WO2022050290A1 - 窒化ケイ素焼結体、それを用いた転動体、および軸受 - Google Patents

窒化ケイ素焼結体、それを用いた転動体、および軸受 Download PDF

Info

Publication number
WO2022050290A1
WO2022050290A1 PCT/JP2021/032051 JP2021032051W WO2022050290A1 WO 2022050290 A1 WO2022050290 A1 WO 2022050290A1 JP 2021032051 W JP2021032051 W JP 2021032051W WO 2022050290 A1 WO2022050290 A1 WO 2022050290A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
sintered body
nitride sintered
weight
less
Prior art date
Application number
PCT/JP2021/032051
Other languages
English (en)
French (fr)
Inventor
文耶 中村
康武 早川
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=80491011&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022050290(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2021060258A external-priority patent/JP7164658B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202180050691.4A priority Critical patent/CN115916727A/zh
Priority to EP21864347.6A priority patent/EP4209472A1/en
Priority to US18/022,163 priority patent/US20230303454A1/en
Publication of WO2022050290A1 publication Critical patent/WO2022050290A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0091Accessories not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • F16C2206/58Ceramics, e.g. carbides, nitrides, oxides, borides of a metal based on ceramic nitrides
    • F16C2206/60Silicon nitride (Si3N4)l
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/43Aeroplanes; Helicopters

Definitions

  • the present invention relates to a silicon nitride sintered body, a rolling element using the sintered body, and a bearing.
  • Silicon nitride (Si 3 N 4 ) sintered body has excellent mechanical properties, thermal conductivity, and electrical insulation, so its application to bearing members, engine parts, tool materials, heat dissipation substrate materials, etc. is progressing. Has been done. It is known that a silicon nitride sintered body is produced by using silicon nitride powder as a starting material. Since the silicon nitride powder is difficult to sinter, a sintering aid is used together with the silicon nitride powder in order to produce a densified silicon nitride sintered body.
  • a sintering aid generally include oxides of rare earth elements, aluminum oxide, magnesium oxide, silicon oxide and the like, but in order to improve the mechanical properties of the silicon nitride sintered body, a transition metal element is used. It is also considered to use a material containing the above as a sintering aid (for example, Patent Documents 1 and 2).
  • the PS-RBSN method was obtained in the first step and the first step of nitriding a green compact obtained by forming a silicon powder by heat treatment at a temperature of, for example, around 1100 ° C to 1450 ° C in an environment containing nitrogen gas. It includes a second step of densifying the nitride by heat treatment, for example, at a temperature of around 1600 ° C to 1950 ° C.
  • the silicon powder is not sufficiently nitrided when the silicon nitride sintered body is manufactured by the PS-RBSN method, silicon will remain in the silicon nitride sintered body. Since the remaining silicon can cause deterioration of the mechanical properties of the silicon nitride sintered body, the silicon nitride sintered body produced by the PS-RBSN method was produced using silicon nitride powder as a starting material. In some cases, the mechanical properties were inferior to those of the silicon nitride sintered body. It was also found that the product life may be short when the silicon nitride sintered body is processed into a product such as a rolling element.
  • An object of the present invention is to provide a silicon nitride sintered body having good mechanical properties, particularly fracture toughness, and a good product life when processed into a product, a rolling element using the silicon nitride sintered body, and a bearing.
  • the silicon nitride sintered body of the present invention is a silicon nitride sintered body containing a rare earth element and an aluminum element, and the content of the rare earth element is converted into an oxide with respect to the total weight of the silicon nitride sintered body. 6% by weight or more and 13% by weight or less, and the content of the aluminum element is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sintered body. And.
  • the rare earth element is characterized by containing at least one selected from the group consisting of Y, Ce, Nd and Eu. Further, the rare earth element is characterized by containing Ce.
  • the inclusions (I) are present in the surface layer portion which is a region within 2 mm from the surface of the silicon nitride sintered body, and the ratio of the total cross-sectional area of the inclusions (I) to the total cross-sectional area of the surface layer portion is 0. It is characterized by being 05% or more.
  • the inclusion (I) is characterized by containing an inclusion (It) containing a transition metal element. Further, the inclusion (It) is a silicide of a transition metal element.
  • the transition metal element is characterized by containing at least one selected from the group consisting of Ti, Cr, and Mn. Further, the transition metal element is characterized by containing Cr.
  • the maximum diameter of the inclusion (I) is 50 ⁇ m or less.
  • the rolling element of the present invention is characterized in that the silicon nitride sintered body of the present invention is used.
  • the bearing of the present invention is characterized in that the rolling element of the present invention is used.
  • the bearing is a bearing that includes a plurality of drive units having a rotary blade and a motor for rotating the rotary blade, is mounted on an electric vertical takeoff and landing machine that flies by the rotation of the rotary blade, and supports a rotary shaft in the drive unit. It is characterized by that.
  • the present invention it is possible to provide a silicon nitride sintered body having good fracture toughness and a good product life when processed into a product, a rolling element using the same, and a bearing.
  • the silicon nitride sintered body of the present embodiment contains a rare earth element and an aluminum element.
  • the content of rare earth elements is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sintered body
  • the content of the aluminum element is silicon nitride. It is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the sintered body.
  • rare earth elements examples include yttrium (Y), lanthanum (La), cerium (Ce), samarium (Sm), neodium (Nd), dysprosium (Dy), europium (Eu), and erbium (Er). ..
  • yttrium (Y), cerium (Ce), neodymium (Nd), and europium (Er) are preferable.
  • the content of the rare earth element is 6% by weight or more, preferably 6.5% by weight or more, and may be 7% by weight or more.
  • the content of the rare earth element is 13% by weight or less, may be 12% by weight or less, or may be 11% by weight or less.
  • the rare earth element is derived from, for example, a sintering aid containing the rare earth element (usually an oxide of the rare earth element) used in the production of the silicon nitride sintered body. Since the content of rare earth elements in the silicon nitride sintered body is within the above range, the silicon nitride (metal silicon powder), which is a raw material, is nitrided when the silicon nitride sintered body is manufactured by the PS-RBSN method. The reaction can be accelerated and subsequent sintering can be promoted.
  • the PS-RBSN method refers to a two-step sintering method including a silicon nitriding step and a subsequent sintering step. The content of the rare earth element can be adjusted by the amount of the sintering aid containing the rare earth element (for example, the oxide of the rare earth element) added to the raw material.
  • the content of the aluminum element is 6% by weight or more, preferably 6.5% by weight or more, and may be 7% by weight or more.
  • the content of the aluminum element is 13% by weight or less, may be 12% by weight or less, or may be 11% by weight or less.
  • the content of the aluminum element (oxide equivalent) may be within ⁇ 5% by weight, within ⁇ 2% by weight, or within ⁇ 1% by weight of the rare earth element content (oxide conversion). It may be the same as the content of rare earth elements.
  • the aluminum element is derived from, for example, a sintering aid (usually aluminum oxide) containing aluminum used in the production of a silicon nitride sintered body.
  • a sintering aid usually aluminum oxide
  • the content of the aluminum element can be adjusted by the amount of the sintering aid (for example, aluminum oxide) containing the aluminum element added to the raw material.
  • the contents of the rare earth element and the aluminum element may be determined using a fluorescent X-ray analyzer (XRF), an energy dispersive X-ray analysis (EDX), or a high frequency inductively coupled plasma (ICP) emission spectrometer.
  • XRF fluorescent X-ray analyzer
  • EDX energy dispersive X-ray analysis
  • ICP high frequency inductively coupled plasma
  • the content of rare earth element and aluminum element in the silicon nitride sintered body was determined by the above analyzer, and the oxide (RE 2 O 3 or REO 2 ) of the rare earth element (RE) and aluminum oxide (Al) were determined. It may be converted into 2 O 3 ).
  • the total weight of the silicon nitride sintered body is calculated, and the above-mentioned contents of the rare earth element and the aluminum element are determined. good.
  • silicon metal silicon powder
  • the weight of Si 3 N 4 in the silicon nitride sintered body is It is 1.67 times the weight of silicon. Therefore, if the weight change when silicon is nitrided is taken into consideration, the contents of the rare earth element oxide and aluminum oxide can be calculated from the composition of the raw material powder.
  • the silicon nitride sintered body of the present embodiment preferably has inclusions (I) in the surface layer portion which is a region within 2 mm from the surface.
  • the inclusions (I) contain components other than silicon nitride, and examples thereof include inclusions (It) containing a transition metal element and inclusions (Is) containing a non-nitrided silicon element.
  • the inclusions (It) are preferably silides of transition metal elements.
  • Inclusions (Is) are, for example, aggregates of unnitrided silicon elements.
  • the inclusions (I) preferably contain inclusions (It), and preferably do not contain inclusions (Is) or have a small abundance ratio thereof.
  • the inclusions are those that are entirely present in the surface layer portion, which is a region within 2 mm from the surface of the silicon nitride sintered body.
  • the inclusions (It) are derived from, for example, a sintering aid containing a transition metal element (usually an oxide of a transition metal element) used in the production of a silicon nitride sintered body, for example, a transition metal element silicide.
  • the product is formed during the manufacture of the silicon nitride sintered body.
  • a silicon nitride sintered body is produced by the PS-RBSN method
  • the nitriding reaction of silicon powder can be promoted by using a sintering aid containing a transition metal element, and the growth of acicular crystals of silicon nitride can be promoted. Can be promoted. Therefore, the heat treatment time required for nitriding silicon can be suppressed, and the energy efficiency at the time of manufacturing the silicon nitride sintered body can be improved.
  • the raw material for producing the silicon nitride sintered body contains silicon nitride powder, a sintering aid (transition metal element) containing silicon nitride powder and a transition metal element such as chromium oxide (Cr 2 O 3 ).
  • the sintering aid may oxidize the silicon nitride powder, resulting in a deviation in the composition of the raw material, which may prevent good sintering.
  • silicon nitride sintered body is produced by the PS-RBSN method, silicon powder is mainly used as the raw material, and the content of the silicon nitride powder contained in the raw material can be reduced. It is possible to obtain a dense silicon nitride sintered body without causing such problems.
  • the inclusions (Is) may be formed when the silicon nitride powder (metal silicon powder), which is a raw material, is insufficiently nitrided when the silicon nitride sintered body is manufactured by the PS-RBSN method. If inclusions (Is) having a large diameter are present on the surface layer or the proportion of inclusions (Is) increases, the mechanical properties such as fracture toughness of the silicon nitride sintered body tend to deteriorate, and the product becomes a product. The product life when processed tends to decrease. It is preferable that the amount of inclusions (Is) present in the surface layer portion of the silicon nitride sintered body is small, and it is more preferable that the inclusions (Is) are not present.
  • the transition metal element is not particularly limited as long as it is an element contained between the 3rd to 11th genera of the IUPAC periodic table.
  • the transition metal element is preferably one or more selected from the group consisting of Ti, Cr, and Mn, and more preferably contains Cr. By containing Cr as a transition metal element, the fracture toughness of the silicon nitride sintered body can be further improved.
  • the content of the transition metal element is preferably 0.1% by weight or more, preferably 0.3% by weight or more, in terms of oxide with respect to the total weight of the silicon nitride sintered body. It is more preferably 0.5% by weight or more, usually 5% by weight or less, 3% by weight or less, more preferably 2% by weight or less, and 1% by weight. It may be as follows.
  • the above-mentioned content of the transition metal element can be determined by the same method as the method for determining the content of the rare earth element and the aluminum element.
  • the maximum diameter of the inclusions (I) existing on the surface layer of the silicon nitride sintered body is not particularly limited. Specifically, the maximum diameter of the inclusion (I) is 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less, and usually 0.5 ⁇ m or more. be.
  • the maximum diameter of the inclusions (I) in the surface layer portion refers to the diameter of the inclusions (I) having the largest diameter among the inclusions (I) existing in the surface layer portion.
  • the maximum diameter of the inclusions (I) is within the above range, it becomes easy to prevent the inclusions from being shed from the silicon nitride sintered body and becoming defects, so that the silicon nitride sintered body is bearing. It is easy to obtain a good product life when it is processed into a product such as a rolling element.
  • the maximum diameter of the inclusions (I) depends on, for example, the degree of nitriding of the silicon powder as the raw material, the amount and / or the particle size of the sintering aid containing the transition metal element added to the raw material, and the type of the transition metal element. Can be adjusted.
  • the ratio of the total cross-sectional area of the inclusions (I) to the total cross-sectional area of the surface layer portion is , 0.05% or more, preferably 0.1% or more, 0.15% or more, 0.3% or more, 0.6% or more. May be.
  • the above ratio is usually 7.0% or less, may be 3.0% or less, may be 2.0% or less, or may be 1.5% or less.
  • the above ratio of inclusions (I) is the ratio of the total cross-sectional area of the total cross-sectional areas of all inclusions existing in the surface layer portion to the total cross-sectional area of the surface layer portion.
  • the above ratio is within the above range, it is easy to obtain a silicon nitride sintered body having good fracture toughness and good product life when processed into a product. Further, if the above ratio is too large, inclusions are continuously shed and the bearing life test result is likely to be adversely affected.
  • the ratio of the inclusions (I) depends on, for example, the degree of nitriding of the silicon powder as a raw material, the amount and / or the particle size of the sintering aid containing the transition metal element added to the raw material, and the type of the transition metal element. Can be adjusted.
  • the silicon nitride sintered body of the present embodiment has pores in the surface layer portion which is a region within 2 mm from the surface.
  • the maximum diameter of the pores is preferably 50 ⁇ m or less in the cross section of the silicon nitride sintered body.
  • the maximum diameter of the vacancies may be 40 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less, and may not have vacancies.
  • the maximum diameter of the pores is within the above range, it is easy to obtain a good product life when the silicon nitride sintered body is processed into a product such as a rolling element of a bearing.
  • the pores in the surface layer portion refer to those existing in the surface layer portion which is a region within 2 mm from the surface of the silicon nitride sintered body, and refer to those in which the entire pores exist in the surface layer portion.
  • the maximum diameter of the pores in the surface layer portion means the diameter of the pores having the largest diameter among the pores existing in the surface layer portion.
  • the maximum diameter of the pores is adjusted by adjusting, for example, the content of silicon nitride used as a raw material and / or the amount of a sintering aid added when a silicon nitride sintered body is manufactured by the PS-RBSN method. Can be done.
  • the maximum diameter of the inclusions (I), the above ratio of the inclusions (I), and the maximum diameter of the pores are all present in the surface layer portion in the cross section of the test piece prepared by the method described in Examples described later. It is a value measured for inclusions (I) or vacancies.
  • the maximum diameter of the inclusions (I), the above ratio of inclusions (I), and the maximum diameter of the pores can be calculated by the method described in Examples described later.
  • the silicon nitride sintered body of the present embodiment is mainly manufactured by the PS-RBSN method as described later. Since the silicon nitride sintered body produced by the PS-RBSN method is once nitrided, the relative density of the green compact is increased, so that the shrinkage rate is smaller than that of the sintered body using the silicon nitride powder as a raw material.
  • the shrinkage rate is calculated from the following formula.
  • the "dimensions" in the following formula are the dimensions of the parts corresponding to each other in the green compact and the silicon nitride sintered body. For example, when both are spherical, each diameter and the like can be used.
  • Shrinkage rate [%] [ ⁇ (Dimensions of green compact)-(Dimensions of silicon nitride sintered body) ⁇ / Dimensions of green compact] ⁇ 100
  • the shrinkage rate of the silicon nitride sintered body of the present embodiment is not particularly limited, but is preferably 15% or less, preferably 14% or less, and 13% or less from the viewpoint of dimensional accuracy of the sintered body. May be. Further, the shrinkage rate is, for example, 7% or more, may be 8% or more, or may be 10% or more.
  • the silicon nitride sintered body of the present embodiment contains a rare earth element in an oxide equivalent of 6% by weight or more and 13% by weight or less with respect to the total weight of the silicon nitride sintered body, and the silicon element is nitrided. It contains 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon sintered body. By using it, the sintering reaction can be sufficiently proceeded even when silicon powder is used as a raw material. As a result, good fracture toughness is obtained.
  • the fracture toughness (according to JIS R 1607) is, for example, 3 MPa ⁇ m 1/2 or more, preferably 4 MPa ⁇ m 1/2 or more, and more preferably 5 MPa ⁇ m 1/2 or more.
  • the fracture toughness is, for example, 8 MPa ⁇ m 1/2 or less.
  • a particularly preferable form of the silicon nitride sintered body of the present embodiment is a silicon nitride sintered body containing a rare earth element and an aluminum element, and further, a surface layer portion in a region within 2 mm from the surface of the silicon nitride sintered body.
  • the content of the rare earth element is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sintered body.
  • the content of the aluminum element is 6% by weight or more and 13% by weight or less in terms of oxide with respect to the total weight of the silicon nitride sintered body, and the maximum diameter of the inclusions (I) present in the surface layer portion.
  • the ratio of the total cross-sectional area of the inclusions (I) to the total cross-sectional area of the surface layer portion is 0.1% or more, and is present in the surface layer portion.
  • the maximum diameter of the pores to be formed is 50 ⁇ m or less.
  • the shape of the silicon nitride sintered body of the present embodiment is not particularly limited and may be appropriately selected depending on the intended use such as spherical shape, cylindrical shape, conical shape, truncated cone shape, rectangular parallelepiped shape, etc., but spherical shape is preferable.
  • the size of the silicon nitride sintered body is also not particularly limited, and for example, if it is spherical, the diameter can be 0.5 cm to 10 cm, and if it is a cylindrical shape, the diameter of the bottom surface can be 0.5 cm to 15 cm, and the height can be set. Can be 3 cm to 20 cm.
  • the silicon nitride sintered body is preferably manufactured by the PS-RBSN method (two-step sintering method). Specifically, it can be manufactured by the following first method and second method.
  • the first method is a method for producing a silicon nitride sintered body containing a rare earth element and an aluminum element, for example, a granulation step of obtaining a granulated powder using a raw material powder containing a silicon powder and a sintering aid. It includes a molding step of molding the obtained granulated powder into a green compact, a degreasing step, and a sintering step of sintering the degreased green compact. After the sintering step, the silicon nitride sintered body may be polished, if necessary.
  • the raw material powder and the binder component are mixed with water and / or an organic solvent (for example, ethanol) to form a slurry, which is then spray-dried by spray-drying to obtain granulated powder.
  • an organic binder or the like is used as the binder component, and for example, 1% by weight to 10% by weight is added to the entire raw material powder.
  • the granulated powder is molded into a predetermined shape to obtain a green compact.
  • the obtained green compact is heated at a temperature of 700 ° C. to 1000 ° C. in a nitrogen atmosphere to degreas.
  • the sintering step is the first step of nitriding the degreased green compact by heat treatment at a temperature of 1200 ° C. to 1500 ° C. in a nitrogen atmosphere, and the obtained nitride at 1600 ° C. in a nitrogen atmosphere, for example. It has a second step of sintering by heat treatment at ⁇ 1950 ° C. (preferably 1600 ° C. to 1900 ° C.).
  • ⁇ 1950 ° C. preferably 1600 ° C. to 1900 ° C.
  • temperature retention means maintaining the temperature for a certain period of time.
  • the temperature raising rate at the time of shifting from the first step to the second step is, for example, 2 ° C./min or more, may be 2.5 ° C./min or more, and may be 5 ° C./min or more. You may.
  • the rate of temperature rise is, for example, 20 ° C./min or less, preferably 15 ° C./min or less.
  • nitriding can be promoted by adjusting the addition amount and / or particle size of the sintering aid and the type of rare earth element.
  • temperature maintenance in the first step can be omitted.
  • rate of temperature rise at the time of transition from the first step to the second step can be increased. As a result, it is possible to shorten the manufacturing time and improve the energy efficiency during manufacturing.
  • the second method is a method for producing a silicon nitride sintered body containing a rare earth element and an aluminum element, which is mixed with, for example, a mixing step of dry mixing a silicon powder and a raw material powder containing a sintering aid. It includes a molding step of molding the raw material powder into a green compact and a sintering step of sintering the green compact. Unlike the first method, the second method is characterized in that all the steps of the PS-RBSN method are performed by a dry method. After the sintering step, the silicon nitride sintered body may be polished if necessary.
  • the mixing step is a step of mixing the raw material powder in a dry manner without using water and an organic solvent. Further, in this step, it is preferable to mix without using a binder component.
  • the particle size of the powder after mixing is not particularly limited, but the D90 is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less, and further preferably 10 ⁇ m or more and 20 ⁇ m or less. Further, the D50 is preferably 2 ⁇ m or more and 10 ⁇ m or less, more preferably 3 ⁇ m or more and 9 ⁇ m or less, and further preferably 4 ⁇ m or more and 8 ⁇ m or less.
  • D90 and / or D50 are within the above range, a dense silicon nitride sintered body can be obtained while exhibiting good fluidity and moldability.
  • D50 and D90 have a cumulative 50% diameter and a cumulative 90% diameter on a volume basis, respectively, and can be obtained by laser diffraction / scattering type particle size distribution measurement or the like.
  • the sintering step is a first step of nitriding the obtained green compact by heat treatment at a temperature of 1200 ° C. to 1500 ° C. in a nitrogen atmosphere, for example, and 1600 ° C. to 1950 ° C. (preferably 1600 ° C.) in a nitrogen atmosphere. It has a second step of sintering by heat treatment at (° C. to 1900 ° C.). From the viewpoint of improving the manufacturing efficiency, it is preferable that the first step does not hold the temperature in the range of 1200 ° C. to 1500 ° C. for 1 hour or more.
  • nitrid by raising the temperature from a temperature of about 1100 ° C. to the sintering temperature of the second step at a predetermined heating rate.
  • the temperature rising rate is, for example, 2 ° C./min or more, may be 2.5 ° C./min or more, or may be 5 ° C./min or more.
  • the rate of temperature rise is, for example, 20 ° C./min or less, preferably 15 ° C./min or less.
  • the second method has the following effects as compared with the first method.
  • By performing all the steps in a dry manner by the PS-RBSN method for example, it is possible to prevent the oxidation of the silicon powder when an aqueous solvent is used, and it is possible to reduce the environmental load due to an organic solvent such as ethanol.
  • By producing a silicon nitride sintered body by the PS-RBSN method without using an organic binder shrinkage due to sintering can be reduced and the dimensional accuracy of the sintered body can be improved.
  • the degreasing step is required after that, but since voids are generated after the organic binder is removed by the degreasing step, sintering is performed.
  • the contraction may increase accordingly.
  • the shrinkage it is possible to shorten the polishing time in the subsequent polishing step.
  • the degreasing step can be omitted, and greenhouse gases such as CO 2 that can be generated by the decomposition of the binder component in the degreasing step can be generated. Can be prevented, so the environmental load can be reduced.
  • the sintering aid used for the raw material powder those containing a rare earth element, an aluminum element, and a transition metal element are used. It is preferable, and it is more preferable to contain these oxides.
  • the sintering aid containing a rare earth element preferably contains any one of Y2O3 , CeO2 , Nd2O3 , and Eu2O3 .
  • the sintering aid containing a transition metal element preferably contains any one of Cr 2O 3 , TiO 2 , MnO, and Fe 2 O 3 , and among Cr 2 O 3 , TiO 2 , and MnO. It is more preferable to contain any of the above, and it is further preferable to contain Cr 2 O 3 .
  • the raw material powder may contain silicon nitride powder and / or an organic binder in addition to the silicon powder and the sintering aid, and may contain a sintering aid containing elements other than rare earth elements, aluminum elements, and transition metal elements. You may go out.
  • the content of the silicon powder contained in the raw material powder is preferably 45% by weight or more, more preferably 50% by weight or more, based on the total weight of the silicon powder, the silicon nitride powder, and the sintering aid. It is preferably 55% by weight or more, more preferably 60% by weight or more, usually 90% by weight or less, 85% by weight or less, or 80% by weight or less. good.
  • the content of the silicon nitride powder contained in the raw material powder is usually 30% by weight or less, preferably 25% by weight or less, more preferably 20% by weight or less, and 15% by weight, based on the total weight. It may be less than% by weight and may not contain silicon nitride powder.
  • the content of the sintering aid containing the rare earth element (for example, the oxide of the rare earth element) contained in the raw material powder is 7% by weight or more, preferably 9% by weight or more, based on the total weight. , 9.5% by weight or more, and may be 10% by weight or more.
  • the content of the rare earth element is 17% by weight or less, may be 15% by weight or less, or may be 14.5% by weight or less.
  • the content of the sintering aid (for example, aluminum oxide) containing an aluminum element contained in the raw material powder is 5% by weight or more, preferably 9% by weight or more, preferably 9% by weight or more, based on the total weight. It is more preferably 5% by weight or more, and may be 10% by weight or more.
  • the content of the aluminum element is 17% by weight or less, may be 15% by weight or less, or may be 14.5% by weight or less.
  • the content of the sintering aid containing the transition metal element contained in the raw material powder (for example, the oxide of the transition metal element) is usually preferably 0.1% by weight or more with respect to the total weight, and is 0. It is more preferably 5.5% by weight or more, usually 5% by weight or less, and more preferably 3% by weight or less. If the content of the sintering aid contained in the raw material powder is low, it is difficult to obtain a dense silicon nitride sintered body, and if the content of the sintering aid is high, the mechanical properties such as fracture toughness of the silicon nitride sintered body are high. Is easy to decrease.
  • the average particle size of the silicon powder contained in the raw material powder can be, for example, 5 ⁇ m or less.
  • the average particle size of silicon nitride can be, for example, 0.5 ⁇ m or less.
  • the average particle size of the sintering aid may be 10 ⁇ m or less, 7 ⁇ m or less, 5 ⁇ m or less, or 3 ⁇ m or less, although it depends on the type of the sintering aid. It may be 2 ⁇ m or less, 1 ⁇ m or less, or 0.4 ⁇ m or less.
  • One form of the above-mentioned second method is a method for producing a silicon nitride sintered body containing a rare earth element and an aluminum element, which is a mixing step of dry-mixing a silicon powder and a raw material powder containing a sintering aid. It has a molding step of molding the mixed raw material powder into a green compact and a sintering step of sintering the green compact, and the silicon powder is contained in an amount of 45% by weight or more based on the whole raw material powder. Is done.
  • the mixing step is a step of mixing the raw material powder without using a binder component.
  • the predetermined temperature is not maintained for 1 hour or more and the speed is 15 ° C./min or less. Includes a step of raising the temperature.
  • the sintering temperature is in the range of 1600 ° C to 1900 ° C.
  • the sintering aid contains a rare earth oxide and aluminum oxide, and the raw material powder contains the rare earth oxide in an amount of 9.5% by weight or more and 17% by weight or less based on the whole raw material powder, and the aluminum oxide is contained. Is contained in an amount of 9.5% by weight or more and 17% by weight or less based on the whole raw material powder.
  • the rare earth oxide contains at least one selected from the group consisting of Y2O3 , CeO2 , Nd2O3 , and Eu2O3 .
  • the sintering aid contains a transition metal compound, and the raw material powder contains the transition metal compound in an amount of 0.1% by weight or more and 5% by weight or less based on the total amount of the raw material powder.
  • the transition metal element contains at least one selected from the group consisting of Ti, Cr, and Mn.
  • silicon nitriding and thereafter. can be promoted ((4) above).
  • a transition metal compound of 0.1% by weight or more and 5% by weight or less as a sintering aid silicon can be promoted ((6) above).
  • the use of the silicon nitride sintered body of the present embodiment is not particularly limited, but it is used for bearing members, rolling roll materials, compressor vanes, gas turbine blades, engine parts, etc. because of its excellent mechanical properties and thermal conductivity. Can be done.
  • the bearing member for example, it can be used for a bearing member such as a rolling bearing, a linear motion guide bearing, a ball screw, and a linear motion bearing, and can be particularly preferably used as a rolling element of a bearing.
  • FIG. 1 is a cross-sectional view of a deep groove ball bearing.
  • an inner ring 2 having an inner ring raceway surface 2a on the outer peripheral surface and an outer ring 3 having an outer ring raceway surface 3a on the inner peripheral surface are arranged concentrically, and a plurality of rolling bearings 1 are arranged between the inner ring raceway surface 2a and the outer ring raceway surface 3a.
  • Individual balls (rolling elements) 4 are arranged. These balls 4 are formed of the above-mentioned silicon nitride sintered body. The ball 4 is held by the cage 5.
  • the openings 8a and 8b at both ends in the axial direction of the inner and outer rings are sealed by the sealing member 6, and the grease composition 7 is sealed at least around the ball 4.
  • the grease composition 7 is lubricated by interposing the raceway surface with the ball 4.
  • the use of the bearing of this embodiment is not particularly limited, but by using a rolling element made of a silicon nitride sintered body, it functions as an insulating bearing, so that a structure in which a current may flow inside the bearing in use.
  • a rolling element made of a silicon nitride sintered body
  • it can be applied to applications such as traction motors, general-purpose motors, and generators of railway vehicles.
  • flying cars which have been attracting attention as a means of transportation in place of automobiles in recent years. Flying cars are expected to solve various social problems, and are expected to be used in various situations such as intra-regional movement, inter-regional movement, tourism / leisure, emergency medical care, and disaster relief.
  • VTOL Vertical Take-Off and Landing aircraft
  • eVTOL electric vertical take-off and landing aircraft
  • the electric vertical take-off and landing machine equipped with the bearing of the present invention will be described with reference to FIG.
  • the electric vertical take-off and landing aircraft 11 shown in FIG. 2 is a multicopter having a main body portion 12 located in the center of the fuselage and four drive units 13 arranged in front, rear, left and right.
  • the drive unit 13 is a device that generates lift and propulsion force of the electric vertical take-off and landing machine 11, and the electric vertical take-off and landing machine 11 flies by the drive of the drive unit 13.
  • the electric vertical take-off and landing aircraft 11 may have a plurality of drive units 13, and is not limited to four.
  • the main body 12 has a living space where occupants (for example, about 1 to 2 people) can board. This living space is provided with an operation system for determining the traveling direction and altitude, and instruments for indicating altitude, speed, flight position, and the like.
  • Four arms 12a extend from the main body 12, and a drive unit 13 is provided at the tip of each arm 12a.
  • the arm 12a is integrally provided with an annular portion that covers the rotation periphery of the rotary blade 14 in order to protect the rotary blade 14.
  • a skid 12b that supports the aircraft at the time of landing is provided at the lower portion of the main body portion 12.
  • the drive unit 13 has a rotary blade 14 and a motor 15 for rotating the rotary blade 14.
  • a pair of rotary blades 14 are provided on both sides in the axial direction with the motor 15 interposed therebetween.
  • Each rotor 14 has two blades extending radially outward.
  • the main body 12 is provided with a battery (not shown) and a control device (not shown).
  • the control device is also called a flight controller.
  • the control of the electric vertical take-off and landing aircraft 11 is carried out by the control device, for example, as follows.
  • the control device outputs a command to change the rotation speed to the motor 15 whose lift should be adjusted from the difference between the current posture and the target posture. Based on the command, the amount of electric power sent from the battery to the motor 15 by the amplifier provided in the motor 15 is adjusted, and the rotation speed of the motor 15 (and the rotary blade 14) is changed. Further, the adjustment of the rotation speed of the motor 15 is performed for the plurality of motors 15 at the same time, thereby determining the posture of the machine body.
  • FIG. 3 shows a partial cross-sectional view of the motor in the drive unit.
  • the above-mentioned rotary blade is attached to one end side (upper side of the figure) of the rotary shaft 17 of the motor 15, and a rotor is attached to the other end side (lower side of the figure).
  • the rotor is arranged to face the stator fixed to the housing and is rotatable with respect to the stator.
  • the motor 15 a configuration of an outer rotor type brushless motor or an inner rotor type brushless motor can be adopted.
  • the motor 15 includes a housing (device housing) 16, a rotor (not shown), a stator (not shown), an amplifier (not shown), and two rolling bearings (deep groove ball bearings) 21, 21.
  • the housing 16 has an outer cylinder 16a and an inner cylinder 16b, and a cooling medium flow path 16c is provided between them. By flowing a cooling medium through the flow path 16c, an excessive temperature rise can be prevented.
  • the rolling bearings 21 and 21 rotatably support the rotating shaft 17 in the inner cylinder 16b.
  • the ball 24 of the rolling bearing 21 is formed of the silicon nitride sintered body described above.
  • the rolling bearing 21 corresponds to the bearing of the present invention.
  • the outer diameter shape of the outer ring 23 is substantially the same as the fitting portion on the inner circumference of the housing, and is directly fitted to the housing 16 without a bearing housing or the like.
  • An inner ring spacer 18 and an outer ring spacer 19 are inserted between the rolling bearings 21 and 21, and a preload is applied.
  • the outer ring spacer 19 is provided with nozzle members 20 and 20 for injecting lubricating oil for cooling and lubricating the rolling bearings 21 and 21.
  • the nozzle member 20 has an internal lubricating oil flow path that guides air oil supplied from an external lubricating oil supply device (not shown) to the bearing space.
  • the bearing configuration in the drive unit is not limited to the configuration shown in FIG. In FIG. 3, the rotary shaft of the motor and the rotary shaft of the rotary blade are the same rotary shaft, but the rotary shaft of the motor and the rotary shaft of the rotary blade may be connected via a transmission mechanism. ..
  • the rolling bearing that supports the rotating shaft in the drive unit may be a rolling bearing that supports the rotating shaft of the motor, or may be a rolling bearing that supports the rotating shaft of the rotary blade.
  • Test Example 1 Raw material powders were prepared at the blending ratios shown in Table 2, 3% by weight of an organic binder was added thereto, silicon nitride balls were used as a medium, ethanol was used as a solvent, and the mixture was mixed by a ball mill at a rotation speed of 200 rpm for 48 hours. The mixed slurry was dried by a spray-drying method and granulated to obtain granulated powder. Table 1 shows the specifications of the materials used to obtain the granulated powder.
  • Example 1 to 26 Using the granulated powder obtained above, it was formed into a spherical green compact having a diameter of 11 mm by a cold isobaric pressurization method using a rubber mold. After degreasing the green compact at a temperature of 800 ° C. for 48 hours in a nitrogen atmosphere, the temperature is raised to 1400 ° C. at a heating rate of 2.5 ° C./min, and the temperature is 1400 in a nitrogen atmosphere (pressure: 0.9 MPa). It was held at ° C. for 4 hours to be nitrided. Then, the nitrided green compact is heated to a temperature of 1550 ° C. to 1950 ° C. at a heating rate of 2.5 ° C./min to 20 ° C./min, and is baked in a nitrogen atmosphere (pressure: 0.9 MPa). The silicon nitride sintered body was obtained by holding at the forming temperature for 4 hours.
  • Example 27-Example 29> Using the granulated powder obtained above, it was formed into a spherical green compact having a diameter of 11 mm by a cold isobaric pressurization method using a rubber mold. After degreasing the green compact at a temperature of 800 ° C. for 48 hours in a nitrogen atmosphere, the temperature is raised to 1800 ° C. at a heating rate of 20 ° C./min, and the sintering temperature is 1800 in a nitrogen atmosphere (pressure: 0.9 MPa). The silicon nitride sintered body was obtained by holding at ° C. for 4 hours. In Examples 27 to 29, the step of nitriding at a temperature of 1400 ° C. for 4 hours (temperature holding) was omitted.
  • the obtained spherical silicon nitride sintered body was ball-polished until it became G5 in accordance with JIS B1563 to prepare a 3/4 inch (diameter 9.525 mm) spherical test piece.
  • ⁇ Analysis of inclusions (I)> The cut surface of the test piece obtained in Example 6 was analyzed by EDX using a scanning electron microscope (S300, manufactured by Hitachi, Ltd.), and the type and content of the inclusion (I) contained in the surface layer portion. Was measured.
  • the inclusions (I) contain chromium silicide, and the elements contained in the inclusions (I) and their contents are 56% by weight of chromium (Cr) and 44% by weight of silicon (Si). there were.
  • Test Example 2 In Test Example 2, granulated powder was obtained by dry mixing except for Example 30. First, the raw material powders shown in Table 1 above were prepared at the blending ratios shown in Table 2 above.
  • Examples 1 to 29, Comparative Examples 1 to 2 Using a silicon nitride ball as a medium, dry mixing was performed by a ball mill at a rotation speed of 200 rpm for 48 hours. Using the obtained mixed powder, it was formed into a spherical green compact having a diameter of 11 mm by a cold isobaric pressurization method using a rubber mold. This green compact is heated from room temperature to a temperature of 1550 ° C. to 1950 ° C. at a temperature rising rate of 2.5 ° C./min to 20 ° C./min shown in Table 2 in a nitrogen atmosphere (pressure: 0.9 MPa). , The silicon nitride sintered body was obtained by holding at the sintering temperature for 4 hours.
  • Example 30 To the raw material powder, 3% by weight of an organic binder was added to the whole raw material powder, silicon nitride balls were used as a medium, ethanol was used as a solvent, and the mixture was mixed by a ball mill at a rotation speed of 200 rpm for 48 hours. The mixed slurry was sprayed by a spray-drying method and dried to obtain granulated powder. Using the obtained granulated powder, it was formed into a spherical green compact having a diameter of 11 mm by a cold isobaric pressurization method using a rubber mold. After degreasing the green compact at a temperature of 800 ° C. for 48 hours in a nitrogen atmosphere, the temperature is raised to 1800 ° C. at a heating rate of 2.5 ° C./min, and sintering is performed in a nitrogen atmosphere (pressure: 0.9 MPa). A silicon nitride sintered body was obtained by holding at a temperature of 1800 ° C. for 4 hours.
  • the obtained spherical silicon nitride sintered body was ball-polished until it became G5 in accordance with JIS B1563 to prepare a 3/4 inch (diameter 9.525 mm) spherical test piece.
  • Example 27 which gave good results in each case, was used (see Tables 4 and 5).
  • Example 27 Using each test piece of Example 27, a rolling fatigue test under a higher load condition than that of Test Example 1 was performed. The same conditions were used except that the test conditions of Test Example 1 were changed to a load load of 3.5 GPa and a test time of 630 hours. The presence or absence of peeling of the test piece within the test time was evaluated. The results are shown in Table 6.
  • Example 27 As shown in Table 6, in Example 27 (wet type), there were pores having a diameter of 10 ⁇ m or more and less than 50 ⁇ m, whereas in Example 27 (dry type), there were no pores having a diameter of 10 ⁇ m or more. rice field. Further, in Example 27 (dry type), peeling did not occur in the rolling fatigue test under high load conditions. Compared to dry mixing, in the case of wet granulation using an organic binder or the like, the granulated powder becomes harder, so that it is less likely to be crushed sufficiently by pressurization, and gaps remain on the meeting surface of the granulated powder in the molded body. It is considered easy. This may be a defect of the sintered body depending on the usage pattern. In the rolling fatigue test of Example 27 (wet), it is considered that as a result of using the sintered body as a rolling body under high surface pressure, shedding occurred along the defects of the meeting surface, which led to a decrease in life.
  • the silicon nitride sintered body of the present invention can be suitably used for rolling bearings such as rolling bearings, linear motion guide bearings, ball screws, and linear motion bearings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

機械的特性、特に破壊靱性が良好であり、製品に加工した場合に良好な製品寿命を有する窒化ケイ素焼結体、それを用いた転動体、および軸受を提供する。窒化ケイ素焼結体は、希土類元素およびアルミニウム元素を含み、希土類元素の含有量は、窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、アルミニウム元素の含有量は、窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、窒化ケイ素焼結体の表面から2mm以内の領域である表層部に介在物(I)を有し、表層部の総断面積に対する介在物(I)の総断面積の割合は0.05%以上である。

Description

窒化ケイ素焼結体、それを用いた転動体、および軸受
 本発明は、窒化ケイ素焼結体、それを用いた転動体、および軸受に関する。
 窒化ケイ素(Si)焼結体は、優れた機械特性、熱伝導性、および電気絶縁性を有することから、ベアリング部材、エンジン部品、工具材料、および放熱基板材料などへの適用が進められている。窒化ケイ素焼結体は窒化ケイ素粉末を出発原料として用いて製造することが知られている。窒化ケイ素粉末は難焼結性であるため、緻密化した窒化ケイ素焼結体を製造するためには、窒化ケイ素粉末とともに焼結助剤が用いられる。このような焼結助剤として、一般的には希土類元素の酸化物、酸化アルミニウム、酸化マグネシウム、酸化シリコンなどが挙げられるが、窒化ケイ素焼結体の機械特性を向上するために、遷移金属元素を含む材料を焼結助剤として用いることも検討されている(例えば、特許文献1、2)。
 窒化ケイ素粉末は価格が高いため、窒化ケイ素粉末を用いて窒化ケイ素焼結体を製造すると、窒化ケイ素焼結体の価格も上昇する傾向にある。そこで、窒化ケイ素粉末に比較して低価格であるケイ素粉末(金属シリコン粉末)を出発原料として用い、これを反応焼結させることにより窒化ケイ素焼結体を製造する製造方法が注目されている(例えば、特許文献3~5)。このような製造方法として、PS-RBSN(Post-Sintering of Reaction Bonded Silicon-Nitride)法と称される方法が知られている。PS-RBSN法は、窒素ガスを含む環境下において、例えば温度1100℃~1450℃付近で熱処理することによりケイ素粉末を成形した圧粉体を窒化させる第1工程と、第1工程で得られた窒化体を、例えば温度1600℃~1950℃付近で熱処理することにより緻密化する第2工程とを含む。
特開2013-234120号公報 国際公開第2015/099148号 特開2004-149328号公報 特開2008-247716号公報 特開2013-49595号公報
 PS-RBSN法により窒化ケイ素焼結体を製造する際にケイ素粉末が十分に窒化されないと、窒化ケイ素焼結体中にケイ素が残存することになる。残存したケイ素は、窒化ケイ素焼結体の機械的特性の低下を引き起こす原因となり得るため、PS-RBSN法により製造された窒化ケイ素焼結体は、出発原料に窒化ケイ素粉末を用いて製造された窒化ケイ素焼結体に比較すると機械的特性に劣る場合があった。また、窒化ケイ素焼結体を転動体などの製品に加工した場合に製品寿命が短い場合があることも見出された。
 本発明は、機械的特性、特に破壊靱性が良好であり、製品に加工した場合に良好な製品寿命を有する窒化ケイ素焼結体、それを用いた転動体、および軸受の提供を目的とする。
 本発明の窒化ケイ素焼結体は、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体であって、上記希土類元素の含有量は、上記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、上記アルミニウム元素の含有量は、上記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であることを特徴とする。
 上記希土類元素が、Y、Ce、NdおよびEuからなる群より選ばれる1種以上を含むことを特徴とする。また、上記希土類元素がCeを含むことを特徴とする。
 上記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に介在物(I)を有し、上記表層部の総断面積に対する上記介在物(I)の総断面積の割合が0.05%以上であることを特徴とする。
 上記介在物(I)が、遷移金属元素を含む介在物(It)を含むことを特徴とする。また、上記介在物(It)が遷移金属元素のケイ化物であることを特徴とする。
 上記遷移金属元素が、Ti、Cr、およびMnからなる群より選ばれる1種以上を含むことを特徴とする。また、上記遷移金属元素がCrを含むことを特徴とする。
 上記介在物(I)の最大径が50μm以下であることを特徴とする。
 上記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に空孔を有し、該空孔の最大径が50μm以下であることを特徴とする。
 本発明の転動体は、本発明の窒化ケイ素焼結体を用いたことを特徴とする。
 本発明の軸受は、本発明の転動体を用いたことを特徴とする。
 上記軸受は、回転翼および該回転翼を回転させるモータを有する駆動部を複数備え、上記回転翼の回転によって飛行する電動垂直離着陸機に搭載され、上記駆動部における回転軸を支持する軸受であることを特徴とする。
 本発明によれば、破壊靱性が良好であり、製品に加工した場合に良好な製品寿命を有する窒化ケイ素焼結体、それを用いた転動体、および軸受を提供することができる。
本発明の軸受の一例を示す縦断面図である。 本発明の軸受が搭載される電動垂直離着陸機の斜視図である。 電動垂直離着陸機の駆動部におけるモータの一部断面図である。
 以下、本発明の実施形態について説明する。
(窒化ケイ素焼結体)
 本実施形態の窒化ケイ素焼結体は、希土類元素およびアルミニウム元素を含む。窒化ケイ素焼結体において、希土類元素の含有量は、窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、アルミニウム元素の含有量は、窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下である。
 希土類元素としては、例えば、イットリウム(Y)、ランタン(La)、セリウム(Ce)、サマリウム(Sm)、ネオジウム(Nd)、ジスプロシウム(Dy)、ユウロピウム(Eu)、エルビウム(Er)などが挙げられる。このうち、イットリウム(Y)、セリウム(Ce)、ネオジウム(Nd)、ユウロピウム(Eu)が好ましい。特に、窒化をより促進させることができ、製造効率の向上を図れることからセリウム(Ce)を含むことがより好ましい。
 希土類元素の上記含有量は、6重量%以上であり、6.5重量%以上であることが好ましく、7重量%以上であってもよい。希土類元素の上記含有量は、13重量%以下であり、12重量%以下であってもよく、11重量%以下であってもよい。希土類元素の含有量が上記の範囲内であることにより、良好な破壊靱性を有し、製品に加工したときに良好な製品寿命を有する窒化ケイ素焼結体が得られやすい。
 希土類元素は、例えば窒化ケイ素焼結体の製造時に用いた希土類元素を含む焼結助剤(通常、希土類元素の酸化物)に由来するものである。窒化ケイ素焼結体中の希土類元素の含有量が上記の範囲内であることにより、PS-RBSN法により窒化ケイ素焼結体を製造する場合に、原料であるケイ素粉末(金属シリコン粉末)の窒化反応を促進し、その後の焼結を促進することができる。PS-RBSN法は、ケイ素の窒化工程と、その後の焼結工程とを含む2段階焼結法をいう。希土類元素の含有量は、原料に添加する希土類元素を含む焼結助剤(例えば、希土類元素の酸化物)の添加量によって調整することができる。
 アルミニウム元素の上記含有量は、6重量%以上であり、6.5重量%以上であることが好ましく、7重量%以上であってもよい。アルミニウム元素の上記含有量は、13重量%以下であり、12重量%以下であってもよく、11重量%以下であってもよい。アルミニウム元素の含有量(酸化物換算)は、希土類元素の含有量(酸化物換算)の±5重量%以内であってもよく、±2重量%以内であってもよく、±1重量%以内であってもよく、希土類元素の含有量と同じであってもよい。アルミニウム元素の含有量が上記の範囲内であることにより、良好な破壊靱性を有し、製品に加工したときに良好な製品寿命を有する窒化ケイ素焼結体が得られやすい。
 アルミニウム元素は、例えば窒化ケイ素焼結体の製造時に用いたアルミニウムを含む焼結助剤(通常、酸化アルミニウム)に由来するものである。窒化ケイ素焼結体中のアルミニウム元素の含有量が上記の範囲内であることにより、PS-RBSN法により窒化ケイ素焼結体を製造する場合に焼結を促進することができる。アルミニウム元素の含有量は、原料に添加するアルミニウム元素を含む焼結助剤(例えば、酸化アルミニウム)の添加量によって調整することができる。
 希土類元素およびアルミニウム元素の上記含有量は、蛍光X線分析装置(XRF)、エネルギー分散型X線分析(EDX)、または高周波誘導結合プラズマ(ICP)発光分析装置を用いて決定すればよい。具体的には、上記分析装置により、窒化ケイ素焼結体中の希土類元素およびアルミニウム元素の含有量を求め、希土類元素(RE)の酸化物(REまたはREO)および酸化アルミニウム(Al)に換算すればよい。窒化ケイ素焼結体を構成する他の成分の元素についても上記分析装置を用いて分析し、窒化ケイ素焼結体の総重量を算出して、希土類元素およびアルミニウム元素の上記含有量を決定すればよい。窒化ケイ素焼結体を製造するために用いる原料粉末にケイ素(金属シリコン粉末)が含まれ、当該ケイ素が窒化によりSiとなる場合、窒化ケイ素焼結体におけるSiの重量はケイ素の重量の1.67倍となる。したがって、ケイ素が窒化されたときの重量変化を考慮すれば、原料粉末の組成から希土類元素の酸化物および酸化アルミニウムの含有量を算出することができる。
 本実施形態の窒化ケイ素焼結体は、表面から2mm以内の領域である表層部に介在物(I)を有することが好ましい。介在物(I)は、窒化ケイ素以外の成分を含むものであり、例えば遷移金属元素を含む介在物(It)、窒化されていないケイ素元素を含む介在物(Is)などが挙げられる。介在物(It)は、遷移金属元素のケイ化物であることが好ましい。介在物(Is)は、例えば窒化されていないケイ素元素の凝集体である。介在物(I)は、介在物(It)を含むことが好ましく、介在物(Is)を含まないか、その存在割合が少ないことが好ましい。介在物は、窒化ケイ素焼結体の表面から2mm以内の領域である表層部に全体が存在するものをいう。
 介在物(It)は、例えば窒化ケイ素焼結体の製造時に用いた遷移金属元素を含む焼結助剤(通常、遷移金属元素の酸化物)に由来するものであり、例えば遷移金属元素のケイ化物は窒化ケイ素焼結体の製造時に形成される。PS-RBSN法により窒化ケイ素焼結体を製造する場合、遷移金属元素を含む焼結助剤を用いることにより、ケイ素粉末の窒化反応を促進することができ、また窒化ケイ素の針状結晶の成長を促進することができる。そのため、ケイ素を窒化するために要する熱処理時間を抑制することができ、窒化ケイ素焼結体の製造時のエネルギー効率を向上することができる。
 一方、窒化ケイ素焼結体を製造するための原料に窒化ケイ素粉末が含まれる場合、窒化ケイ素粉末と、酸化クロム(Cr)などの遷移金属元素を含む焼結助剤(遷移金属元素の酸化物)とを混合すると、焼結助剤が窒化ケイ素粉末を酸化することにより、原料の組成にズレが生じ、良好な焼結を行えなくなることがある。これに対し、PS-RBSN法により窒化ケイ素焼結体を製造する場合には、原料に主にケイ素粉末を用い、原料に含まれる窒化ケイ素粉末の含有量を低減することができるため、上記のような不具合が生じにくく、緻密な窒化ケイ素焼結体を得ることができる。
 介在物(Is)は、PS-RBSN法により窒化ケイ素焼結体を製造する際に、原料であるケイ素粉末(金属シリコン粉末)の窒化が不十分である場合などに形成されることがある。表層部に、径の大きい介在物(Is)が存在したり介在物(Is)の占める割合が増加したりすると、窒化ケイ素焼結体の破壊靱性などの機械的特性が低下しやすく、製品に加工したときの製品寿命が低下しやすい。窒化ケイ素焼結体の表層部に存在する介在物(Is)は少ない方が好ましく、存在していないことがより好ましい。
 遷移金属元素は、IUPAC周期表の第3属から第11属までの間に含まれる元素であれば特に限定されない。遷移金属元素としては、Ti、Cr、およびMnからなる群より選ばれる1種以上であることが好ましく、Crを含むことがさらに好ましい。遷移金属元素としてCrを含むことにより、窒化ケイ素焼結体の破壊靱性をより一層向上することができる。
 窒化ケイ素焼結体において、遷移金属元素の含有量は、窒化ケイ素焼結体の総重量に対して、酸化物換算で0.1重量%以上であることが好ましく、0.3重量%以上であることがより好ましく、0.5重量%以上であってもよく、通常5重量%以下であり、3重量%以下であってもよく、2重量%以下であることがより好ましく、1重量%以下であってもよい。遷移金属元素の上記含有量は、希土類元素およびアルミニウム元素の含有量を決定する方法と同様の方法で決定することができる。
 窒化ケイ素焼結体の表層部に存在する介在物(I)の最大径は特に限定されない。具体的には、介在物(I)の最大径は、50μm以下であり、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよく、通常0.5μm以上である。表層部における介在物(I)の最大径は、表層部に存在する介在物(I)のうちの径が最大である介在物(I)の径をいう。介在物(I)の最大径が上記の範囲内であることにより、介在物(I)が破壊源となることを抑制しやすくなるため、良好な破壊靱性を有する窒化ケイ素焼結体が得られやすい。また、介在物(I)の最大径が上記の範囲内であることにより、窒化ケイ素焼結体から介在物が脱粒して欠陥となることを抑制しやすくなるため、窒化ケイ素焼結体を軸受の転動体などの製品に加工した場合に、良好な製品寿命を得やすい。介在物(I)の最大径は、例えば、原料であるケイ素粉末の窒化の程度、原料に添加する遷移金属元素を含む焼結助剤の添加量および/または粒径、遷移金属元素の種類によって調整することができる。
 窒化ケイ素焼結体の断面において、表層部の総断面積に対する介在物(I)の総断面積の割合([介在物(I)の総断面積/表層部の総断面積]×100)は、0.05%以上であることが好ましく、0.1%以上であってもよく、0.15%以上であってもよく、0.3%以上であってもよく、0.6%以上であってもよい。上記割合は、通常7.0%以下であり、3.0%以下であってもよく、2.0%以下であってもよく、1.5%以下であってもよい。介在物(I)の上記割合は、表層部に存在するすべての介在物の断面積を合計した総断面積の、表層部の総断面積に対する割合である。上記割合が上記の範囲内であることにより、良好な破壊靱性を有し、製品に加工したときに良好な製品寿命を有する窒化ケイ素焼結体が得られやすい。また上記割合が大きすぎると、介在物が連なって脱粒することにより、軸受寿命試験の結果に悪影響を及ぼしやすい。介在物(I)の上記割合は、例えば、原料であるケイ素粉末の窒化の程度、原料に添加する遷移金属元素を含む焼結助剤の添加量および/または粒径、遷移金属元素の種類によって調整することができる。
 また、本実施形態の窒化ケイ素焼結体は、表面から2mm以内の領域である表層部に空孔を有することが好ましい。さらに、該空孔の最大径は、窒化ケイ素焼結体の断面において50μm以下であることが好ましい。空孔の最大径は、40μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよく、空孔を有していなくてもよい。空孔の最大径が上記の範囲内であることにより、窒化ケイ素焼結体を軸受の転動体などの製品に加工した場合に、良好な製品寿命を得やすい。表層部における空孔は、窒化ケイ素焼結体の表面から2mm以内の領域である表層部に存在するものをいい、表層部に空孔全体が存在するものをいうものとする。表層部における空孔の最大径は、表層部に存在する空孔のうちの径が最大である空孔の径をいう。空孔の最大径は、例えばPS-RBSN法により窒化ケイ素焼結体を製造する場合に、原料として用いる窒化ケイ素の含有量および/または焼結助剤の添加量を調整することによって調整することができる。
 介在物(I)の最大径、介在物(I)の上記割合、および空孔の最大径は、後述する実施例に記載の方法によって作製した試験片の断面において、表層部に全体が存在する介在物(I)または空孔について測定した値である。介在物(I)の最大径、介在物(I)の上記割合、および空孔の最大径は、後述する実施例に記載の方法によって算出することができる。
 本実施形態の窒化ケイ素焼結体は、後述するように主にPS-RBSN法により製造される。PS-RBSN法により製造された窒化ケイ素焼結体は、一度窒化されることで圧粉体の相対密度が上がるので、原料に窒化ケイ素粉末を用いた焼結体よりも収縮率が小さくなる。なお、収縮率は下記式より算出される。下記式中の「寸法」は、圧粉体と窒化ケイ素焼結体で互いに対応する箇所の寸法である。例えば両者が球形の場合は各直径などを用いることができる。
収縮率[%]=〔{(圧粉体の寸法)-(窒化ケイ素焼結体の寸法)}/圧粉体の寸法〕×100
 本実施形態の窒化ケイ素焼結体の収縮率は特に限定されないが、焼結体の寸法精度などの観点から、15%以下であることが好ましく、14%以下であってもよく、13%以下であってもよい。また、収縮率は例えば7%以上であり、8%以上であってもよく、10%以上であってもよい。
 また、本実施形態の窒化ケイ素焼結体は、希土類元素を、窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下含み、かつ、アルミニウム元素を、窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下含んでおり、製造時に、例えば希土類元素を含む焼結助剤およびアルミニウムを含む焼結助剤を相当量用いることで、原料にケイ素粉末を用いた場合でも窒化反応を十分に進行させることができる。その結果、良好な破壊靱性が得られる。破壊靭性(JIS R 1607に準拠)は、例えば3MPa・m1/2以上であり、4MPa・m1/2以上が好ましく、5MPa・m1/2以上がより好ましい。また、破壊靭性は、例えば8MPa・m1/2以下である。
 本実施形態の窒化ケイ素焼結体の特に好ましい形態は、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体であって、さらに、上記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に介在物(I)および空孔を有し、上記希土類元素の含有量は、上記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、上記アルミニウム元素の含有量は、上記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、上記表層部に存在する上記介在物(I)の最大径は50μm以下であり、上記窒化ケイ素焼結体の断面において、上記表層部の総断面積に対する上記介在物(I)の総断面積の割合は0.1%以上であり、上記表層部に存在する上記空孔の最大径は50μm以下である。また、この形態に対して、上述した元素や、上述した数値範囲などを適宜組み合わせることができる。
 本実施形態の窒化ケイ素焼結体の形状は特に限定されず、球状、円柱形状、円錐形状、円錐台形状、直方体形状など、用途によって適宜選択すればよいが、球状であることが好ましい。窒化ケイ素焼結体のサイズも特に限定されず、例えば、球状であれば直径を0.5cm~10cmとすることができ、円柱形状であれば底面の直径を0.5cm~15cmとし、高さを3cm~20cmとすることができる。
 上記の窒化ケイ素焼結体は、PS-RBSN法(2段階焼結法)によって製造されることが好ましい。具体的には、以下の第1の手法および第2の手法によって製造できる。
(第1の手法)
 PS-RBSN法では、粉末の流動性を向上するために造粒することが多い。第1の手法は、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体を製造する方法であって、例えば、ケイ素粉末と焼結助剤を含む原料粉末を用いて造粒粉を得る造粒工程と、得られた造粒粉を圧粉体に成形する成形工程と、脱脂工程と、脱脂された圧粉体を焼結する焼結工程とを含む。焼結工程後、必要に応じて窒化ケイ素焼結体に対して研磨などを行ってもよい。
 造粒工程では、原料粉末とバインダ成分を、水および/または有機溶媒(例えばエタノール)で混合してスラリー化し、それをスプレードライなどで噴霧造粒乾燥することで造粒粉を得る。バインダ成分には有機バインダなどが用いられ、原料粉末全体に対して、例えば1重量%~10重量%添加される。
 続く成形工程で、造粒粉を所定の形状に成形して圧粉体を得る。脱脂工程において、得られた圧粉体を窒素雰囲気中で温度700℃~1000℃で加熱して脱脂させる。
 焼結工程は、脱脂後の圧粉体を、例えば窒素雰囲気中で温度1200℃~1500℃で熱処理することにより窒化させる第1工程と、得られた窒化体を、例えば窒素雰囲気中で1600℃~1950℃(好ましくは1600℃~1900℃)で熱処理することにより焼結させる第2工程とを有する。上記第1工程では、ケイ素を完全に窒化させるため、温度1200℃~1500℃(好ましくは1300℃~1500℃)で、長時間(例えば1時間以上)、温度保持することが好ましい。本明細書において、温度保持とは一定時間その温度を維持することをいう。また、第1工程から第2工程に移行する際の温度の昇温速度は、例えば2℃/min以上であり、2.5℃/min以上であってもよく、5℃/min以上であってもよい。また、昇温速度は例えば20℃/min以下であり、15℃/min以下が好ましい。
 なお、後述の実施例に示すように、焼結助剤の添加量および/または粒径、希土類元素の種類を調整することで窒化を促進させることができる。その結果、第1工程における温度保持を省略することができる。また、第1工程から第2工程への移行時の昇温速度を速くすることができる。これにより、製造時間の短縮化や製造時のエネルギー効率の向上を図ることができる。
(第2の手法)
 第2の手法は、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体を製造する方法であって、例えば、ケイ素粉末と焼結助剤を含む原料粉末を乾式で混合する混合工程と、混合された原料粉末を圧粉体に成形する成形工程と、圧粉体を焼結する焼結工程とを含む。第2の手法は、第1の手法と異なり、PS-RBSN法の全工程を乾式で行うことを特徴としている。なお、焼結工程後、必要に応じて窒化ケイ素焼結体に対して研磨などを行ってもよい。
 混合工程は、原料粉末を水および有機溶媒を使用せずに乾式で混合する工程である。また、この工程ではバインダ成分を用いずに混合することが好ましい。混合後の粉末の粒径は、特に限定されないが、D90が10μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましく、10μm以上20μm以下がさらに好ましい。また、D50が2μm以上10μm以下であることが好ましく、3μm以上9μm以下であることがより好ましく、4μm以上8μm以下であることがさらに好ましい。D90および/またはD50が上記の範囲内であることにより、良好な流動性および成形性を発揮させつつ、緻密な窒化ケイ素焼結体を得ることができる。なお、D50およびD90は、それぞれ体積基準の累積50%径および累積90%径であり、レーザー回折散乱式粒度分布測定などによって得られる。
 続く成形工程で、混合粉を所定の形状に成形して圧粉体を得る。焼結工程は、得られた圧粉体を、例えば窒素雰囲気中で温度1200℃~1500℃で熱処理することにより窒化させる第1工程と、例えば窒素雰囲気中で1600℃~1950℃(好ましくは1600℃~1900℃)で熱処理することにより焼結させる第2工程とを有する。上記第1工程は、製造効率の向上の観点から、温度1200℃~1500℃の範囲内の温度において1時間以上、温度保持しないことが好ましい。具体的には、例えば1100℃程度の温度から所定の昇温速度で上記第2工程の焼結温度まで昇温させることで窒化させることが好ましい。上記昇温速度は、例えば2℃/min以上であり、2.5℃/min以上であってもよく、5℃/min以上であってもよい。また、上記昇温速度は例えば20℃/min以下であり、15℃/min以下が好ましい。
 第2の手法は、第1の手法に比べて、以下のような効果が得られる。
 PS-RBSN法で全工程を乾式で行うことで、例えば、水溶媒を用いた場合のケイ素粉末の酸化を防止することができ、またエタノールなどの有機溶媒による環境負荷を軽減できる。
 PS-RBSN法で有機バインダを用いずに、窒化ケイ素焼結体を作製することで、焼結による収縮を小さくし、焼結体の寸法精度を向上できる。第1の手法の場合、造粒するために有機バインダなどを用いていることから、その後に脱脂工程が必要になるが、脱脂工程によって有機バインダが抜けた後には空隙が生じるため、焼結による収縮がその分大きくなるおそれがある。
 また、収縮が小さくなることで、後続の研磨工程の研磨時間の短縮化などを図ることができる。
 PS-RBSN法でバインダ成分を用いずに、窒化ケイ素焼結体を作製することで、脱脂工程を省略でき、その脱脂工程においてバインダ成分の分解により発生し得るCOなどの温室効果ガスの発生を防止できるので、環境負荷を小さくできる。
 一般的に、従来のSi粉末を原料に用いる方法で緻密な焼結体を得るためには、微細なSi粉末(D50が1μm以下)を使用する必要がある。このような微細な粉末は、流動性および成形性が劣るので、原料粉末とバインダ成分を水またはエタノールなどでスラリー化し、それをスプレードライなどで噴霧造粒乾燥することで造粒体を得る必要がある。しかし、PS-RBSN法では、窒化工程中にSi粉末が体積膨張による破断で微細化するので、緻密な焼結体を得るために、Si粉末のように微細な粉末を原料に用いる必要がない。原料粉末が微細でないため、造粒粉でなくても成形体を得るために必要な流動性および成形性を確保することができる。
 上記第1の手法および第2の手法を含む、上記の窒化ケイ素焼結体の製造において、原料粉末に用いる焼結助剤としては、希土類元素、アルミニウム元素、および遷移金属元素を含むものを用いることが好ましく、これらの酸化物を含むことがより好ましい。希土類元素を含む焼結助剤としては、Y、CeO、Nd、およびEuのうちのいずれかを含むことが好ましい。遷移金属元素を含む焼結助剤としては、Cr、TiO、MnO、およびFeのうちのいずれかを含むことが好ましく、Cr、TiO、およびMnOのうちのいずれかを含むことがより好ましく、Crを含むことがさらに好ましい。
 原料粉末は、ケイ素粉末および焼結助剤以外に、窒化ケイ素粉末および/または有機バインダを含んでいてもよく、希土類元素、アルミニウム元素、および遷移金属元素以外の元素を含む焼結助剤を含んでいてもよい。
 原料粉末に含まれるケイ素粉末の含有量は、ケイ素粉末、窒化ケイ素粉末、および焼結助剤の総重量に対して、45重量%以上であることが好ましく、50重量%以上であることがより好ましく、55重量%以上であることがさらに好ましく、60重量%以上であってもよく、通常、90重量%以下であり、85重量%以下であってもよく、80重量%以下であってもよい。原料粉末に含まれる窒化ケイ素粉末の含有量は、上記総重量に対して、通常30重量%以下であり、25重量%以下であることが好ましく、20重量%以下であることがより好ましく、15重量%以下であってもよく、窒化ケイ素粉末を含んでいなくてもよい。
 原料粉末に含まれる希土類元素を含む焼結助剤(例えば、希土類元素の酸化物)の含有量は、上記総重量に対して、7重量%以上であり、9重量%以上であることが好ましく、9.5重量%以上であることがより好ましく、10重量%以上であってもよい。希土類元素の上記含有量は、17重量%以下であり、15重量%以下であってもよく、14.5重量%以下であってもよい。原料粉末に含まれるアルミニウム元素を含む焼結助剤(例えば、酸化アルミニウム)の含有量は、上記総重量に対して、5重量%以上であり、9重量%以上であることが好ましく、9.5重量%以上であることがより好ましく、10重量%以上であってもよい。アルミニウム元素の上記含有量は、17重量%以下であり、15重量%以下であってもよく、14.5重量%以下であってもよい。原料粉末に含まれる遷移金属元素を含む焼結助剤(例えば、遷移金属元素の酸化物)の含有量は、上記総重量に対して、通常0.1重量%以上であることが好ましく、0.5重量%以上であることがより好ましく、通常5重量%以下であり、3重量%以下であることがより好ましい。原料粉末に含まれる焼結助剤の含有量が少ないと緻密な窒化ケイ素焼結体が得られにくく、焼結助剤の含有量が多いと窒化ケイ素焼結体の破壊靱性などの機械的特性が低下しやすい。
 原料粉末に含まれるケイ素粉末の平均粒径は、例えば5μm以下とすることができる。窒化ケイ素の平均粒径は、例えば0.5μm以下とすることができる。焼結助剤の平均粒径は、焼結助剤の種類にもよるが、通常10μm以下であり、7μm以下であってよく、5μm以下であってもよく、3μm以下であってもよく、2μm以下であってよく、1μm以下であってもよく、0.4μm以下であってもよい。
 上述した第2の手法の一形態は、希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体を製造する方法であって、ケイ素粉末と焼結助剤を含む原料粉末を乾式で混合する混合工程と、混合された上記原料粉末を圧粉体に成形する成形工程と、上記圧粉体を焼結する焼結工程とを有し、上記ケイ素粉末は上記原料粉末全体に対して45重量%以上含まれる。
 さらに、第2の手法の上記一形態は、以下の(1)~(7)の特徴を1つまたは2つ以上有していてもよい。
(1)上記混合工程は、バインダ成分を使用せずに上記原料粉末を混合する工程である。
(2)上記焼結工程は、1000℃~1200℃の範囲内の温度から焼結温度まで昇温させる過程において、1時間以上所定の温度を保持せずに、15℃/min以下の速度で昇温させる工程を含む。
(3)上記焼結温度が1600℃~1900℃の範囲である。
(4)上記焼結助剤は希土類酸化物と酸化アルミニウムを含み、上記原料粉末は、上記希土類酸化物を上記原料粉末全体に対して9.5重量%以上17重量%以下含み、上記酸化アルミニウムを上記原料粉末全体に対して9.5重量%以上17重量%以下含む。
(5)上記希土類酸化物が、Y、CeO、Nd、およびEuからなる群より選ばれる1種以上を含む。
(6)上記焼結助剤は遷移金属化合物を含み、上記原料粉末は、上記遷移金属化合物を上記原料粉末全体に対して0.1重量%以上5重量%以下含む。
(7)上記遷移金属元素が、Ti、Cr、およびMnからなる群より選ばれる1種以上を含む。
 例えば、原料粉末に、焼結助剤として、希土類酸化物を9.5重量%以上17重量%以下、酸化アルミニウムを9.5重量%以上17重量%以下添加することで、ケイ素の窒化およびその後の焼結を促進させることができる(上記(4))。また、焼結助剤として、遷移金属化合物を0.1重量%以上5重量%以下添加することで、ケイ素の窒化を促進させることができる(上記(6))。ケイ素の窒化を促進させることで、一般に行われる窒素雰囲気中1100℃~1450℃で長時間の温度保持が必要にならず、エネルギー効率に優れる方法となる。
(窒化ケイ素焼結体の用途)
 本実施形態の窒化ケイ素焼結体の用途は特に限定されないが、機械特性および熱伝導性に優れることから、軸受部材、圧延用ロール材、コンプレッサ用ベーン、ガスタービン翼、エンジン部品などに用いることができる。軸受部材として、例えば、転がり軸受、直動案内軸受、ボールねじ、直動ベアリングなどの軸受部材に用いることができ、特に軸受の転動体として好適に用いることができる。
 本実施形態の軸受について図1に基づいて説明する。図1は深溝玉軸受の断面図である。転がり軸受1は、外周面に内輪軌道面2aを有する内輪2と内周面に外輪軌道面3aを有する外輪3とが同心に配置され、内輪軌道面2aと外輪軌道面3aとの間に複数個の玉(転動体)4が配置される。これら玉4が、上述した窒化ケイ素焼結体で形成されている。玉4は、保持器5により保持される。また、内・外輪の軸方向両端開口部8a、8bがシール部材6によりシールされ、少なくとも玉4の周囲にグリース組成物7が封入される。グリース組成物7が玉4との軌道面に介在して潤滑される。
(軸受の用途)
 本実施形態の軸受の用途は、特に限定されないが、窒化ケイ素焼結体からなる転動体を用いることで、絶縁軸受としての機能を果たすため、使用上、軸受内部に電流が流れるおそれがある構造への適用に適している。例えば、鉄道車両の主電動機、汎用モータ、発電機などの用途に適用できる。また、近年、自動車に代わる移動手段として注目されている空飛ぶクルマにも適用できる。空飛ぶクルマは、種々の社会的問題の解消に期待されており、地域内移動、地域間移動、観光・レジャー、救急医療、災害救助など、様々な場面での活用が期待されている。
 空飛ぶクルマとしては、垂直離着陸機(VTOL;Vertical Take-Off and Landing aircraft)が注目されている。垂直離着陸機は、空と離発着場を垂直に昇降できることから、滑走路が必要とならず、利便性に優れる。特に、近年ではCOの削減に向けた社会的要請などからバッテリとモータで飛行するタイプの電動垂直離着陸機(eVTOL)が開発の主流となっている。
 本発明の軸受が搭載される電動垂直離着陸機について、図2に基づいて説明する。図2に示す電動垂直離着陸機11は、機体中央に位置する本体部12と、前後左右に配置された4つの駆動部13を有するマルチコプターである。駆動部13は、電動垂直離着陸機11の揚力および推進力を発生させる装置であり、駆動部13の駆動によって電動垂直離着陸機11が飛行する。電動垂直離着陸機11において駆動部13は複数あればよく、4つに限定されない。
 本体部12は乗員(例えば1~2名程度)が搭乗可能な居住空間を有している。この居住空間には、進行方向や高度などを決めるための操作系や、高度、速度、飛行位置などを示す計器類などが設けられている。本体部12からは4本のアーム12aがそれぞれ延び、各アーム12aの先端に駆動部13が設けられている。図2において、アーム12aには、回転翼14を保護するため、回転翼14の回転周囲を覆う円環部が一体に設けられている。また、本体部12の下部には、着陸時に機体を支えるスキッド12bが設けられている。
 駆動部13は、回転翼14と、該回転翼14を回転させるモータ15とを有する。駆動部13において、回転翼14はモータ15を挟んで軸方向両側に一対設けられている。各回転翼14は、径方向外側へ延びる2枚の羽根をそれぞれ有する。
 本体部12には、バッテリ(図示省略)および制御装置(図示省略)が設けられている。制御装置はフライトコントローラとも呼ばれる。電動垂直離着陸機11の制御は、制御装置によって、例えば以下のように実施される。制御装置が、現姿勢と目標姿勢の差から揚力を調整すべきモータ15に回転数変更の指令を出力する。その指令に基づいて、モータ15に備えられたアンプがバッテリからモータ15へ送る電力量を調整し、モータ15(および回転翼14)の回転数が変更される。また、モータ15の回転数の調整は、複数のモータ15に対して、同時に実施され、それによって機体の姿勢が決まる。
 図3は、駆動部におけるモータの一部断面図を示している。図3において、モータ15の回転軸17の一端側(図上側)には上述の回転翼が取り付けられ、他端側(図下側)にはロータが取り付けられる。ロータは、ハウジングに固定されたステータに対向配置され、該ステータに対して回転可能になっている。なお、モータ15は、アウターロータ型のブラシレスモータや、インナーロータ型のブラシレスモータの構成を採用できる。
 図3において、モータ15は、ハウジング(装置ハウジング)16と、ロータ(図示省略)と、ステータ(図示省略)と、アンプ(図示省略)と、2個の転がり軸受(深溝玉軸受)21、21とを備える。ハウジング16は外筒16aと内筒16bを有し、これらの間には冷却媒体流路16cが設けられている。この流路16cに冷却媒体を流すことにより、過度の温度上昇を防止できる。また、転がり軸受21、21は、内筒16b内で回転軸17を回転自在に支持している。図3において、転がり軸受21の玉24が、上述した窒化ケイ素焼結体で形成されている。転がり軸受21が、本発明の軸受に相当する。
 転がり軸受21において、外輪23の外径形状は、ハウジング内周の嵌合部と略同一の形状であり、ハウジング16に対して、軸受ハウジングなどを介さずに直接嵌合されている。転がり軸受21および21の間には内輪間座18、外輪間座19が挿入され、予圧が印加されている。外輪間座19には、転がり軸受21、21の冷却および潤滑のために潤滑油を噴射するためのノズル部材20、20が設けられている。ノズル部材20は、外部の潤滑油供給装置(図示省略)から供給されるエアオイルを軸受空間に導く潤滑油流路を内部に有する。
 電動垂直離着陸機では、ドローンに比べて、モータが高容量化されることから、駆動電流が大きくなり、そのモータの回転軸に発生する電圧(軸電圧)が増大すると考えられる。それに伴って、電食の発生が懸念されるが、上述した窒化ケイ素焼結体からなる転動体を備えた軸受を適用することで、良好な製品寿命を有しながら、通電による電食を好適に防止できる。その結果、軸受の異常の発生を抑制し、電動垂直離着陸機の安全な飛行などに繋がる。また、窒化ケイ素焼結体からなる転動体を用いることで、鉄系材料からなる転動体に比べて、軸受重量の軽量化を図ることもできるため、特に軽量化が要求される電動垂直離着陸機の軸受に適している。
 なお、駆動部における軸受構成は、図3の構成に限定されない。図3では、モータの回転軸と回転翼の回転軸とを同一の回転軸としたが、モータの回転軸と回転翼の回転軸とが伝達機構を介して接続された構成であってもよい。この場合、駆動部における回転軸を支持する転がり軸受は、モータの回転軸を支持する転がり軸受でもよく、回転翼の回転軸を支持する転がり軸受でもよい。
 以下、実施例および比較例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。
〔試験例1〕
 表2に示す配合比で原料粉末を準備し、これに有機バインダを3重量%添加し、メディアとして窒化ケイ素ボールを用い、溶媒としてエタノールを用いて、ボールミルにより回転数200rpmで48時間混合した。混合後のスラリーをスプレードライ法により乾燥して造粒して造粒粉を得た。なお、造粒粉を得るために用いた材料の仕様を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<実施例1~実施例26、実施例30、比較例1~2>
 上記で得た造粒粉を用い、ゴム型を用いた冷間等圧加圧法により、直径11mmの球状の圧粉体に成形した。圧粉体を窒素雰囲気中、温度800℃で48時間脱脂した後、2.5℃/minの昇温速度で温度1400℃まで昇温し、窒素雰囲気中(圧力:0.9MPa)、温度1400℃で4時間保持して窒化させた。その後、窒化させた圧粉体を、2.5℃/min~20℃/minの昇温速度で温度1550℃~1950℃まで昇温し、窒素雰囲気中(圧力:0.9MPa)、その焼結温度で4時間保持して窒化ケイ素焼結体を得た。
<実施例27~実施例29>
 上記で得た造粒粉を用い、ゴム型を用いた冷間等圧加圧法により、直径11mmの球状の圧粉体に成形した。圧粉体を窒素雰囲気中、温度800℃で48時間脱脂した後、20℃/minの昇温速度で温度1800℃まで昇温し、窒素雰囲気中(圧力:0.9MPa)、焼結温度1800℃で4時間保持して窒化ケイ素焼結体を得た。実施例27~実施例29では、温度1400℃で4時間窒化させる工程(温度保持)を省略した。
 実施例および比較例で得られた圧粉体の寸法、および、窒化ケイ素焼結体の寸法をマイクロメータで測定し、下記式より収縮率を算出した。収縮率については、他の測定結果と併せて表4に示す。
収縮率[%]=〔{(圧粉体の直径)-(窒化ケイ素焼結体の直径)}/圧粉体の直径〕×100
 得られた窒化ケイ素焼結体中の各酸化物の組成比について、原料粉末に含まれるケイ素(金属シリコン)が全て窒化され、窒化ケイ素の重量はケイ素の重量の1.67倍になるものとして、原料粉末の組成比から算出した値を表3に示す。
 得られた球状の窒化ケイ素焼結体を、JIS B 1563に準拠し、G5になるまで球研磨し、3/8インチ(直径9.525mm)の球状の試験片を作製した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<介在物(I)の最大径および面積割合の測定、並びに、空孔の最大径の測定>
 実施例および比較例で得た試験片を、その中心を通る断面で切断して、切断面を鏡面研磨した。鏡面研磨した切断面を、株式会社キーエンス製「VHX5000」を用いて撮影し、その撮影画像を、三谷商事株式会社製「WinRoof」を用いて解析し、球状の試験片の表面から2mm以内の範囲に相当する領域である表層部に存在する介在物(I)の最大径および空孔の最大径を測定した。介在物(I)および空孔の径は、介在物(I)および空孔の包絡面積の平方根として求めた(介在物(I)および空孔の径=√(介在物(I)および空孔の包絡面積))。表層部に、径が50μm超の介在物(I)が存在しないものを「A」と評価し、存在するものを「B」として評価した。また、表層部に径が50μm超の空孔が存在しないものを「A」と評価し、存在するものを「B」として評価した。介在物(I)および空孔は、表層部に介在物(I)および空孔の全体が存在するものを測定対象とした。また、表層部の総断面積に対する介在物(I)の総断面積の割合を算出した(介在物(I)の総断面積の割合=介在物(I)の包絡面積÷表層部の総断面積×100)。結果を表4に示す。
<破壊靱性の評価>
 実施例および比較例で得た試験片を、その中心を通る断面で切断して、切断面を鏡面研磨し、JIS R 1607に準拠し、破壊靱性の値を測定した。
<圧砕強度の測定>
 実施例および比較例で得た試験片を用いて2球圧砕試験を行った。圧砕試験はJIS B 1501に準拠した。
<転動疲労試験>
 実施例および比較例で得た試験片を用い、軸受外輪、軸受内輪、および保持器としてNTN株式会社製「6206」を用いて、回転数を3000rpm、負荷荷重1.5GPa、試験時間を168時間として転動疲労試験を行い、製品寿命を評価した。潤滑油は、JXTGエネルギー株式会社製の無添加タービンオイル「VG56」を用いた。試験時間内に試験片が剥離しなかったものを「a」と評価し、剥離したものを「b」と評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
<介在物(I)の分析>
 実施例6で得た試験片の切断面について、走査電子顕微鏡((株)日立製作所製、S300)を用い、EDX分析によって、表層部に含まれる介在物(I)の元素の種類および含有量を測定した。介在物(I)はクロムのケイ化物を含んでおり、介在物(I)に含まれる元素およびその含有量は、クロム(Cr)が56重量%であり、ケイ素(Si)が44重量%であった。
〔試験例2〕
 試験例2では、実施例30を除いて、乾式混合によって造粒粉を得た。まず、上記表1に示した原料粉末を、上記表2に示した配合比で準備した。
<実施例1~29、比較例1~2>
 メディアとして窒化ケイ素ボールを用いて、ボールミルにより回転数200rpmで48時間、乾式混合した。得られた混合粉末を用い、ゴム型を用いた冷間等圧加圧法により、直径11mmの球状の圧粉体に成形した。この圧粉体を、室温から、表2に示す2.5℃/min~20℃/minの昇温速度で温度1550℃~1950℃まで昇温し、窒素雰囲気中(圧力:0.9MPa)、その焼結温度で4時間保持して窒化ケイ素焼結体を得た。
<実施例30>
 原料粉末に、有機バインダを原料粉末全体に対して3重量%添加し、メディアとして窒化ケイ素ボールを用い、溶媒としてエタノールを用いて、ボールミルにより回転数200rpmで48時間混合した。混合後のスラリーをスプレードライ法により噴霧して乾燥して造粒粉を得た。得られた造粒粉を用い、ゴム型を用いた冷間等圧加圧法により、直径11mmの球状の圧粉体に成形した。圧粉体を窒素雰囲気中、温度800℃で48時間脱脂した後、2.5℃/minの昇温速度で温度1800℃まで昇温し、窒素雰囲気中(圧力:0.9MPa)、焼結温度1800℃で4時間保持して窒化ケイ素焼結体を得た。
 実施例および比較例で得られた圧粉体の寸法、および、窒化ケイ素焼結体の寸法をマイクロメータで測定し、上記試験例1と同様に収縮率を算出した。結果を表5に示す。
 得られた球状の窒化ケイ素焼結体を、JIS B 1563に準拠し、G5になるまで球研磨し、3/8インチ(直径9.525mm)の球状の試験片を作製した。
 得られた実施例および比較例で得た試験片を用いて、上記試験例1と同様に、介在物(I)の最大径および面積割合の測定、並びに、空孔の最大径の測定、破壊靱性の評価、圧砕強度の測定、転動疲労試験を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 次に、湿式造粒を経て作製した試験片と、乾式混合を経て作製した試験片の比較検討を行った。試験片としては、いずれにおいても良好な結果が得られた実施例27を用いた(表4、表5参照)。
<空孔の最大径の測定>
 実施例27の各試験片を用いて、上記試験例1と同様に、表層部に存在する空孔の最大径を測定した。上記表4および表5の結果より、各試験片には、表層部に径が50μm超の空孔は存在していない。今回は、さらに径が10μm以上の空孔が存在するか否かの評価を行った。結果を表6に示す。
<転動疲労試験>
 実施例27の各試験片を用いて、上記試験例1よりも高荷重条件の転動疲労試験を行った。上記試験例1の試験条件を、負荷荷重3.5GPa、試験時間630時間に変更した以外は同様の条件を用いた。試験時間内における試験片の剥離の有無を評価した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例27(湿式)では径が10μm以上50μm未満の空孔が存在したのに対して、実施例27(乾式)では、径が10μm以上の空孔が存在しなかった。また、実施例27(乾式)は、高荷重条件の転動疲労試験において剥離が生じなかった。乾式混合に比べて、有機バインダなどを用いて造粒する湿式造粒の場合、造粒粉が硬くなることで、加圧によって十分つぶれにくく、成形体において造粒粉の会合面に隙間が残りやすいと考えられる。これが使用形態によっては、焼結体の欠陥になり得る場合がある。実施例27(湿式)の転動疲労試験では、焼結体を高面圧下で転動体として使用した結果、会合面の欠陥に沿って脱粒が発生したことで寿命の低下に繋がったと考えられる。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の窒化ケイ素焼結体は、転がり軸受、直動案内軸受、ボールねじ、直動ベアリングなどの軸受の転動体に好適に用いることができる。
 1  転がり軸受
 2  内輪
 3  外輪
 4  転動体
 5  保持器
 6  シール部材
 7  グリース
 8a、8b 開口部
 11 電動垂直離着陸機
 12 本体部
 13 駆動部
 14 回転翼
 15 モータ
 16 ハウジング
 17 回転軸
 18 内輪間座
 19 外輪間座
 20 ノズル部材
 21 転がり軸受
 22 内輪
 23 外輪
 24 玉

Claims (13)

  1.  希土類元素およびアルミニウム元素を含む窒化ケイ素焼結体であって、
     前記希土類元素の含有量は、前記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であり、
     前記アルミニウム元素の含有量は、前記窒化ケイ素焼結体の総重量に対して、酸化物換算で6重量%以上13重量%以下であることを特徴とする窒化ケイ素焼結体。
  2.  前記希土類元素が、Y、Ce、NdおよびEuからなる群より選ばれる1種以上を含むことを特徴とする請求項1記載の窒化ケイ素焼結体。
  3.  前記希土類元素がCeを含むことを特徴とする請求項1記載の窒化ケイ素焼結体。
  4.  前記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に介在物(I)を有し、前記表層部の総断面積に対する前記介在物(I)の総断面積の割合が0.05%以上であることを特徴とする請求項1記載の窒化ケイ素焼結体。
  5.  前記介在物(I)が、遷移金属元素を含む介在物(It)を含むことを特徴とする請求項4記載の窒化ケイ素焼結体。
  6.  前記介在物(It)が遷移金属元素のケイ化物であることを特徴とする請求項5記載の窒化ケイ素焼結体。
  7.  前記遷移金属元素が、Ti、Cr、およびMnからなる群より選ばれる1種以上を含むことを特徴とする請求項5記載の窒化ケイ素焼結体。
  8.  前記遷移金属元素がCrを含むことを特徴とする請求項5記載の窒化ケイ素焼結体。
  9.  前記介在物(I)の最大径が50μm以下であることを特徴とする請求項4記載の窒化ケイ素焼結体。
  10.  前記窒化ケイ素焼結体の表面から2mm以内の領域である表層部に空孔を有し、該空孔の最大径が50μm以下であることを特徴とする請求項1記載の窒化ケイ素焼結体。
  11.  請求項1記載の窒化ケイ素焼結体を用いたことを特徴とする転動体。
  12.  請求項11記載の転動体を用いたことを特徴とする軸受。
  13.  前記軸受は、回転翼および該回転翼を回転させるモータを有する駆動部を複数備え、前記回転翼の回転によって飛行する電動垂直離着陸機に搭載され、前記駆動部における回転軸を支持する軸受であることを特徴とする請求項12記載の軸受。
PCT/JP2021/032051 2020-09-03 2021-09-01 窒化ケイ素焼結体、それを用いた転動体、および軸受 WO2022050290A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180050691.4A CN115916727A (zh) 2020-09-03 2021-09-01 氮化硅烧结体、使用其的滚动体和轴承
EP21864347.6A EP4209472A1 (en) 2020-09-03 2021-09-01 Silicon nitride sintered body, rolling body using same, and bearing
US18/022,163 US20230303454A1 (en) 2020-09-03 2021-09-01 Silicon nitride sintered body, rolling element using the same, and bearing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-148142 2020-09-03
JP2020148142 2020-09-03
JP2021060258A JP7164658B2 (ja) 2020-09-03 2021-03-31 窒化ケイ素焼結体、それを用いた転動体、および軸受
JP2021-060258 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022050290A1 true WO2022050290A1 (ja) 2022-03-10

Family

ID=80491011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032051 WO2022050290A1 (ja) 2020-09-03 2021-09-01 窒化ケイ素焼結体、それを用いた転動体、および軸受

Country Status (5)

Country Link
US (1) US20230303454A1 (ja)
EP (1) EP4209472A1 (ja)
JP (5) JP7307255B2 (ja)
CN (1) CN115916727A (ja)
WO (1) WO2022050290A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145672A1 (ja) * 2022-01-27 2023-08-03 Ntn株式会社 窒化ケイ素焼結体、それを用いた機械部品、および軸受

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256066A (ja) * 1999-03-05 2000-09-19 Kyocera Corp 窒化珪素質焼結体とその製造方法およびこれを用いた耐摩耗性部材
JP2001192258A (ja) * 1999-12-28 2001-07-17 Toshiba Corp セラミックス焼結体とその製造方法、及びそれを用いた摺動部材、ベアリングボール、ベアリング
JP2004149328A (ja) 2002-10-29 2004-05-27 Kyocera Corp 窒化珪素質焼結体の製造方法
JP2007297231A (ja) * 2006-04-28 2007-11-15 Toshiba Materials Co Ltd 窒化珪素焼結体、その製造方法、およびそれを用いた耐摩耗性部材
JP2008247716A (ja) 2007-03-30 2008-10-16 National Institute Of Advanced Industrial & Technology 反応焼結窒化ケイ素基焼結体及びその製造方法
JP2008285349A (ja) * 2007-05-16 2008-11-27 Toshiba Corp 窒化珪素焼結体とそれを用いた摺動部材
JP2013049595A (ja) 2011-08-30 2013-03-14 National Institute Of Advanced Industrial Science & Technology 窒化ケイ素焼結体の製造方法
JP2013234120A (ja) 2007-03-15 2013-11-21 Toshiba Corp 窒化珪素焼結体とそれを用いた摺動部材
JP2014129223A (ja) * 2012-11-30 2014-07-10 Kyocera Corp セラミック焼結体およびこれを備える耐磨耗性部材
WO2015099148A1 (ja) 2013-12-26 2015-07-02 京セラ株式会社 耐磨耗性部材およびこれを備える転がり支持装置ならびに軸封装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256066A (ja) * 1999-03-05 2000-09-19 Kyocera Corp 窒化珪素質焼結体とその製造方法およびこれを用いた耐摩耗性部材
JP2001192258A (ja) * 1999-12-28 2001-07-17 Toshiba Corp セラミックス焼結体とその製造方法、及びそれを用いた摺動部材、ベアリングボール、ベアリング
JP2004149328A (ja) 2002-10-29 2004-05-27 Kyocera Corp 窒化珪素質焼結体の製造方法
JP2007297231A (ja) * 2006-04-28 2007-11-15 Toshiba Materials Co Ltd 窒化珪素焼結体、その製造方法、およびそれを用いた耐摩耗性部材
JP2013234120A (ja) 2007-03-15 2013-11-21 Toshiba Corp 窒化珪素焼結体とそれを用いた摺動部材
JP2008247716A (ja) 2007-03-30 2008-10-16 National Institute Of Advanced Industrial & Technology 反応焼結窒化ケイ素基焼結体及びその製造方法
JP2008285349A (ja) * 2007-05-16 2008-11-27 Toshiba Corp 窒化珪素焼結体とそれを用いた摺動部材
JP2013049595A (ja) 2011-08-30 2013-03-14 National Institute Of Advanced Industrial Science & Technology 窒化ケイ素焼結体の製造方法
JP2014129223A (ja) * 2012-11-30 2014-07-10 Kyocera Corp セラミック焼結体およびこれを備える耐磨耗性部材
WO2015099148A1 (ja) 2013-12-26 2015-07-02 京セラ株式会社 耐磨耗性部材およびこれを備える転がり支持装置ならびに軸封装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145672A1 (ja) * 2022-01-27 2023-08-03 Ntn株式会社 窒化ケイ素焼結体、それを用いた機械部品、および軸受

Also Published As

Publication number Publication date
JP2023121828A (ja) 2023-08-31
JP2023126276A (ja) 2023-09-07
JP2023130419A (ja) 2023-09-20
EP4209472A1 (en) 2023-07-12
JP7307255B2 (ja) 2023-07-11
US20230303454A1 (en) 2023-09-28
JP2023121827A (ja) 2023-08-31
JP2023009067A (ja) 2023-01-19
CN115916727A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN103173641B (zh) 一种纳米氧化钇弥散强化钨合金的制备方法
JP7307255B2 (ja) 窒化ケイ素焼結体の製造方法
JP5830439B2 (ja) 転動体及びその製造方法
JP2024019273A (ja) 窒化珪素焼結体製摺動部材の製造方法
CN108768019A (zh) 一种电机转子
JP7164658B2 (ja) 窒化ケイ素焼結体、それを用いた転動体、および軸受
JP5260159B2 (ja) 風力発電装置用転がり軸受
JP2012101952A (ja) 転がり軸受及びその製造方法
JP6037218B2 (ja) 窒化珪素質焼結体およびそれを用いた摺動部材
WO2014017551A1 (ja) Srフェライト焼結磁石の製造方法、並びにモータ及び発電機
JP4439970B2 (ja) 複合多孔体の製造方法
JP2014073944A (ja) 窒化珪素質焼結体の製造方法
JP5989602B2 (ja) 窒化珪素質焼結体及びその製造方法、並びにベアリング用転動体
CN109047788A (zh) 一种循环氧化还原的超细氧化钇掺杂钨复合纳米粉末制备方法
WO2023145672A1 (ja) 窒化ケイ素焼結体、それを用いた機械部品、および軸受
JP2023109655A (ja) 窒化ケイ素焼結体、それを用いた機械部品、および軸受
JP2023127845A (ja) 窒化ケイ素素球、転動体、および転がり軸受
JP4565954B2 (ja) 導電性窒化ケイ素材料とその製造方法
WO2024070470A1 (ja) 窒化珪素焼結体、耐摩耗性部材、半導体装置用基板、及び窒化珪素焼結体の製造方法
JP4950715B2 (ja) 窒化珪素焼結体とそれを用いた摺動部材
JP4869171B2 (ja) 窒化けい素製耐摩耗性部材の製造方法
CN114031401A (zh) 一种高硬度高强度的低温烧结铌酸镍陶瓷材料
JP2014092259A (ja) 転がり支持装置及びその製造方法
JP2002348177A (ja) 熱機関用静止部材及びその製造方法
WO2014115785A1 (ja) 転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021864347

Country of ref document: EP

Effective date: 20230403