WO2021225158A1 - セラミックス焼結体の製造方法及びセラミックス焼結体 - Google Patents

セラミックス焼結体の製造方法及びセラミックス焼結体 Download PDF

Info

Publication number
WO2021225158A1
WO2021225158A1 PCT/JP2021/017471 JP2021017471W WO2021225158A1 WO 2021225158 A1 WO2021225158 A1 WO 2021225158A1 JP 2021017471 W JP2021017471 W JP 2021017471W WO 2021225158 A1 WO2021225158 A1 WO 2021225158A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
condition
ceramic
mpa
heat treatment
Prior art date
Application number
PCT/JP2021/017471
Other languages
English (en)
French (fr)
Inventor
雄斗 大越
伸広 篠原
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to EP21800365.5A priority Critical patent/EP4148031A4/en
Priority to CN202180032924.8A priority patent/CN115551818A/zh
Priority to JP2022519630A priority patent/JPWO2021225158A1/ja
Publication of WO2021225158A1 publication Critical patent/WO2021225158A1/ja
Priority to US18/052,299 priority patent/US20230113344A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof

Definitions

  • the present invention relates to a method for producing a ceramic sintered body and a ceramic sintered body.
  • HIP Hot Isostatic Pressing
  • Patent Documents 1 to 3 describe that the HIP treatment is performed after increasing the density of the molded product by a CIP (Cold Isostatic Pressing) method in which an isotropic pressure is applied to the molded product in water. ..
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a ceramics sintered body and a ceramics sintered body capable of appropriately producing a dense ceramics sintered body.
  • the method for producing a ceramic sintered body according to the present disclosure includes a step of heat-treating a ceramic molded body, which is a molded body of ceramic powder, under the first condition, and the first.
  • the step of heat-treating the ceramic molded body heat-treated under the conditions under the second condition, which is higher than the first condition, and the step of heat-treating the ceramic molded body heat-treated under the second condition, the pressure of the ceramic molded body being higher than the second condition.
  • the ceramics sintered body according to the present disclosure is a spherical silicon nitride ceramics sintered body, and when the radius of the ceramics sintered body is r, fracture toughness value of the region of 1 / 10r from the surface of the ceramic sintered body (K IC) is not less 6.5 MPa ⁇ m 1/2 or more, fracture toughness of the region of 1 / 10r from the surface of the sintered ceramics
  • K IC fracture toughness value of the region of 1 / 10r from the surface of the ceramic sintered body
  • the difference ⁇ KA between the maximum value and the minimum value is 2.0 MPa ⁇ m 1/2 or less, and the maximum value and the minimum value of the fracture toughness value in the region of 1/10 r to 2/10 r of the ceramic sintered body.
  • the difference ⁇ KB is 1.5 MPa ⁇ m 1/2 or less.
  • a dense ceramic sintered body can be appropriately manufactured.
  • FIG. 1 is a flowchart illustrating a method for manufacturing a ceramic sintered body according to the present embodiment.
  • FIG. 2 is a flowchart illustrating the details of the process of producing the ceramic molded product.
  • FIG. 3 is a diagram showing a configuration example of the heat treatment furnace in the present embodiment.
  • FIG. 4 is a graph showing the fracture toughness value in Example 2.
  • FIG. 5 is a graph showing the fracture toughness value in Example 2.
  • the ceramic powder is molded to produce a ceramic molded body, and the ceramic molded body is fired to produce a ceramic sintered body.
  • the ceramic sintered body is a sintered body of silicon nitride (Si 3 N 4 ), and the ceramic powder is a silicon nitride powder.
  • the ceramic sintered body may contain silicon nitride as a main component and may contain a material other than silicon nitride, or may contain unavoidable impurities.
  • the content of silicon nitride with respect to the whole may be 80% or more, 83% or more, or 85% or more by weight.
  • the ceramic sintered body produced by this production method is used, for example, for a ball of a ball bearing (bearing ball, etc.), but the application is not limited to this and may be arbitrary.
  • the production method according to the present embodiment is for producing a sintered body of silicon nitride, but the method is not limited to silicon nitride and may be used for producing a sintered body of any ceramics. That is, the ceramic sintered body is not limited to silicon nitride and may be a sintered body made of any ceramics, and the ceramic powder may be a powder made of any ceramics, not limited to silicon nitride.
  • FIG. 1 is a flowchart for explaining a method for manufacturing a ceramic sintered body according to the present embodiment
  • FIG. 2 is a flowchart for explaining details of a process for producing a ceramic molded product.
  • the ceramic powder is molded to produce a ceramic molded body (step S10).
  • a ceramic molded product is produced by a gel casting method.
  • FIG. 2 shows details of an example of a step of producing a ceramic molded product by the gel casting method in step S10 of FIG.
  • a ceramic slurry is produced (step S10b).
  • the ceramic slurry is a slurry in which ceramic powder is dispersed in a solvent.
  • the method for producing the ceramic slurry is not particularly limited, and a dispersant, a sintering aid, a resin, and a resin curing agent may be appropriately added to the slurry containing the ceramic powder and the solvent depending on the type of the solvent and the like.
  • a ceramic powder, a solvent, a dispersant, and a sintering aid are mixed to obtain a slurry (hereinafter, also referred to as a raw ceramic slurry), and then a resin and a resin curing agent are added to the raw ceramic slurry. Is added to produce a ceramic slurry.
  • Ceramic powder is an essential component when performing a gel casting method.
  • the ceramic powder is, for example, silicon nitride, aluminum nitride, titanium nitride, or silicon carbide powder.
  • the solvent is an indispensable component when performing the gel casting method, and is a liquid for uniformly mixing and molding ceramic powder, sintering aid, resin and resin curing agent.
  • the solvent may be, for example, water, an organic solvent, or alcohols, as long as it does not remain in the ceramics sintered body after sintering.
  • alcohols for example, methyl alcohol and ethyl alcohol can be used.
  • organic solvent for example, benzene, toluene and xylene can be used. These solvents may be used alone or may be mixed as appropriate.
  • the dispersant is an additive that assists the dispersion of the ceramic powder in the solvent, and is an arbitrary component.
  • Dispersants include, for example, pH adjusters such as tetramethylammonium hydroxide, polymer dispersants such as polycarboxylic acid-type polymers, inorganic dispersants such as phosphates such as sodium hexametaphosphate, anions, and cations. It is a system-based or nonionic-based organic type surfactant type dispersant.
  • the sintering aid is an additive that assists in sintering ceramic powder, and is an arbitrary component.
  • the sintering aid when the ceramic powder is silicon nitride, the sintering aid includes magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), spinel (magnesia alumina spinel; MgO Al 2 O 3 ), and yttrium oxide (Y 2). O 3), may be used powder of a rare earth oxide such as ytterbium oxide (Yb 2 O 3).
  • a ball mill is used for pulverization and mixing, but the pulverization and mixing method may be arbitrary.
  • the amount of the ceramic powder added to the solvent is preferably 35% by volume or more and 65% by volume or less, more preferably 40% by volume or more and 60% by volume or less, and 45% by volume. It is more preferably 55% by volume or less.
  • the amount of the dispersant added to the ceramic powder is preferably 0.3% by weight or more and 3% by weight or less, and 0.4% by weight or more and 2% by weight or less. Is more preferable, and 0.5% by weight or more and 1% by weight or less is further preferable. With such a compounding ratio, a ceramic molded product can be appropriately produced.
  • the amount of the sintering aid added to the ceramic powder is preferably 1% by weight or more and 15% by weight or less, and more preferably 2% by weight or more and 12% by weight or less. It is preferably 3% by weight or more and 9% by weight or less. With such a compounding ratio, a ceramic sintered body can be appropriately manufactured.
  • a resin and a resin curing agent are added to the mixed raw ceramic slurry to generate a ceramic slurry (hereinafter, also referred to as a cast ceramic slurry) (step S10b). More specifically, a resin and a resin curing agent (polymerization initiator) are added to the raw material ceramic slurry.
  • the resin is a resin that polymerizes and cures when a resin curing agent is added, and in the present embodiment, it is preferable that the resin is a resin that dissolves in the solvent of the ceramic slurry (here, a water-soluble resin).
  • the resin here is, for example, a water-soluble epoxy resin, but is not limited to the epoxy resin, and may be any resin that polymerizes and cures by adding a resin curing agent.
  • a resin curing agent is an additive that polymerizes and cures a resin by being added to the resin.
  • the resin curing agent here is, for example, a mixture of triethylenetetramine and dimethylaminomethyl, but is not limited to this, and may be any additive that polymerizes and cures the resin by being added to the resin. ..
  • a resin-added ceramic slurry in which a resin is added to a raw material ceramic slurry (hereinafter, also referred to as a first ceramic slurry) and a curing agent-added ceramic slurry in which a resin curing agent is added to a raw material ceramic slurry (hereinafter, referred to as a second ceramics slurry).
  • a first ceramic slurry a raw material ceramic slurry
  • a curing agent-added ceramic slurry in which a resin curing agent is added to a raw material ceramic slurry hereinafter, referred to as a second ceramics slurry
  • the amount of the resin added to the ceramic powder in the ceramic slurry is preferably 1% by weight or more and 10% by weight or less, and more preferably 1.5% by weight or more and 8% by weight or less. It is more preferable that the content is 2% by weight or more and 5% by weight or less. With such a compounding ratio, a ceramic molded product can be appropriately produced. Further, the amount of the resin curing agent added to the resin is preferably an amount that is stoichiometrically appropriate for the added resin. With such a compounding ratio, a ceramic molded product can be appropriately produced.
  • the cast ceramic slurry is injected into the molding mold (step S10c).
  • the resin and the resin curing agent are separately added to the raw ceramic slurry and then mixed, that is, the first ceramic slurry and the second ceramic slurry are separately generated and mixed.
  • both the resin and the resin curing agent may be added to the raw material ceramic slurry, and the cast ceramic slurry to which both are added may be injected into the molding die.
  • the ceramic slurry is held at a predetermined holding temperature for a predetermined holding time in a state of being supplied to the molding die.
  • the holding temperature here is preferably 25 ° C. or higher and 100 ° C. or lower, more preferably 30 ° C. or higher and 80 ° C. or lower, and further preferably 40 ° C. or higher and 60 ° C. or lower.
  • the holding time here is preferably 1 hour or more and 48 hours or less, more preferably 2 hours or more and 24 hours or less, and further preferably 3 hours or more and 12 hours or less.
  • a pressure higher than the atmospheric pressure may be applied to the ceramic slurry.
  • the cured product obtained by curing the ceramic slurry is removed from the mold (taken out), and the cured product is appropriately dried and degreased to obtain a ceramic molded product (step S10d).
  • the demolded cured product is dried to obtain a dry molded product, and the dry molded product is degreased to obtain a ceramic molded product.
  • the drying conditions are arbitrary, but for example, a humidification drying treatment and a hot air drying treatment are performed. In the humidifying and drying treatment, the cured product is held for 24 hours or more and 120 hours or less in an environment where the humidity is 30% or more and 98% or less and the temperature is 25 ° C. or more and 50 ° C. or less.
  • the cured product is held for 3 hours or more and 48 hours or less while blowing air on the cured product in an environment where the temperature is 40 ° C. or higher and 100 ° C. or lower to obtain a dry molded product.
  • the degreasing method is also arbitrary, but for example, the dry molded product is held for 2 hours or more and 12 hours or less in an environment where the temperature is 550 ° C. or higher and 750 ° C. or lower, and degreased to obtain a ceramic molded product.
  • drying is a process of removing the solvent in the cured product
  • degreasing is a process of removing the resin in the cured product (dry molded product). Insufficient removal of these causes cracks during the firing process, which is an essential process in the gel casting method.
  • the ceramic molded product molded by this production method preferably has a relative density of 40% or more, more preferably 45% or more, and further preferably 50% or more.
  • the relative density is preferably high, but it may be 65% or less, 60% or less, or 55% or less.
  • the relative density here refers to a value obtained by dividing the molded product density by the substance density.
  • the molded body density is a value obtained by dividing the volume obtained from the dimensions of the ceramic molded body by the weight of the ceramic molded body.
  • the substance density is calculated from the composition ratio of the ceramic powder and the sintering aid and the theoretical density of each substance.
  • the material densities are, for example, ceramic powder (molar mass ag / mol, theoretical density Ag / cm 3 ) and sintering aid (molar mass pg / mol, theoretical density Bg / cm 3 ), X mol% and Y mol, respectively.
  • ceramic powder molecular weight ag / mol, theoretical density Ag / cm 3
  • sintering aid molecular weight pg / mol, theoretical density Bg / cm 3
  • the ceramic molded product is prepared by using the gel casting method as described above.
  • the method for producing the ceramic molded product is not limited to the gel casting method, and may be any method.
  • a powder pressing method may be used in which the ceramic powder filled in the molding die is pressed to form the ceramic molded body.
  • the ceramics sintered body is subjected to at least three stages of heat treatment, that is, heat treatment under the first condition, heat treatment under the second condition, and heat treatment under the third condition.
  • the heat treatment here refers to a process of heating an object at a temperature equal to or higher than a temperature at which at least a part of the ceramic powder starts sintering, and does not include a process at room temperature such as a CIP process.
  • the heat treatment under the first condition, the heat treatment under the second condition, and the heat treatment under the third condition are performed in three stages, but the heat treatment is not limited to this, and the heat treatment in four or more stages is performed. It may be carried out.
  • the ceramic molded product dry molded product
  • the ceramic molded product may be subjected to CIP treatment before the heat treatment. By the CIP treatment, pressure can be applied isotropically to the ceramic molded product, and the relative density of the molded product can be increased.
  • the heat treatment under the first condition will be described.
  • the ceramic molded product is heat-treated under the first condition (step S12).
  • the temperature for heating the ceramic molded body is defined as the first heating temperature
  • the pressure applied to the ceramic molded body is defined as the first pressure
  • the heating time is defined as the first heating time.
  • the first condition that is, the first heating temperature, the first pressure, and the first heating time depends on the properties of the ceramic powder, the amount and type of the sintering aid added, the relative density, shape, and dimensions of the ceramic molded body. , May be set as appropriate.
  • the first heating temperature is preferably 1600 ° C. or higher and 1800 ° C. or lower, more preferably 1620 ° C. or higher and 1780 ° C. or lower, and further preferably 1650 ° C. or higher and 1750 ° C. or lower. ..
  • the first pressure is preferably 0.01 MPa or more and 5 MPa or less, more preferably 0.05 MPa or more and 3 MPa or less, and further preferably 0.1 MPa or more and 1 MPa or less. By setting the first pressure in this range, the relative density of the sintered body can be set in an appropriate range.
  • the heat treatment under the first condition is most preferably performed at normal pressure (atmospheric pressure), that is, 0.1 MPa from the viewpoint of mass productivity and operability.
  • the first heating time is preferably 1 hour or more and 20 hours or less, more preferably 2 hours or more and 18 hours or less, and further preferably 5 hours or more and 15 hours or less. By setting the first heating time in this range, the relative density of the sintered body can be set in an appropriate range.
  • the heat treatment under the first condition is performed in a nitrogen atmosphere.
  • the sintering of the ceramic powder which is silicon nitride, can be appropriately performed.
  • the ceramic molded body is subjected to the heat treatment under the first condition in this way, so that it is first sintered, that is, primary sintered.
  • first sintered that is, primary sintered.
  • the relative density of the first sintered body is preferably 85% or more, preferably 90% or more. More preferably, it is more preferably 95% or more.
  • the relative density is obtained by dividing the density of the first sintered body measured according to JIS R 1634 by the substance density calculated from the composition ratio of the ceramic powder and the sintering aid and the theoretical density of each substance. Value.
  • the heat treatment under the second condition is a heat treatment under a high pressure environment more than the heat treatment under the first condition, and can be said to be a GPS (Gas Pressure Sintering) treatment.
  • the temperature for heating the first sintered body is defined as the second heating temperature
  • the pressure applied to the first sintered body is defined as the second pressure
  • the heating time is defined as the second heating time. ..
  • the second heating temperature is preferably higher than the first heating temperature under the first condition, but may be a temperature equal to or lower than the first heating temperature.
  • the second heating temperature is preferably 1650 ° C. or higher and 1900 ° C. or lower, more preferably 1680 ° C. or higher and 1850 ° C. or lower, and further preferably 1700 ° C. or higher and 1800 ° C. or lower.
  • the second pressure is higher than the first pressure in the heat treatment under the first condition.
  • the difference between the second pressure and the first pressure is preferably 0.3 MPa or more and 20 MPa or less, more preferably 1 MPa or more and 18 MPa or less, and further preferably 2 MPa or more and 15 MPa or less.
  • the second pressure is preferably 0.5 MPa or more and 20 MPa or less, more preferably 3 MPa or more and 18 MPa or less, and further preferably 5 MPa or more and 15 MPa or less.
  • the second heating time is preferably shorter than the first heating time.
  • the second heating time is preferably 0.1 hour or more and 10 hours or less, more preferably 0.15 hours or more and 8 hours or less, and further preferably 0.2 hours or more and 6 hours or less.
  • the heat treatment under the second condition is performed in a nitrogen atmosphere.
  • the sintering of the ceramic powder which is silicon nitride, can be appropriately performed.
  • the heat treatment under the second condition may be performed after the heat treatment under the first condition is completed, the first sintered body is taken out and cooled, or the heat treatment under the first condition is performed after the first sintering. It may be performed continuously without cooling the body.
  • the first sintered body is subjected to the heat treatment under the second condition in this way, so that it is second-sintered, that is, second-sintered. It is considered that the heat treatment under the second condition, which is higher than the first condition, reduces the fine pores on the surface of the sintered body and makes the surface denser. It is possible to effectively carry out the heat treatment under the third condition by suppressing the gas from penetrating into the sintered body.
  • the ceramic molded product that has been heat-treated under the second condition that is, the first sintered body that has been heat-treated under the second condition is the second sintered body
  • the second sintered body The relative density is preferably 95% or more, more preferably 97% or more.
  • the relative density of the second sintered body is preferably high, but may be 99% or less.
  • the heat treatment under the third condition is performed on the ceramic molded body heat-treated under the second condition, that is, the second sintered body.
  • Step S16 a ceramic sintered body is produced.
  • the heat treatment under the third condition is a heat treatment under a high pressure environment more than the heat treatment under the second condition, and can be said to be a HIP treatment.
  • the temperature for heating the second sintered body is defined as the third heating temperature
  • the pressure applied to the second sintered body is defined as the third pressure
  • the heating time is defined as the third heating time. ..
  • the third heating temperature is preferably higher than the first heating temperature under the first condition, but may be a temperature equal to or lower than the first heating temperature. Further, the third heating temperature may be higher than the second heating temperature under the second condition, or may be a temperature equal to or lower than the second heating temperature.
  • the third heating temperature is preferably 1650 ° C. or higher and 1900 ° C. or lower, more preferably 1680 ° C. or higher and 1850 ° C. or lower, and further preferably 1700 ° C. or higher and 1800 ° C. or lower. By setting the third heating temperature in this range, the relative density of the ceramic sintered body can be set to an appropriate value. Further, the third pressure is higher than the second pressure in the heat treatment under the second condition.
  • the difference between the third pressure and the second pressure is preferably 30 MPa or more and 180 MPa or less, more preferably 40 MPa or more and 160 MPa or less, and further preferably 50 MPa or more and 130 MPa or less.
  • the third pressure is preferably 50 MPa or more and 200 MPa or less, more preferably 60 MPa or more and 180 MPa or less, and further preferably 70 MPa or more and 150 MPa or less. By setting the third pressure in this range, the relative density of the ceramic sintered body can be set to an appropriate value.
  • the third heating time is preferably 0.1 hour or more and 10 hours or less, more preferably 0.15 hours or more and 8 hours or less, and further preferably 0.2 hours or more and 6 hours or less. By setting the third heating time in this range, the relative density of the ceramic sintered body can be set to an appropriate value.
  • the heat treatment under the third condition is performed in a nitrogen atmosphere.
  • the sintering of the ceramic powder which is silicon nitride, can be appropriately performed.
  • the heat treatment under the third condition may be performed after the heat treatment under the second condition is completed, the second sintered body is taken out and cooled, or the heat treatment under the second condition is performed after the second sintering. It may be performed continuously without cooling the body.
  • the second sintered body is subjected to the heat treatment under the third condition in this way, so that it is sintered for the third time, that is, tertiary sintered.
  • the HIP treatment is performed without performing the CIP treatment.
  • the ceramic sintered body after the heat treatment under the third condition preferably has a relative density of 99% or more. By setting the relative density within this range, the performance of the ceramic sintered body can be guaranteed.
  • the ceramic sintered body preferably has a three-point bending strength of 900 MPa or more, more preferably 910 MPa or more, and 915 MPa or more at a span of 30 mm measured by the method specified by JIS R 1669. Is more preferable. When the three-point bending strength is within this range, the strength of the ceramic sintered body can be appropriately maintained. Further, the ceramic sintered body preferably has a fracture toughness value of 5.0 MPa ⁇ m 1/2 or more and 5.5 MPa ⁇ m 1/2 or more measured by the method specified by JIS R 1669. Is more preferable, and 6.0 MPa ⁇ m 1/2 or more is further preferable.
  • the fracture toughness value is within this range, the strength of the ceramic sintered body can be appropriately maintained.
  • the number of pores of 5 ⁇ m or more observed using an optical microscope for an area of 1 mm 2 or more on a surface with an arbitrary cross section polished is 20 or less per 1 mm 2 area. It is preferable that the number is 15, more preferably 15 or less, and further preferably 10 or less.
  • the ceramic sintered body preferably has a maximum pore diameter of 25 ⁇ m or less, more preferably 15 ⁇ m or less, and further preferably 10 ⁇ m or less. When the number of pores and the maximum diameter are within this range, the performance of the ceramic sintered body can be guaranteed.
  • the ceramic sintered body is a silicon nitride sintered body, and is preferably spherical.
  • the sphere here is not limited to a sphere, and may be, for example, a sphericity of preferably within 3%, more preferably within 2.5%, and even more preferably within 2% with respect to the diameter.
  • the sphericity is preferably 1.5 mm or less, more preferably 1.25 mm or less, and even more preferably 1.0 mm or less.
  • the sphericity is preferably 0.3 mm or less, more preferably 0.25 mm or less, and even more preferably 0.2 mm or less.
  • the diameter of the ceramic sintered body is preferably 0.5 mm or more and 80 mm or less, more preferably 30 mm or more and 55 mm or less, and further preferably 49 mm or more and 51 mm or less. When the diameter is in this range, it can be suitably used for, for example, a bearing ball.
  • the diameter here may refer to an average diameter (arithmetic mean value of the maximum value and the minimum value of the diameter).
  • the radius of the ceramic sintered body will be r.
  • the radius r may be a value that is half the diameter of the ceramic sintered body.
  • Ceramic sintered body, fracture toughness value in the region (range) from the surface to a depth r / 10 (K IC) is preferably at 6.5 MPa ⁇ m 1/2 or more.
  • the difference ⁇ KA between the maximum value and the minimum value of the fracture toughness value in the range from the surface to the depth r / 10 is preferably 2.0 MPa ⁇ m 1/2 or less, preferably 1.5 MPa. - more preferably m 1/2 or less, and more preferably 1.2 MPa ⁇ m 1/2 or less.
  • the ceramic sintered body has a difference ⁇ KB between the maximum value and the minimum value of the fracture toughness value in the range from the position of the depth r / 10 from the surface to the depth 2r / 10 from the surface of 1.5 MPa ⁇ m 1. It is preferably / 2 or less, more preferably 1.0 MPa ⁇ m 1/2 or less, and further preferably 0.7 MPa ⁇ m 1/2 or less.
  • the fracture toughness value in the range from the surface to the depth r / 10 is in this range, the falling off of particles due to microscopic fracture can be suppressed, and the wear of the ceramic sintered body can be suppressed.
  • the ceramic sintered body according to the present embodiment has a high fracture toughness value particularly in the vicinity of the surface, and the fracture toughness value does not fluctuate up and down. Therefore, the ceramics sintered body has improved wear resistance, and for example, a ceramics sintered body having excellent sliding characteristics can be provided.
  • the fracture toughness value in the range from the surface to the depth r / 10 and the fracture toughness value in the range from the position of the depth r / 10 from the surface to the depth 2r / 10 from the surface are ceramic sintering. It is obtained by cutting the body into a disk so as to pass through the diameter, polishing one of the cut surfaces, and measuring the fracture toughness value at each position along the radial direction of the sphere. That is, for example, the fracture toughness value in the range from the surface to the depth r / 10 refers to the fracture toughness value in the region from the peripheral edge to a position r / 10 away from the peripheral edge on the central side of the cut surface. ..
  • the fracture toughness value can be measured using the Vickers hardness test system ARS9000 manufactured by Future Tech Co., Ltd. under the conditions of a load of 5 kg and a pushing time of 15 seconds.
  • the method for measuring the fracture toughness value may be the same thereafter.
  • the range from the surface to the depth r / 10 of the ceramic sintered body can be rephrased as, for example, the range from the surface to 2.5 mm. Further, the range from the position of the ceramic sintered body at a depth of r / 10 to the depth of 2r / 10 of the surface is from a position 2.5 mm deeper than the surface to 5.0 mm deeper than the surface. It can be rephrased as the range to the position.
  • the ceramic sintered body preferably has a fracture toughness value of 6.5 MPa ⁇ m 1/2 or more in the range from the surface to a depth of 2r / 10.
  • the fracture toughness value in the range from the surface to the depth of 2r / 10 is in this range, the falling off of particles due to microscopic fracture can be suppressed, and the wear of the ceramic sintered body can be more preferably suppressed.
  • the range of the ceramic sintered body from the surface to the depth of 2r / 10 can be rephrased as, for example, the range from the surface to 5.0 mm.
  • the ceramic sintered body preferably has an average fracture toughness value of 7.0 MPa ⁇ m 1/2 or more in the range from the surface to a depth of 4 r / 10.
  • the range of the ceramic sintered body from the surface to the depth of 4r / 10 can be rephrased as, for example, the range from the surface to 10.0 mm.
  • the standard deviation of the fracture toughness value in the range from the surface to the depth r / 10 is preferably 0.70 or less, more preferably 0.60 or less, and 0.40 or less. Is more preferable.
  • the standard deviation of the fracture toughness value in the range from the surface to the depth r / 10 within this range, the variation in the fracture toughness value is small, the ceramic sintered body becomes dense, and the non-uniformity of particles is suppressed. Wear of the ceramic sintered body can be suppressed more preferably.
  • the standard deviation of the fracture toughness value in the range from the surface to the depth of 4r / 10 is preferably 0.55 or less, more preferably 0.50 or less, and 0.48 or less. Is more preferable.
  • the standard deviation of the fracture toughness value in the range from the surface to the depth of 4r / 10 within this range, the variation in the fracture toughness value is small, the ceramic sintered body becomes dense, and the non-uniformity of particles is suppressed. Wear of the ceramic sintered body can be suppressed more preferably.
  • the ceramic sintered body preferably has a Vickers hardness in the range from the surface to a depth of 2r / 10 of 10 HV or more, more preferably 12 HV or more, and further preferably 14 HV or more.
  • the Vickers hardness in the range from the surface to the depth of 2r / 10 is determined by cutting the ceramic sintered body into a disk so as to pass through the diameter, and then polishing one of the cut surfaces along the radial direction of the sphere.
  • the fracture toughness value in the range from the surface to the depth of 2r / 10 refers to the Vickers hardness in the region of the cut surface from the peripheral edge to a position 2r / 10 away from the peripheral edge on the central side.
  • the Vickers hardness can be measured using the Vickers hardness test system ARS9000 manufactured by Future Tech Co., Ltd. under the conditions of a load of 5 kg and a pushing time of 15 seconds.
  • the ceramic sintered body according to the present embodiment is manufactured by the manufacturing method described in the present embodiment, but the manufacturing method may be arbitrary as long as it has the characteristics described above.
  • FIG. 3 is a diagram showing a configuration example of the heat treatment furnace in the present embodiment.
  • the heat treatment furnace 10 shown in FIG. 3 may be used to perform the heat treatment under the third condition, that is, the HIP treatment.
  • the heat treatment furnace 10 is a furnace capable of HIP processing.
  • the heat treatment furnace 10 includes a container 12, a base 14, a heating unit 16, and a heat insulating unit 18.
  • the base 14 is a base on which the second sintered body A, which is the object to be heat-treated, is installed.
  • the heating unit 16 is a heater arranged around the space where the second sintered body on the base 14 is installed, and heats the second sintered body A on the base 14.
  • the heat insulating portion 18 is a member that covers the heating portion 16 and the space on the base 14 where the second sintered body A is installed.
  • the heat insulating portion 18 is made of a member having a high heat insulating property, and insulates the internal space with respect to the external space.
  • the container 12 is a container for accommodating the base 14, the heating portion 16, and the heat insulating portion 18.
  • a gas introduction port 12a is formed in the container 12.
  • the heat treatment furnace 10 may be used for the heat treatment under the first condition, or may be used for the heat treatment under the second condition. By using the same heat treatment furnace 10, the heat treatment under the first condition, the heat treatment under the second condition, and the heat treatment under the third condition can be continuously performed.
  • the configuration of the heat treatment furnace 10 is an example, and in this manufacturing method, the heat treatment under the first condition, the heat treatment under the second condition, and the heat treatment under the third condition may be performed by using any equipment. ..
  • the method for producing the ceramic sintered body according to the present embodiment includes a step of heat-treating the ceramic molded body, which is a molded body of ceramic powder, under the first condition, and a ceramic molded body heat-treated under the first condition.
  • the step of heat-treating the (first sintered body) under the second condition, which is higher than the first condition, and the ceramic molded body (second sintered body) heat-treated under the second condition are more than those of the second condition. It includes a step of producing a ceramics sintered body by heat treatment under a third condition of high pressure.
  • the heat treatment is carried out stepwise while increasing the pressure under the first condition, the second condition and the third condition, the pores are sufficiently removed to obtain high strength, and the dense ceramic sintered body is obtained. Can be properly manufactured.
  • the high-pressure gas may permeate into the pores, and firing may not be performed properly.
  • the present manufacturing method by increasing the pressure stepwise and performing the heat treatment, it is possible to appropriately remove air bubbles and appropriately perform the high pressure heat treatment.
  • CIP treatment before high-pressure heat treatment becomes unnecessary.
  • the work load may increase because the molded body needs to be sealed with a rubber mold or the like so as not to be flooded, and it is difficult to cope with a complicated shape.
  • the CIP process if the CIP process is not executed, the HIP process cannot be appropriately executed, and there is a risk that a dense sintered body cannot be produced.
  • the present manufacturing method since the heat treatment is carried out stepwise while increasing the pressure under the first condition, the second condition and the third condition, the high pressure HIP treatment is appropriately performed without performing the CIP treatment. Therefore, it is possible to manufacture a dense ceramic sintered body having a complicated shape while reducing the work load.
  • the difference between the second pressure applied to the ceramic molded body in the step of heat-treating under the second condition and the first pressure applied to the ceramic molded body in the step of heat-treating under the first condition is set to 0. It is preferable that the pressure is 3 MPa or more and 20 MPa or less, and the difference between the third pressure applied to the ceramic molded body and the second pressure in the step of heat treatment under the third condition is 30 MPa or more and 180 MPa or less.
  • the first pressure applied to the ceramic molded body in the step of heat-treating under the first condition is set to 0.01 MPa or more and 5 MPa or less, and the ceramic molded body (first firing) in the step of heat-treating under the second condition. It is preferable that the pressure applied to the body) is 0.5 MPa or more and 20 MPa or less, and the pressure applied to the ceramic molded body (second sintered body) in the step of heat treatment under the third condition is 50 MPa or more and 200 MPa or less. .. By setting each pressure in this range, it is possible to appropriately carry out stepwise heat treatment while increasing the pressure to appropriately produce a dense ceramic sintered body.
  • the heat treatment temperature under the first condition is set to 1600 ° C. or higher and 1800 ° C. or lower
  • the heat treatment temperature under the second condition is set to 1700 ° C.
  • the temperature is 1900 ° C. or lower
  • the heat treatment temperature under the third condition is 1700 ° C. or higher and 1900 ° C. or lower.
  • this production method it is preferable to further include a step of molding ceramic powder by a gel casting method to produce a ceramic molded product.
  • a ceramic molded product can be appropriately produced.
  • even a ceramic molded body having a complicated shape can be easily manufactured.
  • the ceramic sintered body is preferably a silicon nitride sintered body. According to this production method, a dense sintered body of silicon nitride can be appropriately produced.
  • the step of heat-treating under the first condition, the second condition, and the third condition it is preferable to heat-treat the ceramic molded product in a nitrogen atmosphere.
  • a dense sintered silicon nitride can be appropriately produced.
  • the ceramic sintered body produced by heat treatment under the third condition has a three-point bending strength of 900 MPa or more at a span of 30 mm measured by the method specified by JIS R 1669, and is the method specified by JIS R 1669.
  • the fracture toughness value measured in 1 is 5.0 MPa ⁇ m 1/2 or more, and the number of pores of 5 ⁇ m or more observed using an optical microscope for an area of 1 mm 2 or more on a surface with an arbitrary cross section polished. However, it is preferable that the number is 10 or less per 1 mm 2 area, and the maximum diameter of the pores is 10 ⁇ m or less. According to this manufacturing method, a high-performance ceramics sintered body can be provided by manufacturing a ceramics sintered body having such characteristics.
  • Example 1 Next, Example 1 will be described. Table 1 shows the production conditions of the ceramics sintered body according to each example and the evaluation results of the manufactured ceramics sintered body.
  • Example 1 silicon nitride powder as a ceramic powder (manufactured by Denka: SN-9FWS), spinel powder as a sintering aid, ion-exchanged water as a solvent, and tetramethylammonium hydroxide as a dispersant.
  • SN-9FWS silicon nitride powder as a ceramic powder
  • spinel powder as a sintering aid
  • ion-exchanged water as a solvent
  • tetramethylammonium hydroxide as a dispersant.
  • a water-soluble epoxy resin manufactured by Nagase ChemteX: EX614B, EX512
  • a resin is added to a part of the silicon nitride slurry and mixed to generate a first ceramics slurry, and the other part of the silicon nitride slurry is produced.
  • a mixture of triethylenetetramine as a resin curing agent and dimethylaminomethyl at a mass ratio of 2: 1 was added and mixed to generate a second ceramic slurry.
  • the first ceramic slurry and the second ceramic slurry are defoamed by reducing the pressure in individual tanks, and while being stirred in the tank, they are simultaneously sent to a mixing mixer to be mixed and cast ceramic slurry. And supplied to the molding die connected to the mixer outlet. Then, the mold filled with the ceramic slurry (mixture of the first ceramic slurry and the second ceramic slurry) was held at 50 ° C. for 5 hours to cure the ceramic slurry to obtain a cured product. Then, the cured product was removed from the mold, humidified and dried at 30 ° C. for 4 days, and then dried with hot air at 50 ° C. to obtain a dry molded product. Then, the dry molded product was heated at 600 ° C.
  • the density and relative density of the obtained ceramic molded product were measured.
  • the value obtained by dividing the volume obtained from the dimensions of the ceramic molded body by the weight of the ceramic molded body is taken as the molded body density, and from the composition ratio of the ceramic powder and the sintering aid and the theoretical density of each substance.
  • the value obtained by dividing the molded body density by the material density was taken as the relative density.
  • the material densities are, for example, silicon nitride (theoretical density 3.18 g / cm 3 ) as a ceramic powder and magnesia alumina spinel (theoretical density 3.6 g / cm 3 ) as a sintering aid, 95 mol% and 5 mol, respectively. when mixed with% composition ratio, the volume of 100g is 31.26Cm 3, material density becomes 3.20 g / cm 3.
  • the ceramic molded product was not subjected to CIP treatment. Then, as the heat treatment under the first condition, the ceramic molded body was heat-treated at 1600 ° C. for 10 hours in a nitrogen atmosphere at a pressure of 0.1 MPa to obtain a first sintered body.
  • the sintered body density and the relative density were measured with respect to the obtained first sintered body.
  • Sintered body density was measured according to JIS R 1634.
  • the relative density was defined as the material density calculated from the composition ratio of the ceramic powder and the sintering aid and the theoretical density of each substance, and the value obtained by dividing the sintered body density by the material density was defined as the relative density.
  • the first sintered body was heat-treated at 1700 ° C. for 1.5 hours in a nitrogen atmosphere at a pressure of 10 MPa as a heat treatment under the second condition to obtain a second sintered body.
  • the sintered body density and the relative density were measured with respect to the obtained second sintered body.
  • the second sintered body was heat-treated at 1750 ° C.
  • the density, the average strength, the pore frequency, the average pore diameter, and the maximum pore diameter were measured.
  • the average strength was measured with an autocom type universal testing machine (AC-100KN-C manufactured by TSE Co., Ltd.).
  • the pore frequency refers to the number of pores of 5 ⁇ m or more observed using an optical microscope with respect to an area of 1 mm 2 or more on the polished surface of the ceramic sintered body per 1 mm 2 area.
  • the average pore diameter was measured with an industrial microscope (LV100 manufactured by Nikon Corporation).
  • the maximum pore diameter was measured with an industrial microscope (LV100 manufactured by Nikon Corporation).
  • Example 2 a ceramic sintered body was produced by the same method as in Example 1 except that the Sp amount was 4 mol% and the heat treatment under the first condition was performed at 1700 ° C. for 5 hours.
  • Example 3 a ceramic sintered body was produced by the same method as in Example 2.
  • Example 4 a ceramic sintered body was produced by the same method as in Example 1 except that the Sp amount was 4 mol%.
  • Example 5 In Example 5, the Sp amount was 4 mol%, and the heat treatment under the first condition was performed at 1600 ° C. for 5 hours to obtain a first sintered body. Then, the first sintered body was heat-treated at 1800 ° C. for 5 hours in a nitrogen atmosphere at a pressure of 0.8 MPa as a heat treatment under the second condition to obtain a second sintered body. Then, as the heat treatment under the third condition, the second sintered body was heat-treated at 1750 ° C. for 2 hours in a nitrogen atmosphere at a pressure of 100 MPa to obtain a ceramic sintered body.
  • Example 6 the ceramic sintered body was produced by the same method as in Example 1 except that the Sp amount was 4 mol% and the ceramic molded body was subjected to CIP treatment.
  • Example 7 the ceramics sintered body was produced by the same method as in Example 1 except that the ceramic molded body was subjected to CIP treatment and the heat treatment under the second condition was set at 1800 ° C. for 0.25 hours.
  • Example 8 the ceramic sintered body was manufactured by the same method as in Example 1 except that the Sp amount was 4 mol%, the ceramic molded body was subjected to CIP treatment, and the heat treatment under the second condition was not performed. ..
  • Example 9 a ceramic sintered body was produced in the same manner as in Example 8.
  • Example 10 is the same method as in Example 1 except that the ceramic compact is CIP-treated, the heat treatment under the first condition is performed at 1730 ° C. for 3 hours, and the heat treatment under the second condition is not performed. A sintered body was manufactured.
  • Example 11 a ceramic sintered body was produced by the same method as in Example 1 except that the Sp amount was 4 mol% and the heat treatment under the second condition was not performed.
  • Example 12 In Example 12, the Sp amount was 4 mol%, the heat treatment under the first condition was set at 1700 ° C. for 5 hours, and the ceramic baking was performed by the same method as in Example 1 except that the heat treatment under the second condition was not performed. Manufactured the body.
  • Example 13 In Example 13, a ceramic sintered body was produced in the same manner as in Example 12.
  • Example 14 In Example 14, the Sp amount was 4 mol%, the heat treatment under the first condition was set at 1700 ° C. for 5 hours, the heat treatment under the second condition was not carried out, and the heat treatment under the third condition was set at 1750 ° C. for 5 hours.
  • a ceramic sintered body was produced by the same method as in Example 1 except for the points.
  • Example 15 In Example 15, a ceramic sintered body was produced in the same manner as in Example 14.
  • Example 16 In Example 16, the Sp amount was 4 mol%, the heat treatment under the first condition was performed at 1700 ° C. for 5 hours, the heat treatment under the second condition was not performed, and the heat treatment under the third condition was performed at 1800 ° C. for 2 hours.
  • a ceramic sintered body was produced by the same method as in Example 1 except for the above points.
  • Example 17 is the same as Example 1 except that the heat treatment under the first condition is performed at 1700 ° C. for 15 hours, the heat treatment under the second condition is performed at 1700 ° C. for 1 hour, and the heat treatment under the third condition is not performed.
  • a ceramic sintered body was produced by the method.
  • Example 18 In Example 18, a ceramic sintered body was produced in the same manner as in Example 17.
  • Example 19 In Example 19, the Sp amount was 4 mol%, the heat treatment under the first condition was 1700 ° C. for 15 hours, the heat treatment time under the second condition was 2 hours, and the heat treatment time under the third condition was 5 hours.
  • the Sp amount was 4 mol%
  • the heat treatment under the first condition was 1700 ° C. for 15 hours
  • the heat treatment time under the second condition was 2 hours
  • the heat treatment time under the third condition was 5 hours.
  • Example 20 In Example 20, the Sp amount was 4 mol%, the heat treatment under the first condition was 1700 ° C. for 5 hours, the heat treatment time under the second condition was 2 hours, and the heat treatment time under the third condition was 5 hours.
  • the Sp amount was 4 mol%
  • the heat treatment under the first condition was 1700 ° C. for 5 hours
  • the heat treatment time under the second condition was 2 hours
  • the heat treatment time under the third condition was 5 hours.
  • a ceramic sintered body having a density of 3.15 g / cm 3 or more was regarded as acceptable, and a ceramic sintered body having a density of less than 3.15 g / cm 3 was evaluated as rejected. Further, when the average strength of the ceramic sintered body was 900 MPa or more, it was regarded as acceptable, and when it was less than 900 MPa, it was rejected. Further, the ceramic sintered body having a pore frequency of 10 or less was regarded as acceptable, and the ceramic sintered body having a pore frequency greater than 10 was regarded as rejected.
  • the ceramic sintered body having an average pore diameter of 6.4 ⁇ m or less was regarded as acceptable, and the ceramic sintered body having a pore average diameter of larger than 6.4 ⁇ m was rejected. Further, a ceramic sintered body having a maximum pore diameter of 10 ⁇ m or less was regarded as acceptable, and a ceramic sintered body having a maximum pore diameter of 10 ⁇ m or more was regarded as rejected.
  • Examples 8 to 10 are reference examples, and it can be seen that by performing the CIP treatment, a dense and high-strength ceramic sintered body can be produced even by a two-step heat treatment.
  • Examples 11 to 18 are comparative examples, and it can be seen that a dense and high-strength ceramic sintered body cannot be produced when the CIP treatment is not performed and the two-step heat treatment is performed.
  • Examples 1 to 5, 19 and 20 are examples, and it can be seen that a dense and high-strength ceramic sintered body can be produced by performing a three-step heat treatment without performing the CIP treatment.
  • Examples 6 and 7 are also examples, and it was found that a dense and high-strength ceramic sintered body can be produced by performing a three-step heat treatment after the CIP treatment, and further, when the CIP treatment is not performed. In comparison, it can be seen that the number and size of the pores are smaller.
  • Example 2 Example 2 in which the fracture toughness value of the ceramic sintered body is evaluated will be described.
  • Examples 21, 22 and 24 are examples, and examples 23 and 25 are comparative examples.
  • Table 2 shows the production conditions of the ceramic sintered body according to each example.
  • Table 3 shows the evaluation results of the ceramic sintered body according to each example.
  • 4 and 5 are graphs showing fracture toughness values in Example 2.
  • FIG. 4 shows the fracture toughness value for each distance from the surface with respect to the radius r
  • FIG. 5 shows the fracture toughness value for each distance (absolute value) from the surface.
  • Example 21 As an example 21, a spherical silicon nitride ceramics sintered body was manufactured. The diameter obtained was 51 mm. In Example 21, a spherical molding die (diameter 64 mm) was used as the molding die, and a spherical silicon nitride sintered body was obtained as the ceramics sintered body.
  • the conditions different from Example 1 are as follows. The Sp amount was 4 mol%, and the heat treatment under the first conditions was carried out at 1400 ° C. for 5 hours to obtain a first sintered body. As a heat treatment under the second condition, the first sintered body was heat-treated at 1800 ° C.
  • a ceramic sintered body (silicon nitride sintered body) was produced by the same method as in Example 1 except for the above points.
  • the obtained ceramic sintered body was measured fracture toughness value (K IC) and Vickers hardness.
  • K IC was cut into a disk having a thickness of 10 mm so as to pass through the diameter of the obtained ceramic sintered body, and then one of the cut surfaces was polished to measure the K IC along the radial direction of the sphere.
  • Example 22 the ceramic sintered body was produced by the same method as in Example 21 except that the size of the molding die was 63 mm in diameter and the heat treatment under the first condition was performed at 1600 ° C. for 5 hours. The diameter of the obtained ceramic sintered body was 50 mm.
  • Example 23 the ceramic sintered body was produced by the same method as in Example 21 except that the heat treatment under the first condition was not performed.
  • the diameter was 51 mm.
  • Example 24 the ceramic sintered body was produced by the same method as in Example 21 except that the size of the spherical molding was 15 mm in diameter and the heat treatment under the first condition was performed at 1600 ° C. for 3.5 hours. The diameter of the obtained ceramic sintered body was 12 mm.
  • Example 25 a ceramic sintered body was produced by the same method as in Example 17, except that the CIP-treated molded product was processed to a diameter of 60.8 mm. The diameter was 50 mm.
  • Example 21 As shown in Table 3, in the example 21, 22, 24 is an example, K IC in the region from the surface to a depth r / 10, ⁇ KA, ⁇ KB, respectively, 6.5, 2.0 , 1.5 or less, and it can be seen that the density is improved and the abrasion resistance is improved.
  • Example 23 is a comparative example, in Example 25, K IC in the region from the surface to a depth r / 10, ⁇ KA, at least one ⁇ KB but is outside the above range, that wear resistance can not be improved I understand.
  • the embodiments and examples of the present invention have been described above, the embodiments are not limited by the contents of the embodiments and the examples. Further, the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those in a so-called equal range. Furthermore, the components described above can be combined as appropriate. Further, various omissions, replacements or changes of the components can be made without departing from the gist of the above-described embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Products (AREA)

Abstract

緻密なセラミックス焼結体を適切に製造する。セラミックス焼結体の製造方法材は、セラミックス粉末の成形体であるセラミックス成形体を第1条件で熱処理するステップと、第1条件で熱処理されたセラミックス成形体を、第1条件よりも高圧となる第2条件で熱処理するステップと、第2条件で熱処理されたセラミックス成形体を、第2条件よりも高圧となる第3条件で熱処理して、セラミックス焼結体を製造するステップと、を含む。

Description

セラミックス焼結体の製造方法及びセラミックス焼結体
 本発明は、セラミックス焼結体の製造方法及びセラミックス焼結体に関する。
 セラミックス焼結体を製造する際には、HIP(Hot Isostatic Pressing)処理が用いられる場合がある。HIP処理によると、成形体を高圧環境下で熱処理することで、欠陥の少ない緻密な焼結体を得ることができる。
 HIP処理を適切に行うためには、前工程で成形体の密度をある程度高くしておく必要がある。特許文献1から特許文献3には、成形体に対して水中で等方圧を印加するCIP(Cold Isostatic Pressing)法で成形体の密度を上げてから、HIP処理を行う旨が記載されている。
特許第4642956号公報 特許第6075811号公報 特許第6400478号公報
 ここで、緻密なセラミックス焼結体を適切に製造するには改善の余地がある。
 本発明は、上記課題に鑑みてなされたものであり、緻密なセラミックス焼結体を適切に製造可能なセラミックス焼結体の製造方法及びセラミックス焼結体を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係るセラミックス焼結体の製造方法は、セラミックス粉末の成形体であるセラミックス成形体を第1条件で熱処理するステップと、前記第1条件で熱処理された前記セラミックス成形体を、前記第1条件よりも高圧となる第2条件で熱処理するステップと、前記第2条件で熱処理された前記セラミックス成形体を、前記第2条件よりも高圧となる第3条件で熱処理して、セラミックス焼結体を製造するステップと、を含む。
 上述した課題を解決し、目的を達成するために、本開示に係るセラミックス焼結体は、球状の窒化ケイ素のセラミックス焼結体であり、前記セラミックス焼結体の半径をrとした場合に、前記セラミックス焼結体の表面から1/10rの領域の破壊靭性値(KIC)が6.5MPa・m1/2以上であり、前記セラミックス焼結体の表面から1/10rの領域の破壊靭性値の最大値と最小値との差ΔKAが2.0MPa・m1/2以下であり、前記セラミックス焼結体の1/10r~2/10rの領域の破壊靭性値の最大値と最小値の差ΔKBが1.5MPa・m1/2以下である。
 本発明によれば、緻密なセラミックス焼結体を適切に製造できる。
図1は、本実施形態に係るセラミックス焼結体の製造方法を説明するフローチャートである。 図2は、セラミックス成形体の生成工程の詳細を説明するフローチャートである。 図3は、本実施形態における熱処理炉の構成例を示す図である。 図4は、実施例2における破壊靭性値を示すグラフである。 図5は、実施例2における破壊靭性値を示すグラフである。
 以下に添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、数値については四捨五入の範囲が含まれる。
 (セラミックス焼結体)
 本実施形態に係る製造方法では、セラミックス粉末を成形してセラミックス成形体を生成し、セラミックス成形体を焼成してセラミックス焼結体を製造する。本実施形態においては、セラミックス焼結体は、窒化ケイ素(Si)の焼結体であり、セラミックス粉末は、窒化ケイ素の粉末である。なお、セラミックス焼結体は、窒化ケイ素を主成分として、窒化ケイ素以外の材料も含んでいてもよいし、不可避的不純物を含んでいてもよい。例えば、セラミックス焼結体は、全体に対する窒化ケイ素の含有率が、重量比で80%以上であってよく、83%以上であってよく、85%以上であってもよい。本製造方法で製造されたセラミックス焼結体は、例えば、ボール軸受けのボール(ベアリングボールなど)に用いられるが、用途はそれに限られず任意であってよい。
 このように、本実施形態に係る製造方法は、窒化ケイ素の焼結体を製造するものであるが、窒化ケイ素に限られず、任意のセラミックスの焼結体の製造に用いてもよい。すなわち、セラミックス焼結体は、窒化ケイ素に限られず任意のセラミックス製の焼結体であってよく、セラミックス粉末は、窒化ケイ素に限られず任意のセラミックス製の粉末であってよい。
 (セラミックス成形体の生成)
 図1は、本実施形態に係るセラミックス焼結体の製造方法を説明するフローチャートであり、図2は、セラミックス成形体の生成工程の詳細を説明するフローチャートである。図1に示すように、本製造方法においては、最初に、セラミックス粉末を成形してセラミックス成形体を生成する(ステップS10)。本実施形態においては、ゲルキャスティング法により、セラミックス成形体を生成する。
 図2は、図1のステップS10におけるゲルキャスティング法によるセラミックス成形体の生成工程の一例の詳細を示している。図2に示すように、ゲルキャスティング法によりセラミックス成形体を生成する際には、セラミックススラリーを生成する(ステップS10b)。セラミックススラリーは、溶媒中にセラミックス粉末が分散しているスラリーである。セラミックススラリーの生成方法は特に限定されず、セラミックス粉末と溶媒を含むスラリーに、溶媒などの種類によって、適宜分散剤、焼結助剤、樹脂、および樹脂硬化剤を添加すればよい。例えば、セラミックススラリーは、最初に、セラミックス粉末、溶媒、分散剤、及び焼結助剤を混合してスラリー(以下、原料セラミックススラリーともいう)を得たのち、原料セラミックススラリーに樹脂及び樹脂硬化剤を添加したセラミックススラリー生成する。
 セラミックス粉末は、ゲルキャスティング法を行う場合には必須の成分である。セラミックス粉末は、例えば窒化ケイ素、窒化アルミニウム、窒化チタン、または炭化ケイ素の粉末である。
 溶媒は、ゲルキャスティング法を行う場合には必須の成分であり、セラミックス粉末、焼結助剤、樹脂および樹脂硬化剤を均一に混合し成形するための液体である。溶媒は、例えば、水、有機溶媒、アルコール類であり、焼結後にセラミックス焼結体に残存しないものであればよい。アルコール類としては、例えば、メチルアルコール、エチルアルコールを使用できる。また、有機溶媒としては、例えばベンゼン、トルエン、キシレンを使用できる。これらの溶媒は単独で使用しても良いし、適宜混合しても良い。
 分散剤は、溶媒中へのセラミックス粉末の分散を補助する添加剤であり、任意の成分である。分散剤は、例えば、水酸化テトラメチルアンモニウムなどのpH調整剤、ポリカルボン酸型高分子などの高分子型分散剤、ヘキサメタリン酸ナトリウム等のリン酸塩等の無機型分散剤、アニオン系、カチオン系、ノニオン系の有機の型界面活性剤型分散剤である。
 焼結助剤は、セラミックス粉末の焼結を補助する添加剤であり、任意の成分である。焼結助剤は、例えばセラミックス粉末が窒化ケイ素の場合、酸化マグネシウム(MgO)、酸化アルミニウム(Al)、スピネル(マグネシア・アルミナスピネル;MgO・Al)、酸化イットリウム(Y)、酸化イッテルビウム(Yb)などの希土類酸化物の粉末を用いればよい。
 セラミックス粉末は、スラリー(原料セラミックススラリー)を生成する前に、予め準備されたセラミックス粉末を粉砕しつつ混合して、セラミックス粉末の粒径を均一に近づける。粉砕混合には、例えばボールミルが用いられるが、粉砕混合の方法は任意であってよい。
 セラミックススラリーを生成する際には、溶媒に対するセラミックス粉末の添加量を、35体積%以上65体積%以下とすることが好ましく、40体積%以上60体積%以下とすることがより好ましく、45体積%以上55体積%以下とすることが更に好ましい。このような配合比とすることで、適切にセラミックス成形体を生成できる。また、セラミックススラリーを生成する際には、セラミックス粉末に対する分散剤の添加量を、0.3重量%以上3重量%以下とすることが好ましく、0.4重量%以上2重量%以下とすることがより好ましく、0.5重量%以上1重量%以下とすることが更に好ましい。このような配合比とすることで、適切にセラミックス成形体を生成できる。また、セラミックススラリーを生成する際には、セラミックス粉末に対する焼結助剤の添加量を、1重量%以上15重量%以下とすることが好ましく、2重量%以上12重量%以下とすることがより好ましく、3重量%以上9重量%以下とすることが更に好ましい。このような配合比とすることで、適切にセラミックス焼結体を製造できる。
 次に、混合した原料セラミックススラリーに、樹脂と樹脂硬化剤(重合開始剤)とを添加して、セラミックススラリー(以下、注型セラミックススラリーともいう)を生成する(ステップS10b)。より詳しくは、原料セラミックススラリーに、樹脂と樹脂硬化剤(重合開始剤)とを添加する。樹脂は、樹脂硬化剤が添加されることで重合して硬化する樹脂であり、本実施形態では、セラミックススラリーの溶媒に溶解する樹脂(ここでは水溶性の樹脂)であることが好ましい。ここでの樹脂は、例えば水溶性のエポキシ樹脂であるが、エポキシ樹脂に限られず、樹脂硬化剤が添加されることで重合して硬化する任意の樹脂であってよい。樹脂硬化剤は、樹脂に添加されることで、樹脂を重合させて硬化させる添加材である。ここでの樹脂硬化剤は、例えばトリエチレンテトラミンとジメチルアミノメチルとの混合剤であるが、それに限られず、樹脂に添加されることで樹脂を重合させて硬化させる任意の添加材であってよい。
 本実施形態では、原料セラミックススラリーに樹脂を添加した樹脂添加セラミックススラリー(以下、第1セラミックススラリーともいう)と、原料セラミックススラリーに樹脂硬化剤を添加した硬化剤添加セラミックススラリー(以下、第2セラミックススラリーともいう)とを準備する。そして、第1セラミックススラリーと第2セラミックススラリーとを混合して、混合された注型セラミックススラリーとする。
 なお、本実施形態では、セラミックススラリー中のセラミックス粉末に対する樹脂の添加量を、1重量%以上10重量%以下とすることが好ましく、1.5重量%以上8重量%以下とすることがより好ましく、2重量%以上5重量%以下とすることが更に好ましい。このような配合比とすることで、適切にセラミックス成形体を生成できる。また、樹脂に対する樹脂硬化剤の添加量は、添加した樹脂の化学量論的に適切な量を添加することが好ましい。このような配合比とすることで、適切にセラミックス成形体を生成できる。
 次に、注型セラミックススラリーを成形型に注入する(ステップS10c)。本実施形態では、原料セラミックススラリーに樹脂と樹脂硬化剤とを別々に添加した後に、それぞれを混合するが、すなわち第1セラミックススラリーと第2セラミックススラリーとを別々に生成して混合するが、それに限られず、原料セラミックススラリーに樹脂と樹脂硬化剤との両方を添加して、両方が添加された注型セラミックススラリーを、成形型に注入してよい。
 本実施形態では、セラミックススラリーを成形型に供給した状態で、所定の保持温度で所定の保持時間保持する。ここでの保持温度は、25℃以上100℃以下であることが好ましく、30℃以上80℃以下であることがより好ましく、40℃以上60℃以下であることが更に好ましい。また、ここでの保持時間は、1時間以上48時間以下であることが好ましく、2時間以上24時間以下であることがより好ましく、3時間以上12時間以下であることが更に好ましい。このような保持温度及び保持時間とすることで、樹脂を適切に硬化させることができる。なお、本実施形態では、セラミックススラリーが供給された成形型に対して、プレス処理を行わない。すなわち、セラミックススラリーが供給された成形型に対しては、大気圧よりも高い圧力を印加しない。
 なお、セラミックススラリーを成形型に供給する際に、セラミックススラリーに対して、大気圧よりも高い圧力を印加してもよい。
 保持時間が経過したら、セラミックススラリーが硬化した硬化体を成形型から脱型して(取り出して)、硬化体を適宜乾燥、脱脂することで、セラミックス成形体が得られる(ステップS10d)。具体的には、脱型した硬化体を乾燥させて乾燥成形体とし、乾燥成形体を脱脂して、セラミックス成形体とする。ここでの乾燥条件は任意であるが、例えば、加湿乾燥処理と、熱風乾燥処理とを実行する。加湿乾燥処理では、湿度が30%以上98%以下、温度が25℃以上50℃以下の環境下で、硬化体を24時間以上120時間以下保持する。そして、加湿乾燥処理が終了したら、熱風乾燥処理において、温度が40℃以上100℃以下の環境下で、硬化体に風を当てながら、3時間以上48時間以下保持して乾燥成形体を得る。また、脱脂方法も任意であるが、例えば、乾燥成形体を、温度が550℃以上750℃以下の環境下で、2時間以上12時間以下保持して、脱脂し、セラミックス成形体を得る。
 ここで、乾燥は硬化体中の溶媒を除去する過程であり、脱脂は硬化体(乾燥成形体)中の樹脂を除去する過程である。これらの除去が不十分であると、焼成工程中の割れなどの原因となるため、ゲルキャスティング法においては、必須の過程である。
 本製造方法で成形されたセラミックス成形体は、相対密度が、40%以上であることが好ましく、45%以上であることがより好ましく、50%以上であることが更に好ましい。相対密度は高い方が好ましいが、65%以下であってもよく、60%以下であってもよく、55%以下であってもよい。なお、ここでの相対密度は、成形体密度を物質密度で除した値を指す。成形体密度は、セラミックス成形体の寸法から求めた体積をセラミックス成形体の重量で除することで求められた値とする。物質密度は、セラミックス粉末と焼結助剤の組成比と各物質の理論密度から算出する。
 物質密度は、例えばセラミックス粉末(モル質量ag/mol、理論密度Ag/cm)と、焼結助剤(モル質量bg/mol、理論密度Bg/cm)を、それぞれXモル%とYモル%の組成比で混合した場合、次式(1)から計算できる。
 (a×X+b×Y)/((a×X/A)+(b×Y/B))・・・(1)
 本実施形態では、以上のようにゲルキャスティング法を用いて、セラミックス成形体を準備する。ただし、セラミックス成形体の生成方法は、ゲルキャスティング法に限られず、任意の方法であってよい。例えば、成形型に充填したセラミックス粉末を加圧してセラミックス成形体を成形する、粉末プレス法を用いてもよい。
 (熱処理)
 本製造方法では、セラミックス成形体に対して、第1条件での熱処理、第2条件での熱処理、及び第3条件での熱処理の、少なくとも3段階の熱処理を実行して、セラミックス焼結体を製造する。ここでの熱処理とは、セラミックス粉末の少なくとも一部が焼結を開始する温度以上の温度で、対象物を加熱する処理を指し、例えばCIP処理のような常温での処理は含まれない。また、以降の説明では、第1条件での熱処理、第2条件での熱処理、及び第3条件での熱処理の、3段階の熱処理を行っているが、それに限られず、4段階以上の熱処理を実施してもよい。また、熱処理の前に、セラミックス成形体(乾燥成形体)に対して、CIP処理を施してもよい。CIP処理により、セラミックス成形体に対して等方的に圧力を印加でき、成形体の相対密度を上げることができる。
 (第1条件での熱処理)
 まずは、第1条件での熱処理について説明する。図1に示すように、セラミックス成形体を生成したら、セラミックス成形体に対して、第1条件での熱処理を実行する(ステップS12)。ここで、第1条件において、セラミックス成形体を加熱する温度を、第1加熱温度とし、セラミックス成形体に印加する圧力を第1圧力とし、加熱時間を、第1加熱時間とする。第1条件、すなわち第1加熱温度、第1圧力、及び第1加熱時間は、セラミックス粉末の性質、焼結助剤の添加量や種類、セラミックス成形体の相対密度や形状や寸法などに応じて、適宜設定されてよい。例えば、窒化ケイ素であれば第1加熱温度は、1600℃以上1800℃以下であることが好ましく、1620℃以上1780℃以下であることがより好ましく、1650℃以上1750℃以下であることが更に好ましい。加熱温度をこの範囲とすることで、焼結体の相対密度を、適切な範囲にすることができる。また、第1圧力は、0.01MPa以上5MPa以下であることが好ましく、0.05MPa以上3MPa以下であることがより好ましく、0.1MPa以上1MPa以下であることが更に好ましい。第1圧力をこの範囲とすることで、焼結体の相対密度を、適切な範囲にすることができる。さらに言えば、第1条件での熱処理は、量産性及び操作容易性の観点から、常圧(大気圧)、すなわち0.1MPaで行うことが最も好ましい。また、第1加熱時間は、1時間以上20時間以下であることが好ましく、2時間以上18時間以下であることがより好ましく、5時間以上15時間以下であることが更に好ましい。第1加熱時間をこの範囲とすることで、焼結体の相対密度を、適切な範囲にすることができる。
 本実施形態においては、第1条件での熱処理は、窒素雰囲気下で実行される。窒素雰囲気下で第1条件での熱処理を実行することで、窒化ケイ素であるセラミックス粉末の焼結を適切に実行できる。
 セラミックス成形体は、このように第1条件での熱処理を施されることで、一回目の焼結、すなわち一次焼結される。低圧の第1条件での熱処理を最初に行っておくことで、焼結体の気孔を減らして、後段の第2条件及び第3条件での熱処理を、効果的に実行することができる。
 ここで、第1条件での熱処理が施されたセラミックス成形体を、第1焼結体とすると、第1焼結体の相対密度は、85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましい。ここでの相対密度は、JIS R 1634に従って測定された第1焼結体の密度を、セラミックス粉末と焼結助剤の組成比と各物質の理論密度から算出された物質密度で除して求めた値である。相対密度をこの範囲とすることで、後段の第2条件及び第3条件での熱処理を、効果的に実行できる。
 (第2条件での熱処理)
 次に、第2条件での熱処理について説明する。図1に示すように、第1条件での熱処理を行ったら、第1条件で熱処理したセラミックス成形体に対して、すなわち第1焼結体に対して、第2条件での熱処理を実行する(ステップS14)。第2条件での熱処理は、第1条件での熱処理よりも高圧環境下での熱処理であり、GPS(Gas Pressure Sintering)処理であるともいえる。ここで、第2条件において、第1焼結体を加熱する温度を、第2加熱温度とし、第1焼結体に印加する圧力を第2圧力とし、加熱時間を、第2加熱時間とする。第2加熱温度は、第1条件における第1加熱温度より高いことが好ましいが、第1加熱温度以下の温度であってもよい。第2加熱温度は、1650℃以上1900℃以下であることが好ましく、1680℃以上1850℃以下であることがより好ましく、1700℃以上1800℃以下であることが更に好ましい。第2加熱温度をこの範囲とすることで、後段の第3条件での熱処理を効果的に行うことができる。また、第2圧力は、第1条件の熱処理における第1圧力よりも高い。第2圧力と第1圧力との差分は、0.3MPa以上20MPa以下であることが好ましく、1MPa以上18MPa以下であることがより好ましく、2MPa以上15MPa以下であることが更に好ましい。また、第2圧力は、0.5MPa以上20MPa以下であることが好ましく、3MPa以上18MPa以下であることがより好ましく、5MPa以上15MPa以下であることが更に好ましい。第2圧力をこの範囲とすることで、後段の第3条件での熱処理を効果的に行うことができる。より詳しくは、第2圧力を0.5MPa以上とすることで、加圧熱処理の効果を適切に保ち、20MPa以下とすることで、第1焼結体の気孔に高圧気体が浸透することを抑制して、焼結後の相対密度を適切な値にすることができる。また、第2加熱時間は、第1加熱時間よりも短いことが好ましい。第2加熱時間は、0.1時間以上10時間以下であることが好ましく、0.15時間以上8時間以下であることがより好ましく、0.2時間以上6時間以下であることが更に好ましい。第2加熱時間をこの範囲とすることで、後段の第3条件での熱処理を効果的に行うことができる。
 本実施形態においては、第2条件での熱処理は、窒素雰囲気下で実行される。窒素雰囲気下で第2条件での熱処理を実行することで、窒化ケイ素であるセラミックス粉末の焼結を適切に実行できる。
 なお、第2条件での熱処理は、第1条件での熱処理を終了した後、第1焼結体を取り出して冷却した後に行ってもよいし、第1条件での熱処理から、第1焼結体を冷却することなく、連続して実行してもよい。
 第1焼結体は、このように第2条件での熱処理を施されることで、二回目の焼結、すなわち二次焼結される。第1条件よりも高圧の第2条件での熱処理を行うことで、焼結体の表面の微細な開気孔を減らして表面を緻密化すると考えられ、後段の第3条件での熱処理において、高圧気体が焼結体内部に浸透することを抑制して、第3条件での熱処理を効果的に実行することができる。
 ここで、第2条件での熱処理が施されたセラミックス成形体を、すなわち第2条件での熱処理が施された第1焼結体を、第2焼結体とすると、第2焼結体の相対密度は、95%以上であることが好ましく、97%以上であることがより好ましい。第2焼結体の相対密度は高い方が好ましいが、99%以下であってもよい。相対密度をこの範囲とすることで、後段の第3条件での熱処理を、効果的に実行できる。
 (第3条件での熱処理)
 次に、第3条件での熱処理について説明する。図1に示すように、第2条件での熱処理を行ったら、第2条件で熱処理したセラミックス成形体に対して、すなわち第2焼結体に対して、第3条件での熱処理を実行して(ステップS16)、セラミックス焼結体を生成する。第3条件での熱処理は、第2条件での熱処理よりも高圧環境下での熱処理であり、HIP処理であるともいえる。ここで、第3条件において、第2焼結体を加熱する温度を、第3加熱温度とし、第2焼結体に印加する圧力を第3圧力とし、加熱時間を、第3加熱時間とする。第3加熱温度は、第1条件における第1加熱温度より高いことが好ましいが、第1加熱温度以下の温度であってもよい。また、第3加熱温度は、第2条件における第2加熱温度よりも高くてもよいし、第2加熱温度以下の温度であってもよい。第3加熱温度は、1650℃以上1900℃以下であることが好ましく、1680℃以上1850℃以下であることがより好ましく、1700℃以上1800℃以下であることが更に好ましい。第3加熱温度をこの範囲とすることで、セラミックス焼結体の相対密度を適切な値にすることができる。また、第3圧力は、第2条件の熱処理における第2圧力よりも高い。第3圧力と第2圧力との差分は、30MPa以上180MPa以下であることが好ましく、40MPa以上160MPa以下であることがより好ましく、50MPa以上130MPa以下であることが更に好ましい。また、第3圧力は、50MPa以上200MPa以下であることが好ましく、60MPa以上180MPa以下であることがより好ましく、70MPa以上150MPa以下であることが更に好ましい。第3圧力をこの範囲とすることで、セラミックス焼結体の相対密度を適切な値にすることができる。第3加熱時間は、0.1時間以上10時間以下であることが好ましく、0.15時間以上8時間以下であることがより好ましく、0.2時間以上6時間以下であることが更に好ましい。第3加熱時間をこの範囲とすることで、セラミックス焼結体の相対密度を適切な値にすることができる。
 本実施形態においては、第3条件での熱処理は、窒素雰囲気下で実行される。窒素雰囲気下で第3条件での熱処理を実行することで、窒化ケイ素であるセラミックス粉末の焼結を適切に実行できる。
 なお、第3条件での熱処理は、第2条件での熱処理を終了した後、第2焼結体を取り出して冷却した後に行ってもよいし、第2条件での熱処理から、第2焼結体を冷却することなく、連続して実行してもよい。
 第2焼結体は、このように第3条件での熱処理を施されることで、三回目の焼結、すなわち三次焼結される。第1条件及び第2条件での焼成を経て、第3条件でのHIP処理を行うことで、すなわち圧力を上げながら段階的に焼成を行うことで、例えばCIP処理を行わなくても、HIP処理を適切に実施して、緻密なセラミックス焼結体を製造できる。
 (セラミックス焼結体の特性)
 第3条件での熱処理が施された後のセラミックス焼結体は、相対密度が、99%以上であることが好ましい。相対密度をこの範囲とすることで、セラミックス焼結体の性能を担保できる。
 また、セラミックス焼結体は、JIS R 1669で規定する方法で測定されたスパン30mmにおける3点曲げ強さが900MPa以上であることが好ましく、910MPa以上であることがより好ましく、915MPa以上であることが更に好ましい。3点曲げ強さがこの範囲となることで、セラミックス焼結体の強度を適切に保つことができる。また、セラミックス焼結体は、JIS R 1669で規定する方法で測定された破壊靭性値が5.0MPa・m1/2以上であることが好ましく、5.5MPa・m1/2以上であることがより好ましく、6.0MPa・m1/2以上であることがさらに好ましい。破壊靭性値がこの範囲となることで、セラミックス焼結体の強度を適切に保つことができる。また、セラミックス焼結体は、任意の断面を研磨した面における1mm以上の面積に対して光学顕微鏡を用いて観察される5μm以上の気孔の数が、1mmの面積当たり、20個以下であることが好ましく、15個以下であることがより好ましく、10個以下であることが更に好ましい。また、セラミックス焼結体は、気孔の最大径が、25μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることが更に好ましい。気孔の数や最大径がこの範囲となることで、セラミックス焼結体の性能を担保できる。
 (直径)
 セラミックス焼結体は、窒化ケイ素の焼結体であり、球状であることが好ましい。ここでの球状とは、真球に限定されず、例えば直径に対して好ましくは3%以内、より好ましくは2.5%以内、更に好ましくは2%以内の真球度であってよい。例えば、直径50mmの焼結体であれば真球度は1.5mm以下が好ましく、1.25mm以下がより好ましく、1.0mm以下がさらに好ましい。例えば、直径10mmの焼結体であれば真球度は0.3mm以下が好ましく、0.25mm以下がより好ましく、0.2mm以下がさらに好ましい。セラミックス焼結体は、直径が0.5mm以上80mm以下であることが好ましく、30mm以上55mm以下であることがより好ましく、49mm以上51mm以下であることがさらに好ましい。直径がこの範囲であることで、例えばベアリングボールなどに好適に使用できる。なお、ここでの直径とは、平均直径(直径の最大値と最小値との算術平均値)を指してよい。また、以下、セラミックス焼結体の半径をrとする。半径rは、セラミックス焼結体の直径の半分の値としてよい。
 (破壊靭性値)
 セラミックス焼結体は、表面から深さr/10までの領域(範囲)における破壊靭性値(KIC)が、6.5MPa・m1/2以上であることが好ましい。
 セラミックス焼結体は、表面から深さr/10までの範囲における破壊靭性値の最大値と最小値との差ΔKAが、2.0MPa・m1/2以下であることが好ましく、1.5MPa・m1/2以下であることがより好ましく、1.2MPa・m1/2以下であることがさらに好ましい。
 セラミックス焼結体は、表面よりも深さr/10の位置から表面よりも深さ2r/10までの範囲における破壊靭性値の最大値と最小値との差ΔKBが、1.5MPa・m1/2以下であることが好ましく、1.0MPa・m1/2以下であることがより好ましく、0.7MPa・m1/2以下であることがさらに好ましい。
 表面から深さr/10までの範囲における破壊靭性値がこの範囲となることで、微視的な破壊による粒子の脱落などが抑制されて、セラミックス焼結体の摩耗を抑制できる。また、ΔKA及びΔKBがこの範囲となることで、破壊靭性値のばらつきが小さく、セラミックス焼結体が緻密となり粒子の不均一性が抑制されて、セラミックス焼結体の摩耗をより好適に抑制できる。言い換えれば、本実施形態に係るセラミックス焼結体は、特に表面近傍での破壊靭性値が高く、かつ、破壊靭性値の上下ばらつきが少ない。そのため、セラミックス焼結体は、耐摩耗性が向上し、例えば摺動特性に優れたセラミックス焼結体が提供できる。
 なお、表面から深さr/10までの範囲における破壊靭性値と、表面よりも深さr/10の位置から表面よりも深さ2r/10までの範囲における破壊靭性値とは、セラミックス焼結体を、直径を通るように円板に切り出した後、切断面の一方を研磨して、球の半径方向に沿って各位置における破壊靭性値を測定することで得られる。すなわち例えば、表面から深さr/10までの範囲における破壊靭性値とは、切断面における、周縁から、周縁よりも中心側にr/10離れた位置までの領域での、破壊靭性値を指す。破壊靭性値は、フューチュアテック社製のビッカース硬度試験システムARS9000を使用し、荷重5kg、押込み時間15秒の条件で測定できる。破壊靭性値の測定方法は、以降も同様であってよい。
 なお、セラミックス焼結体の、表面から深さr/10までの範囲とは、例えば、表面から2.5mmまでの範囲と言い換えることもできる。また、セラミックス焼結体の、表面よりも深さr/10の位置から表面よりも深さ2r/10までの範囲とは、表面よりも2.5mm深い位置から、表面よりも5.0mm深い位置までの範囲と言い換えることもできる。
 セラミックス焼結体は、表面から深さ2r/10までの範囲における破壊靭性値が、6.5MPa・m1/2以上であることが好ましい。
 表面から深さ2r/10までの範囲における破壊靭性値がこの範囲となることで、微視的な破壊による粒子の脱落などが抑制されて、セラミックス焼結体の摩耗をより好適に抑制できる。
 なお、セラミックス焼結体の、表面から深さ2r/10までの範囲とは、例えば、表面から5.0mmまでの範囲と言い換えることもできる。
 セラミックス焼結体は、表面から深さ4r/10までの範囲における破壊靭性値の平均値が、7.0MPa・m1/2以上であることが好ましい。
 表面から深さ4r/10までの範囲における破壊靭性値の平均値がこの範囲となることで、微視的な破壊による粒子の脱落などが抑制され、セラミックス焼結体の摩耗をより好適に抑制できる。
 なお、セラミックス焼結体の、表面から深さ4r/10までの範囲とは、例えば、表面から10.0mmまでの範囲と言い換えることもできる。
 セラミックス焼結体は、表面から深さr/10までの範囲における破壊靭性値の標準偏差が、0.70以下であることが好ましく、0.60以下であることがより好ましく、0.40以下であることがさらに好ましい。
 表面から深さr/10までの範囲における破壊靭性値の標準偏差がこの範囲となることで、破壊靭性値のばらつきが小さく、セラミックス焼結体が緻密となり粒子の不均一性が抑制されて、セラミックス焼結体の摩耗をより好適に抑制できる。
 セラミックス焼結体は、表面から深さ4r/10までの範囲における破壊靭性値の標準偏差が、0.55以下であることが好ましく、0.50以下であることがより好ましく、0.48以下であることがさらに好ましい。
 表面から深さ4r/10までの範囲における破壊靭性値の標準偏差がこの範囲となることで、破壊靭性値のばらつきが小さく、セラミックス焼結体が緻密となり粒子の不均一性が抑制されて、セラミックス焼結体の摩耗をより好適に抑制できる。
 (硬度)
 セラミックス焼結体は、表面から深さ2r/10までの範囲におけるビッカース硬度が、10HV以上であることが好ましく、12HV以上であることがより好ましく、14HV以上であることがさらに好ましい。
 表面から深さ2r/10までの範囲におけるビッカース硬度がこの範囲となることで、微視的な破壊による粒子の脱落などが抑制されて、セラミックス焼結体の摩耗をより好適に抑制できる。
 なお、表面から深さ2r/10までの範囲におけるビッカース硬度は、セラミックス焼結体を、直径を通るように円板に切り出した後、切断面の一方を研磨して、球の半径方向に沿って各位置におけるビッカース硬度を測定することで得られる。すなわち例えば、表面から深さ2r/10までの範囲における破壊靭性値とは、切断面における、周縁から、周縁よりも中心側に2r/10離れた位置までの領域での、ビッカース硬度を指す。ビッカース硬度は、フューチュアテック社製のビッカース硬度試験システムARS9000を使用し、荷重5kg、押込み時間15秒の条件で測定できる。
 なお、本実施形態に係るセラミックス焼結体は、本実施形態で説明した製造方法で製造されるものであるが、以上説明した特性を有するものであれば、製造方法は任意であってよい。
 図3は、本実施形態における熱処理炉の構成例を示す図である。本実施形態においては、図3に示す熱処理炉10を用いて、第3条件での熱処理を、すなわちHIP処理を実行してよい。熱処理炉10は、HIP処理が可能な炉である。図3に示すように、熱処理炉10は、容器12と、基台14と、加熱部16と、断熱部18とを備えている。基台14は、熱処理対象物である第2焼結体Aが設置される基台である。加熱部16は、基台14上の第2焼結体が設置される空間の周囲に配置されるヒータであり、基台14上の第2焼結体Aを加熱する。断熱部18は、加熱部16と、基台14上の第2焼結体Aが設置される空間とを覆う部材である。断熱部18は、断熱性の高い部材で構成されており、内部の空間を外部の空間に対して断熱する。容器12は、基台14と、加熱部16と、断熱部18とを収納する容器である。容器12には、ガス導入口12aが形成されている。第3条件での熱処理を実行する際には、基台14上に第2焼結体Aを設置して、ガス導入口12aから窒素を供給することで、容器12内を、窒素雰囲気下で第3圧力まで加圧する。第2焼結体Aには、第3圧力での等方圧が印加される。そして、加熱部16により第3加熱温度まで加熱して、第3加熱時間保持することで、第2焼結体Aに、熱処理、すなわちHIP処理を施して、セラミックス焼結体を生成する。
 なお、熱処理炉10は、第1条件での熱処理にも用いてよいし、第2条件での熱処理にも用いてよい。同じ熱処理炉10を用いることで、第1条件での熱処理、第2条件での熱処理、及び第3条件での熱処理を、連続的に実行することができる。ただし、熱処理炉10の構成は一例であり、本製造方法では、任意の設備を用いて、第1条件での熱処理、第2条件での熱処理、及び第3条件での熱処理を実行してよい。
 以上説明したように、本実施形態に係るセラミックス焼結体の製造方法は、セラミックス粉末の成形体であるセラミックス成形体を第1条件で熱処理するステップと、第1条件で熱処理されたセラミックス成形体(第1焼結体)を、第1条件よりも高圧となる第2条件で熱処理するステップと、第2条件で熱処理されたセラミックス成形体(第2焼結体)を、第2条件よりも高圧となる第3条件で熱処理して、セラミックス焼結体を製造するステップと、を含む。
 本製造方法においては、第1条件、第2条件及び第3条件で、圧力を上げながら段階的に熱処理を実行するため、気孔が十分に除去されて高強度となる、緻密なセラミックス焼結体を適切に製造することができる。特に、高圧で熱処理を行う場合には、ある程度気孔が除去されていないと、気孔に高圧気体が浸透してしまい、適切に焼成できなくなるおそれがある。それに対し、本製造方法では、段階的に圧力を上げて熱処理を実行することで、気泡を適切に除去して、高圧の熱処理を適切に行うことが可能となる。
 また、本製造方法によると、高圧の熱処理の前のCIP処理が不要となる。CIP処理は、浸水しないように成形体をゴム型などで密封する必要があるなど、作業負荷が高くなるおそれがあり、また、複雑な形状に対応させることが難しい。一方、CIP処理を実行しないと、適切にHIP処理を実行できずに、緻密な焼結体を製造できなくなるおそれがある。それに対し、本製造方法によると、第1条件、第2条件及び第3条件で、圧力を上げながら段階的に熱処理を実行するため、CIP処理を行わなくても高圧のHIP処理を適切に行うことができるため、作業負荷を低減しつつ、複雑な形状で、かつ緻密なセラミックス焼結体を製造することができる。
 また、本製造方法においては、第2条件で熱処理するステップでセラミックス成形体に印加する第2圧力と、第1条件で熱処理するステップでセラミックス成形体に印加する第1圧力との差分を、0.3MPa以上20MPa以下とし、第3条件で熱処理するステップでセラミックス成形体に印加する第3圧力と、第2圧力との差分を、30MPa以上180MPa以下とすることが好ましい。それぞれの圧力の差分をこの範囲とすることで、圧力を上げながらの段階的な熱処理を適切に実施して、緻密なセラミックス焼結体を適切に製造することができる。
 また、本製造方法においては、第1条件で熱処理するステップにおいてセラミックス成形体に印加する第1圧力を、0.01MPa以上5MPa以下とし、第2条件で熱処理するステップにおいてセラミックス成形体(第1焼結体)に印加する圧力を、0.5MPa以上20MPa以下とし、第3条件で熱処理するステップにおいてセラミックス成形体(第2焼結体)に印加する圧力を、50MPa以上200MPa以下とすることが好ましい。それぞれの圧力をこの範囲とすることで、圧力を上げながらの段階的な熱処理を適切に実施して、緻密なセラミックス焼結体を適切に製造することができる。
 また、本製造方法においては、第1条件での熱処理の温度(第1加熱温度)を、1600℃以上1800℃以下とし、第2条件での熱処理の温度(第2加熱温度)を、1700℃以上1900℃以下とし、第3条件での熱処理の温度(第3加熱温度)を、1700℃以上1900℃以下とすることが好ましい。それぞれの加熱温度をこの範囲とすることで、圧力を上げながらの段階的な熱処理を適切に実施して、緻密なセラミックス焼結体を適切に製造することができる。
 また、本製造方法においては、ゲルキャスト法によりセラミックス粉末を成形してセラミックス成形体を生成するステップをさらに含むことが好ましい。ゲルキャスト法を用いることで、適切にセラミックス成形体を生成できる。また、ゲルキャスト法を用いることで、複雑な形状のセラミックス成形体であっても、容易に製造できる。
 また、セラミックス焼結体は、窒化ケイ素の焼結体であることが好ましい。本製造方法によると、緻密な窒化ケイ素の焼結体を、適切に製造できる。
 また、第1条件、第2条件、及び第3条件で熱処理するステップにおいて、窒素雰囲気でセラミックス成形体を熱処理することが好ましい。窒素雰囲気化で熱処理することで、緻密な窒化ケイ素の焼結体を、適切に製造できる。
 また、第3条件で熱処理して製造されたセラミックス焼結体は、JIS R 1669で規定する方法で測定されたスパン30mmにおける3点曲げ強さが900MPa以上であり、JIS R 1669で規定する方法で測定された破壊靭性値が5.0MPa・m1/2以上であり、任意の断面を研磨した面における1mm以上の面積に対して光学顕微鏡を用いて観察される5μm以上の気孔の数が、1mmの面積当たり10個以下であり、気孔の最大径が、10μm以下であることが好ましい。本製造方法によると、このような特性のセラミックス焼結体を製造することで、高性能のセラミックス焼結体を提供できる。
 (実施例1)
 次に、実施例1について説明する。表1は、それぞれの例に係るセラミックス焼結体の製造条件と、製造されたセラミックス焼結体の評価結果を示している。
Figure JPOXMLDOC01-appb-T000001
 (例1)
 例1においては、セラミックス粉末としての窒化ケイ素の粉末(デンカ製:SN-9FWS)と、焼結助剤としてのスピネル粉末と、溶媒としてのイオン交換水、分散剤としての水酸化テトラメチルアンモニウムとを、ビーズミルに投入して1.5時間混合及び粉砕して、原料セラミックススラリーとしての窒化ケイ素スラリーを生成した。なお、Sp量、すなわち、セラミックス粉末に対するスピネル粉末の添加量Sp量の比率は、2.8モル%とした。
 そして、窒化ケイ素スラリーの一部に、樹脂としての水溶性エポキシ樹脂(ナガセケムテックス製:EX614B、EX512)を加えて混合して、第1セラミックススラリーを生成し、窒化ケイ素スラリーの他の一部に、樹脂硬化剤としてのトリエチレンテトラミンとジメチルアミノメチルを2:1の質量比で混合したものを加えて混合して、第2セラミックススラリーを生成した。
 そして、第1セラミックススラリーと第2セラミックススラリーとを、個別のタンク内で減圧して脱泡処理を行い、タンク内で攪拌させながら、同時に混合ミキサに送液して混合して注型セラミックススラリーとし、ミキサ出口に接続した成形型に供給した。そして、セラミックススラリー(第1セラミックススラリーと第2セラミックススラリーとの混合物)が充填された成形型を、50℃で5時間保持して、セラミックススラリーを硬化させて、硬化体を得た。そして、硬化体を成形型から脱型し、30℃で4日間加湿乾燥後、50℃で熱風乾燥して、乾燥成形体を得た。そして、乾燥成形体を600℃で3時間加熱して脱脂して、セラミックス成形体を得た。
 得られたセラミックス成形体に対して、成形体密度と相対密度を測定した。ここで、セラミックス成形体の寸法から求めた体積をセラミックス成形体の重量で除することで求められた値を成形体密度とし、セラミックス粉末と焼結助剤の組成比と各物質の理論密度から算出された物質密度とした時、成形体密度を物質密度で除した値を相対密度とした。物質密度は、例えばセラミックス粉末として窒化ケイ素(理論密度3.18g/cm)と、焼結助剤としてマグネシア・アルミナスピネル(理論密度3.6g/cm)を、それぞれ95モル%と5モル%の組成比で混合した場合、100gにおける体積は31.26cmであり、物質密度は3.20g/cmとなる。
 例1においては、セラミックス成形体に対してCIP処理を行わなかった。そして、セラミックス成形体に対し、第1条件での熱処理として、0.1MPaの圧力の窒素雰囲気下で、1600℃で10時間熱処理して、第1焼結体を得た。
 得られた第1焼結体に対して、焼結体密度と相対密度を測定した。焼結体密度は、JIS R 1634にしたがって測定した。相対密度は、セラミックス粉末と焼結助剤の組成比と各物質の理論密度から算出された物質密度とした時、焼結体密度を物質密度で除した値を相対密度とした。
 そして、第1焼結体に対し、第2条件での熱処理として、10MPaの圧力の窒素雰囲気下で、1700℃で1.5時間熱処理して、第2焼結体を得た。
 得られた第2焼結体に対して、焼結体密度と相対密度を測定した。
 そして、第2焼結体に対し、第3条件での熱処理として、100MPaの圧力の窒素雰囲気下で、1750℃で2時間熱処理して、セラミックス焼結体を得た。
 得られたセラミックス焼結体に対して、密度と、平均強度と、気孔頻度と、気孔平均径と、気孔最大径とを測定した。平均強度は、オートコム型万能試験機(ティーエスイー社製AC-100KN-C)で測定した。気孔頻度は、セラミックス焼結体の断面を研磨した面における1mm以上の面積に対して光学顕微鏡を用いて観察される5μm以上の気孔の、1mmの面積当たりの数を指す。気孔平均径は、工業顕微鏡(ニコン製LV100)で測定した。気孔最大径は、工業顕微鏡(ニコン製LV100)で測定した。
 (例2)
 例2は、Sp量を4モル%とし、第1条件での熱処理を、1700℃で5時間とした点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例3)
 例3は、例2と同じ方法で、セラミックス焼結体を製造した。
 (例4)
 例4は、Sp量を4モル%とした点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例5)
 例5はSp量を4モル%とし、第1条件での熱処理を1600℃で5時間として第1焼結体を得た。そして、第1焼結体に対し、第2条件での熱処理として、0.8MPaの圧力の窒素雰囲気下で、1800℃で5時間熱処理して、第2焼結体を得た。そして、第2焼結体に対して第3条件での熱処理として、100MPaの圧力の窒素雰囲気下で、1750℃で2時間熱処理して、セラミックス焼結体を得た。
 (例6)
 例6は、Sp量を4モル%とし、セラミックス成形体にCIP処理を行った点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例7)
 例7は、セラミックス成形体にCIP処理を行い、第2条件での熱処理を、1800℃で0.25時間とした点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例8)
 例8は、Sp量を4モル%とし、セラミックス成形体にCIP処理を行い、第2条件での熱処理を実施しなかった点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例9)
 例9は、例8と同じ方法で、セラミックス焼結体を製造した。
 (例10)
 例10は、セラミックス成形体にCIP処理を行い、第1条件での熱処理を1730℃で3時間とし、第2条件での熱処理を実施しなかった点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例11)
 例11は、Sp量を4モル%とし、第2条件での熱処理を実施しなかった点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例12)
 例12は、Sp量を4モル%とし、第1条件での熱処理を1700℃で5時間とし、第2条件での熱処理を実施しなかった点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例13)
 例13は、例12と同じ方法で、セラミックス焼結体を製造した。
 (例14)
 例14は、Sp量を4モル%とし、第1条件での熱処理を1700℃で5時間とし、第2条件での熱処理を実施せず、第3条件での熱処理を1750℃5時間とした点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例15)
 例15は、例14と同じ方法で、セラミックス焼結体を製造した。
 (例16)
 例16は、Sp量を4モル%とし、第1条件での熱処理を1700℃で5時間とし、第2条件での熱処理を実施せず、第3条件での熱処理を1800℃で2時間とした点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例17)
 例17は、第1条件での熱処理を1700℃で15時間とし、第2条件での熱処理を1700℃で1時間とし、第3条件での熱処理を実施しなかった以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例18)
 例18は、例17と同じ方法で、セラミックス焼結体を製造した。
 (例19)
 例19は、Sp量を4モル%とし、第1条件での熱処理を1700℃、15時間、第2条件での熱処理時間を2時間、第3条件での熱処理時間を5時間とした点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (例20)
 例20は、Sp量を4モル%とし、第1条件での熱処理を1700℃、5時間、第2条件での熱処理時間を2時間、第3条件での熱処理時間を5時間とした点以外は、例1と同じ方法で、セラミックス焼結体を製造した。
 (評価結果)
 セラミックス焼結体の密度が3.15g/cm以上を、合格とし、3.15g/cm未満を、不合格とした。また、セラミックス焼結体の平均強度が900MPa以上を、合格とし、900MPa未満を、不合格とした。また、セラミックス焼結体の気孔頻度が10以下を、合格とし、10より大きいものを、不合格とした。また、セラミックス焼結体の気孔平均径が6.4μm以下を、合格とし、6.4μmより大きいものを、不合格とした。また、セラミックス焼結体の気孔最大径が10μm以下を、合格とし、10μmより大きいものを、不合格とした。
 例8から例10は、参考例であり、CIP処理を行うことで、2段階の熱処理でも、緻密で高強度なセラミックス焼結体が製造できることが分かる。一方、例11から例18は、比較例であり、CIP処理を行わず、2段階の熱処理とした場合には、緻密で高強度なセラミックス焼結体が製造できないことが分かる。例1から例5、例19及び例20は実施例であり、CIP処理を行わなくても、3段階の熱処理を行うことで、緻密で高強度なセラミックス焼結体が製造できることが分かる。例6及び例7も実施例であり、CIP処理を施してから3段階の熱処理を行うことで、緻密で高強度なセラミックス焼結体が製造できることが分かり、さらに、CIP処理を行わない場合に比べて、気孔の数や大きさが小さくなっていることが分かる。
 (実施例2)
 次に、セラミックス焼結体の破壊靭性値を評価した実施例2について説明する。例21、22、24は実施例であり、例23、25は比較例である。表2は、それぞれの例に係るセラミックス焼結体の製造条件を記載する。表3は、それぞれの例に係るセラミックス焼結体の評価結果を示す。また、図4及び図5は、実施例2における破壊靭性値を示すグラフである。図4は、半径rに対する表面からの距離毎の破壊靭性値を示しており、図5は、表面からの距離(絶対値)毎の破壊靭性値を示している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (例21)
 例21としては、球状の窒化ケイ素のセラミックス焼結体を製造した。得られた直径は51mmであった。
 例21においては、成形型として球状の成形型(直径64mm)を使用し、セラミックス焼結体として球状の窒化ケイ素焼結体を得た。例1と異なる条件は下記の通りである。Sp量を4モル%とし、第1条件での熱処理を、1400℃で5時間として第1焼結体を得た。第1焼結体に対し、第2条件での熱処理として、0.8MPaの圧力の窒素雰囲気下で、1800℃で5時間熱処理して第2焼結体を得た。第2焼結体に対し、第3条件での熱処理として1750℃で5時間熱処理してセラミックス焼結体(窒化ケイ素焼結体)を得た。上記した点以外は、例1と同じ方法で、セラミックス焼結体(窒化ケイ素焼結体)を製造した。
 得られたセラミックス焼結体に対して、破壊靭性値(KIC)及びビッカース硬度を測定した。KICは得られたセラミックス焼結体の直径を通るように10mm厚の円板に切出した後、切断面の一方を研磨して、球の半径方向に沿ってKICを測定した。表3に、表面から深さr/10までの領域におけるKICの最小値と、表面から深さr/10までの範囲におけるKICの最大値と最小値との差ΔKAと、表面よりも深さr/10の位置から表面よりも深さ2r/10までの範囲におけるKICの最大値と最小値との差ΔKBと、表面から深さ2r/10までの範囲におけるKICの最小値と、表面から深さ4r/10までの範囲におけるKICの平均値と、表面から深さr/10までの範囲におけるKICの標準偏差と、表面から深さ4r/10までの範囲におけるKICの標準偏差と、表面から深さ2r/10までの範囲におけるビッカース硬度の最小値と、を示す。なお、rは、セラミックス焼結体の半径である。
 測定は、フューチュアテック社製のビッカース硬度試験システムARS9000を使用し、荷重5kg、押込み時間15秒の条件で行った。
 (例22)
 例22は、成形型のサイズを直径63mmとし、第1条件での熱処理を1600℃で5時間とした点以外は例21と同じ方法でセラミックス焼結体を製造した。得られたセラミックス焼結体の直径は50mmであった。
 (例23)
 例23は、第1条件の熱処理を実施しなかった点以外は、例21と同じ方法でセラミックス焼結体を製造した。直径は51mmであった。
 (例24)
 例24は、球状の成形型のサイズを直径15mmとし、第1条件での熱処理を1600℃で3.5時間とした点以外は例21と同じ方法でセラミックス焼結体を製造した。得られたセラミックス焼結体の直径は12mmであった。
 (例25)
 例25は、CIP処理した成形体を、直径60.8mmに加工した点以外は、例17と同じ方法でセラミックス焼結体を製造した。直径は50mmであった。
 耐摩耗性の評価として、各セラミックス焼結体に対して、耐水研磨紙(US#500、ストルアス社製)でセラミックス焼結体をこすった場合の傷のつきやすさを評価した。評価用サンプルは、破壊靭性値の測定用サンプルと同様に作製した。評価用サンプルに対し、表面から半径方向にこすり、表面から半径方向についた傷の長さを光学顕微鏡で測定した。表面から半径方向の傷の長さが400μm以下の場合を合格(〇)とし、400μm越の場合を不合格(×)とした。
 表3に示すように、実施例である例21、22、24においては、表面から深さr/10までの領域におけるKIC、ΔKA、ΔKBが、それぞれ、6.5以上、2.0以下、1.5以下となっており、緻密となり耐摩耗性が向上することが分かる。一方、比較例である例23、例25においては、表面から深さr/10までの領域におけるKIC、ΔKA、ΔKBの少なくとも1つが上記範囲を外れており、耐摩耗性が向上できないことが分かる。
 以上、本発明の実施形態及び実施例を説明したが、この実施形態及び実施例の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 10 熱処理炉

Claims (16)

  1.  セラミックス粉末の成形体であるセラミックス成形体を第1条件で熱処理するステップと、
     前記第1条件で熱処理された前記セラミックス成形体を、前記第1条件よりも高圧となる第2条件で熱処理するステップと、
     前記第2条件で熱処理された前記セラミックス成形体を、前記第2条件よりも高圧となる第3条件で熱処理して、セラミックス焼結体を製造するステップと、
     を含む、
     セラミックス焼結体の製造方法。
  2.  前記第2条件で熱処理するステップで前記セラミックス成形体に印加する圧力と、前記第1条件で熱処理するステップで前記セラミックス成形体に印加する圧力との差分を、0.3MPa以上20MPa以下とし、
     前記第3条件で熱処理するステップで前記セラミックス成形体に印加する圧力と、前記第2条件で熱処理するステップで前記セラミックス成形体に印加する圧力との差分を、30MPa以上180MPa以下とする、請求項1に記載のセラミックス焼結体の製造方法。
  3.  前記第1条件で熱処理するステップにおいて前記セラミックス成形体に印加する圧力を、0.01MPa以上5MPa以下とし、
     前記第2条件で熱処理するステップにおいて前記セラミックス成形体に印加する圧力を、0.3MPa以上20MPa以下とし、
     前記第3条件で熱処理するステップにおいて前記セラミックス成形体に印加する圧力を、50MPa以上200MPa以下とする、請求項1又は請求項2に記載のセラミックス焼結体の製造方法。
  4.  前記第1条件での熱処理の温度を、1600℃以上1800℃以下とし、
     前記第2条件での熱処理の温度を、1700℃以上1900℃以下とし、
     前記第3条件での熱処理の温度を、1700℃以上1900℃以下とする、請求項1から請求項3のいずれか1項に記載のセラミックス焼結体の製造方法。
  5.  ゲルキャスト法により前記セラミックス粉末を成形して前記セラミックス成形体を生成するステップをさらに含む、請求項1から請求項4のいずれか1項に記載のセラミックス焼結体の製造方法。
  6.  前記セラミックス焼結体は、窒化ケイ素の焼結体である、請求項1から請求項5のいずれか1項に記載のセラミックス焼結体の製造方法。
  7.  前記第1条件、前記第2条件、及び前記第3条件で熱処理するステップにおいて、窒素雰囲気で前記セラミックス成形体を熱処理する、請求項6に記載のセラミックス焼結体の製造方法。
  8.  前記第3条件で熱処理して製造されたセラミックス焼結体は、
     JIS R 1669で規定する方法で測定されたスパン30mmにおける3点曲げ強さが900MPa以上であり、
     JIS R 1669で規定する方法で測定された破壊靭性値が6.0MPa・m1/2以上であり、
     任意の断面を研磨した面における1mm以上の面積に対して光学顕微鏡を用いて観察される5μm以上の気孔の数が、1mmの面積当たり10個以下であり、
     気孔の最大径が、10μm以下である、
     請求項6又は請求項7に記載のセラミックス焼結体の製造方法。
  9.  前記セラミックス焼結体として、直径0.5mm~80mmの球状のセラミックス焼結体を製造する、請求項1から請求項8のいずれか1項に記載のセラミックス焼結体の製造方法。
  10.  球状の窒化ケイ素のセラミックス焼結体であり、
     前記セラミックス焼結体の半径をrとした場合に、前記セラミックス焼結体の表面から1/10rの領域の破壊靭性値(KIC)が6.5MPa・m1/2以上であり、
     前記セラミックス焼結体の表面から1/10rの領域の破壊靭性値の最大値と最小値との差ΔKAが2.0MPa・m1/2以下であり、
     前記セラミックス焼結体の1/10r~2/10rの領域の破壊靭性値の最大値と最小値の差ΔKBが1.5MPa・m1/2以下である、セラミックス焼結体。
  11.  前記セラミックス焼結体の表面から2/10rの領域の破壊靭性値が6.5MPa・m1/2以上である、請求項10に記載のセラミックス焼結体。
  12.  前記セラミックス焼結体の表面から4/10rの領域の破壊靭性値の平均値が7.0MPa・m1/2以上である、請求項10又は請求項11に記載のセラミックス焼結体。
  13.  前記セラミックス焼結体の表面から1/10rの領域の前記破壊靭性値の標準偏差が0.70以下である、請求項10から請求項12のいずれか1項に記載のセラミックス焼結体。
  14.  前記セラミックス焼結体の表面から4/10rの領域の前記破壊靭性値の標準偏差が0.55以下である、請求項13に記載のセラミックス焼結体。
  15.  直径が0.5mm以上80mm以下である、請求項10から請求項14のいずれか1項に記載のセラミックス焼結体。
  16.  前記セラミックス焼結体の表面から2/10rの領域のビッカース硬度が10Hv以上である、請求項10から請求項15のいずれか1項に記載のセラミックス焼結体。
PCT/JP2021/017471 2020-05-07 2021-05-07 セラミックス焼結体の製造方法及びセラミックス焼結体 WO2021225158A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21800365.5A EP4148031A4 (en) 2020-05-07 2021-05-07 METHOD FOR PRODUCING CERAMIC SINTERED BODY, AND CERAMIC SINTERED BODY
CN202180032924.8A CN115551818A (zh) 2020-05-07 2021-05-07 陶瓷烧结体的制造方法和陶瓷烧结体
JP2022519630A JPWO2021225158A1 (ja) 2020-05-07 2021-05-07
US18/052,299 US20230113344A1 (en) 2020-05-07 2022-11-03 Manufacturing method for ceramic sintered body and ceramic sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020082035 2020-05-07
JP2020-082035 2020-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/052,299 Continuation US20230113344A1 (en) 2020-05-07 2022-11-03 Manufacturing method for ceramic sintered body and ceramic sintered body

Publications (1)

Publication Number Publication Date
WO2021225158A1 true WO2021225158A1 (ja) 2021-11-11

Family

ID=78467966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017471 WO2021225158A1 (ja) 2020-05-07 2021-05-07 セラミックス焼結体の製造方法及びセラミックス焼結体

Country Status (5)

Country Link
US (1) US20230113344A1 (ja)
EP (1) EP4148031A4 (ja)
JP (1) JPWO2021225158A1 (ja)
CN (1) CN115551818A (ja)
WO (1) WO2021225158A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044682A (zh) * 2021-11-29 2022-02-15 上海材料研究所 一种水基浆料凝胶注模成型制备高导热氮化硅陶瓷的方法
WO2023145672A1 (ja) * 2022-01-27 2023-08-03 Ntn株式会社 窒化ケイ素焼結体、それを用いた機械部品、および軸受
WO2024019143A1 (ja) * 2022-07-22 2024-01-25 Agc株式会社 窒化ケイ素焼結体及び窒化ケイ素焼結体の製造方法
WO2024043230A1 (ja) * 2022-08-24 2024-02-29 Agc株式会社 窒化ケイ素焼結体及び窒化ケイ素焼結体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655380A (zh) * 2023-05-26 2023-08-29 香河昆仑新能源材料股份有限公司 一种石榴石型固体电解质及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945970A (ja) * 1982-08-31 1984-03-15 住友電気工業株式会社 窒化硅素の焼結方法
JPH05148035A (ja) * 1991-11-26 1993-06-15 Ube Ind Ltd 窒化珪素質焼結体の製造法
JP2001261446A (ja) * 2000-03-21 2001-09-26 Ngk Spark Plug Co Ltd 窒化珪素質焼結体とその製造方法、及び窒化珪素質部品の製造方法
JP2002012475A (ja) * 2000-06-26 2002-01-15 Nissan Motor Co Ltd 高熱伝導窒化ケイ素材料の製造方法
JP2005324138A (ja) * 2004-05-14 2005-11-24 Asahi Glass Co Ltd 窒化ケイ素質ハニカムフィルタの製造法
JP2006016233A (ja) * 2004-06-30 2006-01-19 Ngk Spark Plug Co Ltd 窒化珪素質焼結体、窒化珪素質工具、切削インサート、及び切削工具
JP4642956B2 (ja) 1999-12-28 2011-03-02 株式会社東芝 ベアリングボール、ベアリング、およびベアリングボールの製造方法
JP6075811B2 (ja) 2013-12-26 2017-02-08 京セラ株式会社 耐磨耗性部材およびこれを備える転がり支持装置ならびに軸封装置
JP6400478B2 (ja) 2012-10-30 2018-10-03 株式会社東芝 耐磨耗性部材

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927919B2 (ja) * 1990-09-14 1999-07-28 本田技研工業株式会社 窒化珪素質焼結体の結晶化熱処理方法
JPH0680470A (ja) * 1992-07-17 1994-03-22 Sumitomo Electric Ind Ltd 窒化ケイ素焼結体の製造方法
JP4795588B2 (ja) * 2001-01-12 2011-10-19 株式会社東芝 窒化けい素製耐摩耗性部材
JP5002155B2 (ja) * 2003-09-25 2012-08-15 株式会社東芝 窒化けい素製耐摩耗性部材およびその製造方法
CN1304333C (zh) * 2005-01-14 2007-03-14 中国科学院上海硅酸盐研究所 一种高硬度氮化硅陶瓷的低温烧结方法
EP2266935B1 (en) * 2008-04-18 2018-01-03 Kabushiki Kaisha Toshiba Wear resistant member and wear resistant device
CN102795860A (zh) * 2012-07-11 2012-11-28 北京中材人工晶体研究院有限公司 一种氮化硅陶瓷球的制备方法
CN103848627A (zh) * 2012-11-28 2014-06-11 大连大友高技术陶瓷有限公司 一种氮化硅陶瓷
CN109641807A (zh) * 2016-08-24 2019-04-16 Agc株式会社 陶瓷材料的成型方法、陶瓷物品的制造方法以及陶瓷物品
CN109694254B (zh) * 2017-10-24 2022-10-21 浙江多面体新材料有限公司 一种采用单一烧结助剂常压烧结制备致密氮化硅陶瓷的方法
EP3566842B1 (en) * 2018-05-11 2023-09-20 Shin-Etsu Chemical Co., Ltd. Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body
CN108383532A (zh) * 2018-05-28 2018-08-10 江苏东浦精细陶瓷科技股份有限公司 一种致密化氮化硅陶瓷材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945970A (ja) * 1982-08-31 1984-03-15 住友電気工業株式会社 窒化硅素の焼結方法
JPH05148035A (ja) * 1991-11-26 1993-06-15 Ube Ind Ltd 窒化珪素質焼結体の製造法
JP4642956B2 (ja) 1999-12-28 2011-03-02 株式会社東芝 ベアリングボール、ベアリング、およびベアリングボールの製造方法
JP2001261446A (ja) * 2000-03-21 2001-09-26 Ngk Spark Plug Co Ltd 窒化珪素質焼結体とその製造方法、及び窒化珪素質部品の製造方法
JP2002012475A (ja) * 2000-06-26 2002-01-15 Nissan Motor Co Ltd 高熱伝導窒化ケイ素材料の製造方法
JP2005324138A (ja) * 2004-05-14 2005-11-24 Asahi Glass Co Ltd 窒化ケイ素質ハニカムフィルタの製造法
JP2006016233A (ja) * 2004-06-30 2006-01-19 Ngk Spark Plug Co Ltd 窒化珪素質焼結体、窒化珪素質工具、切削インサート、及び切削工具
JP6400478B2 (ja) 2012-10-30 2018-10-03 株式会社東芝 耐磨耗性部材
JP6075811B2 (ja) 2013-12-26 2017-02-08 京セラ株式会社 耐磨耗性部材およびこれを備える転がり支持装置ならびに軸封装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4148031A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114044682A (zh) * 2021-11-29 2022-02-15 上海材料研究所 一种水基浆料凝胶注模成型制备高导热氮化硅陶瓷的方法
WO2023145672A1 (ja) * 2022-01-27 2023-08-03 Ntn株式会社 窒化ケイ素焼結体、それを用いた機械部品、および軸受
WO2024019143A1 (ja) * 2022-07-22 2024-01-25 Agc株式会社 窒化ケイ素焼結体及び窒化ケイ素焼結体の製造方法
WO2024043230A1 (ja) * 2022-08-24 2024-02-29 Agc株式会社 窒化ケイ素焼結体及び窒化ケイ素焼結体の製造方法

Also Published As

Publication number Publication date
EP4148031A1 (en) 2023-03-15
EP4148031A4 (en) 2024-05-22
CN115551818A (zh) 2022-12-30
JPWO2021225158A1 (ja) 2021-11-11
US20230113344A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2021225158A1 (ja) セラミックス焼結体の製造方法及びセラミックス焼結体
JPS5939770A (ja) 窒化けい素基焼結用組成物
CN109734457B (zh) 一种高硬度Sialon陶瓷材料及其制备方法和应用
KR101630826B1 (ko) 전자세라믹 소성용 고강도 세라믹 기판의 제조방법 및 이에 의해 제조되는 전자세라믹 소성용 고강도 세라믹 기판
KR101567311B1 (ko) 세라믹 소재 및 그의 제조방법
JP2007261925A (ja) セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法
WO2022163730A1 (ja) 窒化ケイ素焼結体および窒化ケイ素焼結体の製造方法
KR101852040B1 (ko) 가공성 세라믹 복합체 및 그 제조방법
CN112341164B (zh) 一种用于玻璃热弯成型的陶瓷模具及其制备方法
KR20190033527A (ko) 저비용의 투명 스피넬 제조 방법
JP4859267B2 (ja) 窒化アルミニウム焼結体とその製造方法
CN109721381B (zh) 氮化硅壳体强化氮化硅泡沫陶瓷的制备方法
WO2024019143A1 (ja) 窒化ケイ素焼結体及び窒化ケイ素焼結体の製造方法
KR101722652B1 (ko) 대기분위기하 초고온 안정 세라믹 복합 소재 및 이의 제조 방법
JP2018070436A (ja) 窒化ケイ素焼結体の製造方法
JP2004026513A (ja) 酸化アルミニウム耐摩耗性部材及びその製造方法
JP2007136912A (ja) セラミックス成形体の製造方法およびこれを用いたセラミックス焼結体の製造方法
KR101652397B1 (ko) 지르코니아-알루미나 복합물 성형체 및 그 제조방법
JP6366976B2 (ja) 多孔質セラミックス製の熱処理用部材
CN107001157B (zh) 具有改善的烧结活性和高边缘强度的α/β-赛隆
WO2024043230A1 (ja) 窒化ケイ素焼結体及び窒化ケイ素焼結体の製造方法
JP2006027986A (ja) 半導体製造装置用部材
WO2021106533A1 (ja) 酸化物含有セラミック焼結体の製法及び離型シート
JP4735586B2 (ja) セラミックス焼結体の製造方法
CN116666293B (zh) 一种高平整度的陶瓷真空吸盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021800365

Country of ref document: EP

Effective date: 20221207