11;H,7.09;N,4.62 27
D6-12 S1-2 S3-1 S3-12 1118.37 C,88.07;H,7.21;N,3.76 29
D6-13 S1-2 S3-1 S3-13 1250.33 C,86.46;H,4.84;N,7.84 29
D6-14 S1-2 S3-1 S3-14 1699.19 C,86.24;H,7.36;N,5.77 27
D6-15 S1-2 S3-1 S3-15 1242.27 C,87.02;H,4.22;N,7.89 30
D6-16 S1-2 S3-1 S3-16 1691.13 C,86.65;H,6.91;N,5.80 35
D6-17 S1-2 S3-7 S3-2 749.81 C,86.50;H,6.45;N,5.60 30
D6-18 S1-2 S3-7 S3-5 862.03 C,86.39;H,7.48;N,4.87 25
D6-19 S1-2 S3-7 S3-8 998.09 C,89.05;H,5.66;N,4.21 24
D6-20 S1-2 S3-7 S3-10 1222.53 C,88.42;H,7.26;N,3.44 24
D6-21 S1-2 S3-7 S3-11 1022.29 C,86.94;H,7.89;N,4.11 27
D6-22 S1-2 S3-7 S3-13 1362.55 C,86.39;H,5.62;N,7.20 30
D6-23 S1-2 S3-7 S3-14 1811.41 C,86.20;H,7.79;N,5.41 29
D6-24 S1-2 S3-7 S3-15 1354.48 C,86.90;H,5.06;N,7.24 24
D6-25 S1-2 S3-7 S3-16 1803.35 C,86.59;H,7.38;N,5.44 30
D6-26 S1-2 S3-5 S3-2 721.76 C,86.54;H,6.15;N,5.82 29
D6-27 S1-2 S3-5 S3-7 890.08 C,86.36;H,7.70;N,4.72 32
D6-28 S1-2 S3-5 S3-8 970.04 C,89.15;H,5.40;N,4.33 30
D6-29 S1-2 S3-5 S3-10 1194.47 C,88.49;H,7.09;N,3.52 27
D6-30 S1-2 S3-8 S3-2 789.79 C,88.21;H,5.11;N,5.32 31
D6-31 S1-2 S3-8 S3-5 902.01 C,87.88;H,6.26;N,4.66 31
D6-32 S1-2 S3-8 S3-7 958.11 C,87.75;H,6.73;N,4.39 27
D6-33 S1-2 S3-8 S3-10 1262.51 C,89.43;H,6.39;N,3.33 27
D6-34 S1-2 S3-10 S3-2 902.01 C,87.88;H,6.26;N,4.66 31
D6-35 S1-2 S3-10 S3-5 1014.22 C,87.64;H,7.16;N,4.14 27
D6-36 S1-2 S3-10 S3-7 1070.33 C,87.53;H,7.53;N,3.93 33
D6-37 S1-2 S3-10 S3-8 1150.29 C,89.80;H,5.61;N,3.65 27
D6-38 S1-2 S3-16 S3-1 1152.35 C,86.51;H,6.47;N,6.08 30
D6-39 S1-2 S3-16 S3-2 1208.46 C,86.47;H,6.84;N,5.80 30
D6-40 S1-2 S3-16 S3-5 1320.67 C,86.40;H,7.48;N,5.30 33
D6-41 S1-2 S3-16 S3-7 1376.78 C,86.37;H,7.76;N,5.09 30
D6-42 S1-2 S3-14 S3-1 1156.38 C,86.21;H,6.80;N,6.06 31
D6-43 S1-2 S3-14 S3-2 1212.49 C,86.18;H,7.15;N,5.78 31
D6-44 S1-2 S3-14 S3-7 1380.81 C,86.12;H,8.03;N,5.07 27
D6-45 S1-2 S3-28 S3-1 874.94 C,86.49;H,5.88;N,6.40 31
D6-46 S1-2 S3-28 S3-7 1099.37 C,86.31;H,7.61;N,5.10 32
D6-47 S1-2 S3-28 S3-1 876.96 C,86.29;H,6.09;N,6.39 31
D6-48 S1-2 S3-28 S3-2 933.06 C,86.25;H,6.59;N,6.00 33
D6-49 S1-2 S3-28 S3-7 1101.39 C,86.15;H,7.78;N,5.09 27
D6-50 S1-2 S3-23 S3-1 1238.65 C,87.27;H,8.46;N,3.39 34
D6-51 S1-2 S3-23 S3-2 1294.76 C,87.20;H,8.72;N,3.25 35
D6-52 S1-2 S3-23 S3-7 1463.09 C,87.02;H,9.37;N,2.87 31
D6-53 S1-2 S3-30 S3-1 1350.69 C,80.92;H,8.06;N,3.11 33
D6-54 S1-2 S3-24 S3-1 1070.33 C,87.53;H,7.53;N,3.93 35
D6-55 S1-2 S3-24 S3-7 1294.76 C,87.20;H,8.72;N,3.25 28
D6-56 S1-2 S3-27 S3-1 1150.37 C,82.48;H,7.36;N,3.65 30
D6-57 S1-2 S3-27 S3-7 1374.80 C,83.00;H,8.51;N,3.06 28
D6-58 S1-2 S3-1 S3-15 911.88 C,86.93;H,4.20;N,7.68 31
D6-59 S1-2 S3-1 S3-13 931.95 C,86.35;H,4.98;N,7.51 30
效果实施例1
Figure PCTCN2021093220-appb-000142
其中n=1、2、3、4、5、6;当n=1时m=1-37;当n=2时m=1-96;当n=3时m=1-77;当n=4时m=1-64;当n=5时m=1-31;当n=6时m=1-59。
Figure PCTCN2021093220-appb-000143
式(Dn-m)所示化合物为本公开所提供的材料分子结构(具体分子结构如前面所示),(Dn-m-R)所示化合物为对比材料分子结构,当式(Dn-m)与(Dn-m-R)中的n和m分别取相同整数时(例如:(D1-1)与(D1-1-R)时),(Dn-m)与(Dn-m-R)两个分子为互为异构体分子。将式(Dn-m)或(Dn-m-R)所示的任一化合物分别作为掺杂发光材料、H1-1作为主体材料制备成掺杂薄膜(厚度为150nm),掺杂发光材料的掺杂浓度为1wt%(重量百分比浓度),然后分别对掺杂薄膜进行发射光谱的测试,测试结果列于表7。
表7中列出的本公开提供的发光化合物的发光峰位与对应的对比化合物的发光峰位比较表明,本公开提供的发光化合物的发光峰比对应的对比化合物的发光峰位红移27-33nm,即向长波长位移27-33nm。上述效果实施例证明本公开的硼氮化合物的发光峰相对于其异构体发生显著的红移,而发光光谱半峰宽没有明显的劣化(仍然较窄),因此本公开提供的发光分子设计原理和方法在提供一种绿光区至红光区的窄发射峰的发光材料上是有效的。
表7.(Dn-m)与(Dn-m-R)溶液发射光谱测试参数。
Figure PCTCN2021093220-appb-000144
Figure PCTCN2021093220-appb-000145
表7.(Dn-m)与(Dn-m-R)溶液发射光谱测试参数(续)。
Figure PCTCN2021093220-appb-000146
Figure PCTCN2021093220-appb-000147
Figure PCTCN2021093220-appb-000148
表7.(Dn-m)与(Dn-m-R)溶液发射光谱测试参数(续)。
Figure PCTCN2021093220-appb-000149
Figure PCTCN2021093220-appb-000150
Figure PCTCN2021093220-appb-000151
表7.(Dn-m)与(Dn-m-R)溶液发射光谱测试参数(续)。
Figure PCTCN2021093220-appb-000152
Figure PCTCN2021093220-appb-000153
Figure PCTCN2021093220-appb-000154
表7.(Dn-m)与(Dn-m-R)溶液发射光谱测试参数(续)。
Figure PCTCN2021093220-appb-000155
Figure PCTCN2021093220-appb-000156
表7.(Dn-m)与(Dn-m-R)溶液发射光谱测试参数(续)。
Figure PCTCN2021093220-appb-000157
Figure PCTCN2021093220-appb-000158
电致发光器件实施例
器件效果实施例所涉及的一些材料分子结构如下:
Figure PCTCN2021093220-appb-000159
Figure PCTCN2021093220-appb-000160
以下利用本公开的材料制备电致发光器件实施例,具体的器件制备工艺如下:透明ITO玻璃作为制备器件的基底材料,后先以5%ITO洗液超声处理30min,之后依次以蒸馏水(2次)、丙酮(2次)、异丙醇(2次)超声洗涤,最后将ITO玻璃保存在异丙醇中。每次使用前,先用丙酮棉球和异丙醇棉球小心擦拭ITO玻璃表面,待异丙醇冲洗后烘干,之后用等离子体处理5min。器件的制备利用真空镀膜设备采用真空蒸镀工艺完成,当真空蒸镀系统的真空度达到5×10 -4Pa以下时开始蒸镀,沉积速率由赛恩斯膜厚仪测定,利用真空蒸镀工艺在ITO玻璃上依次沉积各种有机层及LiF电子注入层和金属Al电极(具体器件结构见如下效果实施例),其中,有机材料的沉积速率为
Figure PCTCN2021093220-appb-000161
LiF的沉积速率为
Figure PCTCN2021093220-appb-000162
Al的沉积速率为
Figure PCTCN2021093220-appb-000163
器件的电流、电压、亮度、发光光谱等特性采用Photo Research PR 655光谱扫描亮度计和Keithley K 2400数字源表系统同步测试。器件的性能测试在室温、环境气氛下进行。器件的外量子效率(EQE)是按照发光为朗勃分布的情况下,由电流密度、亮度和电致光谱结合视见函数计算得出。
效果实施例2
在效果实施例2中的有机电致发光器件(结构如图1所示)中,HATCN作为空穴注入层使用、DBBA作为第一空穴传输层使用、TCTA作为第二空穴传输层使用、在发光层中H1-48作为主体材料使用、D1-1至D1-37、D2-1至D2-96、D3-1至D3-77、D4-1至D4-64、D5-1至D5-31或D6-1至D6-59分别作为掺杂发光材料使用(掺杂浓度为1wt%)、TmPyPB被用作电子传输材料使用、LiF作为电子注入层使用、Al作为金属阴极使用。效果实施例有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/H1-48+1wt%Dn-m/TmPyPB(30nm)/LiF(1nm)/Al(100nm)]。其中n=1,2、3、4、5、6;当n=1时m=1-37;当n=2时m=1-96;当n=3时m=1-77;当n=4时m=1-64;当n=5时m=1-31;当n=6时m=1-59。效果实施例结果见表8。表8中列出的电致发光器件效果实施数据证明,本公开提供的发光材料可以用来制备高效率有机电致发光器件,而且电致发光光谱具有窄谱带特性,电致发光光谱的半峰宽小于60nm。
表8.(Dn-m)电致发光性能主要参数。
Figure PCTCN2021093220-appb-000164
Figure PCTCN2021093220-appb-000165
表8.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000166
Figure PCTCN2021093220-appb-000167
Figure PCTCN2021093220-appb-000168
Figure PCTCN2021093220-appb-000169
表8.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000170
Figure PCTCN2021093220-appb-000171
表8.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000172
Figure PCTCN2021093220-appb-000173
表8.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000174
Figure PCTCN2021093220-appb-000175
图5为化合物D5-7掺杂器件的外量子效率随亮度变化曲线图,其中发光层掺杂重量百分比含量组成为H1-48(99wt%):D5-7(1wt%)。
表8.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000176
Figure PCTCN2021093220-appb-000177
效果实施例3
在效果实施例3中的有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第一空穴传输层使用、TCTA被作为第二空穴传输层使用、在发光层中H1-33与TRZ-1混合物作为主体材料使用(H1-33与TRZ-1的重量混合比例为1:1)、D1-1至D1-37、D2-1至D2-96、D3-1至D3-77、D4-1至D4-64、D5-1至D5-31或D6-1至D6-59分别作为掺杂发光材料使用(掺杂浓度为1wt%)、TmPyPB被用作电子传输材料使用、LiF作为电子注入层使用、Al作为金属阴极使用。效果实施例有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/H1-33:TRZ-1+1wt%Dn-m/TmPyPB(30nm)/LiF(1nm)/Al(100nm)]。其中n=1,2、3、4、5、6;当n=1时m=1-37;当n=2时m=1-96;当n=3时m=1-77;当n=4时m=1-64;当n=5时m=1-31;当n=6时m=1-59。效果实施例结果见表9。
表9中列出的电致发光器件效果实施数据证明,本公开提供的发光材料可以用来制备高效率有机电致发光器件,而且电致发光光谱具有窄谱带特性,电致发光光谱的半峰宽小于60nm。
表9.(Dn-m)电致发光性能主要参数。
Figure PCTCN2021093220-appb-000178
Figure PCTCN2021093220-appb-000179
表9.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000180
Figure PCTCN2021093220-appb-000181
Figure PCTCN2021093220-appb-000182
表9.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000183
Figure PCTCN2021093220-appb-000184
Figure PCTCN2021093220-appb-000185
表9.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000186
Figure PCTCN2021093220-appb-000187
Figure PCTCN2021093220-appb-000188
表9.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000189
Figure PCTCN2021093220-appb-000190
图2为化合物D5-7掺杂薄膜的光致发光光谱,其中掺杂薄膜的组成为H1-1(99wt%):D5-7(1wt%)。
图3为效果实施例2中化合物D5-7掺杂薄膜的电致发光光谱,其中掺杂薄膜的组成为H1-48(99wt%):D5-7(1wt%)。
图4为化合物D5-7掺杂薄膜的变温时间分辨光谱,其中掺杂薄膜的组成为H1-48(99wt%):D5-7(1wt%)。图4中显示随着温度的升高,激发态中长寿命部分比例增加。
表9.(Dn-m)电致发光性能主要参数(续)。
Figure PCTCN2021093220-appb-000191
Figure PCTCN2021093220-appb-000192
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (21)

  1. 一种硼氮化合物,其具有通式(I)所示的结构,
    Figure PCTCN2021093220-appb-100001
    其中,E代表单键,m和n独立地代表单键的数目,m和n各自独立地为0或1;
    R和R 0独立地为H、D(氘)、C 3-C 6环烷基、C 6芳基、C 1~C 12烷基或C 1~C 12烷氧基;
    R 11、R 22、R 33和R 44独立地为H、D(氘)、氟、CN、C 1~C 20烷基、C 1~C 20烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R a取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R a取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R a取代的二苯胺基;或者R 11、R 22与其相连的苯环一起形成稠合的双环、三环或四环;或者R 33、R 44与其相连的苯环一起形成稠合的双环、三环或四环;
    R a每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R b取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R b取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R b取代的二苯胺基;
    R b每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R c取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R c取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R c取代的二苯胺基;
    R c每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、5-至18-元杂芳基、或者二苯胺基;
    所述烷基、烷氧基、环烷基、芳基、杂芳基任选被一个或多个氟、-CN、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6卤代烷基、C 2-C 6烯基、C 3-C 10环烷基、C 6-C 14芳基、或者5-至18-元杂芳基取代。
  2. 权利要求1的硼氮化合物,其发射光谱的发光峰位在520-700nm且发射光谱半峰宽小于等于60nm。
  3. 权利要求1的硼氮化合物,该化合物的前线分子轨道的特点在于:
    HOMO与LUMO以交替的方式分布于式I的环a、环b、环c、环d、环e的环原子以及同时与其中三个环相连的一个B和两个N上,HOMO还分布在环f和环g的环原子 上,式I中的三个N上分布HOMO。
  4. 权利要求1的硼氮化合物,其为如通式(I-1)、(I-2)、(I-3)、(I-4)、(I-5)或(I-6)所表示的化合物:
    Figure PCTCN2021093220-appb-100002
    其中,
    R和R 0独立地为H、D(氘)、C 3-C 6环烷基、C 6芳基、C 1~C 12烷基或C 1~C 12烷氧基;
    R 1、R 2、R 5和R 6每次出现时独立地为H、D(氘)、氟、CN、C 1~C 20烷基、C 1~C 20烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R a取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R a取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R a取代的二苯胺基;
    或者R 1、R 2与其相连的苯环一起形成稠合的双环、三环或四环;
    或者R 5、R 6与其相连的苯环一起形成稠合的双环、三环或四环;
    R a每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R b取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R b取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R b取代的二苯胺基;
    R b每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、被一个或多个R c取代的C 6~C 14芳基、5-至18-元杂芳基、被一个或多个R c取代的5-至18-元杂芳基、二苯胺基、或者被一个或多个R c取代的二苯胺基;
    R c每次出现时独立地为D(氘)、氟、CN、C 1~C 12烷基、C 1~C 12烷氧基、C 3-C 10环烷基、C 6~C 14芳基、5-至18-元杂芳基、或者二苯胺基;
    所述烷基、烷氧基、环烷基、芳基、杂芳基任选被一个或多个氟、-CN、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6卤代烷基、C 2-C 6烯基、C 3-C 10环烷基、C 6-C 14芳基、或者5-至18-元杂芳基取代。
  5. 权利要求4的硼氮化合物,其中R 1和R 2相同,R 5和R 6中的至少一个与R 1不同。
  6. 权利要求4的硼氮化合物,其中R和R 0独立地为H或D(氘),成对出现的R 1和R 2中至少一个是氢,成对出现的R 5和R 6中的至少一个是氢。
  7. 权利要求6的硼氮化合物,其中R、R 0、R 1、R 5均是氢。
  8. 权利要求7的硼氮化合物,其中R 2和R 6为H、F、CF 3、C 1~C 20烷基、C 1~C 20烷氧基、环己基、金刚烷基、苯基、萘基、被一个或多个R a取代的苯基、咔唑基、被一个或多个R a取代的咔唑基、二苯胺基、或者被一个或多个R a取代的二苯胺基,所述R a选自C 1~C 6烷基、C 1-C 6氟代烷基和C 1~C 6烷氧基。
  9. 权利要求4的硼氮化合物,其中,其为如下任何一个化合物:
    Figure PCTCN2021093220-appb-100003
    Figure PCTCN2021093220-appb-100004
    Figure PCTCN2021093220-appb-100005
    Figure PCTCN2021093220-appb-100006
    Figure PCTCN2021093220-appb-100007
    Figure PCTCN2021093220-appb-100008
    Figure PCTCN2021093220-appb-100009
    Figure PCTCN2021093220-appb-100010
    Figure PCTCN2021093220-appb-100011
    Figure PCTCN2021093220-appb-100012
    Figure PCTCN2021093220-appb-100013
    Figure PCTCN2021093220-appb-100014
    Figure PCTCN2021093220-appb-100015
    Figure PCTCN2021093220-appb-100016
    Figure PCTCN2021093220-appb-100017
    Figure PCTCN2021093220-appb-100018
    Figure PCTCN2021093220-appb-100019
    Figure PCTCN2021093220-appb-100020
    Figure PCTCN2021093220-appb-100021
    Figure PCTCN2021093220-appb-100022
    Figure PCTCN2021093220-appb-100023
    Figure PCTCN2021093220-appb-100024
    Figure PCTCN2021093220-appb-100025
    Figure PCTCN2021093220-appb-100026
    Figure PCTCN2021093220-appb-100027
    Figure PCTCN2021093220-appb-100028
    Figure PCTCN2021093220-appb-100029
    Figure PCTCN2021093220-appb-100030
    Figure PCTCN2021093220-appb-100031
    Figure PCTCN2021093220-appb-100032
    Figure PCTCN2021093220-appb-100033
    Figure PCTCN2021093220-appb-100034
    Figure PCTCN2021093220-appb-100035
    Figure PCTCN2021093220-appb-100036
    Figure PCTCN2021093220-appb-100037
  10. 权利要求4所述的硼氮化合物,其为如下任何一个化合物:
    Figure PCTCN2021093220-appb-100038
    Figure PCTCN2021093220-appb-100039
    Figure PCTCN2021093220-appb-100040
    Figure PCTCN2021093220-appb-100041
    Figure PCTCN2021093220-appb-100042
    Figure PCTCN2021093220-appb-100043
    Figure PCTCN2021093220-appb-100044
    Figure PCTCN2021093220-appb-100045
    Figure PCTCN2021093220-appb-100046
    Figure PCTCN2021093220-appb-100047
    Figure PCTCN2021093220-appb-100048
    Figure PCTCN2021093220-appb-100049
    Figure PCTCN2021093220-appb-100050
    Figure PCTCN2021093220-appb-100051
    Figure PCTCN2021093220-appb-100052
    Figure PCTCN2021093220-appb-100053
    Figure PCTCN2021093220-appb-100054
    Figure PCTCN2021093220-appb-100055
    Figure PCTCN2021093220-appb-100056
    Figure PCTCN2021093220-appb-100057
    Figure PCTCN2021093220-appb-100058
    Figure PCTCN2021093220-appb-100059
    Figure PCTCN2021093220-appb-100060
    Figure PCTCN2021093220-appb-100061
    Figure PCTCN2021093220-appb-100062
    Figure PCTCN2021093220-appb-100063
  11. 一种有机电致发光组合物,其包含权利要求1-10中任一项的硼氮化合物。
  12. 权利要求11的有机电致发光组合物,其还包含主体材料,所述主体材料具有电子和/或空穴传输能力,并且主体材料的三重激发态能量高于所述硼氮化合物的三重激发态能量。
  13. 权利要求12的有机电致发光组合物,其中所述主体材料占组合物的99.7-70.0wt%,所述硼氮化合物占组合物的0.3-30.0wt%。
  14. 权利要求13的有机电致发光组合物,其中所述主体材料包含式(H-1)至(H-6)所示的化合物中的一种或多种,
    Figure PCTCN2021093220-appb-100064
    Figure PCTCN2021093220-appb-100065
    其中X 1、Y 1和Z 1为CH或N,并且X 1、Y 1和Z 1中至多有一个为N;
    其中R 1H和R 2H独立地为下面的任一基团:
    Figure PCTCN2021093220-appb-100066
    其中X 1、Y 1和Z 1为CH或N,并且X 1、Y 1和Z 1中至多有一个为N;
    其中R aH和R bH独立地为H、C 1-C 20烷基、C 1-C 20烷氧基、C 6-C 20芳基、C 1-C 20烷基取代的C 6-C 20芳基或C 1-C 20烷氧基取代的C 6-C 20芳基。
  15. 权利要求14的有机电致发光组合物,其中所述主体材料包含2种式(H-1)至(H-6)中的化合物,并且两种化合物的重量比为1:5至5:1。
  16. 权利要求14的有机电致发光组合物,所述主体材料为化合物H1-1至H1-427中的1-2种,当主体材料为化合物H1-1至H1-427中的两种时,两种化合物的重量比为1:5至5:1,
    Figure PCTCN2021093220-appb-100067
    Figure PCTCN2021093220-appb-100068
    Figure PCTCN2021093220-appb-100069
    Figure PCTCN2021093220-appb-100070
    Figure PCTCN2021093220-appb-100071
    Figure PCTCN2021093220-appb-100072
    Figure PCTCN2021093220-appb-100073
    Figure PCTCN2021093220-appb-100074
    Figure PCTCN2021093220-appb-100075
    Figure PCTCN2021093220-appb-100076
    Figure PCTCN2021093220-appb-100077
    Figure PCTCN2021093220-appb-100078
    Figure PCTCN2021093220-appb-100079
    Figure PCTCN2021093220-appb-100080
    Figure PCTCN2021093220-appb-100081
    Figure PCTCN2021093220-appb-100082
    Figure PCTCN2021093220-appb-100083
    Figure PCTCN2021093220-appb-100084
  17. 权利要求14的有机电致发光组合物,其中所述主体材料还包含如式Trz1-A、Trz2-A和Trz3-A所示1,3,5-三嗪衍生物中任一种;并且Trz1-A、Trz2-A或Trz3-A所示1,3,5-三嗪衍生物与H-1、H-2、H-3、H-4、H-5和H-6所示化合物之间的重量比为1:5至5:1,
    Figure PCTCN2021093220-appb-100085
    其中R 1a、R 1b、R 2a、R 2b、R 3a和R 3b中的1个或2个独立为R Tz,余者相同或者不同独立地为氢、氘、C 1-C 8烷基、C 1-C 8烷氧基、C 6-C 18芳基、C 1-C 8烷基取代的C 6-C 18芳基或C 1-C 8烷氧基取代的C 6-C 18芳基;R Tz为如下式所示的取代基团中的任何一种:
    Figure PCTCN2021093220-appb-100086
    Figure PCTCN2021093220-appb-100087
  18. 权利要求16的有机电致发光组合物,其中所述主体材料包含如式TRZ-1至TRZ-38所示1,3,5-三嗪衍生物中任一种和式H1-1至H1-427所示咔唑或咔啉衍生物中任一种;
    主体材料中,1,3,5-三嗪衍生物与咔唑或咔啉衍生物之间的重量比为1:5至5:1,
    Figure PCTCN2021093220-appb-100088
    Figure PCTCN2021093220-appb-100089
    Figure PCTCN2021093220-appb-100090
  19. 一种有机电致发光器件,其发光层、电子注入层、电子传输层、空穴传输层、空穴注入层中的至少一层包含权利要求1-10中任一项的硼氮化合物或者权利要求11-18中任一项的有机电致发光组合物。
  20. 权利要求19的有机电致发光器件,其发光层包含所述硼氮化合物或者所述有机电致发光组合物。
  21. 权利要求19或20的有机电致发光器件,其用于制备有机电致发光显示器或照明光源。
PCT/CN2021/093220 2020-05-14 2021-05-12 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件 WO2021228114A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227011417A KR102660654B1 (ko) 2020-05-14 2021-05-12 붕소-질소 화합물, 유기 전계발광 조성물 및 이를 포함하는 유기 전계발광소자
JP2022516685A JP7461466B2 (ja) 2020-05-14 2021-05-12 ホウ素窒素化合物、有機電界発光組成物及びそれを含む有機電界発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010407112.4A CN113666951B (zh) 2020-05-14 2020-05-14 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
CN202010407112.4 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021228114A1 true WO2021228114A1 (zh) 2021-11-18

Family

ID=78525248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093220 WO2021228114A1 (zh) 2020-05-14 2021-05-12 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件

Country Status (5)

Country Link
JP (1) JP7461466B2 (zh)
KR (1) KR102660654B1 (zh)
CN (1) CN113666951B (zh)
TW (1) TWI788845B (zh)
WO (1) WO2021228114A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120349B (zh) * 2022-01-28 2024-08-06 季华恒烨(佛山)电子材料有限公司 一种硼氮化合物及其制备方法和应用
CN116120350B (zh) * 2022-01-28 2024-08-06 季华恒烨(佛山)电子材料有限公司 一种硼氮化合物及其制备方法和应用
CN116903644B (zh) * 2022-04-15 2024-06-04 江苏三月科技股份有限公司 一种共振型有机化合物及其应用
CN114874247B (zh) * 2022-04-28 2023-06-16 广州追光科技有限公司 一种硼氮化合物及包含其的有机电子器件
CN115677743A (zh) * 2022-09-27 2023-02-03 冠能光电材料(深圳)有限责任公司 一种有机硼半导体化合物及其应用
WO2024090353A1 (ja) * 2022-10-27 2024-05-02 東レ株式会社 化合物、発光素子材料、発光素子、表示装置および照明装置
CN117642043A (zh) * 2023-02-21 2024-03-01 季华恒烨(佛山)电子材料有限公司 一种有机电致发光器件及其应用
CN118307574A (zh) * 2024-06-05 2024-07-09 季华实验室 硼氮化合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155368A (zh) * 2016-04-26 2019-01-04 学校法人关西学院 有机电场发光元件
CN109411633A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件及其制备方法和显示装置
CA3016789A1 (en) * 2017-09-12 2019-03-12 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
CN110407859A (zh) * 2019-07-18 2019-11-05 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN110444693A (zh) * 2018-05-04 2019-11-12 材料科学有限公司 有机电致发光器件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190058124A1 (en) * 2016-02-10 2019-02-21 Kwansei Gakuin Educational Fondation Delayed fluorescence organic electroluminescent element
JP2017188111A (ja) 2016-04-05 2017-10-12 株式会社野村総合研究所 資産運用・債務返済シミュレーション生成装置、プログラム及び方法
KR101876763B1 (ko) 2017-05-22 2018-07-11 머티어리얼사이언스 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자
WO2019088799A1 (ko) * 2017-11-06 2019-05-09 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
KR102030309B1 (ko) * 2018-02-23 2019-10-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20200119453A (ko) * 2019-04-09 2020-10-20 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN113825761B (zh) 2019-07-16 2023-12-12 株式会社Lg化学 化合物、包含其的涂覆组合物和使用其的有机发光器件
CN110627822A (zh) * 2019-10-08 2019-12-31 吉林大学 一种绿光窄光谱三配位硼发光化合物、发光组合物及其应用
JPWO2021210501A1 (zh) * 2020-04-15 2021-10-21

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155368A (zh) * 2016-04-26 2019-01-04 学校法人关西学院 有机电场发光元件
CA3016789A1 (en) * 2017-09-12 2019-03-12 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
CN110444693A (zh) * 2018-05-04 2019-11-12 材料科学有限公司 有机电致发光器件
CN109411633A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件及其制备方法和显示装置
CN110407859A (zh) * 2019-07-18 2019-11-05 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件

Also Published As

Publication number Publication date
KR20220066085A (ko) 2022-05-23
CN113666951A (zh) 2021-11-19
CN113666951B (zh) 2022-12-20
TWI788845B (zh) 2023-01-01
KR102660654B1 (ko) 2024-04-24
JP7461466B2 (ja) 2024-04-03
TW202142544A (zh) 2021-11-16
JP2022551399A (ja) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2021228114A1 (zh) 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
JP6769873B2 (ja) 有機光電子素子用有機アロイ、有機光電子素子および表示装置
WO2022121920A1 (zh) 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
KR20150043225A (ko) 백금 착물, 장치 및 이의 용도
CN103052644A (zh) 用于光电器件的铜(i)配合物
Zhang et al. Photo-and electro-luminescence of four cuprous complexes with sterically demanding and hole transmitting diimine ligands
TW201418268A (zh) 苯并二氮雜硼咯化合物及使用其之有機電激發光元件用材料、以及有機電激發光元件
WO2022121951A1 (zh) 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
Sk et al. A deep blue thermally activated delayed fluorescence emitter: balance between charge transfer and color purity
Tao et al. Molecular engineering with triptycene groups endows homoleptic Ir (III) complexes with enhanced electroluminescence properties
CN116836193A (zh) 一种有机化合物及其应用以及包含其的有机电致发光器件
Colombo et al. Introduction of a triphenylamine substituent on pyridyl rings as a springboard for a new appealing brightly luminescent 1, 3-di-(2-pyridyl) benzene platinum (ii) complex family
Li et al. Regioisomeric effects of dibenzofuran on the properties of boron–nitrogen multiple resonance emissive materials
WO2023241293A9 (zh) 热活化延迟荧光材料和电致发光器件
CN114478588B (zh) 基于芘和吲哚并咔唑的有机化合物及有机电致发光组合物和有机电致发光器件
CN114621272B (zh) 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
CN114106028A (zh) 一种吲哚并咔唑双硼衍生物、其制备和应用
CN110724105B (zh) 一种三亚菲含氮七元环化合物及其制备方法和应用
CN114621273B (zh) 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
CN112679555B (zh) 一种宽光谱二价铂配合物及其制备方法和应用
TWI594476B (zh) 螢光有機發光材料及有機電激發光裝置
WO2021196274A1 (zh) 一种荧光材料及其合成方法
CN114736224A (zh) 一种硼氮化合物、其组合物及有机电致发光器件
Sebris et al. Homoleptic purine-based NHC iridium (iii) complexes for blue OLED application: impact of isomerism on photophysical properties
TW201127932A (en) Light emitting material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516685

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227011417

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803346

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21803346

Country of ref document: EP

Kind code of ref document: A1