WO2021225105A1 - レドックスフロー電池用炭素電極材、及び該炭素電極材を備えたレドックスフロー電池 - Google Patents

レドックスフロー電池用炭素電極材、及び該炭素電極材を備えたレドックスフロー電池 Download PDF

Info

Publication number
WO2021225105A1
WO2021225105A1 PCT/JP2021/017006 JP2021017006W WO2021225105A1 WO 2021225105 A1 WO2021225105 A1 WO 2021225105A1 JP 2021017006 W JP2021017006 W JP 2021017006W WO 2021225105 A1 WO2021225105 A1 WO 2021225105A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
carbon electrode
fiber
carbonaceous
carbon
Prior art date
Application number
PCT/JP2021/017006
Other languages
English (en)
French (fr)
Inventor
良平 岩原
貴 五十嵐
佳奈 森本
雍容 董
賢一 伊藤
雄大 池上
尚馬 伊田
Original Assignee
東洋紡株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 住友電気工業株式会社 filed Critical 東洋紡株式会社
Priority to JP2022519941A priority Critical patent/JPWO2021225105A1/ja
Publication of WO2021225105A1 publication Critical patent/WO2021225105A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon electrode material used for a redox flow battery and a redox flow battery provided with the carbon electrode material.
  • the redox flow battery mainly includes external tanks 6 and 7 for storing electrolytic solutions (positive electrode electrolytic solution, negative electrode electrolytic solution) and an electrolytic cell EC.
  • electrolytic cell EC In the electrolytic cell EC, an ion exchange membrane 3 is arranged between the opposing current collector plates 1 and 1.
  • the electrolytic solution containing the active material is sent from the external tanks 6 and 7 to the electrolytic cell EC by the pumps 8 and 9, and the electrochemical energy conversion is performed on the electrode material 5 incorporated in the electrolytic cell EC. That is, charging and discharging are performed.
  • an aqueous solution containing a metal ion whose valence changes due to redox is typically used.
  • an aqueous solution of iron in hydrochloric acid has been used for the positive electrode
  • an aqueous solution of chromium in hydrochloric acid has been used for the negative electrode.
  • high energy density has been achieved by using an aqueous solution of vanadium sulfuric acid, which has a high electromotive force, on both poles.
  • a redox flow battery in which vanadium oxysulfate is used as the positive electrode electrolytic solution and vanadium sulfate is used as the negative electrode electrolytic solution is known.
  • Patent Document 1 discloses a carbonaceous material having a specific pseudographite microcrystalline structure with high crystallinity as an electrode material for an Fe—Cr battery.
  • Patent Document 2 discloses a carbonaceous material having a specific pseudographite crystal structure and having a predetermined number of bonded oxygen atoms on the carbon surface as an electrode material for an electric field layer such as an iron-chromium-based redox flow battery. There is.
  • Patent Document 3 discloses a carbon material having a specific pseudographite crystal structure, a predetermined amount of surface acidic functional groups, and a predetermined number of surface-bonded nitrogen atoms as a carbon electrode material for a vanadium-based redox flow battery. ing.
  • Patent Document 4 discloses a carbon composite material in which carbon fine particles having a specific crystal structure are adhered on carbonaceous fibers as a carbon electrode material for a vanadium-based redox flow battery.
  • Patent Document 5 contains manganese as an active material for the positive electrode and chromium, vanadium, and titanium as active materials for the negative electrode.
  • An Mn—Ti-based electrolytic solution using an electrolytic solution has been proposed.
  • Japanese Unexamined Patent Publication No. 60-232669 Japanese Unexamined Patent Publication No. 5-234612 Japanese Unexamined Patent Publication No. 2000-357520 Japanese Unexamined Patent Publication No. 2017-33758 Japanese Unexamined Patent Publication No. 2012-204135
  • the present inventors use a carbon electrode material for a vanadium-based electrolytic solution as a carbon electrode of a redox flow battery (hereinafter, may be referred to as "Mn-Ti-based redox flow battery") using an Mn-Ti-based electrolytic solution.
  • Mn-Ti-based redox flow battery a carbon electrode material for a vanadium-based electrolytic solution as a carbon electrode of a redox flow battery
  • Mn ions are unstable in an aqueous solution and the reaction rate is slow, so that cell resistance increases, and the oxidizing power of Mn ions (positive electrode charging liquid) generated during charging. It was found that the carbon electrode material deteriorates because it is very strong. Therefore, the carbon electrode material is required to have oxidation resistance to Mn ions, but the conventional carbon electrode material for redox flow batteries cannot achieve both high oxidation resistance and low resistance.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a carbon electrode material having excellent oxidation resistance and low resistance.
  • the carbon electrode material for a redox flow battery according to the present invention has the following configuration.
  • the carbon electrode material of the present invention is composed of a fiber structure formed of a carbonaceous fiber (A) and graphite particles (B) bonded to the fiber structure with a carbonaceous material (C). , Meet the following requirements. (1)
  • the average curvature R of the carbonic fiber (A) is 1 mm -1 or more, and the average fiber diameter of the carbonic fiber (A) is 5 to 15 ⁇ m.
  • the carbonaceous material (C) is a peak intensity ID of 1360 cm -1 as determined by laser Raman spectroscopy, the peak intensity ratio Rc of the peak intensity IG of 1580 cm -1 (ID / IG) is 1.1 less than (3) and the carbonaceous fibers (a) a laser Raman spectroscopy by the peak intensity ratio of the peak intensity IG of 1360 cm -1 peak of intensity ID and 1580 cm -1 obtained Ra (ID / IG), the carbon The peak intensity ratio Rac (Rc / Ra) with the peak intensity ratio Rc of the quality material (C) is 1.0 or less.
  • the ratio Roc (O / C) of the number of atoms C is 1.0% or more.
  • the carbon electrode material has one or more fine particles within a pore diameter range of 0.1 to 10 ⁇ m in the pore distribution in the mercury injection method. It has a pore peak and has a Log differential pore volume within the range of 0.1 to 10 ⁇ m in the pore diameter of 10 ml / g or more.
  • the carbon electrode material of the present invention has the following configuration as a preferred embodiment.
  • the mass content of the graphite particles (B) with respect to the total amount of the carbonaceous fibers (A), the graphite particles (B), and the carbonaceous material (C) is 20% or more.
  • the mass content of the carbonaceous material (C) with respect to the total amount is 20% or more and
  • the graphite particles (B) are any one of [1] to [4] selected from the group consisting of scaly graphite, flaky graphite, spheroidal graphite, and expanded graphite.
  • a redox flow battery provided with the carbon electrode material according to any one of the above [1] to [5].
  • the carbon electrode material of the present invention both high oxidation resistance and low resistance can be realized. Therefore, even when the amount of the charging electrolyte is remarkably reduced during the use of the redox flow battery and the electrode material is oxidatively deteriorated, the resistance value can be maintained at about the same level as the initial resistance value. Further, the carbon electrode material of the present invention is excellent in oxidation resistance to Mn ions (positive electrode charging liquid) even when a Mn—Ti-based electrolytic solution is used, and further, the cell resistance at the time of initial charge / discharge is increased. Since it can be kept low, battery energy efficiency can be improved.
  • FIG. 1 is a schematic view of a redox flow battery.
  • FIG. 2 is an exploded perspective view of a liquid flow type electrolytic cell having a three-dimensional electrode preferably used in the present invention.
  • FIG. 3 shows Table 2 No. It is an SEM photograph of 1 (magnification 100 times).
  • FIG. 4 shows Table 2 No. 13 SEM photographs (magnification 100 times).
  • FIG. 5 shows Table 2 No. 8 SEM photographs (magnification 100 times).
  • the carbon electrode material of the present invention is composed of a fiber structure formed of a carbonaceous fiber (A) and graphite particles (B) bonded to the fiber structure with a carbonaceous material (C), and is composed of.
  • the gist is to satisfy all the requirements (1) to (5) below.
  • the average curvature R of the carbonic fiber (A) is 1 mm -1 or more, and the average fiber diameter of the carbonic fiber (A) is 5 to 15 ⁇ m.
  • a carbon fiber (A) of a fiber structure formed from a plurality of carbon fibers (A) hereinafter, may be referred to as a "fiber structure" (that is, a carbon fiber (A) forming the fiber structure. ))
  • the average curvature R is 1 mm -1 or more, and the average fiber diameter is 5 to 15 ⁇ m.
  • a carbon electrode material containing a carbonaceous fiber (A) structure having an average curvature R of 1 mm -1 or more and an average fiber diameter of 5 to 15 ⁇ m is a carbon electrode containing a fiber structure having an average curvature R of less than 1 mm -1.
  • the carbon electrode material exhibits extremely excellent oxidation resistance even in a harsh oxidative deterioration environment, so that the resistance can be kept low.
  • the fiber structure of the present invention is used as the carbon electrode material. If so, the morphology of the carbon electrode material can be maintained due to the three-dimensional structure. Therefore, the resistance can be maintained at about the same level as the initial resistance value, and the carbon fiber particles are less likely to fall off due to oxidative deterioration.
  • the larger the curvature R that is, the smaller the radius of curvature r), the greater the degree of bending of the carbonic fiber (A).
  • SEM scanning electron microscope
  • the curvature R is calculated by approximating the degree of bending of the curved fibers (curved fibers) observed in the visual field to a circle. The detailed measurement method will be described in Examples.
  • the average curvature R of the carbonaceous fiber (A) is 1 mm -1 or more, it means that the carbonic fiber constituting the structure exists in a curved or crimped state.
  • a structure formed of carbonaceous fibers having an average curvature R of 1 mm -1 or more is thick when the cross section in the thickness direction (cross section perpendicular to the fiber length direction) of the structure is observed with a scanning electron microscope. It also has a three-dimensional structure that allows the longitudinal direction of the fibers to be confirmed in the vertical direction.
  • the mean curvature R is preferably 5 mm -1 or more, more preferably 10 mm -1 or more, still more preferably 20 mm -1 or more, still more preferably 30 mm -1 or more.
  • the average curvature R is preferably 200 mm -1 or less, more preferably 150 mm -1 or less, still more preferably 100 mm -1 or less, still more preferably 75 mm -1 or less.
  • Carbonous fiber (A) used in the present invention is a carbonized fiber in which a mass ratio of 90% or more is composed of carbon. Specifically, it is defined as "carbon fiber” in JIS L 0204-2: 2010, and is a fiber in which 90% or more of the mass ratio obtained by heat-carbonizing an organic fiber precursor is composed of carbon. be.
  • organic fiber precursor examples include acrylic fibers such as polyacrylonitrile; phenol fibers; PBO fibers such as polyparaphenylene benzobisoxazole (PBO); aromatic polyamide fibers; isotropic pitch, anisotropic pitch fibers, and mesophase.
  • Pitch fibers such as pitch; cellulose fibers; etc. are exemplified.
  • acrylic fibers, phenol fibers, cellulose fibers, isotropic pitch fibers, anisotropic pitch fibers, and more preferably acrylic fibers are preferable in consideration of oxidation resistance, strength, and elastic modulus.
  • the raw materials may be used alone or in admixture of two or more.
  • the main component is 95% by mass or more, more preferably 98% by mass or more of the fiber raw material as the main component in the total amount of the raw material monomers of 100% by mass.
  • acrylic fiber contains acrylonitrile as a main component, and when combined with any other fiber raw material, the content of acrylonitrile in the raw material monomer forming the acrylic fiber is preferably 95% by mass or more, more preferably 98% by mass or more. be.
  • Average fiber diameter of carbonaceous fiber (A) The average fiber diameter of carbonaceous fiber (A) constituting the fiber structure is 5 to 15 ⁇ m. When the average fiber diameter is less than 5 ⁇ m, the strength of the fiber structure is lowered and the liquid permeability of the electrolytic solution is lowered. On the other hand, if the average fiber diameter exceeds 15 ⁇ m, the uniformity of the structure is impaired, the reaction surface area of the fibers is reduced, and the cell resistance is increased.
  • the average fiber diameter of the carbonaceous fiber (A) is preferably 7 ⁇ m or more, more preferably 8 ⁇ m or more, and preferably 10 ⁇ m or less.
  • Average fiber length of carbonaceous fiber (A) It is also preferable to adjust the average fiber diameter of the carbonaceous fiber (A) of the present invention.
  • the average fiber length of the carbonaceous fibers is increased, the fibers are sufficiently entangled with each other, which is effective in maintaining the morphology of the carbon electrode material even in a situation where oxidative deterioration occurs.
  • the average fiber length is shortened, the fibers are easily defibrated, and the uniformity of the fiber density in the carbon electrode material can be improved. Therefore, the average fiber length of the carbonaceous fiber is preferably 30 mm or more, more preferably 40 mm or more, further preferably 50 mm or more, preferably 100 mm or less, and more preferably 80 mm or less.
  • the fiber structure of the present invention is, for example, a spun yarn, a filament-focused yarn, a non-woven fabric, a knitted fabric, a woven fabric, which is a sheet-like material composed of a carbonaceous fiber (A), and a special one described in JP-A-63-240177. Examples include knitted fabrics, spunlaces, mariflees, and felts.
  • non-woven fabrics are preferable from the viewpoints of handling, processability, manufacturability, and the like. More preferably, it is a non-woven fabric.
  • the non-woven fabric include spunbonded non-woven fabric, spunlaced non-woven fabric, needle punched non-woven fabric, resin-bonded non-woven fabric, and thermal-bonded non-woven fabric.
  • the carbon electrode material When a fiber structure that does not satisfy the above requirement (1) is used for the carbon electrode material, if the charging liquid is reduced to about half of the initial filling amount, the carbonaceous fibers constituting the carbon electrode material may collapse due to oxidative deterioration. The morphology cannot be maintained. Therefore, the space formed by the carbon electrode material disappears, and the liquid flowability in the cell is remarkably deteriorated. As a result, the battery performance is significantly deteriorated.
  • the carbonaceous fiber structure is composed of carbonaceous fibers having an average curvature R of less than R1 mm-1
  • the longitudinal direction of the fibers does not exist in the thickness direction, and the fibers are oriented only in the fiber length direction. It is a dimensional structure.
  • Papers such as carbon paper are exemplified as an example in which the average curvature R of the carbonaceous fiber is less than 1 mm -1.
  • Paper is a two-dimensional structure in which linear carbonaceous fibers are connected and are oriented in the same direction.
  • the graphite particles contribute to the achievement of high oxidation resistance by increasing the change in valence due to redox, that is, the reactivity.
  • either natural graphite or artificial graphite can be used.
  • natural graphite include scaly graphite, scaly graphite, earthy graphite, spheroidal graphite, flaky graphite and the like.
  • artificial graphite include expanded graphite and graphite oxide.
  • scaly graphite, flaky graphite, spheroidal graphite, and expanded graphite are preferable, and low resistance can be obtained because the carbon edge surface is extremely exposed. These may be used alone or in admixture of two or more. Since the scaly graphite of the present invention is leaf-like, it is different from the lumpy scaly graphite.
  • Crystallizer of Graphite Particle (B) It is also preferable to adjust the size of the crystallite of the graphite particle (B) of the present invention.
  • the graphite particles (B) have a crystallite size Lc (B) in the c-axis direction determined by X-ray diffraction, preferably 25 nm or more, more preferably 30 nm or more, and more preferably 35 nm or more.
  • Lc (B) crystallite size in the c-axis direction determined by X-ray diffraction, preferably 25 nm or more, more preferably 30 nm or more, and more preferably 35 nm or more.
  • the upper limit of the crystallite size Lc (B) is preferably 50 nm or less, more preferably 45 nm or less, and further preferably 40 nm or less in consideration of the balance between oxidation resistance and low resistance.
  • Particle size of graphite particles (B) It is also preferable to adjust the particle size of the graphite particles (B) of the present invention.
  • the particle size of the graphite particles (B) is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, still more preferably 40 ⁇ m or less. If the particle size is too small, the proportion of graphite particles (B) buried in the carbonaceous material (C) increases. Further, when the graphite particles (B) are buried in the carbonaceous material (C) and the surface of the graphite particles (B) is coated, the specific surface area of the carbonaceous material (C) increases.
  • the particle size of the graphite particles (B) is the average particle size (D50) at a median 50% diameter in the particle size distribution obtained by the dynamic light scattering method.
  • D50 average particle size
  • the specific surface area of the carbonaceous material (C) is increased by the amount of the graphite particles (B) coated and swollen, and as a result, the durability is lowered. Therefore, when the graphite particles (B) are embedded and coated in the carbonaceous material (C), the effect of adding the graphite particles (B) is not sufficiently exhibited, the resistance is increased, and the durability is also decreased.
  • the graphite particles (B) used in the present invention preferably have a predetermined BET specific surface area.
  • the larger the BET specific surface area the more the exposure of the edge surface of the graphite particles (B) increases, which contributes to the reduction of resistance.
  • the smaller the BET specific surface area the more it contributes to the improvement of oxidation resistance.
  • the BET specific surface area of the graphite particles (B) is preferably 3 m 2 / g or more, more preferably 5 m 2 / g or more, preferably 30 m 2 / g or less, and more preferably 25 m 2 / g or less.
  • the BET specific surface area of the graphite particles (B) is the BET specific surface area obtained from the amount of nitrogen adsorbed.
  • the carbonaceous material used in the present invention is a binder that binds carbonaceous fibers (A) (that is, carbon fibers (A) forming a fiber structure) and graphite particles (B). Further, the carbon material (C) protects the carbon fiber (A) having inferior oxidation resistance and contributes to the improvement of the oxidation resistance of the carbon electrode material. Further, by binding the graphite particles (B) and the carbonaceous fibers (A) with the carbonaceous material (C), not only an efficient conductive path can be obtained, but also the graphite particles (B) have low resistance and high oxidation resistance. Gender can also be achieved.
  • the carbonaceous material (C) not only binds graphite particles (B) to carbonaceous fibers (A), but may also bind carbonaceous fibers (A) to each other and graphite particles (B) to each other.
  • the form of the predetermined carbon electrode material can be maintained by binding.
  • the carbonaceous material (C) is a highly crystalline carbonaceous material that satisfies the following requirements (2) and (3).
  • (2) the carbonaceous material (C) is a peak intensity ID of 1360 cm -1 as determined by laser Raman spectroscopy, the peak intensity ratio Rc of the peak intensity IG of 1580 cm -1 (ID / IG) is less than 1.1
  • the peak intensity ratio Rac (Rc / Ra) with the peak intensity ratio Rc of the carbonaceous material (C) is 1.0 or less.
  • the carbonaceous material (C) that satisfies all of these requirements has high oxidation resistance. Further, by coating the carbonaceous fiber (A) with the highly crystalline carbonaceous material (C), the protective effect of the carbonic fiber (A) against oxidative deterioration is also improved. As a result, the oxidation resistance of the entire carbon electrode material is improved.
  • the peak intensity ratio Rc of the carbonaceous material (C) is less than 1.1, preferably less than 1.0, more preferably less than 0.9, preferably 0.1 or more, more preferably 0.3 or more. More preferably, it is 0.5 or more.
  • the peak intensity ratio Rac (Rc / Ra) of the peak intensity ratio Ra of the carbonic fiber (A) and the peak intensity ratio Rc of the carbonic material (C) exceeds 1.0, the above effect is effectively exhibited. Not done.
  • the peak intensity ratio Rac is preferably 0.8 or less, more preferably 0.75 or less, still more preferably 0.6 or less.
  • the peak intensity ratio Rac is preferably 0.2 or more, more preferably 0.3 or more, and further preferably 0.4 or more.
  • Peak intensity ratio Ra of carbonic fiber (A) The peak intensity ratio Ra of the carbonic fiber (A) is not particularly limited, but if appropriately controlled, effects such as good electron conductivity, oxidation resistance to a sulfuric acid solvent, and easy addition of an oxygen functional group can be obtained.
  • the peak intensity ratio Ra is preferably 0.8 or more, more preferably 0.9 or more, preferably 1.5 or less, and more preferably 1.3 or less.
  • the carbonaceous fiber (A) is coated with the carbonaceous material (C), and at least a part of the surface of the graphite particles (B) is coated with the carbonaceous material (C). It is preferable that the particles are exposed without being exposed. Further, it is preferable that the carbonaceous material (C) after binding is not in a film state.
  • the fact that the carbonaceous material (C) is not in a film state means that the carbonic material (C) does not form a webbed state such as a whole foot (boxoku) or a foot. To say.
  • the carbonaceous material (C) is in a film state, the liquid permeability of the electrolytic solution deteriorates, and the reaction surface area of the graphite particles cannot be effectively used.
  • FIG. 3 is an SEM photograph in which graphite particles (B) are bonded to the carbonaceous fiber (A) constituting the carbon electrode material of the present invention with the carbonaceous material (C).
  • the carbonaceous material (C) strongly binds the surface and the inside of the carbonaceous fiber (A) and the graphite particles (B). Further, it can be seen that the surface of the graphite particles (B) is exposed while the carbonaceous fiber (A) is covered with the carbonaceous material (C).
  • FIGS. 4 and 5 are SEM photographs showing a state in which the carbonaceous fibers (A) and the graphite particles (B) are not bound in the carbon electrode material.
  • the carbonaceous material (C) used in the present invention may be any material that can obtain the above-mentioned binding effect.
  • pitches such as coal tar pitch and coal pitch; phenol resin, benzoxazine resin, epoxide resin, furan resin, vinyl ester resin, melanin-formaldehyde resin, urea-formaldehyde resin, resorcinol-formaldehyde resin, cyanate ester resin, etc.
  • Resins such as bismaleimide resin, polyurethane resin and polyacrylonitrile; furfuryl alcohol; rubbers such as acrylonitrile-butadiene rubber and the like can be mentioned.
  • a commercially available product may be used as the carbonaceous material (C).
  • pitches such as coal tar pitch and coal-based pitch, which are particularly easily crystalline, are preferable because the desired carbonaceous material (C) can be obtained at a low firing temperature. Further, the polyacrylonitrile resin is also preferable because a desired carbonaceous material (C) can be obtained by raising the firing temperature. Of these, pitches are more preferable.
  • the pitches applied to the carbonaceous material (C) preferably have a high content of the mesophase phase, that is, a high carbonization rate.
  • the mesophase phase content is preferably 30% or more, more preferably 50% or more.
  • the mesophase phase content is preferably 90% or less.
  • the content rate of the mesophase phase liquid crystal phase
  • the melting point of the pitches is preferably 100 ° C. or higher, more preferably 200 ° C. or higher, and preferably 350 ° C. or lower. Is.
  • the mass ratio of the carbonaceous material (C) to the total amount of the carbonaceous fiber (A) is preferably 20% or more, more preferably 30% or more, further preferably 35% or more, preferably 60% or less, and more preferably 50% or less.
  • the carbonaceous material is also used in Patent Document 4, there is only a partial adhesive action of fixing (adhering) only the contact portion between the carbonaceous fiber and the carbon fine particles. Therefore, the binder content of the carbon electrode material of the example is about 14.4% by mass.
  • the carbon electrode material of the present invention has improved oxidation resistance when the graphite particle (B) content is increased.
  • the number of graphite particles (B) is too large, the liquid permeability may deteriorate and the resistance may increase.
  • the total amount of carbon fiber (A) that is, carbon fiber (A) forming the fiber structure), graphite particles (B), and carbon material (C).
  • the mass ratio of the graphite particles (B) to the amount of the graphite particles (B) is preferably 20% or more, more preferably 25% or more, preferably 60% or less, more preferably 55% or less, still more preferably 50% or less.
  • Mass ratio of graphite particles (B) and carbonaceous material (C) it is also preferable to adjust the mass ratio of graphite particles (B) and carbonaceous material (C). By adjusting these mass ratios, it is possible to suppress the falling off of the graphite particles (B) and further improve the oxidation resistance. Further, the resistance can be further reduced by suppressing the coating of the carbon edge surface of the graphite particles.
  • the mass ratio (C / B) of the carbonaceous material (C) to the graphite particles (B) is preferably 0.1 or more, more preferably 0.3 or more, still more preferably 0.5 or more, and preferably 0.5 or more. It is 10.0 or less, more preferably 6.0 or less, still more preferably 5.0 or less, still more preferably 4.0 or less.
  • Carbon electrode material The carbon electrode material of the present invention satisfies the following requirements (4) and (5).
  • (4) The ratio Roc (O / C) of the number of bonded oxygen atoms O on the surface of the carbon electrode material to the total number of carbon atoms C on the surface of the carbon electrode material is 1.0% or more.
  • the electrode reaction rate can be remarkably improved and the resistance can be reduced.
  • the hydrophilicity of the carbon electrode material is improved, and a good water flow rate can be ensured.
  • the ratio Roc (O / C) of the number of bonded oxygen atoms O and the total number of carbon atoms C on the surface of the carbon electrode material is 1.0% or more, the oxygen atoms introduced into the carbon edge surface or the defect structure are carbonyl groups. , A quinone group, a lactone group, a free radical oxide, and other reactive groups.
  • the reactive groups on the surface of the carbon electrode material can contribute to the electrode reaction and reduce the resistance.
  • the ratio Roc of the number of bound oxygen atoms O to the total number of carbon atoms C is preferably 2% or more, more preferably 3% or more, preferably 10% or less, and more preferably 6% or less.
  • the number of bonded oxygen atoms O and the total number of carbon atoms C on the surface of the carbon electrode material are measured by the X-ray photoelectron spectroscopy (XPS) described in the examples.
  • the carbon electrode material has one or more pore peaks in the pore diameter range of 0.1 to 10 ⁇ m in the pore distribution in the mercury intrusion method, and has the pore diameter in the range of 0.1 to 10 ⁇ m.
  • Log differential pore volume is 10 ml / g or more This requirement is defined in consideration of the resistance reduction effect in the low charge depth region.
  • the reaction of the redox flow battery occurs only at the electrode surface portion where the electrolytic solution comes into contact. In particular, when a Mn—Ti-based electrolytic solution is used, Mn 3+ ions during charging are precipitated as MnO 2 particles.
  • the precipitated MnO 2 particles are not directly involved in the battery reaction, but with the consumption of Mn 3+ ions, the MnO 2 particles are converted to Mn 3+ due to the deviation of the equilibrium reaction. That is, since the MnO 2 particles are also indirectly involved in the battery reaction, it is considered that the diffusion of the MnO 2 particles on the electrode surface contributes to lowering the resistance of the electrode. Since the size of the precipitated MnO 2 particles is several hundred nanometers in size, it is considered that the MnO 2 particles cannot be sufficiently diffused in the pores having a size of several tens of nanometers or less, and it is difficult to contribute to lowering the resistance.
  • the MnO2 particles on the electrode surface portion It is considered that the diffusion is performed efficiently, and the reaction is smoothly performed especially in the low charge depth region where the active material is deficient.
  • the pore diameter is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, preferably 8 ⁇ m or less, and more preferably 7 ⁇ m or less.
  • the pore peak is 1 or more, preferably 2 or more, preferably 5 or less, and more preferably 4 or less in the region having a pore diameter of 0.1 to 10 ⁇ m.
  • the Log differential pore volume in the region is 10 ml / g or more, preferably 15 ml / g or more, preferably 50 ml / g or less, more preferably 40 ml / g or less, still more preferably 35 ml / g or less.
  • the carbon electrode material of the present invention has excellent hydrophilicity.
  • the water flow rate may be increased from the viewpoint of ensuring sufficient affinity for the electrolytic solution.
  • the water flow rate is preferably 0.5 mm / sec or more, 1 mm / sec or more, 5 mm / sec or more, and 10 mm / sec or more in that order.
  • the water flow rate can be adjusted by appropriately adjusting the above requirements of the carbon electrode material.
  • the water flow rate is the rate at which water droplets are dropped on the surface of the carbon electrode material that has been subjected to the dry oxidation treatment, and the water droplets reach the back surface of the carbon electrode material.
  • the basis weight of the carbon electrode material is preferably 50 g / m 2 or more, more preferably 100 g / m 2 or more, preferably 500 g / m 2 or less, and more preferably 400 g / m 2 or less.
  • the ion exchange membrane tends to be thinned in order to reduce resistance and is easily damaged.
  • the carbon electrode of the present invention having the above-mentioned grain amount can prevent damage to the ion exchange membrane while ensuring liquid permeability.
  • the carbon electrode material of the present invention is made of a non-woven fabric or paper having a flat surface processed on one side as a base material. For the flattening process, a method of applying the slurry to one side of the carbonaceous fiber and drying it; various known methods such as impregnation and drying on a smooth film such as PET can be adopted.
  • BET specific surface area of the carbon electrode material It is also preferable to appropriately control the BET specific surface area of the carbon electrode material. If the BET specific surface area of the carbon electrode material is too small, the exposure of the edge surface of the graphite particles (B) is reduced, so that the desired low resistance may not be obtained. On the other hand, if the BET specific surface area is too large, the effect of improving the oxidation resistance due to the graphite particles (B) may not be effectively exhibited, and the oxidation resistance may decrease.
  • the BET specific surface area of the carbon electrode material is preferably 1.0 m 2 / g or more, more preferably 1.5 m 2 / g or more, preferably 30 m 2 / g or less, more preferably 25 m 2 / g or less, and further. It is preferably 20 m 2 / g or less.
  • Thickness of carbon electrode material It is also preferable to appropriately adjust the thickness of the carbon electrode material.
  • the thickness of the carbon electrode material is preferably larger than the spacer thickness, and is preferably 1.5 to 6.0 times the spacer thickness.
  • Compressive stress of carbon electrode material It is also preferable to appropriately adjust the compressive stress of the carbon electrode material. If the compressive stress of the carbon electrode material is too high, the ion exchange membrane may be damaged.
  • the compressive stress of the carbon electrode material is preferably 9.8 N / cm 2 or less.
  • the compressive stress may be adjusted by changing the basis weight and thickness of the carbon electrode material. Further, the compressive stress may be adjusted by forming the carbon electrode material into a laminated structure such as, for example, two layers or three layers, or by combining the carbon electrode material with another form of the carbon electrode material.
  • the carbon electrode material of the present invention By using the carbon electrode material of the present invention, an extremely high oxidation resistance can be obtained, the reaction activity can be enhanced, and an electrode having low resistance and long life can be obtained.
  • the carbon electrode material of the present invention is suitable as a carbon electrode material for a redox flow battery.
  • the present invention includes a redox flow battery provided with a carbon electrode material.
  • the carbon electrode material of the present invention is suitably used for flow type and non-flow type redox flow batteries, or redox flow batteries combined with a lithium, capacitor, and fuel cell system.
  • the carbon electrode material of the present invention is suitable for Mn—Ti-based redox flow batteries.
  • the carbon electrode material of the present invention When the carbon electrode material of the present invention is used, even if the amount of the charging electrolyte is significantly reduced during the use of the redox flow battery and the carbon electrode material is oxidatively deteriorated, the resistance value is approximately the same as the initial resistance value. Can be maintained. Further, the carbon electrode material of the present invention is excellent in oxidation resistance to Mn ions (positive electrode charging liquid) even when a Mn—Ti-based electrolytic solution is used, and further, the cell resistance at the time of initial charge / discharge is increased. Since it can be kept low, battery energy efficiency can be improved. Further, it becomes possible to provide a carbon electrode material having excellent oxidation resistance to a positive electrode charging liquid.
  • FIG. 2 shows an example of a liquid flow type electrolytic cell using the carbon electrode material of the present invention.
  • an ion exchange membrane 3 is arranged between two opposing current collector plates 1, 1, and an electrolytic solution along the inner surface of the current collector plates 1, 1 is provided by spacers 2 on both sides of the ion exchange membrane 3.
  • the liquid passages 4a and 4b are formed.
  • the electrode material 5 is arranged in at least one of the liquid passages 4a and 4b.
  • the current collector plate 1 is provided with a liquid inlet 10 and a liquid outlet 11 for the electrolytic solution.
  • the electrode is composed of the electrode material 5 and the current collector plate 1, and the structure is such that the electrolytic solution passes through the electrode material 5 (three-dimensional electrode structure).
  • the charge / discharge efficiency can be improved by using the entire surface of the pores of the electrode material 5 as an electrochemical reaction field while ensuring transportation. As a result, the charging / discharging efficiency of the electrolytic cell is improved.
  • the carbon electrode material of the present invention uses graphite particles (B) and a carbon material (C) before carbonization (hereinafter, may be referred to as “carbon material precursor”) as a base material for carbon fibers (A).
  • carbon material precursor a carbon material before carbonization
  • A a base material for carbon fibers
  • adheresion step Is attached to the structure or its precursor (hereinafter, may be referred to as “adhesion step”), and then it can be produced through a carbonization step, a graphitization step, and an oxidation step.
  • known methods and manufacturing conditions can be appropriately applied to each step.
  • the carbonaceous fiber (A) may be appropriately selected from the various materials described above.
  • the above-mentioned "heat carbonization treatment" of the carbonaceous fiber (A) preferably includes at least a flame resistance step and a carbonization step. The order of the flame resistance process and the carbonization process does not matter. Further, the carbonization step after the flame resistance may be omitted, and the carbonized fiber (A) may be carbonized in the carbonization step after being treated in the attachment step.
  • the flame-resistant process is a process of heating an organic fiber precursor in an air atmosphere to obtain a flame-resistant organic fiber.
  • the heat treatment temperature is appropriately set, the content of nitrogen and hydrogen in the organic fiber can be reduced and the carbonization rate can be improved while preventing the thermal decomposition of the organic fiber and maintaining the form of the carbonic fiber.
  • the heat treatment temperature is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, still more preferably 200 ° C. or higher, preferably 350 ° C. or lower, more preferably 330 ° C. or lower, still more preferably 300 ° C. or lower.
  • the organic fiber In the flame resistance process, if the organic fiber is heat-treated in a relaxed state, it may heat shrink and the molecular orientation may collapse, resulting in a decrease in the conductivity of the carbonic fiber.
  • the organic fiber In order to prevent a decrease in conductivity, the organic fiber is preferably flame-resistant under tension or stretching, and more preferably flame-resistant under tension.
  • the carbonization step is a step of heating the obtained flame-resistant organic fiber in an inert atmosphere, preferably in a nitrogen atmosphere to obtain carbonic fiber.
  • the heating temperature is preferably 1000 ° C. or higher, more preferably 1100 ° C. or higher, still more preferably 1200 ° C. or higher, preferably 2000 ° C. or lower, and more preferably 1900 ° C. or lower.
  • the heating temperature in the carbonization step can be selected according to the type of the organic fiber used as a raw material.
  • the heating temperature is preferably 800 ° C. or higher, more preferably 1000 ° C. or higher, preferably 2000 ° C. or lower, more preferably 1800 ° C. or lower. be.
  • the flame resistance step and the carbonization step are preferably carried out continuously, and the shape of the organic fiber is maintained and the mechanical properties are maintained by appropriately controlling the rate of temperature rise from the flame resistance temperature to the carbonization temperature. Excellent carbonaceous fibers can be obtained.
  • the rate of temperature rise is preferably 20 ° C./min or less, more preferably 15 ° C./min or less, and preferably 5 ° C./min or more.
  • the fiber structure is a precursor of a carbonaceous fiber structure, for example, a non-woven fabric that has been heat-carbonized.
  • Precursors of carbonaceous fiber structures are formed using fibers.
  • the method of forming the precursor is not particularly limited. For example, when forming a non-woven fabric, known manufacturing methods such as entanglement, fusion, and adhesion can be adopted.
  • the fiber structure is used as a base material for the carbonaceous electrode material.
  • the use of fiber structures improves strength and facilitates handling and processing.
  • the graphite particles (B) and the carbonaceous material (C) may be appropriately selected from the above-mentioned various materials.
  • particles exhibiting reaction activity in a redox flow battery include, for example, acetylene black (acetylene soot), oil black (furness black, oil soot), gas black (gas soot), and the like.
  • Carbon Blacks Graphitized soot, carbon fiber powder, carbon nanotubes (CNT, carbon nanotube), carbon nanofibers, carbon aerogel, mesoporous carbon, glassy carbon powder, activated carbon, graphene, graphene oxide, N-doped Carbon particles such as CNTs, boron-doped CNTs, fullerene, petroleum coke, acetylene coke, and smokeless carbon coke; are known.
  • first to fourth methods a method of controlling the pore volume within the range of the pore diameter of 0.1 to 10 ⁇ m of the carbon electrode material to 10 ml / g or more.
  • the following first to fourth methods may be performed by any one or a combination of two or more.
  • the first method is a method of appropriately controlling the mass ratio of the graphite particles (B) and the carbonaceous material (C) and / or the average particle size of the graphite particles (B).
  • the weight ratio By controlling the weight ratio, the graphite particles (B) are exposed on the surface of the fiber structure, and an uneven surface is naturally formed on the surface, so that a predetermined surface area can be obtained.
  • the average particle size of the graphite particles (B) is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 30 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the second method is to control the melting point and / or particle size of the carbonaceous material (C).
  • the melting point of the carbonaceous material (C) is preferably 100 ° C. or higher, more preferably 200 ° C. or higher. Considering the binding effect, the melting point of the carbonaceous material (C) is preferably 350 ° C. or lower. It is also preferable to control the average particle size of the carbonaceous material (C).
  • the average particle size of the carbonaceous material (C) is preferably 1 to 40 ⁇ m.
  • the third method is insolubilization of the carbonaceous material (C).
  • the carbonaceous material (C) is heat-treated in an oxygen atmosphere, the carbonaceous material (C) is once melted and then the condensation reaction of the carbon precursor in the green pitch coke proceeds to insolubilize it.
  • the fluidity when the carbonaceous material (C) is melted can be suppressed without impairing the binding property with the graphite particles (B) and / or the carbonaceous fiber (A).
  • a predetermined pore volume can be obtained without blocking the voids existing in the pore diameter of 0.1 to 10 ⁇ m of the carbon electrode material.
  • the heat treatment temperature of the carbonaceous material (C) is preferably 200 ° C.
  • a carbonaceous material (C) that has been insolubilized in advance and has been crushed may be used.
  • the fourth method is a method of adding a material that substantially disappears during carbonization. Thereby, a void satisfying the above (5) can be formed.
  • the material that disappears during carbonization (hereinafter referred to as “disappearing material”) is a material that is decomposed by heating during carbonization and disappears from the fiber structure after carbonization. "Substantially” means that the vanishing material does not completely disappear from the fiber structure, and a very small amount of the vanishing material is allowed to remain. Examples of such a material include a material having a lower decomposition temperature than the carbonaceous material (C) such as polyethylene, polypropylene, and polyvinyl alcohol.
  • the vanishing material is preferably in the form of particles having an average particle size of 5 to 30 ⁇ m or in the form of fibers having an average fiber diameter of 10 to 20 ⁇ m.
  • the adhering step is a step of adhering the graphite particles (B) and the precursor of the carbonaceous material (C) to the carbonaceous fiber (A) structure or its precursor.
  • Various known methods can be adopted as the method for adhering the graphite particles (B) and the precursor of the carbonaceous material (C) to the carbonaceous fiber (A).
  • the preferred attachment method is as follows. 1) The carbonaceous material (C) precursor and graphite particles (B) are dispersed in a solvent such as water or alcohol to which a binder that disappears during carbonization, such as polyvinyl alcohol, is added as a temporary adhesive, and carbon is added to this dispersion. After immersing the structure of the quality fiber (A), it is heated and dried. 2) The carbonaceous material (C) precursor is heated and melted, graphite particles (B) are dispersed in the obtained melt to prepare a melt dispersion, and carbon fibers are immersed in the melt dispersion. After that, cool to room temperature.
  • a suitable removal method is as follows. 1) The excess dispersion liquid is squeezed and removed from the fiber structure by passing it through a nip roller provided with a predetermined clearance. 2) Scrape the surface of the excess dispersion with a doctor blade or the like to remove it from the fiber structure.
  • the fiber structure (hereinafter referred to as "adhesive") impregnated with the obtained graphite particles (B) and the precursor of the carbonaceous material (C) is dried in an air atmosphere, for example, at 80 to 150 ° C. Is desirable.
  • Carbonization step is a step of calcining an adhering material to obtain a carbonized product. As a result, the graphite particles (B) are bound to the carbonaceous fibers (A). In the carbonization step, it is preferable to sufficiently remove the decomposition gas at the time of carbonization.
  • Preferred carbonization conditions are as follows. Atmosphere: Inactive atmosphere, preferably nitrogen atmosphere Heating temperature: The lower limit is preferably 800 ° C. or higher, 1000 ° C. or higher, 1200 ° C. or higher, and 1300 ° C. or higher in that order. The upper limit is preferably 2000 ° C. or lower, 1500 ° C. or lower, and 1400 ° C. or lower in that order.
  • the heating time is preferably 1 hour or more and 2 hours or less.
  • the carbonization step may be performed after the flameproofing step of the precursor of the carbonaceous fiber (A) structure (method 1 below), or after the flameproofing step of the precursor of the carbonic fiber (A) structure.
  • the carbonization step of the above may be omitted (method 2 below).
  • the carbonic fiber (A) structure is attached.
  • the precursor of the carbonaceous fiber (A) structure is attached.
  • Method 1 Flameproofing step of the precursor of the carbon fiber structure ⁇ Carbonization step ⁇ Adhesion step ⁇ Carbonization step ⁇ Graphitization step ⁇ Oxidation step
  • Method 2 Flameproofing step of the precursor of the carbon fiber structure ⁇ Adhesion step ⁇ Carbonization step ⁇ Graphitization step ⁇ Oxidation step
  • the above method 1 is costly because the carbonization step is performed twice, but the difference in volume shrinkage ratio is small, which is advantageous for suppressing deformation of the carbon electrode material such as warpage. ..
  • the above method 2 is low in cost because the carbonization step is performed once, but the difference in volume shrinkage ratio is larger than that of the above method 1, and it is inferior in terms of deformation suppression.
  • the graphitization step is a step of further heating the carbonized product to obtain a graphitized product.
  • the crystallinity is increased by graphitization treatment, the oxidation resistance of the carbon electrode material can be improved.
  • Preferred graphitization conditions are as follows. Atmosphere: Inactive atmosphere, preferably nitrogen atmosphere
  • Heating temperature Higher than the heating temperature of the carbonization step, preferably 1800 ° C. or higher, more preferably 2000 ° C. or higher, preferably 3000 ° C. or lower.
  • the oxidation step is a step of oxidizing a graphite to obtain a carbon electrode material.
  • Oxidation treatment of the graphitized product gives a carbon electrode material having an oxygen functional group such as a hydroxyl group, a carbonyl group, a quinone group, a lactone group, and a free radical oxide introduced on the surface.
  • an oxygen functional group such as a hydroxyl group, a carbonyl group, a quinone group, a lactone group, and a free radical oxide introduced on the surface.
  • the oxidation step various treatment steps such as wet chemical oxidation, electrolytic oxidation, and dry oxidation can be applied.
  • the oxidation step is preferably a dry oxidation treatment step from the viewpoint of processability and manufacturing cost.
  • the dry oxidation treatment conditions are preferably 500 ° C. or higher, more preferably 600 ° C. or higher, still more preferably 650 ° C. or higher, preferably 900 ° C. or lower, more preferably 900 ° C. or lower in an air atmosphere. Is 800 ° C. or lower, more preferably 750 ° C. or lower.
  • the yield of the oxidation step (the ratio of the amount of the secondary oxide after the oxidation treatment solution, that is, the amount of the carbon electrode material to the amount of graphitized product before the oxidation treatment) is preferably 90% or more and 96% or less. It is desirable to control the conditions.
  • the Lc value was calculated by performing peak separation from the chart obtained by the above wide-angle X-ray measurement. Specifically, graphite particles were defined as peaks in which the apex was found in the range of 26.4 ° to 26.6 °, which is twice the diffraction angle ⁇ (2 ⁇ ). From the peak top, the peak shape was determined as a sine wave, and Lc was calculated by the following method.
  • the following simple method was used without correcting the so-called Lorentz factor, polarization factor, absorption factor, atomic scattering factor, etc. That is, the real intensity from the baseline of the peak corresponding to the ⁇ 002> diffraction was re-plotted to obtain the ⁇ 002> corrected intensity curve. From the length of the line segment (half-value width ⁇ ) where the line parallel to the angle axis drawn to the height of 1/2 of the peak height intersects the correction intensity curve, the size of the crystallite in the c-axis direction is calculated by the following equation. I asked for Lc.
  • Each electrode material was cut out into an electrode area of 8.91 cm 2 with an electrode area of 2.7 cm in the vertical direction (liquid flow direction) and 3.3 cm in the width direction, and introduced only on the positive electrode side. At this time, the number of sheets was adjusted so that the basis weight in the cell was 230 to 350 g / m 2.
  • the cell shown in FIG. 1 was assembled by laminating two electrode materials prepared below on the negative electrode side. A Nafion 212 membrane was used as the ion exchange membrane, and the spacer thickness was 0.5 mm.
  • the total cell resistance ( ⁇ ⁇ cm 2 ) of the following equations (1) and (2) was calculated from the voltage curve of the 10th cycle in the voltage range of 1.55 to 1.00 V at 144 mA / cm 2.
  • a 5.0 moL / L sulfuric acid aqueous solution in which titanium oxysulfate and manganese oxysulfate were dissolved at 1.0 moL / L was used.
  • the amount of electrolyte was too large for the cell and piping.
  • the liquid flow rate was 10 mL per minute, and the measurement was performed at 35 ° C.
  • Electrode material for negative electrode A plain weave cloth (thickness 1.0 mm, grain 600 g / m 2 ) made of polyacrylonitrile fibers having an average fiber diameter of 16 ⁇ m was heated at 300 ° C. in an air atmosphere to make it flame resistant, and baked at 1000 ° C. for 1 hour in a nitrogen atmosphere. Then, it was heated at 600 ° C. for 8 minutes in an air atmosphere, and then calcined at 1800 ° C. for 1 hour in a nitrogen atmosphere. Further, by treating at 700 ° C. for 15 minutes in an air atmosphere, an electrode material for a negative electrode having a basis weight of 152 g / m 2 and a thickness of 0.73 mm was prepared.
  • Oxidation resistance test (7-1) Oxidation resistance of graphite particles 5.0 moL / L sulfuric acid aqueous solution of 1.0 moL / L titanium oxysulfate and 5.0 moL / L sulfuric acid of 1.0 moL / L manganese oxysulfate An electrolytic solution composed of an aqueous solution was charged in a battery using a platinum wire as a working electrode and an Ag / AgCl electrode as a reference electrode until the open circuit voltage reached 1.266 V. The graphite particles in Table 1 were immersed in the above electrolytic solution in an amount 40 times the amount of the graphite particles, and allowed to stand at 75 ° C. for 16 hours.
  • the open circuit voltage of the electrolytic solution platinum wire at the working electrode and Ag / AgCl at the reference electrode was measured, and the oxidation resistance was estimated based on the degree of voltage decrease from 1.266V.
  • the carbon electrode material was evaluated for the following two types of oxidation resistance.
  • the oxidation resistance test 1 the rate of weight loss due to oxidative deterioration was estimated.
  • the oxidation resistance test 2 is a test for evaluating a higher degree of oxidation resistance than the oxidation resistance test 1 in that it evaluates that the resistance does not easily increase even if the weight reduction due to oxidative deterioration progresses.
  • Oxidation resistance test of carbon electrode material 1 Potential test 5.0 moL / L sulfuric acid aqueous solution of 1.0 moL / L titanium oxysulfate and 5.0 moL / L of 1.0 moL / L manganese oxysulfate An electrolytic solution composed of an aqueous sulfuric acid solution was used. At a potential using a platinum wire as the working electrode and an Ag / AgCl electrode as the reference electrode, the battery was charged until the open circuit voltage reached 1.266 V. The prepared carbon electrode material was immersed in a charging liquid 40 times as much as the weight of the electrode, and allowed to stand at 75 ° C. for 16 hours.
  • the open circuit voltage of the electrolytic solution platinum wire at the working electrode and Ag / AgCl at the reference electrode was measured, and the oxidation resistance was estimated based on the degree of voltage decrease from 1.266V.
  • Oxidation resistance test of carbon electrode material 2 SOC 50% total cell resistance 1.0 moL / L Titanium oxysulfate 5.0 moL / L sulfuric acid aqueous solution and 1.0 moL / L manganese oxysulfate 5. It was charged with an electrolytic solution consisting of a 0 moL / L sulfuric acid aqueous solution at a potential using a platinum wire as a working electrode and an Ag / AgCl electrode as a reference electrode until an open circuit voltage of 1.266 V was reached. The produced carbon electrode material was immersed in a charging liquid in an amount of about 300 to 500 times the weight of the electrode at 75 ° C. for 2 weeks to reduce the weight of the electrode material to 50%.
  • the immersion at this time is immersed in a large excess of the charging liquid for a long time as compared with the oxidation resistance test 1.
  • the carbon electrode material after weight reduction was washed with the above-mentioned uncharged electrolytic solution, washed with 2.5 M sulfuric acid, and washed with pure water until the washing liquid became neutral. After the washed carbon electrode material was dried at 120 ° C. overnight, the SOC 50% total cell resistance was measured in the same manner as in (6) above, and the oxidation resistance was evaluated.
  • BET BET Specific Surface Area
  • Example 1 The evaluation test of the carbon particles shown in Table 1 was performed. The results are shown in Table 1.
  • Types of carbon particles A to C (scaly graphite), D (fragmented graphite), E (spheroidal graphite), a, b (carbon black), AA (A is a Labostar mini machine manufactured by Ashizawa Finetech Co., Ltd.) Graphite crushed by bead mill for 6 hours), F (scaly graphite with a particle size of less than 1 ⁇ m and a small Lc) Commercially available products were used for all carbon particles. The particle sizes in Table 1 are the values listed in the catalog. The particle size of AA was measured by laser diffraction.
  • any of the carbon particles A to E satisfying the preferable size Lc (Lc: 25 nm or more) and the preferable particle size (1 ⁇ m or more) of the crystallites of the graphite particles (B) specified in the present invention has excellent oxidation resistance and shows high durability. From this result, it is presumed that the graphite particles (B) of the present invention suppress the excessive exposure of the edge surface, which is the starting point of oxidative deterioration.
  • the carbon particles a and b are examples in which a carbon rack is used, and the oxidation resistance is significantly reduced. From this result, it is presumed that carbon black has insufficient carbon crystallinity, so that the amorphous carbon portion is easily oxidatively deteriorated.
  • Carbon particles AA and F were examples in which graphite particles having an Lc of less than 25 nm were used, and their oxidation resistance was inferior. From this result, it is inferred that the carbon edge surface was overexposed.
  • Example 2 carbon produced as follows using the carbon particles A to E in Table 1, the fiber structure formed from the carbonaceous fibers (A) in Table 2, and the carbonaceous material (C). An evaluation test of the electrode material was conducted.
  • No. 1 No. In No. 1, a spunlaced non-woven fabric formed from flame-resistant polyacrylonitrile fiber as a precursor of a fiber structure (manufactured by Shinwa Co., Ltd., with a grain of 100 g / m 2 , average curvature R40 mm -1 , average fiber diameter 20 ⁇ m, average fiber length 80 mm, (Thickness 0.81 mm), graphite of Table 1 symbol C was used as the graphite particles (B), and coal tar pitch MCP100 (melting point 100 ° C., particle size 10 ⁇ m) manufactured by JFE Chemical Co., Ltd. was used as the pitches of the carbonaceous material (C).
  • a spunlaced non-woven fabric formed from flame-resistant polyacrylonitrile fiber as a precursor of a fiber structure manufactured by Shinwa Co., Ltd., with a grain of 100 g / m 2 , average curvature R40 mm -1 , average fiber diameter 20 ⁇ m, average fiber length 80
  • the excess dispersion liquid is removed by passing it through a nip roller, and then it is dried at 150 ° C. for 20 minutes in an air atmosphere to obtain an adhering material. rice field.
  • the adhesive was carbonized (calcined) by heating at 1000 ° C. for 1 hour in a nitrogen atmosphere, and then the obtained carbonized product was further heated at 2000 ° C. for 1 hour to graphitize.
  • the obtained graphitized product was oxidized at 700 ° C. for 20 minutes in an air atmosphere to obtain a carbon electrode material (No. 1) having a thickness of 0.66 mm and a basis weight of 184.0 g / m 2.
  • the average fiber diameter of the fiber structure was 10 ⁇ m due to shrinkage during carbonization.
  • one pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 8.8 ⁇ m).
  • a carbon electrode material (No. 2) having a thickness of 0.44 mm and a basis weight of 104.0 g / m 2 was produced in the same manner as in 1.
  • ⁇ Precursor of fiber structure Change the grain size to 55 g / m 2
  • a ⁇ Polyethylene beads as vanishing material (Miperon XM-220 manufactured by Mitsui Chemicals, Inc., particle size 30 ⁇ m) was added to ion-exchanged water by 11%.
  • the average fiber diameter of the fiber structure became 10 ⁇ m due to shrinkage during carbonization. Two pore peaks were observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 5.3 ⁇ m, 3.1 ⁇ m).
  • a carbon electrode material (No. 3) having a thickness of 0.69 mm and a basis weight of 225.0 g / m 2 was produced in the same manner as in 1.
  • the ratio was changed to the value shown in Table 2.
  • the average fiber diameter of the fiber structure was 10 ⁇ m due to shrinkage during carbonization. Two pore peaks were observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 6.8 ⁇ m, 3.3 ⁇ m).
  • a carbon electrode material (No. 4) having a thickness of 0.75 mm and a basis weight of 199.0 g / m 2 was produced in the same manner as in 1.
  • the average fiber diameter of the fiber structure was 10 ⁇ m due to shrinkage during carbonization.
  • one pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 4.1 ⁇ m).
  • a carbon electrode material (No. 5) having a thickness of 0.66 mm and a basis weight of 196.0 g / m 2 was produced in the same manner as in 1.
  • the contents of graphite particles (B) and carbonaceous material (C) with respect to the total amount of (C) were changed to the values shown in Table 2.
  • the average fiber diameter of the fiber structure became 10 ⁇ m due to shrinkage during carbonization. ..
  • one pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 2.5 ⁇ m).
  • a carbon electrode material (No. 6) having a thickness of 2.11 mm and a basis weight of 341.0 g / m 2 was produced in the same manner as in 5.
  • -Fiber structure precursor changed to felt formed from flame-resistant polyacrylonitrile fibers ( grain 150 g / m 2 , average curvature R20 mm -1 , average fiber diameter 20 ⁇ m, average fiber length 70 mm, thickness 2.52 mm)
  • the average fiber diameter of the fiber structure became 10 ⁇ m due to shrinkage during carbonization.
  • one pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 7.9 ⁇ m).
  • a carbon electrode material (No. 7) having a thickness of 0.96 mm and a basis weight of 239.0 g / m 2 was produced in the same manner as in 1.
  • -Precursor of fiber structure Marifrees woven fabric formed from flame-resistant polyacrylonitrile fiber ( grain 100 g / m 2 , average curvature R33 mm -1 , average fiber diameter 20 ⁇ m, average fiber length 80 mm, thickness 1.21 mm)
  • the content of C) was changed to the value shown in Table 2.
  • the average fiber diameter of the fiber structure became 10 ⁇ m due to shrinkage during carbonization.
  • one pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 7.3 ⁇ m).
  • a carbon electrode material (No. 8) having a thickness of 1.94 mm and a basis weight of 255.0 g / m 2 was produced in the same manner as in 1. -Precursor of fiber structure: Changed to felt (grain 100 g / m 2 , average curvature R5 mm -1 , average fiber diameter 18 ⁇ m, average fiber length 50 mm, thickness 2.13 mm) formed from anisotropic pitch fibers.
  • the content of graphite particles (B) and carbonaceous material (C) with respect to the total amount of quality fiber (A), graphite particles (B) and carbonaceous material (C) has been changed to the values shown in Table 2.
  • Fiber structure The average fiber diameter of each was 9 ⁇ m due to shrinkage during carbonization. In addition, one pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 8.5 ⁇ m).
  • a carbon electrode material (No. 9) having a thickness of 0.50 mm and a basis weight of 121.0 g / m 2 was produced in the same manner as in 1.
  • -Precursor of fiber structure Carbon paper formed from polyacrylonitrile fiber (CFP-030-PE manufactured by Nippon Polymer Sangyo Co., Ltd.
  • a carbon electrode material (No. 10) having a thickness of 0.79 mm and a basis weight of 192.0 g / m 2 was produced in the same manner as in 9.
  • -Precursor of fiber structure Carbon paper formed from polyacrylonitrile fibers (manufactured by Olivest Co., Ltd., grain size 60 g / m 2 , average curvature R0 mm -1 , average fiber diameter 7 ⁇ m, average fiber length 6 mm, thickness 0.84 mm) ⁇
  • One pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 7.2 ⁇ m).
  • a carbon electrode material (No. 11) having a thickness of 0.77 mm and a basis weight of 162.0 g / m 2 was produced in the same manner as in 9.
  • -Graphite particles (B) and carbonaceous material (C) with respect to the total amount of carbonaceous fibers (A), graphite particles (B), and carbonaceous material (C). ) was changed to the value shown in Table 2.
  • One pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 2.4 ⁇ m).
  • a carbon electrode material (No. 12) having a thickness of 0.63 mm and a basis weight of 197.0 g / m 2 was produced in the same manner as in 1.
  • One pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 8.5 ⁇ m).
  • No. 13 denotes a comparative example simulating Patent Document 3, in which a precursor of carbonaceous fiber was treated as follows without using graphite particles and a carbonaceous material to obtain an electrode material.
  • a spunlaced non-woven fabric grain 100 g / m 2 , mean curvature R5 mm -1 , mean fiber diameter 18 ⁇ m, average fiber length 80 mm, thickness 0.81 mm
  • flame-resistant polyacrylonitrile fibers was placed at 1000 ° C. under a nitrogen atmosphere. After carbonization (firing) for 1 hour at 1500 ° C., the obtained carbonized product was further graphitized at 1500 ° C. for 1 hour.
  • the obtained graphitized product was oxidized at 700 ° C. for 15 minutes in an air atmosphere to obtain a carbon electrode material (No. 13) having a thickness of 0.78 mm and a basis weight of 50 g / m 2.
  • the rate of temperature rise is No. Same as 1.
  • the average fiber diameter of the fiber structure was 9 ⁇ m due to shrinkage during carbonization. No pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m.
  • a carbon electrode material (No. 14) having a thickness of 0.73 mm and a basis weight of 154 g / m 2 was produced in the same manner as in 1.
  • -Fiber structure Changed to spunlaced non-woven fabric carbonized at 1000 ° C ( grain 50 g / m 2 , mean curvature R40 mm -1 , mean fiber diameter 20 ⁇ m, average fiber length 80 mm, thickness 0.81 mm) ⁇
  • Graphite particles (B) Not used One pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 9.8 ⁇ m).
  • a carbon electrode material (No. 15) having a thickness of 1.42 mm and a basis weight of 311.0 g / m 2 was produced in the same manner as in No. 12.
  • -Structure of fiber structure Felt formed from quinol fiber (manufactured by Gunei Chemical Co., Ltd., grain size 200 g / m 2 , mean curvature R15 mm -1 , mean fiber diameter 19 ⁇ m, thickness 2.11 mm) changed to fiber structure. The average fiber diameter of the body became 9 ⁇ m due to shrinkage during carbonization. In addition, one pore peak was observed within the pore diameter range of 0.1 to 10 ⁇ m (peak top is 7.9 ⁇ m).
  • Table 2 shows the above No. The measurement results of 1 to 16 are shown.
  • No. Nos. 1 to 8 are carbon electrode materials satisfying the requirements of the present invention, and all of them have low resistance and excellent oxidation resistance.
  • these carbon electrode materials are extremely resistant because they can maintain almost the same resistance value as the initial resistance value even when the weight of the carbon electrode material is reduced by about half due to the charging liquid. It was proved to be excellent in durability (SOC 50% total cell resistance).
  • SOC 50% total cell resistance since these carbon electrode materials have a Log differential pore volume having a pore diameter of 0.1 to 10 ⁇ m satisfying the preferable requirements of the present invention, the resistance value at a charge rate of 30%, which is a low charge depth, is also significantly reduced. (SOC 30% total cell resistance). From this result, it can be seen that the Log differential pore volume having a pore diameter of 0.1 to 10 ⁇ m contributes to the reduction of resistance.
  • No. 9 to 11 are comparative examples in which carbon paper that does not satisfy the requirements of the present invention is used for the fiber structure.
  • No. Nos. 9 to 11 have the same type of carbonic fiber (A) but differ only in the type of fiber structure. By comparing with 2 to 4, the following can be seen. First, both cell resistance and oxidation resistance tests (potential tests) were equivalent. However, in the oxidation resistance test (SOC 50% total cell resistance) under the weight reduction of the carbon electrode material, No. Nos. 9 to 11 could not maintain the form of the carbon electrode material, and could not be charged or discharged even if they were incorporated into the cell (evaluation is not possible). From this result, it is presumed that the structure morphology of the carbon electrode material collapsed due to the compression at the time of cell formation, and the electrolytic solution stopped flowing.
  • No. Reference numeral 13 denotes an example simulating Patent Document 3, in which both the graphite particles (B) and the carbonaceous material (C) were not used.
  • No. No. 13 had a higher cell resistance than the example of the present invention, and the oxidation resistance (potential test, SOC 50% total cell resistance) was also significantly reduced.
  • No. Reference numeral 14 denotes an example in which only the highly crystalline carbonaceous material (C) is used without using the graphite particles (B). No. 14 was excellent in oxidation resistance (potential test), but had high cell resistance. In addition, even in the oxidation resistance test 2, No. In No. 14, the SOC 50% total cell resistance was increased as compared with the example of the present invention.
  • No. Reference numeral 16 denotes an example in which the curvature R is satisfied, but the peak intensity ratio Rc and the peak intensity ratio Rc / Ra are not satisfied.
  • No. No. 16 had low oxidation resistance (potential test). Furthermore, No. In No. 16, the Log differential pore volume having a pore diameter of 0.1 to 10 ⁇ m was small, and the proportion of the pore volume that did not contribute to the reaction was large, so that the SOC 30% total cell resistance also increased.
  • the carbon electrode material of the present invention is particularly suitable for carbon electrodes for Mn—Ti-based redox flow batteries.
  • the carbon electrode material of the present invention is suitably used for flow type and non-flow type redox flow batteries, redox flow batteries combined with lithium, capacitor, and fuel cell systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

耐酸化性に優れると共に、低抵抗な炭素電極材を提供すること。本発明の炭素電極材は、炭素質繊維(A)から形成された繊維構造体と、前記繊維構造体に炭素質材料(C)で結合された黒鉛粒子(B)とから構成され、各構成材料は所定の要件を満足するものである。

Description

レドックスフロー電池用炭素電極材、及び該炭素電極材を備えたレドックスフロー電池
 本発明は、レドックスフロー電池に使用される炭素電極材、及び該炭素電極材を備えたレドックスフロー電池に関する発明である。
 レドックスフロー電池は、図1に示すように電解液(正極電解液、負極電解液)を貯える外部タンク6、7と、電解槽ECとを主要な構成要素とする。電解槽ECには、相対する集電板1、1の間にイオン交換膜3が配置されている。レドックスフロー電池では、ポンプ8、9にて活物質を含む電解液を外部タンク6、7から電解槽ECに送りながら、電解槽ECに組み込まれた電極材5上で電気化学的なエネルギー変換、すなわち充放電が行われる。電極材5の材料には、耐薬品性があり、導電性を有し、かつ通液性のある炭素材料が用いられている。
 レドックスフロー電池に用いられる電解液として、代表的には、酸化還元により価数が変化する金属イオンを含有する水溶液が用いられる。従来は、正極に鉄の塩酸水溶液、負極にクロムの塩酸水溶液が使用されていた。しかし近年は起電力の高いバナジウムの硫酸水溶液を両極に使用することにより、高エネルギー密度化を図っている。例えば正極電解液にオキシ硫酸バナジウム、負極電解液に硫酸バナジウムの各々硫酸酸性水溶液を用いたレドックスフロー電池が知られている。
 またレドックスフロー電池用炭素電極材として例えば下記技術が提案されている。特許文献1にはFe-Cr電池の電極材として、結晶性の高い特定の擬黒鉛微結晶構造を有する炭素質材料が開示されている。
 特許文献2には鉄-クロム系レドックスフロー電池等の電界層用電極材として、特定の疑似黒鉛結晶構造を有し、且つ炭素表面に所定の結合酸素原子数を有する炭素質材料が開示されている。
 特許文献3にはバナジウム系レドックスフロー電池用炭素電極材として、特定の疑似黒鉛結晶構造を有し、且つ所定の表面酸性官能基量と、所定の表面結合窒素原子数を有する炭素材料が開示されている。
 特許文献4にはバナジウム系レドックスフロー電池用炭素電極材として、炭素質繊維上に特定の結晶構造を有する炭素微粒子を付着させた炭素複合材料が開示されている。
 またレドックスフロー電池に用いられる電解液についても各種提案されている。例えばバナジウム系電解液よりも高い起電力を有し、安定して安価に供給可能な電解液として、特許文献5には正極に活物質としてマンガン、負極に活物質としてクロム、バナジウム、チタンを含む電解液を用いたMn-Ti系電解液が提案されている。
特開昭60-232669号公報 特開平5-234612号公報 特開2000-357520号公報 特開2017-33758号公報 特開2012-204135号公報
 本発明者らはバナジウム系電解液に用いられる炭素電極材を、Mn-Ti系電解液を用いたレドックスフロー電池(以下、「Mn-Ti系レドックスフロー電池」ということがある。)の炭素電極材として用いて各種特性を検討した。その結果、初期充放電時にセル抵抗が著しく増加し、電池エネルギー効率が低下することが判明した。
 本発明者らが更に研究を進めた結果、Mnイオンは水溶液中で不安定であり、反応速度が遅いためセル抵抗が増加すること、また充電時に生成するMnイオン(正極充電液)の酸化力が非常に強いため炭素電極材が劣化することがわかった。そのため炭素電極材にはMnイオンに対する耐酸化性が求められているが、従来のレドックスフロー電池用の炭素電極材では高耐酸化性と低抵抗の両立ができなかった。
 本発明は上記事情に鑑みてなされたものであり、その目的は、耐酸化性に優れると共に、低抵抗な炭素電極材を提供することである。
 本発明に係るレドックスフロー電池用炭素電極材は下記構成を有する。
[1]本発明の炭素電極材は、炭素質繊維(A)から形成された繊維構造体と、前記繊維構造体に炭素質材料(C)で結合された黒鉛粒子(B)とから構成され、下記の要件を満足する。
(1)前記炭素質繊維(A)の平均曲率Rが1mm-1以上、且つ前記炭素質繊維(A)の平均繊維径が5~15μm
(2)前記炭素質材料(C)は、レーザーラマン分光法により求めた1360cm-1のピーク強度IDと、1580cm-1のピーク強度IGとのピーク強度比Rc(ID/IG)が1.1未満
(3)前記炭素質繊維(A)をレーザーラマン分光法により求めた1360cm-1のピークの強度IDと1580cm-1のピークの強度IGのピーク強度比Ra(ID/IG)と、前記炭素質材料(C)のピーク強度比Rcとのピーク強度比Rac(Rc/Ra)が1.0以下
(4)前記炭素電極材表面の結合酸素原子数Oと、前記炭素電極材表面の全炭素原子数Cの比Roc(O/C)が1.0%以上
(5)前記炭素電極材は、水銀圧入法における細孔分布において細孔径0.1~10μmの範囲内に1つ以上の細孔ピークを有すると共に、該細孔径0.1~10μmの範囲内のLog微分細孔容積が10ml/g以上
 本発明の炭素電極材は好ましい実施態様として下記構成を有する。
 [2]前記炭素質繊維(A)、前記黒鉛粒子(B)、および前記炭素質材料(C)の合計量に対する前記黒鉛粒子(B)の質量含有率は、20%以上、
 前記合計量に対する前記炭素質材料(C)の質量含有率は、20%以上、かつ、
 前記黒鉛粒子(B)に対する前記炭素質材料(C)の質量比(C/B)は、0.1~10.0である[1]に記載の炭素電極材。
 [3]前記ピーク強度比Raは、0.8~1.5である[1]~[2]に記載の炭素電極材。
 [4]前記炭素電極材は、窒素吸着量から求められるBET比表面積が1~30m2/gである[1]~[3]のいずれかに記載の炭素電極材。
 [5]前記黒鉛粒子(B)は、鱗片状黒鉛、薄片化黒鉛、球状黒鉛、および膨張化黒鉛よりなる群から選択される少なくとも1種以上である[1]~[4]のいずれかに記載の炭素電極材。
 [6]上記[1]~[5]のいずれかに記載の炭素電極材を備えたレドックスフロー電池。
 [7]上記[1]~[5]のいずれかに記載の炭素電極材を用いたマンガン/チタン系レドックスフロー電池。
 本発明の炭素電極材によれば、高耐酸化性と低抵抗の両方を実現できる。したがってレドックスフロー電池の使用中に充電電解液量が著しく減少して電極材が酸化劣化した場合であっても、初期の抵抗値と略同程度の抵抗値を維持できる。また本発明の炭素電極材は、例えばMn-Ti系電解液を用いた場合であっても、Mnイオン(正極充電液)に対する耐酸化性に優れており、更に初期充放電時のセル抵抗を低く維持できるため、電池エネルギー効率を向上できる。
図1はレドックスフロー電池の概略図である。 図2は本発明に好適に用いられる三次元電極を有する液流通型電解槽の分解斜視図である。 図3は、表2No.1のSEM写真(倍率100倍)である。 図4は、表2No.13のSEM写真(倍率100倍)である。 図5は、表2No.8のSEM写真(倍率100倍)である。
 本発明の炭素電極材は、炭素質繊維(A)から形成された繊維構造体と、前記繊維構造体に炭素質材料(C)で結合された黒鉛粒子(B)とから構成され、且つ、下記(1)~(5)の要件を全て満足することに要旨を有する。
[炭素質繊維(A)]
 (1)前記炭素質繊維(A)の平均曲率Rが1mm-1以上、且つ前記炭素質繊維(A)の平均繊維径が5~15μm
 複数の炭素質繊維(A)から形成された繊維構造体(以下、「繊維構造体」ということがある)の炭素質繊維(A)(すなわち、繊維構造体を形成している炭素繊維(A))の平均曲率Rが1mm-1以上、且つ平均繊維径が5~15μmである。平均曲率Rが1mm-1以上、且つ平均繊維径が5~15μmの炭素質繊維(A)の構造体を含む炭素電極材は、平均曲率Rが1mm-1未満の繊維構造体を含む炭素電極材と比べて、炭素電極材は苛酷な酸化劣化環境下においても極めて優れた耐酸化性を発揮するため、抵抗を低く維持できる。例えばレドックスフロー電池の使用中に充電液が初期充填量の半分程度にまで減少して炭素電極材が酸化劣化する様な状況になっても、本発明の繊維構造体を炭素電極材に使用していれば、その3次元構造により炭素電極材の形態を維持できる。そのため、初期の抵抗値と略同程度の抵抗を維持でき、また酸化劣化による炭素質繊維粒子の脱落が少ない。
 炭素質繊維(A)の平均曲率R
 曲率Rとは、炭素質繊維(A)の曲がり程度を示す指標であり、曲率半径rの逆数(R=1/r、rの単位はmm)である。曲率Rが大きい程(すなわち曲率半径rが小さい程)、炭素質繊維(A)の曲がりの程度が大きいことを意味する。本発明では炭素電極材の表面を走査型電子顕微鏡(SEM)で観察したとき、視野中に観察される曲がった繊維(曲線状繊維)の曲がり具合を円に近似して曲率Rを算出する。詳細な測定方法は実施例に記載する。
 炭素質繊維(A)の平均曲率Rが1mm-1以上とは、構造体を構成する炭素質繊維が曲線状または縮れた状態で存在することを意味する。平均曲率Rが1mm-1以上の炭素質繊維で形成された構造体は、構造体の厚さ方向断面(繊維長さ方向に対して垂直な断面)を走査型電子顕微鏡で観察したとき、厚さ方向にも繊維の長手方向を確認できる三次元構造体を有する。
 曲率Rを大きくすることにより、耐酸化性が向上し、セル抵抗も低減する。平均曲率Rは好ましくは5mm-1以上、より好ましくは10mm-1以上、さらに好ましくは20mm-1以上、よりさらに好ましくは30mm-1以上である。繊維の解繊性を考慮すると、平均曲率Rは好ましくは200mm-1以下、より好ましくは150mm-1以下、さらに好ましくは100mm-1以下、よりさらに好ましくは75mm-1以下である。
 炭素質繊維(A)
 本発明に用いられる炭素質繊維(A)は、質量比90%以上が炭素で構成されている炭素化処理された繊維である。具体的にはJIS L 0204-2:2010年に「炭素繊維」として規定されており、有機繊維のプレカーサーを加熱炭素化処理して得られる質量比で90%以上が炭素で構成される繊維である。
 上記有機繊維のプレカーサーとしては、例えばポリアクリロニトリル等のアクリル繊維;フェノール繊維;ポリパラフェニレンベンゾビスオキサゾール(PBO)等のPBO繊維;芳香族ポリアミド繊維;等方性ピッチ、異方性ピッチ繊維、メソフェーズピッチ等のピッチ繊維;セルロース繊維;等が例示される。これらのうち、耐酸化性、強度、及び弾性率を考慮すると、好ましくはアクリル繊維、フェノール繊維、セルロース繊維、等方性ピッチ繊維、異方性ピッチ繊維、より好ましくはアクリル繊維である。原料は1種、或いは2種以上混合して使用してもよい。2種以上を混合する場合、上記好適な繊維原料を主成分とすることが好ましい。主成分とは、原料単量体合計量100質量%中、主成分とする繊維原料の含有量が95質量%以上、より好ましくは98質量%以上である。例えばアクリル繊維はアクリロニトリルを主成分とし、他の任意の繊維原料と組み合わせる場合、アクリル繊維を形成する原料単量体中、アクリロニトリル含有量は好ましくは95質量%以上、より好ましくは98質量%以上である。
 炭素質繊維(A)の平均繊維径
 繊維構造体を構成する炭素質繊維(A)の平均繊維径は5~15μmである。平均繊維径が5μmを下回ると、繊維構造体の強度が低下したり、電解液の通液性が低下する。一方、平均繊維径が15μmを超えると、構造体の均一性が損なわれたり、繊維の反応表面積が減少してセル抵抗が増大する。炭素質繊維(A)の平均繊維径は、好ましくは7μm以上、より好ましくは8μm以上であって、好ましくは10μm以下である。
 炭素質繊維(A)の平均繊維長
 本発明の炭素質繊維(A)は、平均繊維径を調整することも好ましい。炭素質繊維の平均繊維長を長くすると繊維同士が十分に絡み合うため、酸化劣化するような状況下でも炭素電極材の形態維持に有効である。一方、平均繊維長を短くすると繊維が解繊されやすく、炭素電極材における繊維密度の均一性を向上できる。したがって炭素質繊維の平均繊維長は好ましくは30mm以上、より好ましくは40mm以上、さらに好ましくは50mm以上であって、好ましくは100mm以下、より好ましくは80mm以下である。
 繊維構造体
 繊維構造体を基材として用いると、炭素電極材の強度向上に寄与すると共に、加工性や取扱性も向上する。本発明の繊維構造体は、例えば炭素質繊維(A)で構成されたシート状物である紡績糸、フィラメント集束糸、不織布、編物、織物、特開昭63-200467号公報などに記載の特殊編織物、スパンレース、マリフリース、フェルトなどが挙げられる。これらのうち、炭素質繊維で構成された不織布、フェルト、編物、織物、及び特殊織編物が、取り扱いや加工性、製造性等の点から好ましい。より好ましくは不織布である。不織布としてスパンボンド不織布、スパンレース不織布、ニードルパンチ不織布、レジンボンド不織布、サーマルボンド不織布などが例示される。
 上記要件(1)を満足しない繊維構造体を炭素電極材に使用した場合、充電液が初期充填量の半分程度にまで減少すると、酸化劣化により炭素電極材を構成する炭素質繊維の崩壊などによって形態を維持できなくなる。そのため炭素電極材により形成されていた空間が消失し、セル内での液流れ性が著しく悪化する。その結果、電池性能が大幅に悪化する。
 また炭素質繊維構造体が平均曲率R1mm-1未満の炭素質繊維で構成されていると、厚さ方向に繊維の長手方向が存在せず、繊維は繊維長さ方向にのみ配向している二次元構造体である。炭素質繊維の平均曲率Rが1mm-1未満の例としてはカーボンペーパーなどの紙類が例示される。紙類は直線状の炭素質繊維が繋がって存在し、同一方向に配向している二次元構造体である。
[黒鉛粒子(B)]
 本発明において黒鉛粒子は、酸化還元による価数の変化、すなわち、反応性を高めて高耐酸化性達成に寄与する。
 本発明では、天然黒鉛、人造黒鉛のいずれも用いることができる。天然黒鉛として、例えば鱗片状黒鉛、鱗状黒鉛、土状黒鉛、球状黒鉛、薄片化黒鉛などが挙げられる。人造黒鉛として、例えば膨張黒鉛、酸化黒鉛などが挙げられる。これらのうち鱗片状黒鉛、薄片化黒鉛、球状黒鉛、膨張黒鉛が好ましく、炭素エッジ面の露出が非常に大きいため低抵抗が得られる。これらは単独、または2種以上を混合して用いてもよい。なお、本発明の鱗片状黒鉛は葉片状であるため、塊状の鱗状黒鉛とは異なる。
 黒鉛粒子(B)の結晶子
 本発明の黒鉛粒子(B)は、結晶子の大きさを調整することも好ましい。
黒鉛粒子(B)はX線回折で求めたc軸方向の結晶子の大きさLc(B)が好ましくは25nm以上、より好ましくは30nm以上、さらにこのましくは35nm以上である。結晶子を大きくすると反応場としての炭素エッジ面を過不足なく露出させることができ、低抵抗と高耐酸化性の両立に寄与する。結晶子の大きさLc(B)の上限は耐酸化性と低抵抗のバランスを考慮すると、好ましくは50nm以下、より好ましくは45nm以下、さらに好ましくは40nm以下である。
 黒鉛粒子(B)の粒径
 本発明の黒鉛粒子(B)は、粒径を調整することも好ましい。黒鉛粒子(B)の粒径は、好ましくは1μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上であって、好ましくは50μm以下、より好ましくは45μm以下、さらに好ましくは40μm以下である。粒径が小さすぎると炭素質材料(C)に埋没する黒鉛粒子(B)の比率が多くなる。また黒鉛粒子(B)が炭素質材料(C)に埋没して黒鉛粒子(B)の表面が被覆されると、炭素質材料(C)の比表面積が増える。炭素質材料(C)の比表面積が増えすぎると、黒鉛粒子(B)の添加による耐酸化性向上効果が十分に得られないことがある。黒鉛粒子(B)の粒径は、動的光散乱法で得られた粒径分布におけるメジアン50%径での平均粒径(D50)である。市販の黒鉛粒子を用いる場合は、カタログ記載の粒径を採用できる。
 炭素電極材の抵抗と耐久性はトレードオフの関係にあり、耐久性を高めると抵抗も高くなる関係にあることが知られている。本発明者らはこのような従来の知見に基づいて黒鉛粒子(B)が炭素質材料(C)に埋没している炭素電極材は抵抗が高くなるが、耐久性は向上すると予測した。しかし黒鉛粒子(B)が炭素質材料(C)に埋没すると抵抗は高くなったが、耐久性は高くならなかった。本発明者らがこの炭素電極材の黒鉛粒子(B)の埋没状態を確認した結果、黒鉛粒子(B)はバインダーである炭素質材料(C)によって被覆されていた。そのため黒鉛粒子(B)を被覆して膨れた分、炭素質材料(C)の比表面積が増加しており、その結果、耐久性が低くなった。したがって黒鉛粒子(B)が炭素質材料(C)に埋没して被覆されていると、黒鉛粒子(B)の添加効果が十分に発揮されず、抵抗が高くなると共に、耐久性も低くなる。
 黒鉛粒子(B)のBET比表面積
 本発明に用いられる黒鉛粒子(B)は、所定のBET比表面積を有することも好ましい。BET比表面積が大きい程、黒鉛粒子(B)のエッジ面の露出が増えて抵抗低減に寄与する。一方、BET比表面積が小さい程、耐酸化性向上に寄与する。黒鉛粒子(B)のBET比表面積は好ましくは3m2/g以上、より好ましくは5m2/g以上であって、好ましくは30m2/g以下、より好ましくは25m2/g以下である。黒鉛粒子(B)のBET比表面積は、窒素吸着量から求められるBET比表面積である。
[炭素質材料(C)]
 本発明に用いられる炭素質材料は、炭素質繊維(A)(すなわち、繊維構造体を形成している炭素繊維(A))と黒鉛粒子(B)とを結着する結着剤である。また炭素質材料(C)は耐酸化性に劣る炭素質繊維(A)を保護し、炭素電極材の耐酸化性向上に寄与する。また炭素質材料(C)によって黒鉛粒子(B)と炭素質繊維(A)を結着することで効率的な導電パスが得られるだけでなく、黒鉛粒子(B)による低抵抗と高耐酸化性も達成できる。
 炭素質材料(C)によって炭素質繊維(A)に黒鉛粒子(B)が結着されるだけでなく、炭素質繊維(A)同士、黒鉛粒子(B)同士が結着されることがあり、結着により所定の炭素電極材の形態を維持できる。
 炭素質材料(C)は、下記要件(2)および(3)を満足する高結晶性の炭素質材料である。
 (2)炭素質材料(C)は、レーザーラマン分光法により求めた1360cm-1のピーク強度IDと、1580cm-1のピーク強度IGとのピーク強度比Rc(ID/IG)が1.1未満であり、且つ
 (3)炭素質繊維(A)をレーザーラマン分光法により求めた1360cm-1のピークの強度IDと1580cm-1のピークの強度IGとのピーク強度比Ra(ID/IG)と、炭素質材料(C)のピーク強度比Rcとのピーク強度比Rac(Rc/Ra)が1.0以下である。
 これらの要件を全て満足する炭素質材料(C)は高い耐酸化性を有する。更に炭素質繊維(A)が高結晶な炭素質材料(C)で被覆されることで、炭素質繊維(A)の酸化劣化に対する保護効果も向上する。その結果、炭素電極材全体の耐酸化性が向上する。
 炭素質材料(C)のピーク強度比Rcは1.1未満、好ましくは1.0未満、より好ましくは0.9未満であって、好ましくは0.1以上、より好ましくは0.3以上、さらに好ましくは0.5以上である。
 また炭素質繊維(A)のピーク強度比Raと炭素質材料(C)のピーク強度比Rcとのピーク強度比Rac(Rc/Ra)は、1.0を上回ると、上記効果が有効に発揮されない。ピーク強度比Racは好ましくは0.8以下、より好ましくは0.75以下、さらに好ましくは0.6以下である。耐酸化性と低抵抗との両立を考慮するとピーク強度比Racは好ましくは0.2以上、より好ましくは0.3以上、さらに好ましくは0.4以上である。
 炭素質繊維(A)のピーク強度比Ra
 炭素質繊維(A)のピーク強度比Raは特に限定されないが、適切に制御すると良好な電子伝導性、硫酸溶媒などに対する耐酸化性、酸素官能基が付与し易くなるなどの効果が得られる。ピーク強度比Raは好ましくは0.8以上、より好ましくは0.9以上であって、好ましくは1.5以下、より好ましくは1.3以下である。
 本発明の炭素電極材は、炭素質材料(C)により炭素質繊維(A)が被覆されており、且つ、黒鉛粒子(B)の表面の少なくとも一部が炭素質材料(C)に被覆されずに露出している状態であることが好ましい。また結着後の炭素質材料(C)は被膜状態でないことが好ましい。炭素質材料(C)が被膜状態でないとは、炭素質繊維(A)の繊維間において炭素質材料(C)が全蹼足(ボクソク)や蹼足のような水かき状態を形成していない状態をいう。炭素質材料(C)が被膜状態になっていると、電解液の通液性が悪化し、上記黒鉛粒子の反応表面積を有効利用できない。
 図3は本発明の炭素電極材を構成する炭素質繊維(A)に炭素質材料(C)で黒鉛粒子(B)が結合された状態のSEM写真である。図3に示すように炭素質材料(C)によって炭素質繊維(A)および黒鉛粒子(B)の表面および内部が強く結着されている。また炭素質材料(C)により炭素質繊維(A)が被覆されつつ、黒鉛粒子(B)の表面が露出していることがわかる。一方、図4および図5は、炭素電極材において炭素質繊維(A)と黒鉛粒子(B)が結着されていない状態を示すSEM写真である。
 炭素質材料(C)の材料
 本発明に用いられる炭素質材料(C)は上記結着効果が得られる材料であればよい。例えば、コールタールピッチ、石炭系ピッチ等のピッチ類;フェノール樹脂、ベンゾオキサジン樹脂、エポキシド樹脂、フラン樹脂、ビニルエステル樹脂、メラニン-ホルムアルデヒド樹脂、尿素-ホルムアルデヒド樹脂、レソルシノール-ホルムアルデヒド樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ポリアクリロニトリル等の樹脂;フルフリルアルコール;アクリロニトリル-ブタジエンゴム等のゴムなどが挙げられる。炭素質材料(C)は市販品を用いてもよい。
 これらのうち、特に易結晶性であるコールタールピッチ、石炭系ピッチ等のピッチ類は、低い焼成温度で目的とする炭素質材料(C)が得られるため好ましい。またポリアクリロニトリル樹脂も焼成温度を上げれば所望の炭素質材料(C)が得られるため好ましい。これらのうちより好ましいのはピッチ類である。
 メソフェーズ相の含有率
 本発明の炭素質材料(C)はメソフェーズ相の含有率を調整することも好ましい。メソフェーズ相の含有量が少なければ、比較的低温で溶融、または室温で液体状態の炭素質材料(C)が得られる。一方、メソフェーズ相の含有率が高ければ、高温で溶融し、炭化収率の高い炭素質材料が得られる。炭素質材料(C)に適用するピッチ類は、メソフェーズ相の含有率が高いこと、すなわち、炭化率が高いことが好ましい。例えばメソフェーズ相含有率は好ましくは30%以上、より好ましくは50%以上である。このような炭素質材料(C)を用いると、溶融時の流動性が抑えられて黒鉛粒子(B)の表面を過剰に被覆することがなく、黒鉛粒子(B)を介して炭素質繊維(A)間を結着できる。高い結着性を付与する観点から、メソフェーズ相含有率は好ましくは90%以下である。コールタールピッチや石炭系ピッチなどのピッチ類は、不融化処理の温度や時間によって、メソフェーズ相(液晶相)の含有率をコントロールできる。
 本発明ではピッチ類の融点を調整することも好ましい。炭素質材料(C)の流動性と結着性、添着加工時の臭気などを考慮すると、ピッチ類の融点は好ましくは100℃以上、より好ましくは200℃以上であって、好ましくは350℃以下である。
 なお、本発明の炭素質材料(C)には、フェノール樹脂は使用しないことが好ましい。特許文献4のようにフェノール樹脂を用いると、ホルムアルデヒドが発生したり、製造時にホルムアルデヒド濃度の管理が必要になるなどコスト面、作業面でのデメリットがある。
 炭素質材料(C)の含有率
 本発明の炭素電極材は、炭素質材料(C)含有率を適切に調整することも好ましい。炭素質材料(C)の含有率を多くすると結着効果を高めることができる。一方、炭素質材料(C)の含有率が多すぎると通液圧損が増大傾向を示す。炭素質繊維(A)(すなわち、繊維構造体を形成している炭素繊維(A))、黒鉛粒子(B)、および炭素質材料(C)の合計量に対する炭素質材料(C)の質量比率(C/(A+B+C))は好ましくは20%以上、より好ましくは30%以上、さらに好ましくは35%以上であって、好ましくは60%以下、より好ましくは50%以下である。 
 なお、特許文献4でも炭素質材料を用いているが、炭素質繊維と炭素微粒子との接触部分のみを固定(接着)させているだけの部分的な接着作用しかない。そのため実施例の炭素電極材のバインダー含有率は14.4質量%程度である。
 黒鉛粒子(B)の含有率
 本発明の炭素電極材は、黒鉛粒子(B)含有率を適切に調整することも好ましい。本発明の炭素電極材は、黒鉛粒子(B)含有率を多くすると耐酸化性が向上する。一方、黒鉛粒子(B)が多すぎると通液性が悪化して抵抗が高くなることがある。耐酸化性と低抵抗のバランスを考慮すると炭素質繊維(A)(すなわち、繊維構造体を形成している炭素繊維(A))、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)の質量比率は好ましくは20%以上、より好ましくは25%以上であって、好ましくは60%以下、より好ましくは55%以下、さらに好ましくは50%以下である。
 黒鉛粒子(B)と炭素質材料(C)の質量比
 本発明では黒鉛粒子(B)と炭素質材料(C)との質量比を調整することも好ましい。これらの質量比を調整すると黒鉛粒子(B)の脱落を抑制できると共に、耐酸化性をより一層向上できる。また黒鉛粒子の炭素エッジ面の被覆を抑制すれば抵抗をより一層低減できる。黒鉛粒子(B)に対する炭素質材料(C)の質量比(C/B)は、好ましくは0.1以上、より好ましくは0.3以上、さらに好ましくは0.5以上であって、好ましくは10.0以下、より好ましくは6.0以下、さらに好ましくは5.0以下、よりさらに好ましくは4.0以下である。
 炭素電極材 本発明の炭素電極材は、下記要件(4)、(5)を満足するものである。
(4)炭素電極材表面の結合酸素原子数Oと、炭素電極材表面の全炭素原子数Cの比Roc(O/C)が1.0%以上
 炭素電極材表面の結合酸素原子数Oと全炭素原子数Cを適切に調整すると、電極反応速度が顕著に向上し、抵抗を低減できる。また炭素電極材の親水性が改善され、良好な通水速度を確保できる。炭素電極材表面の結合酸素原子数Oと全炭素原子数Cの比Roc(O/C)が1.0%以上であれば、炭素エッジ面や欠陥構造部に導入された酸素原子がカルボニル基、キノン基、ラクトン基、フリーラジカル的な酸化物などの反応基として生成される。そのため炭素電極材表面の反応基が電極反応に寄与して抵抗を低減できる。結合酸素原子数Oと全炭素原子数Cの比Rocは好ましくは2%以上、より好ましくは3%以上であって、好ましくは10%以下、より好ましくは6%以下である。炭素電極材表面の結合酸素原子数Oと全炭素原子数Cは実施例記載のX線光電子分光法(XPS)で測定する。
(5)炭素電極材は、水銀圧入法における細孔分布において細孔径0.1~10μmの範囲内に1つ以上の細孔ピークを有すると共に、該細孔径0.1~10μmの範囲内のLog微分細孔容積が10ml/g以上
 この要件は低充電深度領域での抵抗低減効果を考慮して規定したものである。レドックスフロー電池の反応は、電解液が接触する電極表面部分でのみ起きる。特にMn-Ti系電解液を用いた場合、充電時のMn3+イオンはMnO粒子として析出する。析出したMnO粒子は電池反応に直接関与しないが、Mn3+イオンの消費に伴い、平衡反応のずれからMnO粒子がMn3+に変換される。すなわち、MnO粒子も間接的ではあるが電池反応に関与しているため、MnO粒子の電極表面への拡散が電極の低抵抗化に寄与すると考えられる。析出したMnO粒子のサイズは数百ナノメートルサイズなので、数十ナノメートルサイズ以下の細孔では、十分にMnO粒子が拡散できず、低抵抗化に寄与し難いと考えられる。これに対し、細孔直径0.1~10μmの領域に細孔ピークを1以上有し、かつ該領域のLog微分細孔容積が10ml/g以上であると、電極表面部分へのMnO2粒子の拡散が効率的に行われ、特に活物質の不足している低充電深度領域での反応がスムーズに行われると考えられる。
 細孔直径が0.1μm未満では、反応に寄与する低充電深度領域での割合が低下する。一方、細孔直径が10μmを超えると、同一空間内での表面積が不足する。細孔直径は好ましくは1μm以上、より好ましくは2μm以上であって、好ましくは8μm以下、より好ましくは7μm以下である。
 本発明では細孔径0.1~10μmの領域内に細孔ピークを1以上、好ましくは2以上であって、好ましくは5以下、より好ましくは4以下有する。細孔直径0.1~10μmの領域内に細孔ピークを有することで優れた抵抗低減効果を発揮する。
 上記領域内のLog微分細孔容積が10ml/g以上であると、活物質が不足する低充電深度領域における充電率30%での低抵抗化効果と相関性が高い。また該細孔径範囲のLog微分細孔容積が大きくなると、低充電深度領域において抵抗低減効果が得られる(実施例「SOC30%全セル抵抗」)。Log微分細孔容積が大きい程、低抵抗化効果も大きくなるが、Log微分細孔容積が大きくなりすぎると耐久性が悪化することがある。上記領域内のLog微分細孔容積は10ml/g以上、好ましくは15ml/g以上であって、好ましくは50ml/g以下、より好ましくは40ml/g以下、更に好ましくは35ml/g以下である。
 炭素電極材の通水速度 本発明の炭素電極材は親水性に優れた特性を有する。電解液に対する親和性を十分に確保する観点から通水速度を高めてもよい。通水速度は0.5mm/sec以上、1mm/sec以上、5mm/sec以上、10mm/sec以上の順に好ましい。炭素電極材の上記要件等を適宜調整することで通水速度を調整可能である。通水速度は乾式酸化処理された炭素電極材表面に水滴を垂らし、その水滴が炭素電極材の裏面に達するまでの速度である。
 炭素電極材の目付量
 炭素電極材の目付を適切に制御することも好ましい。目付量を調整することで電解液の通液性を向上できる。炭素電極材の目付量は、好ましくは50g/m2以上、より好ましくは100g/m2以上であって、好ましくは500g/m2以下、より好ましくは400g/m2以下である。
 イオン交換膜は抵抗を低減するために薄膜化傾向にあり、破損しやすくなっており、例えば集電板1とイオン交換膜3に挟まれたスペーサー2の厚みが0.3~3mmである場合、上記目付量の本発明の炭素電極は通液性を確保しつつ、イオン交換膜の破損を防止できる。またイオン交換膜の破損を防止する観点から本発明の炭素電極材は片面に平坦加工が施された不織布や紙を基材とすることも好ましい実施態様である。平坦加工は、スラリーを炭素質繊維の片面に塗布、乾燥する方法;PETなどの平滑なフィルム上で含侵、乾燥するなど各種公知の方法を採用できる。
 炭素電極材のBET比表面積
 炭素電極材のBET比表面積を適切に制御することも好ましい。炭素電極材のBET比表面積が小さすぎると黒鉛粒子(B)のエッジ面の露出が減ってしまうため、所望とする低抵抗が得られなくなることがある。一方、BET比表面積が大きすぎると黒鉛粒子(B)に起因する耐酸化性向上効果が有効に発揮されず、耐酸化性が低下することがある。炭素電極材のBET比表面積は好ましくは1.0m2/g以上、より好ましくは1.5m2/g以上であって、好ましくは30m2/g以下、より好ましくは25m2/g以下、さらに好ましくは20m2/g以下である。
 炭素電極材の厚み
 炭素電極材の厚みを適切に調整することも好ましい。炭素電極材の厚みは好ましくはスペーサー厚みよりも大きくすることであり、好ましくはスペーサー厚みの1.5~6.0倍である。
 炭素電極材の圧縮応力
 炭素電極材の圧縮応力を適切に調整することも好ましい。炭素電極材の圧縮応力が高すぎると、イオン交換膜が破損することがある。炭素電極材の圧縮応力は好ましくは9.8N/cm2以下である。圧縮応力は炭素電極材の目付量・厚みを変化させて調整してもよい。また圧縮応力は、炭素電極材を例えば2層、または3層などの積層構造としたり、あるいは別形態の炭素電極材と組み合わせて調整してもよい。
 本発明の炭素電極材を用いれば、非常に高い耐酸化性が得られると共に、反応活性を高め、低抵抗かつ長寿命な電極が得られる。
 本発明の炭素電極材はレドックスフロー電池用の炭素電極材として好適である。本発明には炭素電極材を備えたレドックスフロー電池が含まれる。本発明の炭素電極材は、フロータイプおよびノンフロータイプのレッドクスフロー電池、またはリチウム、キャパシタ、燃料電池のシステムと複合化されたレドックスフロー電池に好適に用いられる。特に本発明の炭素電極材は、Mn-Ti系レドックスフロー電池に好適である。
 本発明の炭素電極材を用いれば、レドックスフロー電池の使用中に充電電解液量が著しく減少して炭素電極材が酸化劣化した場合であっても、初期の抵抗値と略同程度の抵抗値を維持できる。また本発明の炭素電極材は、例えばMn-Ti系電解液を用いた場合であっても、Mnイオン(正極充電液)に対する耐酸化性に優れており、更に初期充放電時のセル抵抗を低く維持できるため、電池エネルギー効率を向上できる。また正極充電液に対する耐酸化性に優れた炭素電極材の提供が可能となる。
 図2に本発明の炭素電極材を用いた液体流通型電解槽の一例を示す。電解槽には、相対する二枚の集電板1,1間にイオン交換膜3が配設され、イオン交換膜3の両側にスペーサー2によって集電板1,1の内面に沿った電解液の通液路4a,4bが形成されている。通液路4a,4bの少なくとも一方に電極材5が配設されている。集電板1には電解液の液流入口10と液流出口11とが設けられている。図2のように電極を電極材5と集電板1とで構成し、電解液が電極材5中を通過する構造(電極構造の三次元化)であるため、集電板1によって電子の輸送を確保しながら電極材5の細孔表面全てを電気化学反応場として充放電効率を向上できる。その結果、電解槽の充放電効率が向上する。
 本発明の炭素電極材の製造方法
 以下、本発明の炭素電極材の製造方法を説明する。本発明の炭素電極材は、黒鉛粒子(B)、および炭化前の炭素質材料(C)(以下、「炭素質材料前駆体」ということがある)を、基材である炭素質繊維(A)からなる構造体またはその前駆体に添着(以下、「添着工程」ということがある)させた後、炭素化工程、黒鉛化工程、酸化工程を経て製造できる。各工程では、特に説明がない場合は公知の方法・製造条件を適宜適用できる。
 炭素質繊維(A)は、上記した各種材料から適宜選択すればよい。
 炭素質繊維(A)の上記「加熱炭素化処理」は、少なくとも耐炎化工程、および炭素化工程を含むことが好ましい。耐炎化工程と炭素化工程の順序は問わない。また耐炎化後の炭素化工程を省略し、耐炎化された炭素質繊維(A)を添着工程で処理した後の炭素化工程で炭素化してもよい。
 耐炎化工程とは、空気雰囲気下、有機繊維のプレカーサーを加熱して耐炎化有機繊維を得る工程である。加熱処理温度を適切に設定すると、有機繊維の熱分解を防いで炭素質繊維の形態を保持したまま、有機繊維中の窒素、水素の含有率を低減して炭素化率を向上できる。加熱処理温度は好ましくは180℃以上、より好ましくは190℃以上、更に好ましくは200℃以上であって、好ましくは350℃以下、より好ましくは330℃以下、更に好ましくは300℃以下である。
 耐炎化工程では、有機繊維を弛緩した状態で加熱処理すると、熱収縮して分子配向が崩壊し、炭素質繊維の導電性が低下することがある。導電性の低下を防ぐためには、有機繊維を緊張下、又は延伸下で耐炎化処理することが好ましく、緊張下で耐炎化処理することがより好ましい。
 炭素化工程は、得られた耐炎化有機繊維を不活性雰囲気下、好ましくは窒素雰囲気下で加熱して炭素質繊維を得る工程である。所定の温度で加熱処理すると、有機繊維の炭素化が進行し、擬黒鉛結晶構造を有する炭素質繊維が得られる。加熱温度は好ましくは1000℃以上、より好ましくは1100℃以上、更に好ましくは1200℃以上であって、好ましくは2000℃以下、より好ましくは1900℃以下である。
 有機繊維は、それぞれ異なる結晶性を有するため、炭素化工程における加熱温度は、原料とする有機繊維の種類に応じて選択できる。例えば、有機繊維としてアクリル樹脂(好ましくはポリアクリロニトリル)を使用する場合、加熱温度は好ましくは800℃以上、より好ましくは1000℃以上であって、好ましくは2000℃以下、より好ましくは1800℃以下である。
 耐炎化工程および炭素化工程は、連続的に行うことが好ましく、耐炎化温度から上記炭素化温度までの昇温速度を適切に制御することで有機繊維の形状を保持し、かつ機械的性質に優れた炭素質繊維が得られる。昇温速度は好ましくは20℃/分以下、より好ましくは15℃/分以下であって、好ましくは5℃/分以上である。
 繊維構造体は、炭素質繊維の構造体の前駆体、例えば不織布を加熱炭化処理したものである。炭素質繊維の構造体の前駆体は繊維を用いて形成する。前駆体の形成方法は特に限定されない。例えば不織布を形成する場合、交絡、融着、接着など公知の製造方法を採用できる。
 本発明では、繊維構造体を炭素質電極材の基材として用いる。繊維構造体の使用により、強度が向上し、取扱いや加工が容易になる。
 黒鉛粒子(B)と炭素質材料(C)は、上記した各種材料から適宜選択すればよい。
 なお、上記黒鉛粒子(B)以外に、レドックスフロー電池における反応活性を示す粒子として例えばアセチレンブラック(アセチレンの煤)、オイルブラック(ファーネスブラック、オイルの煤)、ガスブラック(ガスの煤)などのカーボンブラック類;黒鉛化された煤、炭素繊維粉末、カーボンナノチューブ(CNT,carbonnanotube)、カーボンナノファイバー、カーボンエアロゲル、メソ多孔性炭素、ガラス状炭素粉末、活性化炭素、グラフェン、酸化グラフェン、NドープCNT、ホウ素ドープCNT、フラーレン、石油コークス、アセチレンコークス、無煙炭コークスなどの炭素粒子類;が知られている。本発明者らが検討した結果、これらのうちカーボンブラック類のように反応性および比表面積が高く、低結晶性のものは、正極マンガンの充電液に対して容易に酸化されてしまい、使用できない。一方、CNTなどの炭素粒子のように単に炭素結晶性が高い粒子を用いただけでは、十分な反応活性を発現することができなかった。更にこれらは希少かつ高価であるため、安価な電極材として適切でない。
 上記要件(5)、すなわち、炭素電極材の細孔径0.1~10μmの範囲内の細孔容積を10ml/g以上に制御する方法として、例えば下記第1~第4の方法が挙げられる。下記第1~第4の方法は何れか1つ、或いは複数を組み合わせて行ってもよい。
 第1の方法は、黒鉛粒子(B)と炭素質材料(C)との質量比および/または黒鉛粒子(B)の平均粒径を適切に制御する方法である。
 上記重量比を制御することにより、黒鉛粒子(B)が繊維構造体の表面に露出して自ずと表面に凹凸面が形成され、所定の表面積が得られる。このような表面性状を得るために黒鉛粒子(B)と炭素質材料(C)との質量比を調整することが好ましく、より好ましくは質量比(C/B)を3/1~1/3とすることである。
 また所望とする細孔容積を得るために黒鉛粒子(B)の平均粒径を制御することも好ましい。黒鉛粒子(B)の平均粒子径は好ましくは1μm以上、より好ましくは5μm以上であって、好ましくは30μm以下、より好ましくは20μm以下である。
 第2の方法は、炭素質材料(C)の融点および/または粒径制御することである。
 この方法によれば、炭素質材料(C)が溶融した後の炭化が速やかに進行してその流動性が抑えられるため、対象とする細孔直径0.1~10μmの空隙を閉塞することなく、所定の細孔容積が得られる。更に添着加工時の臭気も抑制できる。炭素質材料(C)の融点は好ましくは100℃以上、より好ましくは200℃以上である。結着効果を考慮すると炭素質材料(C)の融点は、好ましくは350℃以下である。
 炭素質材料(C)の平均粒径を制御することも好ましい。炭素質材料(C)の平均粒径が小さすぎると炭素電極材の細孔直径0.1~10μmに存在する空隙が閉塞されることがある。一方、炭素質材料(C)の平均粒径が大きすぎると、黒鉛粒子(B)との接触面が低下して結着力が不足することがある。炭素質材料(C)の平均粒径は好ましくは1~40μmである。
 第3の方法は、炭素質材料(C)の不融化である。
 炭素質材料(C)を酸素雰囲気下で加熱処理すると、炭素質材料(C)が一旦溶融した後にグリーンピッチコークス中の炭素前駆体の縮合反応が進行して不融化する。これにより黒鉛粒子(B)および/または炭素質繊維(A)との結着性を損なうことなく、炭素質材料(C)が溶融する際の流動性が抑制できる。その結果、炭素電極材の細孔直径0.1~10μmに存在する空隙を閉塞することなく、所定の細孔容積が得られる。炭素質材料(C)の加熱処理温度は好ましくは200℃以上、より好ましくは250℃以上、更に好ましくは300℃以上であって、好ましくは350℃以下である。本発明では予め不融化され、且つ、粉砕された炭素質材料(C)を用いてもよい。
 第4の方法は、炭化時に実質的に消失する材料を添加する方法である。
 これにより、上記(5)を満足する空隙を形成できる。炭化時に消失する材料(以下、「消失材料」という)とは、炭化時の加熱により分解し、炭化後の繊維構造体から消失する材料である。「実質的に」とは、消失材が繊維構造体から完全に消失せず、極微量残留することも許容する趣旨である。このような材料として例えばポリエチレン、ポリプロピレン、ポリビニルアルコールなど炭素質材料(C)よりも分解温度が低い材料が挙げられる。消失材料は、平均粒径が5~30μmの粒子状、または平均繊維径が10~20μmの繊維状であることが好ましい。
 以下、添着工程以降の各工程について説明する。
 添着工程
 添着工程は、炭素質繊維(A)構造体、またはその前駆体に黒鉛粒子(B)、及び炭素質材料(C)の前駆体を添着させる工程である。炭素質繊維(A)に黒鉛粒子(B)、及び炭素質材料(C)の前駆体を添着させる方法は各種公知の方法を採用できる。好適な添着方法は以下の通りである。
 1)炭化時に消失するバインダー、例えばポリビニルアルコールなどを仮接着剤として添加した水やアルコールなどの溶媒に炭素質材料(C)前駆体と黒鉛粒子(B)とを分散させ、この分散液に炭素質繊維(A)の構造体を浸漬した後、加熱して乾燥する。
 2)炭素質材料(C)前駆体を加熱して溶融させ、得られた溶融液中に黒鉛粒子(B)を分散させて溶融分散液を準備し、この溶融分散液に炭素質繊維を浸漬した後、室温まで冷却する。
 添着工程では、繊維構造体を浸漬した後、余分な溶融分散液や分散液(以下、「余剰分散液」という)を除去することが好ましい。好適な除去方法は以下の通りである。
 1)所定のクリアランスを設けたニップローラーに通すことで余剰分散液を絞って繊維構造体から除去する。
 2)ドクターブレード等で余剰分散液の表面をかきとって繊維構造体から除去する。
 得られた黒鉛粒子(B)、及び炭素質材料(C)の前駆体を添着させた繊維構造体(以下、「添着物」という)は、空気雰囲気下、例えば80~150℃で乾燥することが望ましい。
 炭素化工程
 炭素化工程は、添着物を焼成して炭素化物を得る工程である。これにより、黒鉛粒子(B)が炭素質繊維(A)に結着される。炭素化工程では、炭化時の分解ガスを十分に除去することが好ましい。好ましい炭素化条件は以下の通りである。
 雰囲気:不活性雰囲気、好ましくは窒素雰囲気
 加熱温度:下限は800℃以上、1000℃以上、1200℃以上、1300℃以上の順に好ましい。上限は2000℃以下、1500℃以下、1400℃以下の順に好ましい。
 炭素化工程では、炭素質繊維(A)間の結着、炭化時の分解ガスの除去を十分に行うことができるように加熱時間を制御することが好ましい。加熱時間は好ましくは1時間以上、2時間以下である。
 本発明では炭素質繊維(A)構造体の前駆体の耐炎化工程後に炭素化工程を行ってもよく(下記方法1)、或いは炭素質繊維(A)構造体の前駆体の耐炎化工程後の炭素化工程を省略してもよい(下記方法2)。方法1の場合、炭素質繊維(A)構造体に添着が行われる。方法2の場合、炭素質繊維(A)構造体の前駆体に添着が行われる。
 方法1:炭素繊維構造体の前駆体の耐炎化工程→炭素化工程→添着工程→炭素化工程→黒鉛化工程→酸化工程
 方法2:炭素繊維構造体の前駆体の耐炎化工程→添着工程→炭素化工程→黒鉛化工程→酸化工程
 上記方法1は、炭素化工程を2回行うため高コストとなるが、体積収縮比率の差が小さく、反りなど、炭素電極材の変形抑制に有利である。
 上記方法2は、炭素化工程が1回であるため低コストであるが、上記方法1よりも体積収縮比率の差が大きく、変形抑制の点で劣る。
 黒鉛化工程
 黒鉛化工程は、炭素化物を更に加熱して黒鉛化物を得る工程である。黒鉛化処理して結晶性を高めると、炭素電極材の耐酸化性を向上できる。炭素化工程後、更に加熱して黒鉛化工程を行うことが好ましい。好ましい黒鉛化条件は以下の通りである。
 雰囲気:不活性雰囲気、好ましくは窒素雰囲気
 加熱温度:炭素化工程の加熱温度よりも高温であって、好ましくは1800℃以上、より好ましくは2000℃以上であって、好ましくは3000℃以下
 特許文献4のように黒鉛化工程を行わない場合、上記要件(2)[炭素質材料(C)のRc(ID/IG)が1.1未満]を満足しない。
 酸化工程
 酸化工程は、黒鉛化物を酸化処理して炭素電極材を得る工程である。黒鉛化物を酸化処理すると、ヒドロキシル基、カルボニル基、キノン基、ラクトン基、フリーラジカル的な酸化物などの酸素官能基が表面に導入された炭素電極材が得られる。その結果、上記(4)[炭素電極材表面の比Roc(O/C)が1%以上]を達成できる。
 酸化工程は、例えば湿式の化学酸化、電解酸化、乾式酸化などの各種処理工程を適用できる。酸化工程は加工性、製造コストの観点から好ましくは乾式酸化処理工程である。乾式酸化処理条件は酸素官能基導入を促進する観点から、空気雰囲気下、好ましくは500℃以上、より好ましくは600℃以上、更に好ましくは650℃以上であって、好ましくは900℃以下、より好ましくは800℃以下、更に好ましくは750℃以下である。
 酸化処理時の加熱温度や処理時間を適切に制御することで炭素電極材の機械的強度の低減抑制、乃至維持ができる。例えば酸化工程の収率(酸化処理前の黒鉛化物質量に対する、酸化処理液後の二次酸化物、すなわち、炭素電極材質量の比率)が好ましくは90%以上、96%以下となるように処理条件を制御することが望ましい。
 本願は、2020年5月8日に出願された日本国特許出願第2020-082469号に基づく優先権の利益を主張するものである。2020年5月8日に出願された日本国特許出願第2020-082469号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例及び比較例に基づいて本発明をより詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。実施例において、「%」は特に断りのない限り「質量%」を意味する。
 本実施例では、以下の項目を測定した。
(1)レーザーラマン分光法による、ID/IGの測定
 炭素質繊維(A)のピーク強度比Ra、および炭素質材料(C)のピーク強度比Rcはレーザーラマン顕微鏡を用いて測定した。具体的にはレーザーラマン顕微鏡(ナノフォトン社製 Raman-11)に炭素電極材をセットし、測定対象をフォーカスした後、ラマン分光を測定した。ラマンスペクトルはレーザーラマン顕微鏡で、波長532nmレーザーを使用して測定した。回折格子は600gr/mmを使用し、500~2300cm-1の領域を測定した。得られたラマンスペクトルはローレンツ関数を用いてピーク分離し、1350cm-1付近のDバンド、1590cm-1付近のGバンドのピーク強度を評価した。
(2)X線回折による、c軸方向の結晶子の大きさ(Lc)の測定
 原料として用いた表1の黒鉛粒子を実施例2と同じ加熱処理を順次行い、最終処理されたサンプルを測定に用いた。サンプルをメノウ乳鉢で、粒径10μm程度になるまで粉砕した。粉砕後のサンプルに対して約5質量%のX線標準用高純度シリコン粉末を内部標準物質として混合し、試料セルに詰め、CuKα線を線源として、ディフラクトメーター法によって広角X線を測定した。
 黒鉛粒子は、上記広角X線測定で得られたチャートからピーク分離を行うことでLc値を算出した。具体的には、回折角θの2倍(2θ)が26.4°~26.6°の範囲に頂点が見られるピークを黒鉛粒子とした。ピークトップから、正弦波としてピーク形状を決定し、下記方法によってLcを算出した。
 曲線の補正には、いわゆるローレンツ因子、偏光因子、吸収因子、原子散乱因子等に関する補正を行わず、次の簡便法を用いた。すなわち、<002>回折に相当するピークのベースラインからの実質強度をプロットし直して<002>補正強度曲線を得た。このピーク高さの1/2の高さに引いた角度軸に平行な線が上記補正強度曲線と交わる線分の長さ(半値幅β)から、下式によってc軸方向の結晶子の大きさLcを求めた。
 Lc=(k・λ)/(β・cosθ)
 ここで、波長λ=1.5418Å、
     構造係数k=0.9、
     βは<002>回折ピークの半値幅、
     θは<002>回折角
(3)平均曲率Rの算出方法
 炭素電極材の表面を、走査型電子顕微鏡(SEM)で倍率100倍にて観察した。視野中に観察される曲がった繊維のうち最も曲がりの大きい部分を選定し、その曲がり部分を円弧でフィッティングした。その円弧半径を曲率半径r(ミリメートルをベースとして計測)とし、1/rを曲率Rと規定して算出した。同様の測定を合計5箇所で行い、その平均値を算出して平均曲率Rを得た。
(4)平均繊維径の算出方法
 使用した各炭素質繊維の断面を走査型電子顕微鏡(1000倍)で観察し、任意に抽出した5本の繊維の断面積を測定した。この断面積を丸形断面形状繊維の断面積とみなし、下式から繊維径を算出した。合計5本の繊維径の平均値を平均繊維径とした。
   繊維径(μm)=√(4×断面積(μm2)/3.14)
(5)XPS表面分析によるO/Cの測定
 X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)には、アルバック・ファイ5801MCの装置を用いた。
 まず、試料をサンプルホルダー上にMo板で固定し、予備排気室にて十分に排気した後、測定室のチャンバーに投入した。線源にはモノクロ化AlKα線を用い、出力は14kV、12mA、装置内真空度は10-8torrとした。
 全元素スキャンを行って表面元素の構成を調べ、検出された元素および予想される元素についてナロースキャンを実施し、存在比率を評価した。
 全表面炭素原子数に対する表面結合酸素原子数の比を百分率(%)で算出し、O/Cを算出した。
(6)充放電試験
 各電極材を、上下方向(通液方向)に2.7cm、幅方向に3.3cmの電極面積8.91cm2に切り出し、正極側にのみ導入した。このとき、セル内目付が230~350g/m2となるように枚数を調整した。負極側には下記で作製した電極材を2枚積層し、図1のセルを組み立てた。イオン交換膜はナフィオン212膜を用い、スペーサー厚みは0.5mmとした。144mA/cm2で電圧範囲1.55~1.00Vで10サイクル目の電圧曲線から、下式(1)および(2)の全セル抵抗(Ω・cm2)を算出した。
 正極および負極の電解液には共に、オキシ硫酸チタン及びオキシ硫酸マンガンをそれぞれ1.0moL/Lずつ溶解した5.0moL/L硫酸水溶液を用いた。電解液量はセルおよび配管に対して大過剰とした。液流量は毎分10mLとし、35℃で測定を行った。
 SOC50%全セル抵抗=(VC50-VD50)/(2×I)[Ω・cm2] (1)
 ここで、
 VC50は、充電率が50%のときの電気量に対する充電電圧を電極曲線から求めた値である。
 VD50は、充電率が50%のときの電気量に対する放電電圧を電極曲線から求めた値である。
 I=電流密度(mA/cm2
 SOC30%全セル抵抗=(VC30-VD30)/(2×I)[Ω・cm2] (2)
 ここで、
 VC30は、充電率が30%のときの電気量に対する充電電圧を電極曲線から求めた値である。
 VD30は、充電率が30%のときの電気量に対する放電電圧を電極曲線から求めた値である。
 I=電流密度(mA/cm2
 <負極用電極材>
 平均繊維径16μmのポリアクリロニトリル繊維からなる平織クロス(厚み1.0mm、目付600g/m2)を空気雰囲気下、300℃で加熱して耐炎化し、窒素雰囲気下1000℃で1時間焼成した。その後、空気雰囲気下、600℃で8分間加熱した後、窒素雰囲気下1800℃で1時間焼成した。更に空気雰囲気下、700℃で15分間処理することで、目付152g/m2、厚み0.73mmの負極用電極材を作製した。
(7)耐酸化性試験
(7-1)黒鉛粒子の耐酸化性
 1.0moL/Lオキシ硫酸チタンの5.0moL/L硫酸水溶液と1.0moL/Lオキシ硫酸マンガンの5.0moL/L硫酸水溶液とからなる電解液で、作用極に白金線、参照極にAg/AgCl電極を用いた電池において、開放電圧1.266Vになるまで充電した。表1の黒鉛粒子を、黒鉛粒子に対して40倍量の上記電解液に浸漬して、75℃で16時間静置した。室温まで放冷した後、電解液の開放電圧(作用極に白金線、参照極にAg/AgCl)を測定し、1.266Vからの電圧低下度で耐酸化性を見積もった。
(7-2)炭素電極材の耐酸化性
 炭素電極材は、下記2種類の耐酸化性を評価した。耐酸化性試験1は酸化劣化による重量減少速度を見積もった。耐酸化性試験2は酸化劣化による重量減少が進行しても、抵抗が上昇し難いことを評価している点で、耐酸化性試験1よりも高度な耐酸化性を評価する試験である。
(7-2-1)炭素電極材の耐酸化性試験1:電位試験
 1.0moL/Lオキシ硫酸チタンの5.0moL/L硫酸水溶液と1.0moL/Lオキシ硫酸マンガンの5.0moL/L硫酸水溶液とからなる電解液を用いた。作用極に白金線、参照極にAg/AgCl電極を用いた電位において、開放電圧1.266Vになるまで充電した。作製した炭素電極材を電極重量に対して40倍量の充電液に浸漬して、75℃で16時間静置した。室温まで放冷した後、電解液の開放電圧(作用極に白金線、参照極にAg/AgCl)を測定し、1.266Vからの電圧低下度で耐酸化性を見積もった。
(7-2-2)炭素電極材の耐酸化性試験2:SOC50%全セル抵抗
 1.0moL/Lオキシ硫酸チタンの5.0moL/L硫酸水溶液と1.0moL/Lオキシ硫酸マンガンの5.0moL/L硫酸水溶液とからなる電解液で、作用極に白金線、参照極にAg/AgCl電極を用いた電位において、開放電圧1.266Vになるまで充電した。作製した炭素電極材を電極重量に対して約300~500倍量の充電液に75℃で2週間浸漬し、電極材の重量を50%まで減少させた。なお、この際の浸漬は耐酸化性試験1と比べて大過剰の充電液に長時間浸漬させている。重量減少後の炭素電極材を未充電の上記電解液で洗浄した後、2.5M硫酸で洗浄し、洗浄液が中性になるまで純水で洗浄した。洗浄後の炭素電極材を120℃で一晩乾燥させた後、上記(6)と同様にしてSOC50%全セル抵抗を測定し、耐酸化性を評価した。
(8)BET比表面積(BET:m2/g)の測定
 炭素電極材から約100mg採取し、120℃で12時間真空乾燥した後、90mgを秤量し、試料とした。比表面積・細孔分布測定装置Gemini2375(Micromeritics社製)を使用して試料のBET比表面積を測定した。具体的には液体窒素の沸点(-195.8℃)における窒素ガスの吸着量を相対圧が0.02~0.95の範囲で測定し、試料の吸着等温線を作成した。相対圧0.02~0.15の範囲の結果に基づき、BET法により重量あたりのBET比表面積(単位:m2/g)を求めた。
(9)水銀圧入法による表面積の測定
 細孔分布測定装置[オートポアIV9520(島津製作所製)]を用いて下記条件で測定した。
 上記と同様にして準備した試料を約12.5mm×25mmの短冊片に切断して、約0.04~0.15gを5mL粉体用セル(ステム容積0.4mL)に採り、初期圧約3.7kPa(約0.5psia、細孔直径約340μm相当)の条件で測定した。水銀パラメータは、装置デフォルトの水銀接触角130degrees、水銀表面張485dynes/cmに設定して、細孔直径0.1~10μmのLog微分細孔容積を測定した。
 実施例1
 表1に示す炭素粒子の評価試験をした。結果を表1に示す。
 炭素粒子の種類:A~C(鱗片状黒鉛)、D(薄片化黒鉛)、E(球状黒鉛)、a、b(カーボンブラック)、AA(Aをアシザワファインテック社製のラボスターミニ機で6時間ビーズミル粉砕した黒鉛)、F(粒径1μm未満で且つLcが小さい鱗片状黒鉛)
 炭素粒子はいずれも市販品を用いた。表1の粒径は、カタログに記載の値である。AAの粒径はレーザー回折法により測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明で規定する黒鉛粒子(B)の結晶子の好ましい大きさLc(Lc:25nm以上)、及び好ましい粒径(1μm以上)を満足する炭素粒子A~Eはいずれも、耐酸化性に優れており、高い耐久性を示した。この結果から本発明の黒鉛粒子(B)は酸化劣化の起点となる過剰なエッジ面の露出が抑制されていると推測される。
 炭素粒子a、bはカーボンラックを用いた例であり、耐酸化性が著しく低下した。この結果からカーボンブラックは炭素結晶性が不十分なため、不定型炭素部が容易に酸化劣化したと推測される。
 炭素粒子AA、FはLcが25nm未満の黒鉛粒子を用いた例であり、耐酸化性が劣っていた。この結果から炭素エッジ面が過剰に露出していたと推測される。
 実施例2
 実施例2では、表1の炭素粒子A~Eと、表2の炭素質繊維(A)から形成された繊維構造体、および炭素質材料(C)を用い、以下のようにして作製した炭素電極材の評価試験を行った。
(No.1)
 No.1では、繊維構造体の前駆体として耐炎化ポリアクリロニトリル繊維から形成されたスパンレース不織布(シンワ株式会社製、目付100g/m2、平均曲率R40mm-1、平均繊維径20μm、平均繊維長80mm、厚み0.81mm)、黒鉛粒子(B)として表1記号Cの黒鉛、炭素質材料(C)のピッチ類としてJFEケミカル社製コールタールピッチMCP100(融点100℃、粒径10μm)を用いた。
 まず、イオン交換水に、非イオン界面活性剤(花王社製レオドールTW-L120)を1.8%、ポリビニルアルコール(仮接着材)を1.8%、炭素質材料(C)を14%、黒鉛粒子(B)を9.8%となるように添加した後、メカニカルスターラーで1時間撹拌して分散液を得た。
 スパンレース不織布(繊維構造体の前駆体)を分散液に浸漬した後、ニップローラーに通して余分な分散液を除去し、続いて空気雰囲気下、150℃で20分間乾燥して添着物を得た。
 添着物を窒素雰囲気下、1000℃で1時間加熱して炭素化(焼成)した後、得られた炭素化物をさらに2000℃で1時間加熱して黒鉛化した。得られた黒鉛化物を空気雰囲気下、700℃で20分間酸化処理して、厚み0.66mm、目付184.0g/m2の炭素電極材(No.1)を得た。なお、上記繊維構造体の平均繊維径は炭素化時の収縮により、10μmとなった。また細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは8.8μm)。
(No.2)
 下記変更以外はNo.1と同様にして厚み0.44mm、目付104.0g/m2の炭素電極材(No.2)を作製した。
 ・繊維構造体の前駆体:目付量を55g/m2に変更
 ・黒鉛粒子(B):表1記号Aの黒鉛に変更
 ・消失材としてポリエチレンビーズ(三井化学社製ミペロンXM-220、粒径30μm)をイオン交換水に11%添加
 なお、繊維構造体の平均繊維径は、炭素化時の収縮により、10μmとなった。また細孔ピークは細孔径0.1~10μm範囲内において2つ観測された(ピークトップは5.3μm、3.1μm)。
(No.3)
 下記変更以外はNo.1と同様にして厚み0.69mm、目付225.0g/m2の炭素電極材(No.3)を作製した。
 ・黒鉛粒子(B):表1記号Bの黒鉛に変更
 ・消失材としてポリエチレンビーズ(三井化学社製ミペロンXM-220、粒径30μm)をイオン交換水に11%添加
 ・炭素質繊維(A)(繊維構造体を形成している炭素質繊維(A)、以下同じ)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、繊維構造体の平均繊維径は、炭素化時の収縮により、10μmとなった。また細孔ピークは細孔径0.1~10μm範囲内において2つ観測された(ピークトップは6.8μm、3.3μm)。
(No.4)
 下記変更以外はNo.1と同様にして厚み0.75mm、目付199.0g/m2の炭素電極材(No.4)を作製した。
 ・黒鉛粒子(B):表1記号Eの黒鉛に変更
 ・炭素質繊維(A)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、繊維構造体の平均繊維径は、炭素化時の収縮により10μmとなった。また細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは4.1μm)。
(No.5)
 下記変更以外はNo.1と同様にして厚み0.66mm、目付196.0g/m2の炭素電極材(No.5)を作製した。
 ・黒鉛粒子(B):表1記号Dの黒鉛に変更し、イオン交換水中の黒鉛粒子(B)を4.9%に変更
 ・炭素質繊維(A)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、繊維構造体の平均繊維径は炭素化時の収縮により10μmとなった。また細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは2.5μm)。
(No.6)
 下記変更以外はNo.5と同様にして厚み2.11mm、目付341.0g/m2の炭素電極材(No.6)を作製した。
 ・繊維構造体の前駆体:耐炎化ポリアクリロニトリル繊維から形成されたフェルト(目付150g/m2、平均曲率R20mm-1、平均繊維径20μm、平均繊維長70mm、厚み2.52mm)に変更
 ・黒鉛粒子(B):表1記号Cの黒鉛に変更
 ・炭素質繊維(A)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、繊維構造体の平均繊維径は炭素化時の収縮により10μmとなった。また細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは7.9μm)。
(No.7)
 下記変更以外はNo.1と同様にして厚み0.96mm、目付239.0g/m2の炭素電極材(No.7)を作製した。
 ・繊維構造体の前駆体:耐炎化ポリアクリロニトリル繊維から形成されたマリフリース織布(目付100g/m2、平均曲率R33mm-1、平均繊維径20μm、平均繊維長80mm、厚み1.21mm)に変更
 ・黒鉛粒子(B):表1記号Bの黒鉛に変更
 ・炭素質繊維(A)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、繊維構造体の平均繊維径は炭素化時の収縮により、10μmとなった。また細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは7.3μm)。
(No.8)
 下記変更以外はNo.1と同様にして厚み1.94mm、目付255.0g/m2の炭素電極材(No.8)を作製した。
 ・繊維構造体の前駆体:異方性ピッチ繊維から形成されたフェルト(目付100g/m2、平均曲率R5mm-1、平均繊維径18μm、平均繊維長50mm、厚み2.13mm)に変更
 ・炭素質繊維(A)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、繊維構造体の平均繊維径は炭素化時の収縮によりそれぞれ9μmとなった。また細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは8.5μm)。
(No.9)
 下記変更以外はNo.1と同様にして厚み0.50mm、目付121.0g/m2の炭素電極材(No.9)を作製した。
 ・繊維構造体の前駆体:ポリアクリロニトリル繊維から形成されたカーボンペーパー(日本ポリマー産業株式会社製CFP-030-PE、目付30g/m2、平均曲率R0mm-1、平均繊維径7μm、平均繊維長6mm、厚み0.51mm)に変更
 ・黒鉛粒子(B):表1記号Aの黒鉛に変更
 ・炭素質繊維(A)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは5.4μm)。
(No.10)
 下記変更以外はNo.9と同様にして厚み0.79mm、目付192.0g/m2の炭素電極材(No.10)を作製した。
 ・繊維構造体の前駆体:ポリアクリロニトリル繊維から形成されたカーボンペーパー(オリベスト株式会社製、目付60g/m2、平均曲率R0mm-1、平均繊維径7μm、平均繊維長6mm、厚み0.84mm)に変更
 ・黒鉛粒子(B):表1記号Bの黒鉛に変更
 ・炭素質繊維(A)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは7.2μm)。
(No.11)
 下記変更以外はNo.9と同様にして厚み0.77mm、目付162.0g/m2の炭素電極材(No.11)を作製した。
 ・黒鉛粒子(B):表1記号Dの黒鉛に変更
 ・炭素質繊維(A)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは2.4μm)。
(No.12)
 下記変更以外はNo.1と同様にして厚み0.63mm、目付197.0g/m2の炭素電極材(No.12)を作製した。
 ・黒鉛粒子(B):表1記号Aの黒鉛に変更し、イオン交換水中の黒鉛粒子(B)を4.9%に変更
 ・炭素質材料(C):フェノール樹脂(DIC株式会社製のTD―4304)に変更し、イオン交換水中の炭素質材料(C)を10%に変更
 ・炭素質繊維(A)、黒鉛粒子(B)、炭素質材料(C)の合計量に対する黒鉛粒子(B)および炭素質材料(C)の含有率を表2に示す値に変更
 なお、細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは8.5μm)。
(No.13)
 No.13は特許文献3を模擬した比較例であり、黒鉛粒子および炭素質材料を使用せず、炭素質繊維の前駆体を以下のように処理して電極材を得た。
 具体的には、No.1において、耐炎化ポリアクリロニトリル繊維から形成されたスパンレース不織布(目付100g/m2、平均曲率R5mm-1、平均繊維径18μm、平均繊維長80mm、厚み0.81mm)を窒素雰囲気下、1000℃で1時間炭素化(焼成)した後、得られた炭素化物をさらに1500℃で1時間黒鉛化した。得られた黒鉛化物を空気雰囲気下、700℃で15分間酸化処理して、厚み0.78mm、目付50g/m2の炭素電極材(No.13)を得た。昇温速度などはNo.1と同じである。
 なお、繊維構造体の平均繊維径は炭素化時の収縮により9μmとなった。また細孔ピークは細孔径0.1~10μm範囲内において観測されなかった。
 (No.14)
 下記変更以外はNo.1と同様にして厚み0.73mm、目付154g/m2の炭素電極材(No.14)を作製した。
 ・繊維構造体:1000℃で炭素化したスパンレース不織布(目付50g/m2、平均曲率R40mm-1、平均繊維径20μm、平均繊維長80mm、厚み0.81mm)に変更
 ・黒鉛粒子(B):使用しない
 なお、細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは9.8μm)。
 (No.15)
 下記変更以外はNo.12と同様にして厚み1.42mm、目付311.0g/m2の炭素電極材(No.15)を作製した。
 ・繊維構造体の構造体:カイノール繊維から形成したフェルト(群栄化学株式会社製、目付200g/m2、平均曲率R15mm-1、平均繊維径19μm、厚み2.11mm)に変更
 なお、繊維構造体の平均繊維径は、炭素化時の収縮により、9μmとなった。
 また細孔ピークは細孔径0.1~10μm範囲内において1つ観測された(ピークトップは7.9μm)。
 (No.16)
 市販品(SGLカーボン社製 SGL-10AA;目付87g/m2、平均曲率R14mm-1、平均繊維径8μm、厚み0.44mm)を炭素電極材(No.16)として使用した。
 表2に上記No.1~16の測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 No.1~8は本発明の要件を満足する炭素電極材であり、いずれも低抵抗かつ、耐酸化性に優れていた。特にこれらの炭素電極材は、充電液により炭素電極材の重量が約半分に減少した場合であっても、初期の抵抗値と比べてほぼ同程度の抵抗値を維持できていることから、非常に耐久性に優れることが実証された(SOC50%全セル抵抗)。更にこれらの炭素電極材は、細孔径0.1~10μmのLog微分細孔容積が本発明の好ましい要件を満足しているため、低充電深度である充電率30%での抵抗値も著しく下がっている(SOC30%全セル抵抗)。この結果から細孔径0.1~10μmのLog微分細孔容積は抵抗の低減に寄与していることがわかる。
 これに対し、No.9~11は、本発明の要件を満足しないカーボンペーパーを繊維構造体に用いた比較例である。No.9~11を、炭素質繊維(A)の種類は同じであるが繊維構造体の種類のみ異なるNo.2~4と対比すると、次のことがわかる。まず、両者のセル抵抗及び耐酸化性試験(電位試験)は同等であった。しかし、炭素電極材の重量減少下での耐酸化性試験(SOC50%全セル抵抗)では、No.9~11は炭素電極材の形態を維持できず、セルに組み込んでも充放電が出来なかった(評価不可)。この結果からセル化した時の圧縮により炭素電極材の組織形態が崩壊し、電解液が流れなくなったためであると推察される。
 No.12は、結晶性の低い炭素質材料(C)(Rc=1.5)を用いた例であり、セル抵抗は低いが耐酸化性(電位試験)は著しく低下した。また炭素電極材の重量減少下での耐酸化性試験でも、SOC50%全セル抵抗が著しく増加した。
 No.13は特許文献3を模擬した例であり、黒鉛粒子(B)および炭素質材料(C)の両方を使用しなかった。No.13は本発明例よりもセル抵抗が高く、耐酸化性(電位試験、SOC50%全セル抵抗)も大きく低下した。
 No.14は、黒鉛粒子(B)を使用せず高結晶の炭素質材料(C)のみを用いた例である。No.14は耐酸化性(電位試験)には優れていたが、セル抵抗が高かった。なお、耐酸化性試験2でもNo.14は本発明例よりもSOC50%全セル抵抗は増加した。
 No.15は、ピーク強度比Rc/Raを満たすが、黒鉛結晶性の低い炭素質材料(C)(Rc=1.5)を用いた例である。No.15はセル抵抗は低いが、耐酸化性(電位試験)が著しく低かった。また耐酸化性試験2でもNo.15はSOC50%全セル抵抗が著しく増加した。
 No.16は、曲率Rは満たすが、ピーク強度比Rcおよびピーク強度比Rc/Raを満たさない例である。No.16は耐酸化性(電位試験)が低かった。更にNo.16は細孔径0.1~10μmのLog微分細孔容積が小さく、反応に寄与しない細孔容積の割合が大きいため、SOC30%全セル抵抗も増加した。
 本発明によれば、耐酸化性に極めて優れると共に、低抵抗かつ長寿命な炭素電極材を提供できる。したがって本発明の炭素電極材は、特にMn-Ti系レドックスフロー電池用炭素電極に好適である。本発明の炭素電極材は、フロータイプおよびノンフロータイプのレドックスフロー電池や、リチウム、キャパシタ、燃料電池のシステムと複合化されたレドックスフロー電池などに好適に用いられる。
 1 集電板
 2 スペーサー
 3 イオン交換膜
 4a,4b 通液路
 5 電極材
 6 正極電解液タンク
 7 負極電解液タンク
 8,9 ポンプ
 10 液流入口
 11 液流出口
 12,13 外部流路

Claims (7)

  1.  炭素質繊維(A)から形成された繊維構造体と、前記繊維構造体に炭素質材料(C)で結合された黒鉛粒子(B)とから構成され、下記要件を満足する炭素電極材。
    (1)前記炭素質繊維(A)の平均曲率Rが1mm-1以上、且つ前記炭素質繊維(A)の平均繊維径が5~15μm
    (2)前記炭素質材料(C)は、レーザーラマン分光法により求めた1360cm-1のピーク強度IDと、1580cm-1のピーク強度IGとのピーク強度比Rc(ID/IG)が1.1未満
    (3)前記炭素質繊維(A)をレーザーラマン分光法により求めた1360cm-1のピークの強度IDと1580cm-1のピークの強度IGのピーク強度比Ra(ID/IG)と、前記炭素質材料(C)のピーク強度比Rcとのピーク強度比Rac(Rc/Ra)が1.0以下
    (4)前記炭素電極材表面の結合酸素原子数Oと、前記炭素電極材表面の全炭素原子数Cの比Roc(O/C)が1.0%以上
    (5)前記炭素電極材は、水銀圧入法における細孔分布において細孔径0.1~10μmの範囲内に1つ以上の細孔ピークを有すると共に、該細孔径0.1~10μmの範囲内のLog微分細孔容積が10ml/g以上
  2.  前記炭素質繊維(A)、前記黒鉛粒子(B)、および前記炭素質材料(C)の合計量に対する前記黒鉛粒子(B)の質量含有率は、20%以上、
     前記合計量に対する前記炭素質材料(C)の質量含有率は、20%以上、かつ、
     前記黒鉛粒子(B)に対する前記炭素質材料(C)の質量比(C/B)は、0.1~10.0である請求項1に記載の炭素電極材。
  3.  前記炭素質繊維(A)のピーク強度比Raは、0.8~1.5である請求項1又は2に記載の炭素電極材。
  4.  前記炭素電極材は、窒素吸着量から求められるBET比表面積が1~30m2/gである請求項1~3のいずれかに記載の炭素電極材。
  5.  前記黒鉛粒子(B)は、鱗片状黒鉛、薄片化黒鉛、球状黒鉛、および膨張化黒鉛よりなる群から選択される少なくとも1種以上である請求項1~4のいずれかに記載の炭素電極材。
  6.  請求項1~5のいずれかに記載の炭素電極材を備えたレドックスフロー電池。
  7.  請求項1~5のいずれかに記載の炭素電極材を用いたマンガン/チタン系レドックスフロー電池。
PCT/JP2021/017006 2020-05-08 2021-04-28 レドックスフロー電池用炭素電極材、及び該炭素電極材を備えたレドックスフロー電池 WO2021225105A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022519941A JPWO2021225105A1 (ja) 2020-05-08 2021-04-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020082469 2020-05-08
JP2020-082469 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021225105A1 true WO2021225105A1 (ja) 2021-11-11

Family

ID=78468680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017006 WO2021225105A1 (ja) 2020-05-08 2021-04-28 レドックスフロー電池用炭素電極材、及び該炭素電極材を備えたレドックスフロー電池

Country Status (2)

Country Link
JP (1) JPWO2021225105A1 (ja)
WO (1) WO2021225105A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019397A (ja) * 2003-06-05 2005-01-20 Showa Denko Kk 電池電極用炭素材料、その製造方法及び用途
WO2015019993A1 (ja) * 2013-08-05 2015-02-12 昭和電工株式会社 複合体の製造方法及びリチウムイオン電池用負極材
JP2015143405A (ja) * 2013-12-27 2015-08-06 東レ株式会社 炭素繊維不織布および炭素繊維不織布の製造方法
JP2017033758A (ja) * 2015-07-31 2017-02-09 東洋紡株式会社 レドックス電池用炭素電極材
JP2018133266A (ja) * 2017-02-17 2018-08-23 三菱ケミカル株式会社 多孔質電極材、その製造方法
WO2019049756A1 (ja) * 2017-09-07 2019-03-14 東洋紡株式会社 レドックスフロー電池用炭素電極材およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019397A (ja) * 2003-06-05 2005-01-20 Showa Denko Kk 電池電極用炭素材料、その製造方法及び用途
WO2015019993A1 (ja) * 2013-08-05 2015-02-12 昭和電工株式会社 複合体の製造方法及びリチウムイオン電池用負極材
JP2015143405A (ja) * 2013-12-27 2015-08-06 東レ株式会社 炭素繊維不織布および炭素繊維不織布の製造方法
JP2017033758A (ja) * 2015-07-31 2017-02-09 東洋紡株式会社 レドックス電池用炭素電極材
JP2018133266A (ja) * 2017-02-17 2018-08-23 三菱ケミカル株式会社 多孔質電極材、その製造方法
WO2019049756A1 (ja) * 2017-09-07 2019-03-14 東洋紡株式会社 レドックスフロー電池用炭素電極材およびその製造方法

Also Published As

Publication number Publication date
JPWO2021225105A1 (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
JP7049350B2 (ja) レドックスフロー電池用炭素電極材およびその製造方法
JP7088197B2 (ja) レドックスフロー電池用炭素電極材およびその製造方法
JP6786776B2 (ja) レドックス電池用電極材の製造方法
JP2017033758A (ja) レドックス電池用炭素電極材
JP2009208061A (ja) 炭素触媒及びこの炭素触媒を含むスラリー、炭素触媒の製造方法、ならびに、炭素触媒を用いた燃料電池、蓄電装置及び環境触媒
JP7552813B2 (ja) 炭素電極材及びレドックス電池
WO2020184663A1 (ja) 炭素電極材及びレドックス電池
WO2017022564A1 (ja) レドックス電池用炭素電極材
WO2021225106A1 (ja) レドックスフロー電池用炭素電極材、及び該炭素電極材を備えたレドックスフロー電池
WO2020184451A1 (ja) マンガン/チタン系レドックスフロー電池用炭素電極材
JP6809257B2 (ja) 炭素質材料およびこれを用いた電池
WO2021225105A1 (ja) レドックスフロー電池用炭素電極材、及び該炭素電極材を備えたレドックスフロー電池
WO2020184449A1 (ja) レドックスフロー電池用炭素電極材およびそれを備えたレドックスフロー電池
WO2020184450A1 (ja) マンガン/チタン系レドックスフロー電池用炭素正極電極材およびそれを備えた電池
WO2021225107A1 (ja) マンガン/チタン系レドックスフロー電池用炭素電極材
WO2020184664A1 (ja) 炭素電極材およびそれを備えたレドックス電池
WO2023080236A1 (ja) レドックスフロー電池用電極材及びそれを備えたレドックスフロー電池
WO2024204370A1 (ja) 炭素電極材及びそれを備えたレドックスフロー電池
JP2023069804A (ja) レドックスフロー電池用電極材およびそれを備えたレドックスフロー電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800264

Country of ref document: EP

Kind code of ref document: A1