WO2023145672A1 - 窒化ケイ素焼結体、それを用いた機械部品、および軸受 - Google Patents

窒化ケイ素焼結体、それを用いた機械部品、および軸受 Download PDF

Info

Publication number
WO2023145672A1
WO2023145672A1 PCT/JP2023/001854 JP2023001854W WO2023145672A1 WO 2023145672 A1 WO2023145672 A1 WO 2023145672A1 JP 2023001854 W JP2023001854 W JP 2023001854W WO 2023145672 A1 WO2023145672 A1 WO 2023145672A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
sintered body
weight
less
nitride sintered
Prior art date
Application number
PCT/JP2023/001854
Other languages
English (en)
French (fr)
Inventor
文耶 中村
則秀 佐藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022011340A external-priority patent/JP2023109655A/ja
Priority claimed from JP2022031779A external-priority patent/JP2023127845A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023145672A1 publication Critical patent/WO2023145672A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C31/00Bearings for parts which both rotate and move linearly
    • F16C31/04Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members

Definitions

  • the present invention relates to a silicon nitride sintered body, a machine part using the same, and a bearing, and also to a silicon nitride ball, a rolling element, and a rolling bearing.
  • Silicon nitride (Si 3 N 4 ) sintered bodies have excellent mechanical properties, thermal conductivity, and electrical insulation, so they are being applied to bearing members, engine parts, tool materials, and heat dissipation substrate materials. It is Silicon nitride sintered bodies are known to be produced using silicon nitride powder as a starting material. Since silicon nitride powder is difficult to sinter, a sintering aid is used together with silicon nitride powder in order to produce a densified silicon nitride sintered body. Such sintering aids generally include oxides of rare earth elements, aluminum oxide, magnesium oxide, and silicon oxide. The use of a material containing as a sintering aid has also been investigated (for example, Patent Documents 1 and 2).
  • silicon nitride powder is expensive, the price of silicon nitride sintered bodies tends to rise when silicon nitride powders are used to manufacture silicon nitride sintered bodies. Therefore, attention is focused on a manufacturing method that uses silicon powder (metal silicon powder), which is less expensive than silicon nitride powder, as a starting material and reacts and sinters it to manufacture a silicon nitride sintered body (for example, Patent Documents 3 to 5). As such a manufacturing method, a method called PS-RBSN (Post-Sintering of Reaction Bonded Silicon-Nitride) method is known.
  • PS-RBSN Post-Sintering of Reaction Bonded Silicon-Nitride
  • the PS-RBSN method in an environment containing nitrogen gas, for example, by heat-treating at a temperature of about 1100 ° C. to 1450 ° C., the first step of nitriding the green compact formed by molding the silicon powder, and the first step. and a second step of densifying the nitride body, for example, by heat-treating it at a temperature around 1600.degree. C. to 1950.degree.
  • silicon undergoes volumetric expansion during nitridation, so shrinkage during sintering is smaller than in conventional silicon nitride production methods.
  • Patent Document 6 A method for processing a green ball (green processing) is described, for example, in Patent Document 6.
  • a plurality of green balls are sandwiched between a pair of processing surface plates that face each other on a plane, and the green balls revolve and move in various directions by a plurality of systems of relative movement along the opposing planes of both processing surface plates.
  • the green sphere is processed into a shape close to a true sphere while rotating on its axis.
  • the multiple systems of relative movement include, for example, eccentric rotation of both processing surface plates, a combination of rotation and straight movement, and the like.
  • the rough surfaces for processing on the upper and lower processing surface plates are formed by rough surface constituting members with lattice meshes through which machining dust can pass, and the processing surface plate portions below the rough surface constituting members are: A large number of openings are provided on the top surface.
  • the silicon nitride sintered body manufactured by the PS-RBSN method when producing a silicon nitride sintered body by the PS-RBSN method, if the silicon powder is not sufficiently nitrided, silicon will remain in the silicon nitride sintered body. Since residual silicon can cause deterioration of the mechanical properties of the silicon nitride sintered body, the silicon nitride sintered body manufactured by the PS-RBSN method was manufactured using silicon nitride powder as a starting material. In some cases, the mechanical properties were inferior to those of silicon nitride sintered bodies. It was also found that when the silicon nitride sintered body is processed into a machine part such as a rolling element, the product life may be short.
  • the silicon nitride sintered body of the present invention is characterized by having a crystallinity of 75% or more and 90% or less.
  • the silicon nitride sintered body is characterized by containing one or more selected from the group consisting of Y, Ce, Nd, and Eu in the amorphous phase.
  • the silicon nitride sintered body contains a rare earth element and an aluminum element, and the content of the rare earth element is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sintered body.
  • the content of the aluminum element is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sintered body.
  • Inclusions (I) are present in the surface layer within 2 mm from the surface of the silicon nitride sintered body, and the maximum diameter of the inclusions (I) is 50 ⁇ m or less.
  • the silicon nitride sintered body is characterized by having pores in the surface layer within 2 mm from the surface and having a maximum diameter of 50 ⁇ m or less.
  • the mechanical component of the present invention is characterized by using the silicon nitride sintered body of the present invention. Further, the mechanical component is a rolling element.
  • the bearing of the present invention is characterized by using the above rolling elements.
  • the silicon nitride sphere of the present invention is characterized by a diameter variation (unit: ⁇ m)/average diameter (unit: mm) of 0.015 or less.
  • the silicon nitride sphere is a silicon nitride sintered body containing a rare earth element and an aluminum element, and the content of the rare earth element is 6% by weight in terms of oxide with respect to the total weight of the silicon nitride sphere.
  • the content of the aluminum element is 6 wt % or more and 13 wt % or less in terms of oxide with respect to the total weight of the silicon nitride spheres.
  • the rare earth element is characterized by containing one or more selected from the group consisting of Y, Ce, Nd and Eu. Further, the rare earth element is characterized by containing Ce.
  • Inclusions (I) are present in a surface layer portion within 2 mm from the surface of the silicon nitride sphere, and the ratio of the total cross-sectional area of the inclusions (I) to the total cross-sectional area of the surface layer portion is 0.05. % or more.
  • the inclusion (I) is characterized by containing an inclusion (It) containing a transition metal element. Also, the inclusion (It) is characterized by being a silicide of a transition metal element.
  • the transition metal element is characterized by containing one or more selected from the group consisting of Ti, Cr, and Mn. Further, the transition metal element is characterized by containing Cr.
  • the maximum diameter of the inclusion (I) is 50 ⁇ m or less.
  • the rolling element of the present invention is characterized in that the silicon nitride ball of the present invention is polished.
  • the rolling bearing of the present invention is characterized by using the rolling elements of the present invention.
  • the present invention it is possible to provide a silicon nitride sintered body that has good mechanical properties and a good product life when processed into a product, a mechanical component using the same, and a bearing.
  • the silicon nitride sphere of the present invention has a diameter variation (unit: ⁇ m)/average diameter (unit: mm) of 0.015 or less, the time required for polishing in the post-process can be shortened, and the productivity of the product can be improved. can contribute to the improvement of
  • the silicon nitride sphere is a silicon nitride sintered body containing a rare earth element and an aluminum element, and the content of the rare earth element is 6% by weight or more in terms of oxide with respect to the total weight of the silicon nitride sphere. 13% by weight or less, and the content of the aluminum element is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride spheres.
  • the above structure enables the production of a dense sintered body at a relatively low temperature and suppresses the volatilization of silicon nitride that occurs at high temperatures.
  • the shrinkage ratio becomes smaller, the sphere becomes more nearly a true sphere, and the diameter variation (unit: ⁇ m)/average diameter (unit: mm) is easily reduced to 0.015 or less.
  • the silicon nitride ball contains a transition metal element, it promotes the growth of silicon nitride needle-like crystals and the nitridation of metal silicon, resulting in a dense sintered body, which in turn improves dimensional accuracy and mechanical properties. connected to.
  • FIG. 1 is a longitudinal sectional view showing an example of a bearing of the present invention
  • FIG. FIG. 4 is a vertical cross-sectional view showing another example of the bearing of the present invention
  • FIG. 4 is a vertical cross-sectional view showing another example of the bearing of the present invention
  • It is a schematic diagram showing a method of measuring the diameter of a silicon nitride element sphere.
  • 1 is a flow chart showing an outline of a manufacturing process of silicon nitride bare spheres. It is a schematic sectional view showing the structure of a green processing apparatus.
  • the silicon nitride sintered body (hereinafter also simply referred to as "sintered body") of the first embodiment has a degree of crystallinity of 75% or more and 90% or less.
  • the degree of crystallinity of the silicon nitride sintered body is defined as "the peak area of crystalline silicon nitride and other crystalline components in the XRD diffraction pattern"/"the total It is the sum of each peak area of the component.
  • crystalline silicon nitride is crystalline silicon nitride having an ⁇ -type, ⁇ -type, or ⁇ -type crystal structure.
  • all the components constituting the sintered body are, for example, silicon, silicon nitride, and components derived from a sintering aid that promotes sintering during heat treatment for manufacturing silicon nitride.
  • a silicon nitride sintered body is produced, for example, by a PS-RBSN method (two-step sintering method) using a silicon powder and a sintering aid
  • the sintering aid is sintered under certain conditions. It is the main component of the amorphous phase in the body.
  • the PS-RBSN method refers to a two-stage sintering process that includes a silicon nitridation step followed by a sintering step.
  • the degree of crystallinity is "the peak area of crystalline silicon nitride in the XRD diffraction pattern"/"sum of the peak areas of all the components constituting the sintered body in the XRD diffraction pattern".
  • the degree of crystallinity is defined as "crystalline silicon nitride in the XRD diffraction pattern and crystalline components derived from the sintering aid. peak area"/"total sum of peak areas of all components constituting the sintered body in the XRD diffraction pattern".
  • silicon nitride sintered body As a raw material for the silicon nitride sintered body, only silicon nitride powder may be used, only silicon powder and nitrogen gas may be used, or silicon powder, sintering aid and nitrogen gas may be used. .
  • a silicon nitride sintered body is produced by the PS-RBSN method using raw material powder containing silicon powder and a sintering aid, a glass phase (amorphous phase) exists in the system during sintering of the raw material powder. Nitridation of silicon powder (metallic silicon powder) and subsequent sintering are likely to be promoted. As a result, the crystallinity of the sintered body tends to be 75% or more and 90% or less, and the mechanical properties are improved.
  • any raw material may be used regardless of whether it is powder or gas, and the manufacturing method is not limited to the PS-RBSN method. .
  • the crystallinity of the silicon nitride sintered body is 75% or more, preferably 78% or more, and may be 81% or more.
  • the crystallinity is 90% or less, may be 87% or less, or may be 84% or less.
  • the degree of crystallinity of the silicon nitride sintered body is affected by the degree of silicon nitridation and the crystalline quality derived from the sintering aid, and does not necessarily correlate with the amount of silicon nitride in the sintered body. For example, even if non-nitrided silicon remains, the crystallinity of the sintered body is 75% or more and 90% or less due to the presence of crystalline substances derived from the sintering aid. good too.
  • the silicon nitride sintered body of the first embodiment can contain rare earth elements and/or aluminum elements.
  • the content of the rare earth element is preferably 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sintered body.
  • the silicon nitride sintered body contains aluminum element
  • the content of the aluminum element is preferably 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sintered body.
  • rare earth elements examples include yttrium (Y), lanthanum (La), cerium (Ce), samarium (Sm), neodymium (Nd), dysprosium (Dy), europium (Eu), and erbium (Er). .
  • yttrium (Y), cerium (Ce), neodymium (Nd), and europium (Eu) are preferable.
  • the silicon nitride sintered body preferably contains a rare earth element in the amorphous phase, and more preferably contains one or more selected from the group consisting of Y, Ce, Nd and Eu.
  • the silicon nitride sintered body may contain a rare earth element in the crystalline phase.
  • the content of the rare earth element is more preferably 6.5% by weight or more in terms of oxide, and may be 7.0% by weight or more, relative to the total weight of the silicon nitride sintered body. 0.5% by weight or more.
  • the content of the rare earth element is more preferably 12.5% by weight or less, may be 11.5% by weight or less, or may be 10.5% by weight or less. Since the crystallinity of the silicon nitride sintered body is 75% or more and 90% or less and the content of the rare earth element is within the above range, most of the crystalline phase in the sintered body is silicon nitride. Cheap. As a result, it is easy to obtain a silicon nitride sintered body that has good mechanical properties, has a good product life when processed into a product, and is excellent in energy efficiency during production.
  • a rare earth element is derived from, for example, a sintering aid containing a rare earth element (usually an oxide of a rare earth element) used during the production of a silicon nitride sintered body. Since the content of the rare earth element in the silicon nitride sintered body is within the above range, when the silicon nitride sintered body is produced by the PS-RBSN method, nitridation of the raw material silicon powder (metallic silicon powder) It can accelerate the reaction and facilitate subsequent sintering. The content of the rare earth element can be adjusted by adjusting the amount of the sintering aid containing the rare earth element (for example, the oxide of the rare earth element) added to the raw material.
  • a sintering aid containing a rare earth element usually an oxide of a rare earth element
  • the content of the aluminum element is more preferably 6.5% by weight or more in terms of oxide, and may be 7.0% by weight or more, relative to the total weight of the silicon nitride sintered body. 0.5% by weight or more.
  • the content of the aluminum element is more preferably 12.5% by weight or less, may be 11.5% by weight or less, or may be 10.5% by weight or less.
  • the silicon nitride sintered body contains a rare earth element and an aluminum element
  • the content of the aluminum element in terms of oxide
  • the content of the aluminum element may be within ⁇ 5% by weight of the content of the rare earth element (in terms of oxide), It may be within ⁇ 2% by weight, may be within ⁇ 1% by weight, and may be the same as the content of the rare earth element.
  • the crystallinity of the silicon nitride sintered body is 75% or more and 90% or less and the content of the aluminum element is within the above range, most of the crystalline phase in the sintered body is silicon nitride. Cheap. As a result, it is easy to obtain a silicon nitride sintered body that has good mechanical properties, has a good product life when processed into a product, and is excellent in energy efficiency during production.
  • the aluminum element is derived, for example, from the aluminum-containing sintering aid (usually aluminum oxide) used during the production of the silicon nitride sintered body.
  • the aluminum-containing sintering aid usually aluminum oxide
  • the content of the aluminum element can be adjusted by adjusting the amount of the sintering aid (for example, aluminum oxide) containing the aluminum element added to the raw material.
  • the contents of rare earth elements and aluminum elements may be determined using an X-ray fluorescence spectrometer (XRF), an energy dispersive X-ray spectrometer (EDX), or a high frequency inductively coupled plasma (ICP) emission spectrometer.
  • XRF X-ray fluorescence spectrometer
  • EDX energy dispersive X-ray spectrometer
  • ICP high frequency inductively coupled plasma
  • the elements of other components constituting the silicon nitride sintered body are also analyzed using the above-mentioned analyzer, the total weight of the silicon nitride sintered body is calculated, and the content of the rare earth element and aluminum element is determined. good.
  • silicon metallic silicon powder
  • the weight of Si 3 N 4 in the silicon nitride sintered body is 1.67 times the weight of silicon. Therefore, considering the weight change when silicon is nitrided, it is possible to calculate the content of oxides of rare earth elements and aluminum oxide from the composition of the raw material powder.
  • the silicon nitride sintered body of the first embodiment preferably has inclusions (I) in the surface layer within 2 mm from the surface.
  • Inclusions (I) contain components other than silicon nitride, and include, for example, inclusions (It) containing rare earth elements, aluminum elements, transition metal elements, and inclusions (Is ) and the like.
  • the inclusions (It) preferably contain a silicide of a transition metal element.
  • Inclusions (Is) are, for example, aggregates of non-nitrided silicon elements.
  • Inclusions (I) preferably contain inclusions (It), and preferably do not contain inclusions (Is) or have a low proportion of inclusions. Inclusions refer to those that are wholly present in the surface layer portion within 2 mm from the surface of the silicon nitride sintered body.
  • the inclusions (It) are derived from, for example, a sintering aid (e.g., oxides of rare earth elements, aluminum oxide, oxides of transition metal elements) used in the production of the silicon nitride sintered body.
  • a silicide of a transition metal element is formed during the production of the silicon nitride sintered body.
  • a silicon nitride sintered body is produced by the PS-RBSN method
  • the nitriding reaction of silicon powder can be promoted by using a sintering aid containing a transition metal element such as chromium oxide (Cr 2 O 3 ). and can promote the growth of silicon nitride needle-like crystals. Therefore, the heat treatment time required for nitriding silicon can be reduced, and the energy efficiency during the production of the silicon nitride sintered body can be improved.
  • Inclusions (Is) may be formed, for example, when silicon powder (metallic silicon powder) as a raw material is insufficiently nitrided when producing a silicon nitride sintered body by the PS-RBSN method. be. If inclusions (Is) with a large diameter exist in the surface layer or if the ratio of inclusions (Is) increases, the mechanical properties such as fracture toughness of the silicon nitride sintered body tend to deteriorate, resulting in poor product performance. Product life tends to be shortened when processed.
  • the number of inclusions (Is) present in the surface layer of the silicon nitride sintered body is preferably small, and more preferably absent.
  • the transition metal element is not particularly limited as long as it is an element included between Groups 3 and 11 of the IUPAC periodic table.
  • the transition metal element is preferably one or more selected from the group consisting of Ti, Cr, and Mn, and more preferably contains Cr.
  • Cr By including Cr as a transition metal element, the fracture toughness of the silicon nitride sintered body can be further improved.
  • the maximum diameter of inclusions (I) present in the surface layer of the silicon nitride sintered body is not particularly limited. Specifically, the maximum diameter of inclusions (I) is preferably 50 ⁇ m or less. The maximum diameter of inclusions (I) may be 40 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less, and preferably 0.5 ⁇ m or more. The maximum diameter of inclusions (I) in the surface layer refers to the diameter of the inclusion (I) having the largest diameter among the inclusions (I) present in the surface layer.
  • the maximum diameter of the inclusions (I) When the maximum diameter of the inclusions (I) is within the above range, it becomes easier to suppress the inclusions (I) from becoming a fracture source, so that a silicon nitride sintered body having good fracture toughness can be obtained. Cheap. In addition, when the maximum diameter of the inclusions (I) is within the above range, it becomes easier to suppress inclusions from shedding from the silicon nitride sintered body and becoming defects. When processed into products such as rolling elements, it is easy to obtain a good product life.
  • the maximum diameter of the inclusions (I) is determined, for example, by the degree of nitridation of the raw material silicon powder, the amount of sintering aids containing rare earth elements, aluminum elements, and transition metal elements added to the raw material, and/or the particle size.
  • the amorphous phase is 10% or more and 25% or less, and the amorphous phase that occupies substantially the entirety of the inclusions is in the sintered body.
  • the maximum diameter of inclusions (I) tends to be 50 ⁇ m or less.
  • the silicon nitride sintered body of the first embodiment preferably has pores in the surface layer portion within 2 mm from the surface. Furthermore, the maximum diameter of the pores is preferably 50 ⁇ m or less in the cross section of the silicon nitride sintered body. The maximum diameter of the pores may be 40 ⁇ m or less, 30 ⁇ m or less, or 25 ⁇ m or less, and may be void-free. When the maximum diameter of the pores is within the above range, when the silicon nitride sintered body is processed into a product such as a rolling element of a bearing, it is easy to obtain a good product life.
  • the vacancies in the surface layer portion refer to those existing in the surface layer portion within 2 mm from the surface of the silicon nitride sintered body, and refer to those in which the entire vacancies exist in the surface layer portion.
  • the maximum diameter of the pores in the surface layer refers to the diameter of the pores having the largest diameter among the pores present in the surface layer. The maximum diameter of the pores can be adjusted, for example, by adjusting the content of silicon nitride used as a raw material and/or the amount of sintering aid added when producing a silicon nitride sintered body by the PS-RBSN method. can be done.
  • the amorphous phase is 10% or more and 25% or less.
  • the phase is easily filled as a liquid phase, and the maximum diameter of pores tends to be 50 ⁇ m or less.
  • the maximum diameter of inclusions (I) and the maximum diameter of pores are the inclusions (I) or pores that are entirely present in the surface layer in the cross section of a test piece prepared by the method described in the examples below. It is a measured value.
  • the maximum diameter of inclusions (I) and the maximum diameter of pores can be calculated by the method described in Examples below.
  • a particularly preferred form of the silicon nitride sintered body of the first embodiment is a silicon nitride sintered body containing a rare earth element and an aluminum element, having a degree of crystallinity of 75% or more and 90% or less, and an amorphous phase contains one or more selected from the group consisting of Y, Ce, Nd, and Eu, and the content of the rare earth element is 6% by weight or more in terms of oxide with respect to the total weight of the silicon nitride sintered body.
  • the content of the aluminum element is 13% by weight or less, and the content of the aluminum element is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sintered body.
  • inclusions (I) and pores are present in a surface layer portion within 2 mm from the surface of the silicon nitride sintered body, and the maximum diameter of the inclusions (I) is 50 ⁇ m or less, and the pores is preferably 50 ⁇ m or less.
  • the elements described above, the numerical ranges described above, and the like can be appropriately combined with this form.
  • the shape of the silicon nitride sintered body of the first embodiment is not particularly limited, and may be appropriately selected from spherical, cylindrical, conical, truncated cone, rectangular parallelepiped, etc. depending on the application, but spherical is preferred.
  • the size of the silicon nitride sintered body is also not particularly limited. For example, if it is spherical, it can have a diameter of 0.5 cm to 10 cm. can be 3 cm to 20 cm.
  • the above silicon nitride sintered body is preferably manufactured by, for example, a PS-RBSN method (two-stage sintering method). Specifically, it can be manufactured by the following first and second methods.
  • the first method is a method of producing a silicon nitride sintered body having a degree of crystallinity of 75% or more and 90% or less. It includes a granulation step of obtaining powder, a molding step of molding the obtained granulated powder into a compact, a degreasing step, and a sintering step of sintering the degreased compact.
  • the raw material powder and the binder component are mixed with water and/or an organic solvent (eg, ethanol) to form a slurry, which is spray granulated and dried by spray drying or the like to obtain granulated powder.
  • an organic binder or the like is used as the binder component.
  • the granulated powder is molded into a predetermined shape to obtain a green compact.
  • the green compact obtained is degreased by heating at a temperature of 700° C. to 1000° C. in a nitrogen atmosphere.
  • the sintering step includes a first step of nitriding the degreased green compact by heat treatment at a temperature of 1200° C. to 1500° C. in a nitrogen atmosphere, for example; and a second step of sintering by heat treatment at ⁇ 1950°C (preferably 1600°C to 1900°C).
  • the second method is a method of producing a silicon nitride sintered body with a crystallinity of 75% or more and 90% or less, for example, dry mixing raw material powder containing silicon powder and a sintering aid. It includes a mixing step, a forming step of forming the mixed raw material powder into a compact, and a sintering step of sintering the compact.
  • the second technique differs from the first technique in that all steps of the PS-RBSN method are performed dry. After the sintering step, the silicon nitride sintered body may be polished, if necessary.
  • the mixing process is a process of dry mixing raw material powders without using water or organic solvents. Moreover, it is preferable to mix without using a binder component in this step.
  • the particle diameter of the powder after mixing is not particularly limited, but D90 is preferably 10 ⁇ m or more and 100 ⁇ m or less. Also, D50 is preferably 2 ⁇ m or more and 10 ⁇ m or less. When D90 and/or D50 are within the above range, a dense silicon nitride sintered body can be obtained while exhibiting good fluidity and moldability. D50 and D90 are volume-based cumulative 50% diameter and cumulative 90% diameter, respectively, and are obtained by laser diffraction scattering particle size distribution measurement or the like.
  • the sintering step includes a first step of nitriding the obtained green compact by heat treatment at a temperature of 1200 ° C. to 1500 ° C. in a nitrogen atmosphere, for example, and a 1600 ° C. to 1950 ° C. (preferably 1600 ° C.) in a nitrogen atmosphere. C. to 1900.degree. C.) and sintering by heat treatment.
  • a first step from the viewpoint of improving production efficiency, it is preferable not to hold the temperature within the range of 1200° C. to 1500° C. for one hour or more.
  • the rate of temperature increase is, for example, 2° C./min or more, may be 2.5° C./min or more, or may be 5° C./min or more. Further, the rate of temperature increase is, for example, 20° C./min or less, preferably 15° C./min or less.
  • the second method has the following advantages over the first method.
  • By performing all the steps in the PS-RBSN method in a dry process for example, it is possible to prevent oxidation of the silicon powder when using an aqueous solvent, and to reduce the environmental load caused by organic solvents such as ethanol.
  • By producing a silicon nitride sintered body by the PS-RBSN method without using an organic binder shrinkage due to sintering can be reduced and the dimensional accuracy of the sintered body can be improved.
  • a degreasing step is required after that. Shrinkage may increase accordingly.
  • the shrinkage is reduced, it is possible to shorten the polishing time of the subsequent polishing process.
  • fine Si 3 N 4 powder (D50 is 1 ⁇ m or less) is preferably used in order to obtain a dense sintered body by a conventional method using Si 3 N 4 powder as a raw material. Since such fine powders have poor fluidity and moldability, it is necessary to obtain granules by slurring raw material powders and binder components with water or ethanol and subjecting the slurries to spray granulation and drying using spray drying or the like. There is However, in the PS-RBSN method, the Si powder becomes finer due to fracture due to volume expansion during the nitriding process . No need. Since the raw material powder is not fine, it is possible to secure the fluidity and moldability necessary for obtaining a compact even if it is not a granulated powder.
  • the sintering aid used for the raw material powder contains rare earth elements, aluminum elements, and transition metal elements. is preferred, and it is more preferred to contain these oxides.
  • the sintering aid containing the rare earth element preferably contains any one of Y2O3 , CeO2 , Nd2O3 , and Eu2O3 .
  • the sintering aid containing aluminum element preferably contains Al 2 O 3 .
  • the sintering aid containing the transition metal element preferably contains any one of Cr 2 O 3 , TiO 2 , MnO and Fe 2 O 3 .
  • the raw material powder may contain silicon nitride powder and/or an organic binder in addition to the silicon powder and the sintering aid, and may contain a sintering aid containing elements other than rare earth elements, aluminum elements, and transition metal elements. You can stay.
  • the content of the silicon powder contained in the raw material powder is preferably 65% by weight or more, more preferably 67% by weight or more, with respect to the total weight of the silicon powder, silicon nitride powder, and sintering aid. preferably 69% by weight or more, may be 71% by weight or more, preferably 80% by weight or less, may be 78% by weight or less, and may be 76% by weight or less; good too.
  • the raw material powder may or may not contain silicon nitride powder.
  • the content of the sintering aid containing a rare earth element (e.g., rare earth element oxide) contained in the raw material powder is preferably 10% by weight or more, and is 11% by weight or more, relative to the total weight. more preferably 12% by weight or more, and may be 13% by weight or more.
  • the content of the rare earth element may be 17.5% by weight or less, 16.5% by weight or less, or 15.5% by weight or less.
  • the content of the sintering aid containing aluminum element (for example, aluminum oxide) contained in the raw material powder is preferably 10% by weight or more, more preferably 11% by weight or more, based on the total weight. It is preferably 12% by weight or more, more preferably 13% by weight or more.
  • the content of the aluminum element may be 17.5% by weight or less, 16.5% by weight or less, or 15.5% by weight or less. If the content of the sintering aid contained in the raw material powder is low, it is difficult to obtain a dense silicon nitride sintered body, and if the content of the sintering aid is high, the mechanical properties of the silicon nitride sintered body tend to deteriorate. .
  • the average particle size of the silicon powder contained in the raw material powder can be, for example, 5 ⁇ m or less. When silicon nitride is included, its average particle size can be, for example, 0.5 ⁇ m or less.
  • the average particle size of the sintering aid depends on the type of sintering aid, but is preferably 10 ⁇ m or less, may be 7 ⁇ m or less, may be 5 ⁇ m or less, or may be 3 ⁇ m or less. It may be 2 ⁇ m or less, 1 ⁇ m or less, or 0.4 ⁇ m or less.
  • the average particle diameter is a volume-based cumulative 50% diameter, and is obtained by laser diffraction scattering particle size distribution measurement or the like.
  • One form of the second method described above is, for example, a method of producing a silicon nitride sintered body containing a rare earth element and an aluminum element, wherein raw material powders containing silicon powder and a sintering aid are dry-mixed. a molding step of molding the mixed raw material powder into a green compact; and a sintering step of sintering the green compact, wherein the silicon powder is 65% by weight of the whole raw material powder. Including the above, the degree of crystallinity of the silicon nitride sintered body becomes 75% or more and 90% or less in the sintering step.
  • the mixing step is a step of mixing the raw material powders without using a binder component.
  • the sintering step in the process of raising the temperature from the temperature within the range of 1000 ° C. to 1200 ° C. to the sintering temperature, at a rate of 15 ° C./min or less without maintaining a predetermined temperature for 1 hour or more. A step of raising the temperature is included.
  • the sintering temperature is in the range of 1600°C to 1900°C.
  • the sintering aid contains a rare earth oxide and aluminum oxide
  • the raw material powder contains 10% by weight or more and 17.5% by weight or less of the rare earth oxide with respect to the whole raw material powder
  • the aluminum oxide is contained in an amount of 10% by weight or more and 17.5% by weight or less based on the whole raw material powder.
  • the rare earth oxide contains one or more selected from the group consisting of Y 2 O 3 , CeO 2 , Nd 2 O 3 and Eu 2 O 3 .
  • nitridation of silicon and subsequent sintering can be promoted (above (4)).
  • nitridation of silicon it is not necessary to hold the temperature at 1100° C. to 1450° C. for a long time in a nitrogen atmosphere, which is generally performed, and the method is excellent in energy efficiency.
  • the mechanical component of the present invention is a component that partially or wholly uses the silicon nitride sintered body of the present invention.
  • Machine parts include, for example, sliding members, bearing members, roll materials for rolling, vanes for compressors, engine parts such as gas turbine blades, and cutting tools (tips).
  • Bearing members include, for example, bearing rings such as inner and outer rings, rolling elements for bearings, cages, and the like.
  • the bearing of the present invention is a bearing comprising this mechanical component as part or all of a bearing member. be done.
  • the bearing of the present invention is preferably a rolling bearing using the silicon nitride sintered body as a bearing rolling element.
  • FIG. 1 is a cross-sectional view of a deep groove ball bearing.
  • an inner ring 2 having an inner ring raceway surface 2a on the outer peripheral surface and an outer ring 3 having an outer ring raceway surface 3a on the inner peripheral surface are arranged concentrically.
  • Balls (rolling elements) 4 are arranged. These balls 4 are made of the silicon nitride sintered body described above. A ball 4 is held by a retainer 5 .
  • the axial end openings 8a and 8b of the inner and outer rings are sealed by sealing members 6, and the grease composition 7 is enclosed at least around the balls 4. As shown in FIG. A grease composition 7 intervenes on the raceway surface with the ball 4 to lubricate.
  • the bearing type of the rolling bearing is not limited to the deep groove ball bearing, and may be an angular ball bearing, a thrust ball bearing, or the like.
  • FIG. 2 is a cross-sectional view showing a ball screw.
  • the ball screw has a plurality of balls 15 between a thread groove 12 formed on the outer peripheral surface of a screw shaft 11, which is a guide member, and a thread groove 14 formed on the inner peripheral surface of a ball nut 13.
  • the ball nut 13 (or the screw shaft 11) is interposed, and the rotational power of the screw shaft 11 (or the ball nut 13) is transmitted to the ball nut 13 (or the screw shaft 11) via the balls 15 to move the ball nut 13 in the axial direction.
  • FIG. 1 is a cross-sectional view showing a ball screw.
  • balls 15 are made of the silicon nitride sintered body described above, and screw shaft 11 and ball nut 13 are made of steel (for example, bearing steel or low carbon steel).
  • a grease composition is enclosed around the balls 15 between the screw shaft 11 and the ball nut 13 and sealed by a ball screw sealing member 16 .
  • the ball circulation system is not particularly limited, and any circulation system such as a tube system, a return tube (pipe) system, a deflector system, an end deflector system, an end cap system, and a top system may be adopted. be able to.
  • the circulation path greatly affects the smooth circulation of the balls.
  • a ball screw is specifically used to convert the rotary motion of a motor into linear motion.
  • it is suitable for electric actuators, positioning devices, electric jacks, servo cylinders, electric servo presses, mechanical presses, electric brakes, transmissions, electric power steering devices, and electric injection molding machines. can be used for
  • ball screws are required to have wear resistance, toughness, and high load capacity.
  • performance that can withstand high loads, and there is also demand for suppression of hydrogen embrittlement caused by hydrogen generated from lubricants due to slippage and high load loads.
  • silicon nitride sintered body is used as the ball, these requirements can be easily satisfied, and the product life of the ball is excellent.
  • FIG. 3 is a cross-sectional view showing an example of a spherical plain bearing.
  • the spherical plain bearing 21 has a spherical outer peripheral surface 22b. It consists of a combination with an outer ring 23 having a corresponding concave surface 23a.
  • At least one of the inner ring 22 and the outer ring 23 of the spherical plain bearing 21 is made of the silicon nitride sintered body described above.
  • the material of the other member is not particularly limited. For example, it can be made of metal such as aluminum alloy, stainless steel, or steel, synthetic resin, or ceramics other than the silicon nitride sintered body described above.
  • a spherical sliding bearing is a self-aligning sliding bearing that has a spherical sliding surface and can bear radial loads and axial loads in both directions.
  • Spherical plain bearings are suitable for oscillating motion and aligning motion, and are used in joints of industrial machinery and construction machinery.
  • As the spherical plain bearing either a non-lubricating type (see FIG. 3) or a lubricating type can be adopted. It should be noted that grease may be applied to the sliding surface in mounting the spherical plain bearing.
  • the silicon nitride spheres of the second embodiment are silicon nitride sintered bodies, and are obtained by sintering spherical molded spheres obtained by pressure molding of raw material powder containing a sintering aid and the like.
  • the silicon nitride ball refers to a ball whose surface has not been polished after sintering.
  • the ratio of the diameter variation to the average diameter is 0.015 or less, preferably 0.05. 012 or less, more preferably 0.010 or less, and particularly preferably 0.005 to 0.010.
  • the diameter of the silicon nitride sphere is the distance between two parallel planes in contact with the actual surface of the silicon nitride sphere, and can be measured according to JIS B 1501.
  • the diameter d of the silicon nitride sphere 31 is measured using a dimension measuring machine such as an electric micrometer 32 .
  • the average diameter of the silicon nitride spheres is obtained by measuring the diameter d of the silicon nitride spheres 31 at different measurement points 10 times and averaging them.
  • the diameter variation of silicon nitride spheres is the difference between the maximum and minimum diameters of silicon nitride spheres, and can be measured according to JIS B 1501. Specifically, the difference in diameter is obtained from the difference between the maximum value and the minimum value in the diameter measurement results (10 times).
  • the average diameter of the silicon nitride spheres is not particularly limited, it is preferably 5 mm to 100 mm, more preferably 5 mm to 50 mm.
  • the diameter variation of the silicon nitride elementary spheres is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 5 ⁇ m to 15 ⁇ m.
  • a silicon nitride ball is composed of silicon nitride as the main component.
  • Elements of other components constituting the silicon nitride element are not particularly limited, but preferably contain at least one of a rare earth element and an aluminum element, and more preferably contain both a rare earth element and an aluminum element.
  • the content of the rare earth element is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sphere
  • the content of the aluminum element is It is preferably 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon spheres.
  • rare earth elements examples include yttrium (Y), lanthanum (La), cerium (Ce), samarium (Sm), neodymium (Nd), dysprosium (Dy), europium (Eu), and erbium (Er). .
  • yttrium (Y), cerium (Ce), neodymium (Nd), and europium (Eu) are preferable.
  • the content of rare earth elements is preferably 6.5% by weight or more, and may be 7% by weight or more.
  • the content of the rare earth element may be 12% by weight or less, or may be 11% by weight or less.
  • Rare earth elements are derived from sintering aids containing rare earth elements (usually oxides of rare earth elements) that are used, for example, when manufacturing silicon nitride spheres.
  • sintering aids containing rare earth elements usually oxides of rare earth elements
  • the content of the rare earth element in the silicon nitride sphere is within the above range, for example, when manufacturing the silicon nitride sphere by the PS-RBSN method, nitridation of the raw material silicon powder (metallic silicon powder) It can accelerate the reaction and facilitate subsequent sintering.
  • the PS-RBSN method refers to a two-stage sintering process that includes a silicon nitridation step followed by a sintering step.
  • the content of the rare earth element can be adjusted by adjusting the amount of the sintering aid containing the rare earth element (for example, the oxide of the rare earth element) added to the raw material.
  • the content of the aluminum element is preferably 6.5% by weight or more, and may be 7% by weight or more.
  • the content of the aluminum element may be 12% by weight or less, or may be 11% by weight or less.
  • the content of the aluminum element (in terms of oxide) may be within ⁇ 5% by weight of the content of the rare earth element (in terms of oxide), may be within ⁇ 2% by weight, or may be within ⁇ 1% by weight. or may be the same as the content of the rare earth element.
  • the aluminum element is derived, for example, from the aluminum-containing sintering aid (usually aluminum oxide) used in the production of silicon nitride spheres.
  • the aluminum-containing sintering aid usually aluminum oxide
  • sintering can be promoted, for example, when the silicon nitride sphere is produced by the PS-RBSN method. Sintering at relatively low temperatures is also possible.
  • the content of the aluminum element can be adjusted by adjusting the amount of the sintering aid (for example, aluminum oxide) containing the aluminum element added to the raw material.
  • the silicon nitride element sphere of the second embodiment preferably has inclusions (I) in the surface layer portion within 2 mm from the surface.
  • Inclusions (I) contain a component other than silicon nitride, and examples thereof include inclusions (It) containing a transition metal element and inclusions (Is) containing a non-nitrided silicon element.
  • the inclusions (It) are preferably silicides of transition metal elements.
  • Inclusions (Is) are, for example, aggregates of non-nitrided silicon elements.
  • Inclusions (I) preferably contain inclusions (It), and preferably do not contain inclusions (Is) or have a low proportion of inclusions. Inclusions refer to those that are wholly present in the surface layer portion within 2 mm from the surface of the silicon nitride sphere.
  • Inclusions are derived from, for example, a sintering aid containing a transition metal element (usually an oxide of a transition metal element) used in the production of silicon nitride spheres, and are, for example, silicides of transition metal elements. is formed during the manufacture of the silicon nitride ball.
  • a sintering aid containing a transition metal element can promote the nitriding reaction of the silicon powder and promote the growth of silicon nitride needle-like crystals. can be promoted. Therefore, the heat treatment time required for nitriding silicon can be reduced, and the energy efficiency in manufacturing the silicon nitride ball can be improved.
  • silicon nitride powder when silicon nitride powder is included in the raw material for manufacturing the silicon nitride ball, silicon nitride powder and a sintering aid containing a transition metal element such as chromium oxide (Cr 2 O 3 ) (a transition metal element oxide), the sintering aid oxidizes the silicon nitride powder, causing a deviation in the composition of the raw material, which may hinder good sintering.
  • silicon nitride spheres are produced by the PS-RBSN method, silicon powder is mainly used as the raw material, and the content of the silicon nitride powder contained in the raw material can be reduced. It is possible to obtain dense silicon nitride spheres with little trouble.
  • Inclusions (Is) may be formed when the raw material silicon powder (metallic silicon powder) is insufficiently nitrided when producing silicon nitride spheres by the PS-RBSN method. If inclusions (Is) with a large diameter are present in the surface layer or if the proportion of inclusions (Is) increases, the mechanical properties such as fracture toughness of the silicon nitride spheres tend to decrease, making it difficult to process them into products. The product life tends to be shortened when The number of inclusions (Is) present in the surface layer of the silicon nitride ball is preferably as small as possible, and more preferably absent.
  • the transition metal element is not particularly limited as long as it is an element included between Groups 3 and 11 of the IUPAC periodic table.
  • the transition metal element is preferably one or more selected from the group consisting of Ti, Cr, and Mn, and more preferably contains Cr.
  • Cr is preferably one or more selected from the group consisting of Ti, Cr, and Mn, and more preferably contains Cr.
  • the content of the transition metal element is preferably 0.1% by weight or more, and 0.3% by weight or more in terms of oxide, relative to the total weight of the silicon nitride sphere. is more preferably 0.5% by weight or more, usually 5% by weight or less, may be 3% by weight or less, more preferably 2% by weight or less, and 1% by weight or less There may be.
  • the content of the transition metal element can be determined by a method similar to the method for determining the content of the rare earth element and the aluminum element.
  • the maximum diameter of inclusions (I) present in the surface layer of the silicon nitride ball is not particularly limited. Specifically, the maximum diameter of inclusions (I) is 50 ⁇ m or less, may be 40 ⁇ m or less, may be 30 ⁇ m or less, may be 25 ⁇ m or less, and is usually 0.5 ⁇ m or more. be.
  • the maximum diameter of inclusions (I) in the surface layer refers to the diameter of the inclusion (I) having the largest diameter among the inclusions (I) present in the surface layer. When the maximum diameter of the inclusion (I) is within the above range, it becomes easier to suppress the inclusion (I) from becoming a fracture source, so it is easy to obtain a silicon nitride sphere having good fracture toughness. .
  • the maximum diameter of the inclusions (I) when the maximum diameter of the inclusions (I) is within the above range, it is easy to suppress the inclusions from shedding from the silicon nitride balls and causing defects. When processed into a product such as a moving body, it is easy to obtain a good product life.
  • the maximum diameter of the inclusions (I) depends, for example, on the degree of nitridation of the raw material silicon powder, the amount and/or particle size of the sintering aid containing the transition metal element added to the raw material, and the type of the transition metal element. can be adjusted.
  • the ratio of the total cross-sectional area of the inclusions (I) to the total cross-sectional area of the surface layer is It is preferably 0.05% or more, may be 0.1% or more, may be 0.15% or more, may be 0.3% or more, and may be 0.6% or more. There may be.
  • the above ratio is usually 7.0% or less, may be 3.0% or less, may be 2.0% or less, or may be 1.5% or less.
  • the ratio of inclusions (I) is the ratio of the total cross-sectional area obtained by summing the cross-sectional areas of all inclusions present in the surface layer portion to the total cross-sectional area of the surface layer portion.
  • the above proportion of the inclusions (I) depends, for example, on the degree of nitridation of the raw material silicon powder, the amount and/or particle size of the sintering aid containing the transition metal element added to the raw material, and the type of the transition metal element. can be adjusted.
  • the silicon nitride element sphere of the second embodiment preferably has pores in the surface layer portion within 2 mm from the surface.
  • the maximum diameter of the pores is preferably 50 ⁇ m or less in the cross section of the silicon nitride element ball.
  • the maximum diameter of the pores may be 40 ⁇ m or less, 30 ⁇ m or less, or 25 ⁇ m or less, and may be void-free.
  • the maximum diameter of the pores is within the above range, when the silicon nitride ball is processed into a product such as a rolling element of a bearing, it is easy to obtain a good product life.
  • the vacancies in the surface layer refer to those existing in the surface layer within 2 mm from the surface of the silicon nitride sphere, and refer to those in which the entire vacancies exist in the surface layer.
  • the maximum diameter of the pores in the surface layer refers to the diameter of the pores having the largest diameter among the pores present in the surface layer. The maximum diameter of the pores can be adjusted by adjusting the content of silicon nitride used as a raw material and/or the amount of sintering aid added, for example, when producing silicon nitride spheres by the PS-RBSN method. can.
  • the maximum diameter of inclusions (I), the above ratio of inclusions (I), and the maximum diameter of pores are all present in the surface layer in the cross section of a test piece prepared by the method described in the examples below. It is a value measured for inclusions (I) or pores.
  • the maximum diameter of inclusions (I), the ratio of inclusions (I), and the maximum diameter of pores can be calculated by the methods described in Examples below.
  • a particularly preferred form of the silicon nitride spheres of the second embodiment is a silicon nitride sintered body having a diameter variation (unit: ⁇ m)/average diameter (unit: mm) of 0.015 or less and containing a rare earth element and an aluminum element. Further, the silicon nitride sphere has inclusions (I) and holes in a surface layer portion within 2 mm from the surface of the silicon nitride sphere, and the content of the rare earth element is the total of the silicon nitride sphere.
  • the content of the aluminum element is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the weight, and the content of the aluminum element is 6% by weight or more and 13% by weight in terms of oxide with respect to the total weight of the silicon nitride spheres. % or less, and the maximum diameter of the inclusions (I) present in the surface layer portion is 50 ⁇ m or less, and in the cross section of the silicon nitride ball, the ratio of the inclusions (I) to the total cross-sectional area of the surface layer portion is The ratio of the total cross-sectional area is 0.1% or more, and the maximum diameter of the pores present in the surface layer portion is 50 ⁇ m or less.
  • the elements described above, the numerical ranges described above, and the like can be appropriately combined with this form.
  • the silicon nitride ball described above is preferably manufactured by a PS-RBSN method (two-step sintering method).
  • FIG. 5 shows an example of a flow chart outlining the manufacturing process.
  • the method for producing silicon nitride spheres includes a mixing step (1) of mixing raw material powder containing silicon powder and a sintering aid, and a forming step (1) of forming the mixture into a spherical formed ball. 2) and a sintering step (3) of sintering the molded ball. After the sintering step, a polishing step (4) is performed as necessary to obtain a silicon nitride ball as a product. It should be noted that the silicon nitride ball of the present invention may be made into a product by performing finishing or the like as necessary without polishing.
  • the particle diameter of the powder after mixing is not particularly limited, but D90 is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less. Also, D50 is preferably 2 ⁇ m or more and 10 ⁇ m or less, more preferably 3 ⁇ m or more and 9 ⁇ m or less. When D90 and/or D50 are within the above range, fine silicon nitride spheres can be obtained while exhibiting good fluidity and moldability. D50 and D90 are volume-based cumulative 50% diameter and cumulative 90% diameter, respectively, and are obtained by laser diffraction scattering particle size distribution measurement or the like.
  • wet granulation may be performed in the mixing step to obtain granulated powder as a mixture.
  • the raw material powder and the binder component are mixed with water and/or an organic solvent (eg, ethanol) to form a slurry, and the granulated powder can be obtained by spray-granulating and drying the slurry by spray drying or the like.
  • An organic binder or the like is used as the binder component, and is added, for example, in an amount of 1% by weight to 10% by weight based on the entire raw material powder.
  • the mixture obtained in the mixing step is formed into spherical molded spheres.
  • the molding process includes, for example, a pressure molding process and a green processing process, as shown in FIG.
  • press molding such as a cold isostatic pressing method is performed to obtain a spherical green compact, and then the green compact is processed by a green processing apparatus to obtain a green sphere.
  • Fig. 6 shows an outline of the green processing equipment that performs the green processing process.
  • the green processing apparatus 47 includes a disk-shaped first surface plate 41 having a first surface and a disk-shaped second surface plate having a second surface facing parallel to the first surface.
  • a board 42 is provided.
  • the first surface plate 41 is located on the lower side in the vertical direction, and the second surface plate 42 is located on the upper side.
  • the first surface plate 41 is connected to the first shaft 43 and is rotatable in the circumferential direction with the central axis ⁇ of the first shaft 43 as the rotation axis.
  • a working layer 41 a for working the spherical green compact 46 is formed in a region including the first surface of the first platen 41 .
  • a whetstone, a wire mesh, or the like is used for the processing layer 41a.
  • the second surface plate 42 is connected to a second shaft 44 and is rotatable in the circumferential direction about the central axis ⁇ of the second shaft 44 as a rotation axis.
  • the central axes ⁇ and ⁇ are eccentric and parallel to each other.
  • a holding layer 42 a for holding the green compact 46 is formed in a region including the second surface of the second platen 42 .
  • the holding layer 42a is an elastic member such as rubber or resin.
  • a holding portion 45 is formed on the second surface plate 42 so as to surround the outer periphery and protrude toward the side facing the first surface plate 41 .
  • the green processing apparatus 47 when a large number of green compacts 46 are inserted between the first platen 41 and the second platen 42, and the second platen 42 is rotated, the green compacts 46 are It revolves while rotating on the inner periphery of the holding portion 45 of the second surface plate 42 . After that, the first surface plate 41 is rotated in the same direction as the second surface plate 42 to the extent that the revolution of the green compact 46 is not hindered.
  • the upper and lower surface plates 41 and 42 rotate, the green compact 46 revolves around the inner periphery of the holding portion 45 of the second surface plate 42 while rotating in all directions.
  • the green compact 46 is processed by the processing layer 41 a of the first surface plate 41 .
  • the obtained green sphere is a molded sphere.
  • the sintering step includes a first step of nitriding the obtained green sphere by heat treatment at a temperature of 1200°C to 1500°C in a nitrogen atmosphere, for example, and a 1600°C to 1950°C temperature in a nitrogen atmosphere. C. (preferably 1600.degree. C. to 1800.degree. C., more preferably 1650.degree. C. to 1750.degree. C.) for sintering.
  • the first step from the viewpoint of improving production efficiency, it is preferable not to hold the temperature within the range of 1200° C. to 1500° C. for one hour or longer.
  • the term "maintaining the temperature” refers to maintaining the temperature for a certain period of time.
  • nitridize by raising the temperature from about 1100° C. to the sintering temperature in the second step at a predetermined heating rate.
  • the rate of temperature increase is, for example, 2.0° C./min or more, may be 2.5° C./min or more, or may be 5.0° C./min or more. Further, the rate of temperature increase is, for example, 20° C./min or less, preferably 15° C./min or less.
  • silicon nitride spheres In the production of the above silicon nitride spheres, from the viewpoint of improving the dimensional accuracy of the silicon nitride spheres, it is preferable to carry out all the steps of the PS-RBSN method dry.
  • silicon nitride spheres by the PS-RBSN method without using an organic binder, shrinkage due to sintering can be reduced and the dimensional accuracy of the sintered body can be improved. In other words, it becomes easy to maintain a nearly spherical shape obtained by green processing or the like even after sintering. If an organic binder or the like is used for granulation, a subsequent degreasing step is required, and since voids are generated after the organic binder is removed by the degreasing step, shrinkage due to sintering increases accordingly.
  • the shrinkage rate is smaller than that of a sintered compact using silicon nitride powder as a raw material. .
  • the shrinkage rate is calculated from the following formula. As the unsintered molded spheres in the following formula, green spheres are used when a green processing step is performed as shown in FIG.
  • Shrinkage rate [%] [ ⁇ (diameter of unsintered molded sphere) - (diameter of bare sphere) ⁇ /diameter of unsintered molded sphere] x 100
  • the shrinkage ratio of the silicon nitride bare spheres of the second embodiment is not particularly limited, it is preferably 11.0% or less. Also, the shrinkage rate is, for example, 7.0% or more, and may be 8.0% or more.
  • the sintering aid used in the raw material powder preferably contains a rare earth element, an aluminum element, and a transition metal element, and more preferably contains oxides of these elements.
  • the sintering aid containing the rare earth element preferably contains any one of Y2O3 , CeO2 , Nd2O3 , and Eu2O3 .
  • the sintering aid containing a transition metal element preferably contains any one of Cr 2 O 3 , TiO 2 , MnO, and Fe 2 O 3 , and among Cr 2 O 3 , TiO 2 , and MnO, and more preferably Cr 2 O 3 .
  • the raw material powder may contain silicon nitride powder and/or an organic binder in addition to the silicon powder and the sintering aid, and may contain a sintering aid containing elements other than rare earth elements, aluminum elements, and transition metal elements. You can stay.
  • the content of the silicon powder contained in the raw material powder is preferably 45% by weight or more, more preferably 50% by weight or more, based on the total weight of the silicon powder, the silicon nitride powder, and the sintering aid. Preferably, it is more preferably 55% by weight or more, and may be 60% by weight or more, usually 90% by weight or less, may be 85% by weight or less, or may be 80% by weight or less. good.
  • the content of the silicon nitride powder contained in the raw material powder is usually 30% by weight or less, preferably 25% by weight or less, more preferably 20% by weight or less, and 15% by weight with respect to the total weight. % by weight or less, and may be free of silicon nitride powder.
  • the content of the sintering aid containing the rare earth element (for example, the oxide of the rare earth element) contained in the raw material powder is 7% by weight or more, preferably 9% by weight or more, relative to the total weight. , more preferably 9.5% by weight or more, and may be 10% by weight or more.
  • the content of the rare earth element is 17% by weight or less, may be 15% by weight or less, or may be 14.5% by weight or less.
  • the content of the sintering aid containing aluminum element (eg, aluminum oxide) contained in the raw material powder is 5% by weight or more, preferably 9% by weight or more, relative to the total weight. It is more preferably 5% by weight or more, and may be 10% by weight or more.
  • the content of the aluminum element is 17% by weight or less, may be 15% by weight or less, or may be 14.5% by weight or less.
  • the content of the sintering aid containing the transition metal element (for example, the oxide of the transition metal element) contained in the raw material powder is usually preferably 0.1% by weight or more with respect to the total weight. It is more preferably 5% by weight or more, usually 5% by weight or less, and more preferably 3% by weight or less. If the content of the sintering aid contained in the raw material powder is low, it will be difficult to obtain dense silicon nitride spheres. It's easy to do.
  • the average particle size of the silicon powder contained in the raw material powder can be, for example, 5 ⁇ m or less.
  • the average grain size of silicon nitride can be, for example, 0.5 ⁇ m or less.
  • the average particle size of the sintering aid depends on the type of sintering aid, but is usually 10 ⁇ m or less, may be 7 ⁇ m or less, may be 5 ⁇ m or less, or may be 3 ⁇ m or less, It may be 2 ⁇ m or less, 1 ⁇ m or less, or 0.4 ⁇ m or less.
  • the silicon nitride spheres of the second embodiment are polished in the subsequent polishing step (4) so as to satisfy predetermined product standards such as diameter variation, sphericity, and arithmetic mean roughness. and silicon nitride spheres are obtained.
  • silicon nitride balls are not particularly limited, but they can be used for rolling elements of rolling bearings, rolling elements of ball screws, and the like.
  • the balls 4 in the rolling bearing 1 shown in FIG. 1 and the balls 15 in the ball screw shown in FIG. 2 may be ground silicon nitride balls of the second embodiment.
  • Test Example A ⁇ Test Examples A1 to A9>
  • Raw material powders were prepared at the compounding ratio shown in Table 2, and dry-mixed for 48 hours in a ball mill at a rotation speed of 200 rpm using silicon nitride balls as media. As a result of dry mixing, a mixed powder was obtained.
  • Table 1 shows the specifications of the materials used to obtain the mixed powder. All materials used are manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • the average particle diameter is a volume-based cumulative 50% diameter measured by laser diffraction scattering particle size distribution measurement.
  • a spherical powder compact with a diameter of 11 mm was molded by a cold isostatic pressing method using a rubber mold.
  • the compact was heated from 1550° C. to 1800° C. at a heating rate of 2.5° C./min and held at 1800° C. for 4 hours in a nitrogen atmosphere (pressure: 0.9 MPa) to obtain silicon nitride.
  • a sintered body was obtained.
  • the obtained spherical silicon nitride sintered body was ball-polished to G5 according to JIS B 1563 to prepare a spherical test piece of 3/8 inch (diameter 9.525 mm).
  • Crystallinity (%) crystalline peak area / (crystalline peak area + amorphous peak area) x 100
  • both the maximum diameter of inclusions and the maximum diameter of pores are "A”
  • inclusions (I) having a diameter of more than 50 ⁇ m are present on the surface layer of the test piece. There were no pores with a diameter exceeding 50 ⁇ m.
  • Test Example A1 crystalstallinity of 91%) and Test Example A6 (crystallinity of 71%)
  • Test example B ⁇ Test Examples B1 to B26>
  • Raw material powders were prepared at the compounding ratios shown in Table 6, and dry-mixed for 48 hours at 200 rpm in a ball mill using silicon nitride balls as media.
  • Table 5 shows the specifications of the materials used to obtain the mixed powder.
  • the obtained mixed powder was molded into a spherical powder compact with a diameter of 13 mm by a cold isostatic pressing method using a rubber mold.
  • This powder compact was subjected to green processing using a green processing apparatus as shown in FIG. 6 to obtain green spheres having a diameter of 12 mm and a diameter variation of 20 ⁇ m or less.
  • the green ball was heated from room temperature to 1550° C. to 1900° C. at a heating rate of 2.5° C./min to 20° C./min shown in Table 6, and placed in a nitrogen atmosphere (pressure: 0.9 MPa).
  • the sintering temperature was maintained for 4 hours to obtain bare silicon nitride
  • the diameter of the silicon nitride sphere is measured using a micrometer at 10 different directions, and the average is taken as the average diameter of the silicon nitride sphere.
  • the diameter variation was calculated from the difference between the maximum and minimum values of .
  • the value of "diameter variation (unit: ⁇ m)/average diameter (unit: mm)" was obtained from the obtained average diameter and diameter variation of the silicon nitride spheres. It is shown in Table 8 together with other measurement results.
  • the obtained spherical silicon nitride spheres were ball-polished to G5 to prepare spherical test pieces of 3/8 inch (diameter 9.525 mm).
  • ⁇ Analysis of Inclusion (I)> The cut surface of the test piece obtained in Test Example B3 was subjected to EDX analysis using a scanning electron microscope (manufactured by Hitachi, Ltd., S300). was measured.
  • the inclusions (I) contain a silicide of chromium, and the elements contained in the inclusions (I) and their contents are 57% by weight of chromium (Cr) and 43% by weight of silicon (Si). there were.
  • the silicon nitride sintered body of the present invention can be suitably used for rolling elements of bearings such as rolling bearings, linear motion guide bearings, ball screws and linear motion bearings.
  • the silicon nitride ball of the present invention can contribute to the improvement of product productivity, and furthermore, has a good product life when processed into a product, so it can be used as a rolling element for a rolling bearing, a rolling element for a ball screw, etc. It can be used preferably.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

機械的特性が良好であり、製品に加工した場合に良好な製品寿命を有する窒化ケイ素焼結体、それを用いた機械部品、および軸受を提供する。窒化ケイ素焼結体は、鏡面研磨した切断面のXRD回析パターンから以下の式により求めた結晶化度が75%以上、90%以下であり、非結晶質相にY、Ce、Nd、およびEuからなる群より選ばれる1種以上を含み、表層部に、径が50μm超の介在物が存在せず、径が50μm超の空孔が存在しない。 結晶化度(%)=結晶質のピーク面積/(結晶質のピーク面積+非結晶質のピーク面積)×100

Description

窒化ケイ素焼結体、それを用いた機械部品、および軸受
 本発明は、窒化ケイ素焼結体、それを用いた機械部品、および軸受に関し、また、窒化ケイ素素球、転動体、および転がり軸受に関する。
 窒化ケイ素(Si)焼結体は、優れた機械特性、熱伝導性、および電気絶縁性を有することから、ベアリング部材、エンジン部品、工具材料、および放熱基板材料などへの適用が進められている。窒化ケイ素焼結体は窒化ケイ素粉末を出発原料として用いて製造することが知られている。窒化ケイ素粉末は難焼結性であるため、緻密化した窒化ケイ素焼結体を製造するためには、窒化ケイ素粉末とともに焼結助剤が用いられる。このような焼結助剤として、一般的には希土類元素の酸化物、酸化アルミニウム、酸化マグネシウム、酸化シリコンなどが挙げられるが、窒化ケイ素焼結体の機械特性を向上するために、遷移金属元素を含む材料を焼結助剤として用いることも検討されている(例えば、特許文献1、2)。
 窒化ケイ素粉末は価格が高いため、窒化ケイ素粉末を用いて窒化ケイ素焼結体を製造すると、窒化ケイ素焼結体の価格も上昇する傾向にある。そこで、窒化ケイ素粉末に比較して低価格であるケイ素粉末(金属シリコン粉末)を出発原料として用い、これを反応焼結させることにより窒化ケイ素焼結体を製造する製造方法が注目されている(例えば、特許文献3~5)。このような製造方法として、PS-RBSN(Post-Sintering of Reaction Bonded Silicon-Nitride)法と称される方法が知られている。PS-RBSN法は、窒素ガスを含む環境下において、例えば温度1100℃~1450℃付近で熱処理することによりケイ素粉末を成形した圧粉体を窒化させる第1工程と、第1工程で得られた窒化体を、例えば温度1600℃~1950℃付近で熱処理することにより緻密化する第2工程とを含む。また、PS-RBSN法は、ケイ素が窒化する際に体積膨張するため、焼結の際の収縮が従来の窒化ケイ素製造方法と比較して小さくなる。
 従来、軸受の転動体として窒化ケイ素球を製造する場合、未焼結の球(グリーン球)を成形し、これを焼結したもの(素球)に研磨を行って真球に近い形状に仕上げている。グリーン球は、素球に比べて硬度が低く加工が容易であるので、焼結後の研磨に比べて格段に高い能率で加工できる。
 グリーン球を加工する方法(グリーン加工)については、例えば特許文献6に記載されている。特許文献6には、互いに平面で対向する一対の加工定盤間に複数個のグリーン球を挟み込み、両加工定盤の対向平面に沿う複数系統の相対移動で、グリーン球に公転と、各種方向に自転とを行わせながら、グリーン球を真球に近い形状に加工する方法である。複数系統の相対移動とは、例えば両加工定盤の互いに偏心した回転や、回転と直進との組み合わせなどである。この加工装置において、上下加工定盤における加工用の粗面は、加工粉の通過可能な格子目の粗面構成部材で形成し、かつこの粗面構成部材の下側の加工定盤部分に、上面に開口する多数の孔を設けている。
特開2013-234120号公報 国際公開第2015/099148号 特開2004-149328号公報 特開2008-247716号公報 特開2013-49595号公報 特開平7-314308号公報
 例えば、PS-RBSN法により窒化ケイ素焼結体を製造する場合、ケイ素粉末が十分に窒化されないと、窒化ケイ素焼結体中にケイ素が残存することになる。残存したケイ素は、窒化ケイ素焼結体の機械的特性の低下を引き起こす原因となり得るため、PS-RBSN法により製造された窒化ケイ素焼結体は、出発原料に窒化ケイ素粉末を用いて製造された窒化ケイ素焼結体に比較すると機械的特性に劣る場合があった。また、窒化ケイ素焼結体を転動体などの機械部品に加工した場合に製品寿命が短い場合があることも見出された。
 また、未窒化部分が存在する場合、窒化部分と未窒化部分で収縮に差が発生するため、未窒化部分が完全に均一に分布している場合を除いて、焼結体の寸法精度が悪化しやすい。また、窒化ケイ素は、高温で揮発(分解反応:Si→3Si+2N)を生じる場合がある。この揮発によって発生した空隙は、焼結の収縮により閉じることができるが、収縮率が大きくなるため、焼結体の寸法精度が悪化しやすい。寸法精度が悪化した場合、一段と研磨加工が必要になるが、窒化ケイ素素球は硬度が非常に高いため、加工時間が長くなることが懸念される。
 本発明は、機械的特性が良好であり、製品に加工した場合に良好な製品寿命を有する窒化ケイ素焼結体、それを用いた機械部品、および軸受の提供を目的とする。また、本発明は、製品の生産性の向上に寄与でき、更には、製品に加工した場合に良好な製品寿命を有する窒化ケイ素素球、それを用いた転動体、および転がり軸受の提供を目的とする。
 本発明の窒化ケイ素焼結体は、結晶化度が75%以上、90%以下であることを特徴とする。
 上記窒化ケイ素焼結体は、非結晶質相にY、Ce、Nd、およびEuからなる群より選ばれる1種以上を含むことを特徴とする。
 上記窒化ケイ素焼結体は、希土類元素およびアルミニウム元素を含み、上記希土類元素の含有量は、上記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、上記アルミニウム元素の含有量は、上記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であることを特徴とする。
 上記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に介在物(I)を有し、上記介在物(I)の最大径が50μm以下であることを特徴とする。
 上記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に空孔を有し、該空孔の最大径が50μm以下であることを特徴とする。
 本発明の機械部品は、本発明の窒化ケイ素焼結体を用いたことを特徴とする。また、上記機械部品は、転動体であることを特徴とする。
 本発明の軸受は、上記転動体を用いたことを特徴とする。
 本発明の窒化ケイ素素球は、直径不同(単位:μm)/平均直径(単位:mm)が0.015以下であることを特徴とする。
 上記窒化ケイ素素球は、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体であって、上記希土類元素の含有量は、上記窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、上記アルミニウム元素の含有量は、上記窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であることを特徴とする。
 上記希土類元素が、Y、Ce、NdおよびEuからなる群より選ばれる1種以上を含むことを特徴とする。また、上記希土類元素がCeを含むことを特徴とする。
 上記窒化ケイ素素球の表面から2mm以内の領域である表層部に介在物(I)を有し、上記表層部の総断面積に対する上記介在物(I)の総断面積の割合が0.05%以上であることを特徴とする。
 上記介在物(I)が、遷移金属元素を含む介在物(It)を含むことを特徴とする。また、上記介在物(It)が遷移金属元素のケイ化物であることを特徴とする。
 上記遷移金属元素が、Ti、Cr、およびMnからなる群より選ばれる1種以上を含むことを特徴とする。また、上記遷移金属元素がCrを含むことを特徴とする。
 上記介在物(I)の最大径が50μm以下であることを特徴とする。
 上記窒化ケイ素素球の表面から2mm以内の領域である表層部に空孔を有し、該空孔の最大径が50μm以下であることを特徴とする。
 本発明の転動体は、本発明の窒化ケイ素素球が研磨加工されたものであることを特徴とする。
 本発明の転がり軸受は、本発明の転動体を用いたことを特徴とする。
 本発明によれば、機械的特性が良好であり、製品に加工した場合に良好な製品寿命を有する窒化ケイ素焼結体、それを用いた機械部品、および軸受を提供することができる。
 また、本発明の窒化ケイ素素球は、直径不同(単位:μm)/平均直径(単位:mm)が0.015以下であるので、後工程の研磨にかかる時間を短縮でき、製品の生産性の向上に寄与できる。
 また、窒化ケイ素素球は、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体であって、希土類元素の含有量は、窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、アルミニウム元素の含有量は、窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であるので、金属シリコンの窒化およびその後の焼結を促進することで、未窒化金属シリコンによる金属介在物の凝集体形成を抑制しつつ、緻密な焼結体としやすくなり、製品に加工した場合に良好な製品寿命を得ることができる。また、上記構成により、比較的低温での緻密な焼結体の作製を可能とし、高温で生じる窒化ケイ素の揮発を抑制する結果、揮発による空隙の発生および空隙の収縮がなくなる。これにより、収縮率が小さくなり、より真球に近い素球となり、直径不同(単位:μm)/平均直径(単位:mm)を0.015以下にしやすくなる。
 また、窒化ケイ素素球は、遷移金属元素を含むので、窒化ケイ素の針状結晶の成長と金属シリコンの窒化を促進し、緻密な焼結体となり、ひいては寸法精度の向上や機械的特性の向上に繋がる。
本発明の軸受の一例を示す縦断面図である。 本発明の軸受の他の例を示す縦断面図である。 本発明の軸受の他の例を示す縦断面図である。 窒化ケイ素素球の直径の測定方法を示す概略図である。 窒化ケイ素素球の製造工程の概略を示すフローチャートである。 グリーン加工装置の構造を示す概略断面図である。
 以下、本発明の第1実施形態について説明する。
[第1実施形態]
(窒化ケイ素焼結体)
 第1実施形態の窒化ケイ素焼結体(以下、単に「焼結体」ともいう)は、結晶化度が75%以上、90%以下である。ここで、窒化ケイ素焼結体の結晶化度は、窒化ケイ素焼結体を構成する全成分中における結晶質相の比率を意味し、上記結晶化度は、窒化ケイ素焼結体を鏡面研磨した切断面のXRD回析パターンに基づき、以下の式から求められる。
結晶化度(%)=結晶質のピーク面積/(結晶質のピーク面積+非結晶質のピーク面積)×100
 窒化ケイ素焼結体の結晶化度は、具体的には、「XRD回析パターンにおける結晶質窒化ケイ素およびその他の結晶質成分のピーク面積」/「XRD回析パターンにおける焼結体を構成する全成分の各ピーク面積の総和」である。ここで、結晶質窒化ケイ素は、α型、β型、またはγ型の結晶構造を有する結晶質窒化ケイ素である。また、焼結体を構成する全成分は、例えば、ケイ素、窒化ケイ素、窒化ケイ素を製造する際の熱処理時に焼結を促進する焼結助剤由来成分などである。
 窒化ケイ素焼結体が、例えば、PS-RBSN法(2段階焼結法)により、ケイ素粉末と焼結助剤とを用いて製造される場合、所定の条件下では、焼結助剤は焼結体中の非結晶質相の主成分となる。PS-RBSN法は、ケイ素の窒化工程と、その後の焼結工程とを含む2段階焼結法をいう。例えば、PS-RBSN法によりケイ素粉末と焼結助剤とからなる圧粉体を窒素雰囲気中で熱処理し、ケイ素が完全に窒化され、焼結助剤のすべてが非晶質化した場合、上記結晶化度は、「XRD回析パターンにおける結晶質窒化ケイ素のピーク面積」/「XRD回析パターンにおける焼結体を構成する全成分の各ピーク面積の総和」である。また、ケイ素が完全に窒化され、焼結助剤の一部が結晶質化した場合、上記結晶化度は、「XRD回析パターンにおける結晶質窒化ケイ素および焼結助剤由来の結晶質成分のピーク面積」/「XRD回析パターンにおける焼結体を構成する全成分の各ピーク面積の総和」である。
 窒化ケイ素焼結体の原料としては、窒化ケイ素粉末のみを用いてもよいし、ケイ素粉末および窒素ガスのみを用いてもよいし、ケイ素粉末、焼結助剤、および窒素ガスを用いてもよい。ケイ素粉末と焼結助剤を含む原料粉末を用いてPS-RBSN法により窒化ケイ素焼結体を製造する場合、原料粉末の焼結中、系中にガラス相(非結晶質相)が存在しやすく、ケイ素粉末(金属シリコン粉末)の窒化およびその後の焼結が促進されやすい。その結果、焼結体の結晶化度が75%以上、90%以下となりやすく、機械的特性が向上する。なお、窒化ケイ素焼結体の原料および製造方法は、窒化ケイ素焼結体が得られれば、粉末、気体にかかわらずどのような原料を用いてもよく、製造方法もPS-RBSN法に限定されない。
 窒化ケイ素焼結体の結晶化度は、75%以上であり、78%以上であることが好ましく81%以上であってもよい。上記結晶化度は、90%以下であり、87%以下であってもよく、84%以下であってもよい。窒化ケイ素焼結体の結晶化度が上記の範囲内であることにより、機械的特性が良好であり、製品に加工した場合に良好な製品寿命を有する窒化ケイ素焼結体が得られやすい。
 窒化ケイ素焼結体の結晶化度は、ケイ素の窒化の程度や、焼結助剤由来の結晶質の影響を受け、焼結体中の窒化ケイ素の量とは必ずしも相関しない。例えば、窒化されていないケイ素が残存していても、焼結助剤由来の結晶質が存在するなどして、焼結体の結晶化度が75%以上、90%以下であることを満たしてもよい。
 第1実施形態の窒化ケイ素焼結体は、希土類元素および/またはアルミニウム元素を含むことができる。窒化ケイ素焼結体が希土類元素を含む場合、希土類元素の含有量は、窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であることが好ましい。また、窒化ケイ素焼結体がアルミニウム元素を含む場合、アルミニウム元素の含有量は、窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であることが好ましい。
 希土類元素としては、例えば、イットリウム(Y)、ランタン(La)、セリウム(Ce)、サマリウム(Sm)、ネオジウム(Nd)、ジスプロシウム(Dy)、ユウロピウム(Eu)、エルビウム(Er)などが挙げられる。このうち、イットリウム(Y)、セリウム(Ce)、ネオジウム(Nd)、ユウロピウム(Eu)が好ましい。特に、窒化をより促進させることができ、製造効率の向上を図れることからセリウム(Ce)を含むことがより好ましい。
 窒化ケイ素焼結体は、非結晶質相に、希土類元素を含むことが好ましく、Y、Ce、Nd、およびEuからなる群より選ばれる1種以上を含むことがより好ましい。なお、窒化ケイ素焼結体は、結晶質相に希土類元素を含んでもよい。
 希土類元素の上記含有量は、窒化ケイ素焼結体の総重量に対して、酸化物換算で6.5重量%以上であることがより好ましく、7.0重量%以上であってもよく、7.5重量%以上であってもよい。希土類元素の上記含有量は、12.5重量%以下であることがより好ましく、11.5重量%以下であってもよく、10.5重量%以下であってもよい。窒化ケイ素焼結体の結晶化度が75%以上、90%以下であるとともに、希土類元素の含有量が上記の範囲内にあることにより、焼結体中の結晶質相の大半が窒化ケイ素となりやすい。これにより、機械的特性が良好であり、製品に加工した場合に良好な製品寿命を有するとともに、製造時のエネルギー効率に優れる窒化ケイ素焼結体が得られやすい。
 希土類元素は、例えば窒化ケイ素焼結体の製造時に用いた希土類元素を含む焼結助剤(通常、希土類元素の酸化物)に由来するものである。窒化ケイ素焼結体中の希土類元素の含有量が上記の範囲内であることにより、PS-RBSN法により窒化ケイ素焼結体を製造する場合に、原料であるケイ素粉末(金属シリコン粉末)の窒化反応を促進し、その後の焼結を促進することができる。希土類元素の含有量は、原料に添加する希土類元素を含む焼結助剤(例えば、希土類元素の酸化物)の添加量によって調整することができる。
 アルミニウム元素の上記含有量は、窒化ケイ素焼結体の総重量に対して、酸化物換算で6.5重量%以上であることがより好ましく、7.0重量%以上であってもよく、7.5重量%以上であってもよい。アルミニウム元素の上記含有量は、12.5重量%以下であることがより好ましく、11.5重量%以下であってもよく、10.5重量%以下であってもよい。窒化ケイ素焼結体が、希土類元素およびアルミニウム元素を含む場合、アルミニウム元素の含有量(酸化物換算)は、希土類元素の含有量(酸化物換算)の±5重量%以内であってもよく、±2重量%以内であってもよく、±1重量%以内であってもよく、希土類元素の含有量と同じであってもよい。窒化ケイ素焼結体の結晶化度が75%以上、90%以下であるとともに、アルミニウム元素の含有量が上記の範囲内にあることにより、焼結体中の結晶質相の大半が窒化ケイ素となりやすい。これにより、機械的特性が良好であり、製品に加工した場合に良好な製品寿命を有するとともに、製造時のエネルギー効率に優れる窒化ケイ素焼結体が得られやすい。
 アルミニウム元素は、例えば窒化ケイ素焼結体の製造時に用いたアルミニウムを含む焼結助剤(通常、酸化アルミニウム)に由来するものである。窒化ケイ素焼結体中のアルミニウム元素の含有量が上記の範囲内であることにより、PS-RBSN法により窒化ケイ素焼結体を製造する場合に焼結を促進することができる。アルミニウム元素の含有量は、原料に添加するアルミニウム元素を含む焼結助剤(例えば、酸化アルミニウム)の添加量によって調整することができる。
 希土類元素およびアルミニウム元素の上記含有量は、蛍光X線分析装置(XRF)、エネルギー分散型X線分析(EDX)、または高周波誘導結合プラズマ(ICP)発光分析装置を用いて決定すればよい。なお、第2実施形態の窒化ケイ素素球においても同様である。具体的には、上記分析装置により、窒化ケイ素焼結体中の希土類元素およびアルミニウム元素の含有量を求め、希土類元素(RE)の酸化物(REまたはREO)および酸化アルミニウム(Al)に換算すればよい。窒化ケイ素焼結体を構成する他の成分の元素についても上記分析装置を用いて分析し、窒化ケイ素焼結体の総重量を算出して、希土類元素およびアルミニウム元素の上記含有量を決定すればよい。窒化ケイ素焼結体を製造するために用いる原料粉末にケイ素(金属シリコン粉末)が含まれ、当該ケイ素が窒化によりSiとなる場合、窒化ケイ素焼結体におけるSiの重量はケイ素の重量の1.67倍となる。したがって、ケイ素が窒化されたときの重量変化を考慮すれば、原料粉末の組成から希土類元素の酸化物および酸化アルミニウムの含有量を算出することができる。
 第1実施形態の窒化ケイ素焼結体は、表面から2mm以内の領域である表層部に介在物(I)を有することが好ましい。介在物(I)は、窒化ケイ素以外の成分を含むものであり、例えば、希土類元素や、アルミニウム元素、遷移金属元素を含む介在物(It)、窒化されていないケイ素元素を含む介在物(Is)などが挙げられる。介在物(It)は、遷移金属元素のケイ化物を含むことが好ましい。介在物(Is)は、例えば窒化されていないケイ素元素の凝集体である。介在物(I)は、介在物(It)を含むことが好ましく、介在物(Is)を含まないか、その存在割合が少ないことが好ましい。介在物は、窒化ケイ素焼結体の表面から2mm以内の領域である表層部に全体が存在するものをいう。
 介在物(It)は、例えば窒化ケイ素焼結体の製造時に用いた焼結助剤(例えば、希土類元素の酸化物や、酸化アルミニウム、遷移金属元素の酸化物)に由来するものであり、例えば遷移金属元素のケイ化物は窒化ケイ素焼結体の製造時に形成される。例えばPS-RBSN法により窒化ケイ素焼結体を製造する場合、酸化クロム(Cr)などの遷移金属元素を含む焼結助剤を用いることにより、ケイ素粉末の窒化反応を促進することができ、また窒化ケイ素の針状結晶の成長を促進することができる。そのため、ケイ素を窒化するために要する熱処理時間を抑制することができ、窒化ケイ素焼結体の製造時のエネルギー効率を向上することができる。
 介在物(Is)は、例えば、PS-RBSN法により窒化ケイ素焼結体を製造する際に、原料であるケイ素粉末(金属シリコン粉末)の窒化が不十分である場合などに形成されることがある。表層部に、径の大きい介在物(Is)が存在したり介在物(Is)の占める割合が増加したりすると、窒化ケイ素焼結体の破壊靱性などの機械的特性が低下しやすく、製品に加工したときの製品寿命が低下しやすい。窒化ケイ素焼結体の表層部に存在する介在物(Is)は少ない方が好ましく、存在していないことがより好ましい。
 遷移金属元素は、IUPAC周期表の第3属から第11属までの間に含まれる元素であれば特に限定されない。遷移金属元素としては、Ti、Cr、およびMnからなる群より選ばれる1種以上であることが好ましく、Crを含むことがさらに好ましい。遷移金属元素としてCrを含むことにより、窒化ケイ素焼結体の破壊靱性をより一層向上することができる。
 窒化ケイ素焼結体の表層部に存在する介在物(I)の最大径は特に限定されない。具体的には、介在物(I)の最大径は、50μm以下であることが好ましい。介在物(I)の最大径は、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよく、0.5μm以上であることが好ましい。表層部における介在物(I)の最大径は、表層部に存在する介在物(I)のうちの径が最大である介在物(I)の径をいう。介在物(I)の最大径が上記の範囲内であることにより、介在物(I)が破壊源となることを抑制しやすくなるため、良好な破壊靱性を有する窒化ケイ素焼結体が得られやすい。また、介在物(I)の最大径が上記の範囲内であることにより、窒化ケイ素焼結体から介在物が脱粒して欠陥となることを抑制しやすくなるため、窒化ケイ素焼結体を軸受の転動体などの製品に加工した場合に、良好な製品寿命を得やすい。介在物(I)の最大径は、例えば、原料であるケイ素粉末の窒化の程度、原料に添加する希土類元素や、アルミニウム元素、遷移金属元素を含む焼結助剤の添加量および/または粒径、焼結助剤が含む元素の種類によって調整することができる。窒化ケイ素焼結体の結晶化度が75%以上、90%以下の場合、非結晶質相が10%以上、25%以下となり、介在物の略全体を占める非結晶質相が焼結体中で少なくなるため、介在物(I)の最大径が50μm以下となりやすい。
 また、第1実施形態の窒化ケイ素焼結体は、表面から2mm以内の領域である表層部に空孔を有することが好ましい。さらに、該空孔の最大径は、窒化ケイ素焼結体の断面において50μm以下であることが好ましい。空孔の最大径は、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよく、空孔を有していなくてもよい。空孔の最大径が上記の範囲内であることにより、窒化ケイ素焼結体を軸受の転動体などの製品に加工した場合に、良好な製品寿命を得やすい。表層部における空孔は、窒化ケイ素焼結体の表面から2mm以内の領域である表層部に存在するものをいい、表層部に空孔全体が存在するものをいうものとする。表層部における空孔の最大径は、表層部に存在する空孔のうちの径が最大である空孔の径をいう。空孔の最大径は、例えばPS-RBSN法により窒化ケイ素焼結体を製造する場合に、原料として用いる窒化ケイ素の含有量および/または焼結助剤の添加量を調整することによって調整することができる。窒化ケイ素焼結体の結晶化度が75%以上、90%以下の場合、非結晶質相が10%以上、25%以下であることから、焼結中に結晶質相の間を非結晶質相が液相として充填しやすく、空孔の最大径が50μm以下となりやすい。
 介在物(I)の最大径、および空孔の最大径は、後述する実施例に記載の方法によって作製した試験片の断面において、表層部に全体が存在する介在物(I)または空孔について測定した値である。介在物(I)の最大径、および空孔の最大径は、後述する実施例に記載の方法によって算出することができる。
 第1実施形態の窒化ケイ素焼結体の特に好ましい形態は、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体であって、結晶化度が75%以上、90%以下であり、非結晶質相にY、Ce、Nd、およびEuからなる群より選ばれる1種以上を含み、上記希土類元素の含有量は、上記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、上記アルミニウム元素の含有量は、上記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下である。さらに、上記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に介在物(I)および空孔を有し、上記介在物(I)の最大径は50μm以下であり、上記空孔の最大径は50μm以下であることが好ましい。また、この形態に対して、上述した元素や、上述した数値範囲などを適宜組み合わせることができる。
 第1実施形態の窒化ケイ素焼結体の形状は特に限定されず、球状、円柱形状、円錐形状、円錐台形状、直方体形状など、用途によって適宜選択すればよいが、球状であることが好ましい。窒化ケイ素焼結体のサイズも特に限定されず、例えば、球状であれば直径を0.5cm~10cmとすることができ、円柱形状であれば底面の直径を0.5cm~15cmとし、高さを3cm~20cmとすることができる。
(窒化ケイ素焼結体の製造)
 上記の窒化ケイ素焼結体は、例えば、PS-RBSN法(2段階焼結法)によって製造されることが好ましい。具体的には、以下の第1の手法および第2の手法によって製造できる。
(第1の手法)
 PS-RBSN法では、粉末の流動性を向上するために造粒することが多い。第1の手法は、結晶化度が75%以上、90%以下である窒化ケイ素焼結体を製造する方法であって、例えば、ケイ素粉末と焼結助剤を含む原料粉末を用いて造粒粉を得る造粒工程と、得られた造粒粉を圧粉体に成形する成形工程と、脱脂工程と、脱脂された圧粉体を焼結する焼結工程とを含む。
 造粒工程では、原料粉末とバインダ成分を、水および/または有機溶媒(例えばエタノール)で混合してスラリー化し、それをスプレードライなどで噴霧造粒乾燥することで造粒粉を得る。バインダ成分には有機バインダなどが用いられる。
 続く成形工程で、造粒粉を所定の形状に成形して圧粉体を得る。脱脂工程において、得られた圧粉体を窒素雰囲気中で温度700℃~1000℃で加熱して脱脂させる。
 焼結工程は、脱脂後の圧粉体を、例えば窒素雰囲気中で温度1200℃~1500℃で熱処理することにより窒化させる第1工程と、得られた窒化体を、例えば窒素雰囲気中で1600℃~1950℃(好ましくは1600℃~1900℃)で熱処理することにより焼結させる第2工程とを有する。
(第2の手法)
 第2の手法は、結晶化度が75%以上、90%以下である窒化ケイ素焼結体を製造する方法であって、例えば、ケイ素粉末と焼結助剤を含む原料粉末を乾式で混合する混合工程と、混合された原料粉末を圧粉体に成形する成形工程と、圧粉体を焼結する焼結工程とを含む。第2の手法は、第1の手法と異なり、PS-RBSN法の全工程を乾式で行うことを特徴としている。なお、焼結工程後、必要に応じて窒化ケイ素焼結体に対して研磨などを行ってもよい。
 混合工程は、原料粉末を水および有機溶媒を使用せずに乾式で混合する工程である。また、この工程ではバインダ成分を用いずに混合することが好ましい。混合後の粉末の粒径は、特に限定されないが、D90が10μm以上100μm以下であることが好ましい。また、D50が2μm以上10μm以下であることが好ましい。D90および/またはD50が上記の範囲内であることにより、良好な流動性および成形性を発揮させつつ、緻密な窒化ケイ素焼結体を得ることができる。なお、D50およびD90は、それぞれ体積基準の累積50%径および累積90%径であり、レーザー回折散乱式粒度分布測定などによって得られる。
 続く成形工程で、混合粉を所定の形状に成形して圧粉体を得る。焼結工程は、得られた圧粉体を、例えば窒素雰囲気中で温度1200℃~1500℃で熱処理することにより窒化させる第1工程と、例えば窒素雰囲気中で1600℃~1950℃(好ましくは1600℃~1900℃)で熱処理することにより焼結させる第2工程とを有する。上記第1工程は、製造効率の向上の観点から、温度1200℃~1500℃の範囲内の温度において1時間以上、温度保持しないことが好ましい。具体的には、例えば1100℃程度の温度から所定の昇温速度で上記第2工程の焼結温度まで昇温させることで窒化させることが好ましい。上記昇温速度は、例えば2℃/min以上であり、2.5℃/min以上であってもよく、5℃/min以上であってもよい。また、上記昇温速度は例えば20℃/min以下であり、15℃/min以下が好ましい。
 第2の手法は、第1の手法に比べて、以下のような効果が得られる。
 PS-RBSN法で全工程を乾式で行うことで、例えば、水溶媒を用いた場合のケイ素粉末の酸化を防止することができ、またエタノールなどの有機溶媒による環境負荷を軽減できる。
 PS-RBSN法で有機バインダを用いずに、窒化ケイ素焼結体を作製することで、焼結による収縮を小さくし、焼結体の寸法精度を向上できる。第1の手法の場合、造粒するために有機バインダなどを用いていることから、その後に脱脂工程が必要になるが、脱脂工程によって有機バインダが抜けた後には空隙が生じるため、焼結による収縮がその分大きくなるおそれがある。
 また、収縮が小さくなることで、後続の研磨工程の研磨時間の短縮化などを図ることができる。
 一般的に、従来のSi粉末を原料に用いる方法で緻密な焼結体を得るためには、微細なSi粉末(D50が1μm以下)を使用することが好ましい。このような微細な粉末は、流動性および成形性が劣るので、原料粉末とバインダ成分を水またはエタノールなどでスラリー化し、それをスプレードライなどで噴霧造粒乾燥することで造粒体を得る必要がある。しかし、PS-RBSN法では、窒化工程中にSi粉末が体積膨張による破断で微細化するので、緻密な焼結体を得るために、Si粉末のように微細な粉末を原料に用いる必要がない。原料粉末が微細でないため、造粒粉でなくても成形体を得るために必要な流動性および成形性を確保することができる。
 上記第1の手法および第2の手法を含む、上記の窒化ケイ素焼結体の製造において、原料粉末に用いる焼結助剤としては、希土類元素や、アルミニウム元素、遷移金属元素を含むものを用いることが好ましく、これらの酸化物を含むことがより好ましい。希土類元素を含む焼結助剤としては、Y、CeO、Nd、およびEuのうちのいずれかを含むことが好ましい。アルミニウム元素を含む焼結助剤としては、Alを含むことが好ましい。遷移金属元素を含む焼結助剤としては、Cr、TiO、MnO、およびFeのうちのいずれかを含むことが好ましい。
 原料粉末は、ケイ素粉末および焼結助剤以外に、窒化ケイ素粉末および/または有機バインダを含んでいてもよく、希土類元素、アルミニウム元素、および遷移金属元素以外の元素を含む焼結助剤を含んでいてもよい。
 原料粉末に含まれるケイ素粉末の含有量は、ケイ素粉末、窒化ケイ素粉末、および焼結助剤の総重量に対して、65重量%以上であることが好ましく、67重量%以上であることがより好ましく、69重量%以上であることがさらに好ましく、71重量%以上であってもよく、80重量%以下であることが好ましく、78重量%以下であってもよく、76重量%以下であってもよい。原料粉末は窒化ケイ素粉末を含んでいてもよく、窒化ケイ素粉末を含んでいなくてもよい。
 原料粉末に含まれる希土類元素を含む焼結助剤(例えば、希土類元素の酸化物)の含有量は、上記総重量に対して、10重量%以上であることが好ましく、11重量%以上であることがより好ましく、12重量%以上であることがさらに好ましく、13重量%以上であってもよい。希土類元素の上記含有量は、17.5重量%以下であってもよく、16.5重量%以下であってもよく、15.5重量%以下であってもよい。原料粉末に含まれるアルミニウム元素を含む焼結助剤(例えば、酸化アルミニウム)の含有量は、上記総重量に対して、10重量%以上であることが好ましく、11重量%以上であることがより好ましく、12重量%以上であることがさらに好ましく、13重量%以上であってもよい。アルミニウム元素の上記含有量は、17.5重量%以下であってもよく、16.5重量%以下であってもよく、15.5重量%以下であってもよい。原料粉末に含まれる焼結助剤の含有量が少ないと緻密な窒化ケイ素焼結体が得られにくく、焼結助剤の含有量が多いと窒化ケイ素焼結体の機械的特性が低下しやすい。
 原料粉末に含まれるケイ素粉末の平均粒径は、例えば5μm以下とすることができる。窒化ケイ素を含む場合、その平均粒径は、例えば0.5μm以下とすることができる。焼結助剤の平均粒径は、焼結助剤の種類にもよるが、10μm以下であることが好ましく、7μm以下であってよく、5μm以下であってもよく、3μm以下であってもよく、2μm以下であってよく、1μm以下であってもよく、0.4μm以下であってもよい。なお、平均粒径は、体積基準の累積50%径であり、レーザー回折散乱式粒度分布測定などによって得られる。
 上述した第2の手法の一形態は、例えば、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体を製造する方法であって、ケイ素粉末と焼結助剤を含む原料粉末を乾式で混合する混合工程と、混合された上記原料粉末を圧粉体に成形する成形工程と、上記圧粉体を焼結する焼結工程とを有し、上記ケイ素粉末は上記原料粉末全体に対して65重量%以上含まれ、上記焼結工程において上記窒化ケイ素焼結体の結晶化度が75%以上、90%以下となる。
 さらに、第2の手法の上記一形態は、以下の(1)~(5)の特徴を1つまたは2つ以上有していてもよい。
(1)上記混合工程は、バインダ成分を使用せずに上記原料粉末を混合する工程である。
(2)上記焼結工程は、1000℃~1200℃の範囲内の温度から焼結温度まで昇温させる過程において、1時間以上所定の温度を保持せずに、15℃/min以下の速度で昇温させる工程を含む。
(3)上記焼結温度が1600℃~1900℃の範囲である。
(4)上記焼結助剤は希土類酸化物と酸化アルミニウムを含み、上記原料粉末は、上記希土類酸化物を上記原料粉末全体に対して10重量%以上17.5重量%以下含み、上記酸化アルミニウムを上記原料粉末全体に対して10重量%以上17.5重量%以下含む。
(5)上記希土類酸化物が、Y、CeO、Nd、およびEuからなる群より選ばれる1種以上を含む。
 例えば、原料粉末に、焼結助剤として、希土類酸化物を10重量%以上17.5重量%以下、酸化アルミニウムを10重量%以上17.5重量%以下添加することで、ケイ素の窒化およびその後の焼結を促進させることができる(上記(4))。ケイ素の窒化を促進させることで、一般に行われる窒素雰囲気中1100℃~1450℃で長時間の温度保持が必要にならず、エネルギー効率に優れる方法となる。
(窒化ケイ素焼結体の用途)
 第1実施形態の窒化ケイ素焼結体の用途は特に限定されないが、機械特性などに優れることから、機械部品として用いられることが好ましい。機械部品は、例えば、転がり部位や滑り部位に使用される。本発明の機械部品は、本発明の窒化ケイ素焼結体を構成の一部または全部に用いた部品である。機械部品としては、例えば、摺動部材、軸受部材、圧延用ロール材、コンプレッサ用ベーン、ガスタービン翼などのエンジン部品、切削工具(チップ)などが挙げられる。軸受部材としては、例えば、内外輪などの軌道輪、軸受用転動体、保持器などが挙げられる。本発明の軸受は、この機械部品を軸受部材の一部または全部として備える軸受であり、例えば、転がり軸受、滑り軸受(球面ブッシュなど)、直動案内軸受、ボールねじ、直動ベアリングなどが挙げられる。特に、本発明の軸受としては、上記窒化ケイ素焼結体を軸受用転動体に用いた転がり軸受であることが好ましい。
 第1実施形態の軸受の一例について図1に基づいて説明する。図1は深溝玉軸受の断面図である。転がり軸受1は、外周面に内輪軌道面2aを有する内輪2と内周面に外輪軌道面3aを有する外輪3とが同心に配置され、内輪軌道面2aと外輪軌道面3aとの間に複数個の玉(転動体)4が配置される。これら玉4が、上述した窒化ケイ素焼結体で形成されている。玉4は、保持器5により保持される。また、内・外輪の軸方向両端開口部8a、8bがシール部材6によりシールされ、少なくとも玉4の周囲にグリース組成物7が封入される。グリース組成物7が玉4との軌道面に介在して潤滑される。なお、転がり軸受の軸受形式は、深溝玉軸受に限定されず、アンギュラ玉軸受、スラスト玉軸受などでもよい。
 第1実施形態の軸受の他の例について図2に基づいて説明する。図2は、ボールねじを示す断面図である。図2に示すように、ボールねじは、案内部材であるねじ軸11の外周面に形成したねじ溝12と、ボールナット13の内周面に形成したねじ溝14の間に複数のボール15を介在させたものであり、ねじ軸11(またはボールナット13)の回転動力をボール15を介してボールナット13(またはねじ軸11)に伝達し、ボールナット13を軸方向に移動させるものである。図2において、ボール15が、上述した窒化ケイ素焼結体で形成され、ねじ軸11およびボールナット13が鋼(例えば、軸受鋼や低炭素鋼など)で形成されている。また、ねじ軸11とボールナット13との間でボール15の周囲にグリース組成物が封入され、ボールねじ用シール部材16によってシールされている。
 図2に示すボールねじにおいて、ボールの循環方式は特に限定されず、チューブ式、リターンチューブ(パイプ)式、デフレクタ式、エンドデフレクタ式、エンドキャップ式、こま式などのいずれの循環方式を採用することができる。なお、いずれの循環方式でも循環路は、ボールの円滑な循環に大きく影響する。
 ボールねじは、具体的には、モーターの回転運動を直動運動に変換するものとして用いられる。例えば、電動アクチュエーター、位置決め装置用、電動ジャッキ用、サーボシリンダ用、電動サーボプレス機用、メカニカルプレス装置用、電動ブレーキ装置用、トランスミッション用、電動パワーステアリング装置用、電動射出成形機用などにおいて好適に用いることができる。
 ここで、ボールねじでは、耐摩耗性や靭性、高負荷容量などが要求される。近年では、小型化などを背景に、高荷重に耐え得る性能がより求められており、また、滑りや高荷重負荷により潤滑剤から発生する水素に起因する水素脆化の抑制なども求められている。図2の例では、ボールとして上述した窒化ケイ素焼結体を用いているので、これらの要求を満たしやすく、ボールの製品寿命にも優れる。
 また、ボールねじにおいては、ボールねじを取り付ける際に取り付け誤差などによるミスアライメントが大きいと、こじり(すなわち、ねじ軸とナットとの間の相対的な傾き)が発生するおそれがある。そして、こじりによるモーメントがボールねじに作用すると、ナット内での負荷バランスが崩れ、部分的に接触面圧の上昇する箇所が生じて、寿命が低下するおそれがある。これに対して、ボールとして上述した窒化ケイ素焼結体を用いることで、ボールの循環性能を良好にでき、寿命の低下を抑制しやすくなる。
 さらに、第1実施形態の軸受の他の例について図3に基づいて説明する。図3は、球面滑り軸受の一例を示す断面図である。図3に示すように、球面滑り軸受21は、球状の外周面22bを有し、内周面22aに支持軸を貫挿できる軸受孔24が形成されている内輪22と、該外周面22bに対応する凹面23aを有する外輪23との組合せからなる。球面滑り軸受21では、内輪22および外輪23の少なくともいずれかが、上述した窒化ケイ素焼結体で形成されている。他方の部材の材質は、特に限定されず、例えば、アルミニウム合金、ステンレス鋼、鉄鋼などの金属製や、合成樹脂製、上述した窒化ケイ素焼結体以外のセラミックス製とすることができる。
 球面滑り軸受は、滑り部が球面でラジアル荷重と両方向のアキシアル荷重が負荷できる自動調心形の滑り軸受である。球面滑り軸受は、揺動運動や調心運動などに適しており、産業機械や建設機械などの関節部などに使用されている。球面滑り軸受としては、無給油式(図3参照)と給油式のいずれも採用でき、例えば給油式の場合には、内輪および外輪に油穴および油溝が設けられる。なお、球面滑り軸受の取り付けにおいて、滑り面にはグリースが塗布されてもよい。
 続いて、本発明の第2実施形態について説明する。
[第2実施形態]
(窒化ケイ素素球)
 第2実施形態の窒化ケイ素素球は、窒化ケイ素焼結体であり、焼結助剤などを含む原料粉末の加圧成形などによって得られる球状の成形球を焼結することで得られる。なお、本発明において、窒化ケイ素素球は、焼結後に表面の研磨加工が行われていないものを指す。第2実施形態の窒化ケイ素素球は、平均直径に対する直径不同の比である「直径不同(単位:μm)/平均直径(単位:mm)」が、0.015以下であり、好ましくは0.012以下であり、より好ましくは0.010以下であり、特に好ましくは0.005~0.010である。
 ここで、窒化ケイ素素球の直径は、窒化ケイ素素球の実際の表面に接する平行二平面間の距離であり、JIS B 1501に準拠して測定できる。例えば、図4に示すように、窒化ケイ素素球31の直径dは、電気マイクロメータ32などの寸法測定機を用いて測定される。本発明において、窒化ケイ素素球の平均直径は、窒化ケイ素素球31の測定箇所を変えて直径dを10回測定し、その平均として求められる。
 窒化ケイ素素球の直径不同は、窒化ケイ素素球の直径の最大値と最小値の差であり、JIS B 1501に準拠して測定できる。具体的には、上述の直径の測定結果(10回)における最大値と最小値の差から、直径不同が求められる。
 窒化ケイ素素球の平均直径は、特に限定されないが、5mm~100mmが好ましく、5mm~50mmがより好ましい。また、窒化ケイ素素球の直径不同は、20μm以下が好ましく、15μm以下がより好ましく、5μm~15μmがさらに好ましい。
 窒化ケイ素素球は、窒化ケイ素を主成分として構成される。窒化ケイ素素球を構成する他の成分の元素は特に限定されないが、希土類元素およびアルミニウム元素の少なくともいずれかを含むことが好ましく、希土類元素およびアルミニウム元素の両方を含むことがより好ましい。
 以下では、希土類元素およびアルミニウム元素の両方を含む形態について説明するが、いずれか一方を含む形態でも適宜採用できる。
 上記形態の窒化ケイ素素球において、希土類元素の含有量は、窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、アルミニウム元素の含有量は、窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であることが好ましい。
 希土類元素としては、例えば、イットリウム(Y)、ランタン(La)、セリウム(Ce)、サマリウム(Sm)、ネオジウム(Nd)、ジスプロシウム(Dy)、ユウロピウム(Eu)、エルビウム(Er)などが挙げられる。このうち、イットリウム(Y)、セリウム(Ce)、ネオジウム(Nd)、ユウロピウム(Eu)が好ましい。特に、金属シリコンの窒化をより促進させることができ、製造効率の向上を図れることからセリウム(Ce)を含むことがより好ましい。
 希土類元素の上記含有量は6.5重量%以上であることが好ましく、7重量%以上であってもよい。希土類元素の上記含有量は12重量%以下であってもよく、11重量%以下であってもよい。
 希土類元素は、例えば窒化ケイ素素球の製造時に用いる希土類元素を含む焼結助剤(通常、希土類元素の酸化物)に由来するものである。窒化ケイ素素球中の希土類元素の含有量が上記の範囲内であることにより、例えば、PS-RBSN法により窒化ケイ素素球を製造する場合に、原料であるケイ素粉末(金属シリコン粉末)の窒化反応を促進し、その後の焼結を促進することができる。また、比較的低温での緻密な焼結体の作製を可能とし、高温で生じる窒化ケイ素の揮発を抑制することができる。PS-RBSN法は、ケイ素の窒化工程と、その後の焼結工程とを含む2段階焼結法をいう。希土類元素の含有量は、原料に添加する希土類元素を含む焼結助剤(例えば、希土類元素の酸化物)の添加量によって調整することができる。
 アルミニウム元素の上記含有量は6.5重量%以上であることが好ましく、7重量%以上であってもよい。アルミニウム元素の上記含有量は12重量%以下であってもよく、11重量%以下であってもよい。アルミニウム元素の含有量(酸化物換算)は、希土類元素の含有量(酸化物換算)の±5重量%以内であってもよく、±2重量%以内であってもよく、±1重量%以内であってもよく、希土類元素の含有量と同じであってもよい。
 アルミニウム元素は、例えば窒化ケイ素素球の製造時に用いたアルミニウムを含む焼結助剤(通常、酸化アルミニウム)に由来するものである。窒化ケイ素素球中のアルミニウム元素の含有量が上記の範囲内であることにより、例えば、PS-RBSN法により窒化ケイ素素球を製造する場合に、焼結を促進することができ、また、比較的低温での焼結も可能となる。アルミニウム元素の含有量は、原料に添加するアルミニウム元素を含む焼結助剤(例えば、酸化アルミニウム)の添加量によって調整することができる。
 第2実施形態の窒化ケイ素素球は、表面から2mm以内の領域である表層部に介在物(I)を有することが好ましい。介在物(I)は、窒化ケイ素以外の成分を含むものであり、例えば遷移金属元素を含む介在物(It)、窒化されていないケイ素元素を含む介在物(Is)などが挙げられる。介在物(It)は、遷移金属元素のケイ化物であることが好ましい。介在物(Is)は、例えば窒化されていないケイ素元素の凝集体である。介在物(I)は、介在物(It)を含むことが好ましく、介在物(Is)を含まないか、その存在割合が少ないことが好ましい。介在物は、窒化ケイ素素球の表面から2mm以内の領域である表層部に全体が存在するものをいう。
 介在物(It)は、例えば窒化ケイ素素球の製造時に用いた遷移金属元素を含む焼結助剤(通常、遷移金属元素の酸化物)に由来するものであり、例えば遷移金属元素のケイ化物は窒化ケイ素素球の製造時に形成される。PS-RBSN法により窒化ケイ素素球を製造する場合、遷移金属元素を含む焼結助剤を用いることにより、ケイ素粉末の窒化反応を促進することができ、また窒化ケイ素の針状結晶の成長を促進することができる。そのため、ケイ素を窒化するために要する熱処理時間を抑制することができ、窒化ケイ素素球の製造時のエネルギー効率を向上することができる。
 一方、窒化ケイ素素球を製造するための原料に窒化ケイ素粉末が含まれる場合、窒化ケイ素粉末と、酸化クロム(Cr)などの遷移金属元素を含む焼結助剤(遷移金属元素の酸化物)とを混合すると、焼結助剤が窒化ケイ素粉末を酸化することにより、原料の組成にズレが生じ、良好な焼結を行えなくなることがある。これに対し、PS-RBSN法により窒化ケイ素素球を製造する場合には、原料に主にケイ素粉末を用い、原料に含まれる窒化ケイ素粉末の含有量を低減することができるため、上記のような不具合が生じにくく、緻密な窒化ケイ素素球を得ることができる。
 介在物(Is)は、PS-RBSN法により窒化ケイ素素球を製造する際に、原料であるケイ素粉末(金属シリコン粉末)の窒化が不十分である場合などに形成されることがある。表層部に、径の大きい介在物(Is)が存在したり介在物(Is)の占める割合が増加したりすると、窒化ケイ素素球の破壊靱性などの機械的特性が低下しやすく、製品に加工したときの製品寿命が低下しやすい。窒化ケイ素素球の表層部に存在する介在物(Is)は少ない方が好ましく、存在していないことがより好ましい。
 遷移金属元素は、IUPAC周期表の第3属から第11属までの間に含まれる元素であれば特に限定されない。遷移金属元素としては、Ti、Cr、およびMnからなる群より選ばれる1種以上であることが好ましく、Crを含むことがさらに好ましい。遷移金属元素としてCrを含むことにより、例えば、窒化ケイ素素球の破壊靱性を向上することができる。
 窒化ケイ素素球において、遷移金属元素の含有量は、窒化ケイ素素球の総重量に対して、酸化物換算で0.1重量%以上であることが好ましく、0.3重量%以上であることがより好ましく、0.5重量%以上であってもよく、通常5重量%以下であり、3重量%以下であってもよく、2重量%以下であることがより好ましく、1重量%以下であってもよい。遷移金属元素の上記含有量は、希土類元素およびアルミニウム元素の含有量を決定する方法と同様の方法で決定することができる。
 窒化ケイ素素球の表層部に存在する介在物(I)の最大径は特に限定されない。具体的には、介在物(I)の最大径は、50μm以下であり、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよく、通常0.5μm以上である。表層部における介在物(I)の最大径は、表層部に存在する介在物(I)のうちの径が最大である介在物(I)の径をいう。介在物(I)の最大径が上記の範囲内であることにより、介在物(I)が破壊源となることを抑制しやすくなるため、良好な破壊靱性を有する窒化ケイ素素球が得られやすい。また、介在物(I)の最大径が上記の範囲内であることにより、窒化ケイ素素球から介在物が脱粒して欠陥となることを抑制しやすくなるため、窒化ケイ素素球を軸受の転動体などの製品に加工した場合に、良好な製品寿命を得やすい。介在物(I)の最大径は、例えば、原料であるケイ素粉末の窒化の程度、原料に添加する遷移金属元素を含む焼結助剤の添加量および/または粒径、遷移金属元素の種類によって調整することができる。
 窒化ケイ素素球の断面において、表層部の総断面積に対する介在物(I)の総断面積の割合([介在物(I)の総断面積/表層部の総断面積]×100)は、0.05%以上であることが好ましく、0.1%以上であってもよく、0.15%以上であってもよく、0.3%以上であってもよく、0.6%以上であってもよい。上記割合は、通常7.0%以下であり、3.0%以下であってもよく、2.0%以下であってもよく、1.5%以下であってもよい。介在物(I)の上記割合は、表層部に存在するすべての介在物の断面積を合計した総断面積の、表層部の総断面積に対する割合である。上記割合が上記の範囲内であることにより、良好な破壊靱性を有し、製品に加工したときに良好な製品寿命を有する窒化ケイ素素球が得られやすい。また上記割合が大きすぎると、介在物が連なって脱粒することにより、軸受寿命試験の結果に悪影響を及ぼしやすい。介在物(I)の上記割合は、例えば、原料であるケイ素粉末の窒化の程度、原料に添加する遷移金属元素を含む焼結助剤の添加量および/または粒径、遷移金属元素の種類によって調整することができる。
 また、第2実施形態の窒化ケイ素素球は、表面から2mm以内の領域である表層部に空孔を有することが好ましい。さらに、該空孔の最大径は、窒化ケイ素素球の断面において50μm以下であることが好ましい。空孔の最大径は、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよく、空孔を有していなくてもよい。空孔の最大径が上記の範囲内であることにより、窒化ケイ素素球を軸受の転動体などの製品に加工した場合に、良好な製品寿命を得やすい。表層部における空孔は、窒化ケイ素素球の表面から2mm以内の領域である表層部に存在するものをいい、表層部に空孔全体が存在するものをいうものとする。表層部における空孔の最大径は、表層部に存在する空孔のうちの径が最大である空孔の径をいう。空孔の最大径は、例えばPS-RBSN法により窒化ケイ素素球を製造する場合に、原料として用いる窒化ケイ素の含有量および/または焼結助剤の添加量を調整することによって調整することができる。
 介在物(I)の最大径、介在物(I)の上記割合、および空孔の最大径は、後述する実施例に記載の方法によって作製した試験片の断面において、表層部に全体が存在する介在物(I)または空孔について測定した値である。介在物(I)の最大径、介在物(I)の上記割合、および空孔の最大径は、後述する実施例に記載の方法によって算出することができる。
 第2実施形態の窒化ケイ素素球の特に好ましい形態は、直径不同(単位:μm)/平均直径(単位:mm)が0.015以下であり、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体であって、さらに、上記窒化ケイ素素球の表面から2mm以内の領域である表層部に介在物(I)および空孔を有し、上記希土類元素の含有量は、上記窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、上記アルミニウム元素の含有量は、上記窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、上記表層部に存在する上記介在物(I)の最大径は50μm以下であり、上記窒化ケイ素素球の断面において、上記表層部の総断面積に対する上記介在物(I)の総断面積の割合は0.1%以上であり、上記表層部に存在する上記空孔の最大径は50μm以下である。また、この形態に対して、上述した元素や、上述した数値範囲などを適宜組み合わせることができる。
(窒化ケイ素素球の製造)
 上述した窒化ケイ素素球は、PS-RBSN法(2段階焼結法)によって製造されることが好ましい。図5には、その製造工程の概略を示すフローチャートの一例を示す。
 図5に示すように、窒化ケイ素素球を製造する方法は、ケイ素粉末と焼結助剤を含む原料粉末を混合する混合工程(1)と、混合物を球状の成形球に成形する成形工程(2)と、該成形球を焼結する焼結工程(3)とを含む。また、焼結工程後、必要に応じて研磨工程(4)が行われ、製品としての窒化ケイ素球が得られる。なお、本発明の窒化ケイ素素球を、研磨せずに、必要に応じて仕上げなどを行うことで製品としてもよい。
(1)混合工程
 混合工程では、例えば、原料粉末を水および有機溶媒を使用せずに乾式で混合する。この場合、バインダ成分を用いずに混合することが好ましい。混合後の粉末の粒径は、特に限定されないが、D90が10μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましい。また、D50が2μm以上10μm以下であることが好ましく、3μm以上9μm以下であることがより好ましい。D90および/またはD50が上記の範囲内であることにより、良好な流動性および成形性を発揮させつつ、緻密な窒化ケイ素素球を得ることができる。なお、D50およびD90は、それぞれ体積基準の累積50%径および累積90%径であり、レーザー回折散乱式粒度分布測定などによって得られる。
 なお、混合工程で湿式造粒を行い、混合物として造粒粉を得るようにしてもよい。この場合、原料粉末とバインダ成分を、水および/または有機溶媒(例えばエタノール)で混合してスラリー化し、それをスプレードライなどで噴霧造粒乾燥することで造粒粉を得ることができる。バインダ成分には有機バインダなどが用いられ、原料粉末全体に対して、例えば1重量%~10重量%添加される。
(2)成形工程
 成形工程では、混合工程で得られた混合物を球状の成形球に成形する。成形工程は、例えば、図5に示すように、加圧成形工程とグリーン加工工程を有する。この場合、冷間等圧加圧法などのプレス成形を行って球状の圧粉体とした後、その圧粉体をグリーン加工装置で加工することでグリーン球が得られる。
 図6には、グリーン加工工程を行うグリーン加工装置の概略を示す。図6に示すように、グリーン加工装置47は、第1の面を有する円盤状の第1定盤41と、第1の面と平行に対向する第2の面を有する円盤状の第2定盤42とを備えている。第1定盤41は、鉛直方向において下側に位置し、第2定盤42は上側に位置する。
 第1定盤41は、第1の軸43に接続され、第1の軸43の中心軸αを回転軸として周方向に回転可能となっている。また、第1定盤41の第1の面を含む領域には、球状の圧粉体46を加工するための加工層41aが形成されている。加工層41aには砥石や金網などが用いられる。第2定盤42は、第2の軸44に接続され、第2の軸44の中心軸βを回転軸として周方向に回転可能となっている。中心軸αおよびβは、互いに偏心し、かつ平行になっている。第2定盤42の第2の面を含む領域には、圧粉体46を保持するための保持層42aが形成されている。保持層42aは、ゴムや樹脂などの弾性部材である。また、第2定盤42には、その外周を取り囲むように、第1定盤41に対向する側に突出する保持部45が形成されている。
 グリーン加工装置47において、第1定盤41と第2定盤42の間に多数の圧粉体46を装入し、第2定盤42を回転させると、圧粉体46は遠心力によって、第2定盤42の保持部45の内周を自転しながら公転する。その後、第1定盤41を、圧粉体46の公転を妨げない程度に第2定盤42と同一方向に回転させる。上下の定盤41、42が回転すると、圧粉体46は第2定盤42の保持部45の内周を、あらゆる方向に自転しながら公転する。ここで、第2定盤42に下向きの荷重を加えると、第1定盤41の加工層41aによって圧粉体46が加工される。これによって、真球に近いグリーン球が得られる。図5のフローチャートでは、得られたグリーン球を成形球としている。
(3)焼結工程
 焼結工程は、得られたグリーン球を、例えば窒素雰囲気中で温度1200℃~1500℃で熱処理することにより窒化させる第1工程と、例えば窒素雰囲気中で1600℃~1950℃(好ましくは1600℃~1800℃、より好ましくは1650℃~1750℃)で熱処理することにより焼結させる第2工程とを有する。上記第1工程は、製造効率の向上の観点から、温度1200℃~1500℃の範囲内の温度において1時間以上、温度保持しないことが好ましい。なお、本明細書において、温度保持とは一定時間その温度を維持することをいう。具体的には、例えば1100℃程度の温度から所定の昇温速度で上記第2工程の焼結温度まで昇温させることで窒化させることが好ましい。上記昇温速度は、例えば2.0℃/min以上であり、2.5℃/min以上であってもよく、5.0℃/min以上であってもよい。また、上記昇温速度は例えば20℃/min以下であり、15℃/min以下が好ましい。焼結工程によって、第2実施形態の窒化ケイ素素球が得られる。
 上記の窒化ケイ素素球の製造では、窒化ケイ素素球の寸法精度の向上の観点から、PS-RBSN法の全工程を乾式で行うことが好ましい。PS-RBSN法で有機バインダを用いずに、窒化ケイ素素球を作製することで、焼結による収縮を小さくし、焼結体の寸法精度を向上できる。すなわち、グリーン加工などによって得られる真球に近い形状を、焼結後も維持しやすくなる。造粒するために有機バインダなどを用いると、その後に脱脂工程が必要になるが、脱脂工程によって有機バインダが抜けた後には空隙が生じるため、焼結による収縮がその分大きくなる。
 また、PS-RBSN法により製造された窒化ケイ素素球は、一度窒化されることで圧粉体の相対密度が上がるので、原料に窒化ケイ素粉末を用いた焼結体よりも収縮率が小さくなる。なお、収縮率は下記式より算出される。下記式中の未焼結の成形球としては、図5に示すようにグリーン加工工程を行った場合にはグリーン球が用いられる。
収縮率[%]=〔{(未焼結の成形球の直径)-(素球の直径)}/未焼結の成形球の直径〕×100
 第2実施形態の窒化ケイ素素球の収縮率は特に限定されないが、11.0%以下であることが好ましい。また、収縮率は例えば7.0%以上であり、8.0%以上であってもよい。
 上記の窒化ケイ素素球の製造において、原料粉末に用いる焼結助剤としては、希土類元素、アルミニウム元素、および遷移金属元素を含むものを用いることが好ましく、これらの酸化物を含むことがより好ましい。希土類元素を含む焼結助剤としては、Y、CeO、Nd、およびEuのうちのいずれかを含むことが好ましい。遷移金属元素を含む焼結助剤としては、Cr、TiO、MnO、およびFeのうちのいずれかを含むことが好ましく、Cr、TiO、およびMnOのうちのいずれかを含むことがより好ましく、Crを含むことがさらに好ましい。
 原料粉末は、ケイ素粉末および焼結助剤以外に、窒化ケイ素粉末および/または有機バインダを含んでいてもよく、希土類元素、アルミニウム元素、および遷移金属元素以外の元素を含む焼結助剤を含んでいてもよい。
 原料粉末に含まれるケイ素粉末の含有量は、ケイ素粉末、窒化ケイ素粉末、および焼結助剤の総重量に対して、45重量%以上であることが好ましく、50重量%以上であることがより好ましく、55重量%以上であることがさらに好ましく、60重量%以上であってもよく、通常、90重量%以下であり、85重量%以下であってもよく、80重量%以下であってもよい。原料粉末に含まれる窒化ケイ素粉末の含有量は、上記総重量に対して、通常30重量%以下であり、25重量%以下であることが好ましく、20重量%以下であることがより好ましく、15重量%以下であってもよく、窒化ケイ素粉末を含んでいなくてもよい。
 原料粉末に含まれる希土類元素を含む焼結助剤(例えば、希土類元素の酸化物)の含有量は、上記総重量に対して、7重量%以上であり、9重量%以上であることが好ましく、9.5重量%以上であることがより好ましく、10重量%以上であってもよい。希土類元素の上記含有量は、17重量%以下であり、15重量%以下であってもよく、14.5重量%以下であってもよい。原料粉末に含まれるアルミニウム元素を含む焼結助剤(例えば、酸化アルミニウム)の含有量は、上記総重量に対して、5重量%以上であり、9重量%以上であることが好ましく、9.5重量%以上であることがより好ましく、10重量%以上であってもよい。アルミニウム元素の上記含有量は、17重量%以下であり、15重量%以下であってもよく、14.5重量%以下であってもよい。原料粉末に含まれる遷移金属元素を含む焼結助剤(例えば、遷移金属元素の酸化物)の含有量は、上記総重量に対して、通常0.1重量%以上であることが好ましく、0.5重量%以上であることがより好ましく、通常5重量%以下であり、3重量%以下であることがより好ましい。原料粉末に含まれる焼結助剤の含有量が少ないと緻密な窒化ケイ素素球が得られにくく、焼結助剤の含有量が多いと窒化ケイ素素球の破壊靱性などの機械的特性が低下しやすい。
 原料粉末に含まれるケイ素粉末の平均粒径は、例えば5μm以下とすることができる。窒化ケイ素の平均粒径は、例えば0.5μm以下とすることができる。焼結助剤の平均粒径は、焼結助剤の種類にもよるが、通常10μm以下であり、7μm以下であってよく、5μm以下であってもよく、3μm以下であってもよく、2μm以下であってよく、1μm以下であってもよく、0.4μm以下であってもよい。
 第2実施形態の窒化ケイ素素球は、図5に示すように、続く研磨工程(4)において、直径不同や、真球度、算術平均粗さなどが所定の製品規格を満たすように研磨されて、窒化ケイ素球が得られる。
 得られた窒化ケイ素球の用途は、特に限定されないが、転がり軸受の転動体や、ボールねじの転動体などに用いることができる。例えば、図1の転がり軸受1における玉4や、図2のボールねじにおけるボール15に、第2実施形態の窒化ケイ素素球を研磨加工したものを用いることができる。
 以下、試験例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。
[試験例A]
<試験例A1~A9>
 表2に示す配合比で原料粉末を準備し、メディアとして窒化ケイ素ボールを用いて、ボールミルにより回転数200rpmで48時間乾式混合した。乾式混合の結果、混合粉末を得た。なお、混合粉末を得るために用いた材料の仕様を表1に示す。用いた材料の製造元はすべて、株式会社高純度化学研究所である。平均粒径は、レーザー回折散乱式粒度分布測定による体積基準の累積50%径である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた混合粉末を用い、ゴム型を用いた冷間等圧加圧法により、直径11mmの球状の圧粉体に成形した。この圧粉体を、1550℃から、2.5℃/minの昇温速度で温度1800℃まで昇温し、窒素雰囲気中(圧力:0.9MPa)、1800℃で4時間保持して窒化ケイ素焼結体を得た。
 得られた窒化ケイ素焼結体中の各酸化物の組成比について、原料粉末に含まれるケイ素(金属シリコン)が全て窒化され、窒化ケイ素の重量はケイ素の重量の1.67倍になるものとして、原料粉末の組成比から算出した値を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 得られた球状の窒化ケイ素焼結体を、JIS B 1563に準拠し、G5になるまで球研磨し、3/8インチ(直径9.525mm)の球状の試験片を作製した。
<結晶化度の算出>
 窒化ケイ素焼結体の結晶化度は、上述の鏡面研磨した切断面のXRD回析パターンに基づき、以下の式で求めた。
結晶化度(%)=結晶質のピーク面積/(結晶質のピーク面積+非結晶質のピーク面積)×100
<介在物(I)の最大径および空孔の最大径の測定>
 試験例1~9で得た試験片を、その中心を通る断面で切断して、切断面を鏡面研磨した。鏡面研磨した切断面を、株式会社キーエンス製「VHX5000」を用いて撮影し、その撮影画像を、三谷商事株式会社製「WinRoof」を用いて解析し、球状の試験片の表面から2mm以内の範囲に相当する領域である表層部に存在する介在物(I)の最大径および空孔の最大径を測定した。介在物(I)および空孔の径は、介在物(I)および空孔の包絡面積の平方根として求めた(介在物(I)および空孔の径=√(介在物(I)および空孔の包絡面積))。表層部に、径が50μm超の介在物(I)が存在しないものを「A」と評価し、存在するものを「B」として評価した。また、表層部に径が50μm超の空孔が存在しないものを「A」と評価し、存在するものを「B」として評価した。介在物(I)および空孔は、表層部に介在物(I)および空孔の全体が存在するものを測定対象とした。結果を表4に示す。
<転動疲労試験>
 試験例1~9で得た試験片を用い、軸受外輪、軸受内輪、および保持器としてNTN株式会社製「6206」を用いて、回転数を3000rpm、負荷荷重1.5GPa、試験時間を168時間として転動疲労試験を行い、製品寿命を評価した。潤滑油は、JXTGエネルギー株式会社製の無添加タービンオイル「VG56」を用いた。試験時間内に試験片が剥離しなかったものを「a」と評価し、剥離したものを「b」と評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 評価の結果、結晶化度が75%以上、90%以下である試験例A2~A5、A7~A9は、転動疲労試験の結果はすべて「a」であり、剥離耐性に優れることが分かった。なお、試験例A2~A5、A7~A9は、介在物の最大径および空孔の最大径ともに「A」であり、試験片の表層部に、径が50μm超の介在物(I)が存在せず、かつ、径が50μm超の空孔も存在しなかった。一方で、試験例A1(結晶化度91%)、試験例A6(結晶化度71%)は、転動疲労試験において剥離が発生した。なお、試験例A6は、介在物の最大径および空孔の最大径ともに「A」であった。本結果より、試験例A2~A5、A7~A9の窒化ケイ素焼結体は、製品に加工した場合に良好な製品寿命を有すると考えられる。
[試験例B]
<試験例B1~B26>
 表6に示す配合比で原料粉末を準備し、メディアとして窒化ケイ素ボールを用いて、ボールミルにより回転数200rpmで48時間、乾式混合した。なお、混合粉末を得るために用いた材料の仕様を表5に示す。得られた混合粉末を用い、ゴム型を用いた冷間等圧加圧法により、直径13mmの球状の圧粉体に成形した。この圧粉体を、図6に示したようなグリーン加工装置を用いてグリーン加工して、直径12mmおよび直径不同が20μm以下のグリーン球を得た。このグリーン球を室温から、表6に示す2.5℃/min~20℃/minの昇温速度で温度1550℃~1900℃まで昇温し、窒素雰囲気中(圧力:0.9MPa)、その焼結温度で4時間保持して窒化ケイ素素球を得た。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 得られた窒化ケイ素素球中の各酸化物の組成比について、原料粉末に含まれるケイ素(金属シリコン)が全て窒化され、窒化ケイ素の重量はケイ素の重量の1.67倍になるものとして、原料粉末の組成比から算出した値を表7に示す。
Figure JPOXMLDOC01-appb-T000007
<収縮率、および、直径不同/平均直径の算出>
 上記で得られたグリーン球の寸法、および、窒化ケイ素素球の寸法をJIS B 1501に準拠して測定し、下記式より収縮率を算出した。収縮率については、他の測定結果と併せて表8に示す。
収縮率[%]=〔{(グリーン球の直径)-(窒化ケイ素素球の直径)}/グリーン球の直径〕×100
 また、上記の測定の際に、窒化ケイ素素球の直径不同も併せて算出した。具体的には、窒化ケイ素素球の直径をマイクロメータを用いて10箇所方向を変えて測定し、その平均を窒化ケイ素素球の平均直径とし、これらの測定結果(10箇所の直径)の中の最大値と最小値の差から直径不同を算出した。そして、得られた窒化ケイ素素球の平均直径および直径不同から、「直径不同(単位:μm)/平均直径(単位:mm)」の値を求めた。他の測定結果と併せて表8に示す。
<介在物(I)の最大径および面積割合の測定、並びに、空孔の最大径の測定>
 試験例B1~B26の窒化ケイ素素球を、その中心を通る断面で切断して、切断面を鏡面研磨した。鏡面研磨した切断面を、株式会社キーエンス製「VHX5000」を用いて撮影し、その撮影画像を、三谷商事株式会社製「WinRoof」を用いて解析し、球状の試験片の表面から2mm以内の範囲に相当する領域である表層部に存在する介在物(I)の最大径および空孔の最大径を測定した。介在物(I)および空孔の径は、介在物(I)および空孔の包絡面積の平方根として求めた(介在物(I)および空孔の径=√(介在物(I)および空孔の包絡面積))。表層部に、径が50μm超の介在物(I)が存在しないものを「A」と評価し、存在するものを「B」として評価した。また、表層部に径が50μm超の空孔が存在しないものを「A」と評価し、存在するものを「B」として評価した。介在物(I)および空孔は、表層部に介在物(I)および空孔の全体が存在するものを測定対象とした。また、表層部の総断面積に対する介在物(I)の総断面積の割合を算出した(介在物(I)の総断面積の割合=介在物(I)の包絡面積÷表層部の総断面積×100)。結果を表8に示す。
 得られた球状の窒化ケイ素素球を、JIS B 1563に準拠し、G5になるまで球研磨し、3/8インチ(直径9.525mm)の球状の試験片を作製した。
<転動疲労試験>
 得られた球状の試験片を用い、軸受外輪、軸受内輪、および保持器としてNTN株式会社製「6206」を用いて、回転速度を3000min-1、負荷荷重1.5GPa、試験時間を168時間として転動疲労試験を行い、製品寿命を評価した。潤滑油は、JXTGエネルギー株式会社製の無添加タービンオイル「VG56」を用いた。試験時間内に試験片が剥離しなかったものを「a」と評価し、剥離したものを「b」と評価した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
<介在物(I)の分析>
 試験例B3で得た試験片の切断面について、走査電子顕微鏡((株)日立製作所製、S300)を用い、EDX分析によって、表層部に含まれる介在物(I)の元素の種類および含有量を測定した。介在物(I)はクロムのケイ化物を含んでおり、介在物(I)に含まれる元素およびその含有量は、クロム(Cr)が57重量%であり、ケイ素(Si)が43重量%であった。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の窒化ケイ素焼結体は、転がり軸受、直動案内軸受、ボールねじ、直動ベアリングなどの軸受の転動体に好適に用いることができる。本発明の窒化ケイ素素球は、製品の生産性の向上に寄与でき、更には、製品に加工した場合に良好な製品寿命を有するので、転がり軸受の転動体や、ボールねじの転動体などに好適に用いることができる。
 1  転がり軸受
 2  内輪
 3  外輪
 4  玉(転動体)
 5  保持器
 6  シール部材
 7  グリース
 8a、8b 開口部
 11 ねじ軸
 12 ねじ溝
 13 ボールナット
 14 ねじ溝
 15 ボール(転動体)
 16 ボールねじ用シール部材
 21 球面滑り軸受
 22 内輪
 23 外輪
 24 軸受孔
 31 窒化ケイ素素球
 32 電気マイクロメータ
 41 第1定盤
 42 第2定盤
 43 第1の軸
 44 第2の軸
 45 保持部
 46 圧粉体
 47 グリーン加工装置

Claims (14)

  1.  結晶化度が75%以上、90%以下であることを特徴とする窒化ケイ素焼結体。
  2.  前記窒化ケイ素焼結体は、非結晶質相にY、Ce、Nd、およびEuからなる群より選ばれる1種以上を含むことを特徴とする請求項1記載の窒化ケイ素焼結体。
  3.  前記窒化ケイ素焼結体は、希土類元素およびアルミニウム元素を含み、
     前記希土類元素の含有量は、前記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、
     前記アルミニウム元素の含有量は、前記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であることを特徴とする請求項1記載の窒化ケイ素焼結体。
  4.  前記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に介在物(I)を有し、前記介在物(I)の最大径が50μm以下であることを特徴とする請求項1記載の窒化ケイ素焼結体。
  5.  前記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に空孔を有し、該空孔の最大径が50μm以下であることを特徴とする請求項1記載の窒化ケイ素焼結体。
  6.  請求項1記載の窒化ケイ素焼結体を用いたことを特徴とする機械部品。
  7.  前記機械部品は、転動体であることを特徴とする請求項6記載の機械部品。
  8.  請求項7記載の転動体を用いたことを特徴とする軸受。
  9.  直径不同(単位:μm)/平均直径(単位:mm)が0.015以下であることを特徴とする窒化ケイ素素球。
  10.  前記窒化ケイ素素球は、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体であって、前記希土類元素の含有量は、前記窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、前記アルミニウム元素の含有量は、前記窒化ケイ素素球の総重量に対して、酸化物換算で6重量%以上13重量%以下であることを特徴とする請求項9記載の窒化ケイ素素球。
  11.  前記窒化ケイ素素球の表面から2mm以内の領域である表層部に介在物(I)を有し、前記表層部の総断面積に対する前記介在物(I)の総断面積の割合が0.05%以上であることを特徴とする請求項9記載の窒化ケイ素素球。
  12.  前記介在物(I)が、遷移金属元素を含む介在物(It)を含み、該介在物(It)が遷移金属元素のケイ化物であり、前記遷移金属元素がCrを含むことを特徴とする請求項11記載の窒化ケイ素素球。
  13.  前記介在物(I)の最大径が50μm以下であることを特徴とする請求項11記載の窒化ケイ素素球。
  14.  前記窒化ケイ素素球の表面から2mm以内の領域である表層部に空孔を有し、該空孔の最大径が50μm以下であることを特徴とする請求項9記載の窒化ケイ素素球。
PCT/JP2023/001854 2022-01-27 2023-01-23 窒化ケイ素焼結体、それを用いた機械部品、および軸受 WO2023145672A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-011340 2022-01-27
JP2022011340A JP2023109655A (ja) 2022-01-27 2022-01-27 窒化ケイ素焼結体、それを用いた機械部品、および軸受
JP2022031779A JP2023127845A (ja) 2022-03-02 2022-03-02 窒化ケイ素素球、転動体、および転がり軸受
JP2022-031779 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023145672A1 true WO2023145672A1 (ja) 2023-08-03

Family

ID=87471959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001854 WO2023145672A1 (ja) 2022-01-27 2023-01-23 窒化ケイ素焼結体、それを用いた機械部品、および軸受

Country Status (1)

Country Link
WO (1) WO2023145672A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930768A (ja) * 1982-08-12 1984-02-18 工業技術院長 高耐食性室化珪素焼結体の製造方法
JPH01249643A (ja) * 1988-03-31 1989-10-04 Dai Ichi Kasei Kk セラミックスボールの製造方法
JPH09255431A (ja) * 1996-03-22 1997-09-30 Chichibu Onoda Cement Corp 窒化珪素焼結体及びその製造方法
JPH10324573A (ja) * 1997-03-27 1998-12-08 Chichibu Onoda Cement Corp 窒化珪素焼結体の製造方法
JP2021095317A (ja) * 2019-12-19 2021-06-24 Ntn株式会社 窒化ケイ素焼結体及びそれを用いた軸受部材
WO2021225158A1 (ja) * 2020-05-07 2021-11-11 Agc株式会社 セラミックス焼結体の製造方法及びセラミックス焼結体
WO2021241583A1 (ja) * 2020-05-26 2021-12-02 株式会社 東芝 窒化珪素焼結体、それを用いた耐摩耗性部材、および窒化珪素焼結体の製造方法
WO2022050290A1 (ja) * 2020-09-03 2022-03-10 Ntn株式会社 窒化ケイ素焼結体、それを用いた転動体、および軸受

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930768A (ja) * 1982-08-12 1984-02-18 工業技術院長 高耐食性室化珪素焼結体の製造方法
JPH01249643A (ja) * 1988-03-31 1989-10-04 Dai Ichi Kasei Kk セラミックスボールの製造方法
JPH09255431A (ja) * 1996-03-22 1997-09-30 Chichibu Onoda Cement Corp 窒化珪素焼結体及びその製造方法
JPH10324573A (ja) * 1997-03-27 1998-12-08 Chichibu Onoda Cement Corp 窒化珪素焼結体の製造方法
JP2021095317A (ja) * 2019-12-19 2021-06-24 Ntn株式会社 窒化ケイ素焼結体及びそれを用いた軸受部材
WO2021225158A1 (ja) * 2020-05-07 2021-11-11 Agc株式会社 セラミックス焼結体の製造方法及びセラミックス焼結体
WO2021241583A1 (ja) * 2020-05-26 2021-12-02 株式会社 東芝 窒化珪素焼結体、それを用いた耐摩耗性部材、および窒化珪素焼結体の製造方法
WO2022050290A1 (ja) * 2020-09-03 2022-03-10 Ntn株式会社 窒化ケイ素焼結体、それを用いた転動体、および軸受

Similar Documents

Publication Publication Date Title
US7056850B2 (en) Wear-resistant silicon nitride member and method of manufacture thereof
JP5732037B2 (ja) 耐摩耗性部材およびその製造方法
JP5886337B2 (ja) 耐摩耗性部材およびそれを用いた耐摩耗性機器
JP5002155B2 (ja) 窒化けい素製耐摩耗性部材およびその製造方法
JP5268750B2 (ja) 耐衝撃部材およびその製造方法
JP2024019273A (ja) 窒化珪素焼結体製摺動部材の製造方法
JP2013256397A (ja) 転動体及びその製造方法
WO2023145672A1 (ja) 窒化ケイ素焼結体、それを用いた機械部品、および軸受
JP2023121827A (ja) 転動体および軸受
JP6037217B2 (ja) 窒化珪素質焼結体の製造方法
US20230093291A1 (en) Silicon nitride sintered body, wear-resistant member using the same, and method for producing silicon nitride sintered body
JP2023109655A (ja) 窒化ケイ素焼結体、それを用いた機械部品、および軸受
JP2023127845A (ja) 窒化ケイ素素球、転動体、および転がり軸受
KR100613956B1 (ko) 질화규소제 내마모성 부재와 그 제조 방법
WO2023032695A1 (ja) 窒化ケイ素焼結体、機械部品および軸受
JP7164658B2 (ja) 窒化ケイ素焼結体、それを用いた転動体、および軸受
JP4869171B2 (ja) 窒化けい素製耐摩耗性部材の製造方法
JP7353820B2 (ja) 窒化珪素焼結体およびそれを用いた耐摩耗性部材
JP5295983B2 (ja) 窒化けい素製耐摩耗性部材の製造方法
Ahmad et al. The Development of Lead-Free Sliding Contacts Based on Bronze-Graphite Composites through Powder Injection Moulding
JP2008230922A (ja) 窒化珪素焼結体とそれを用いた摺動部材
JP2019219018A (ja) 転がり軸受用保持器およびその製造方法
JP2005036841A (ja) コロ軸受およびコロ転動体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746884

Country of ref document: EP

Kind code of ref document: A1