WO2021220811A1 - 熱可塑性樹脂および光学部材 - Google Patents

熱可塑性樹脂および光学部材 Download PDF

Info

Publication number
WO2021220811A1
WO2021220811A1 PCT/JP2021/015452 JP2021015452W WO2021220811A1 WO 2021220811 A1 WO2021220811 A1 WO 2021220811A1 JP 2021015452 W JP2021015452 W JP 2021015452W WO 2021220811 A1 WO2021220811 A1 WO 2021220811A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
thermoplastic resin
bis
resin according
Prior art date
Application number
PCT/JP2021/015452
Other languages
English (en)
French (fr)
Inventor
達也 大山
高恒 柳田
安彦 友成
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US17/919,088 priority Critical patent/US20230192950A1/en
Priority to KR1020227040276A priority patent/KR20230008118A/ko
Priority to JP2022517619A priority patent/JP7465956B2/ja
Priority to CN202180031560.1A priority patent/CN115461388B/zh
Publication of WO2021220811A1 publication Critical patent/WO2021220811A1/ja
Priority to JP2023206174A priority patent/JP2024028870A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a thermoplastic resin having a high refractive index and capable of balancing heat resistance and moldability.
  • Imaging modules are used in cameras, video cameras, mobile phones with cameras, videophones, doorphones with cameras, etc.
  • the optical system used in this image pickup module is particularly required to be miniaturized.
  • the chromatic aberration of the optical system becomes a big problem. Therefore, chromatic aberration is achieved by combining an optical lens material with a high refractive index and a small Abbe number for high dispersion and an optical lens material with a low refractive index and a large Abbe number for low dispersion. It is known that the correction can be performed.
  • Patent Documents 1 and 2 describe a high refractive index resin having a refractive index of 1.64 using 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene. However, the refractive index is insufficient, and further increase in the refractive index is required. Further, Patent Document 3 describes a thermoplastic resin having 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene.
  • Patent Document 4 describes a thermoplastic resin in which an aromatic ring is introduced into a fluorene skeleton
  • Patent Document 5 describes a thermoplastic resin in which an aromatic ring is introduced into a vinaphthalene skeleton.
  • An object to be solved by the present invention is to provide a thermoplastic resin having a high refractive index and a low Abbe number and an optical member containing the same.
  • thermoplastic resin containing a structure in which three or more benzene rings are fused can solve the above-mentioned problems, and have reached the present invention. That is, the present invention is as follows.
  • ⁇ Aspect 1 A thermoplastic resin containing a repeating unit represented by the following formula (1).
  • Z is a polycyclic aromatic hydrocarbon in which three or more benzene rings are fused, L 1 and L 2 each independently represent a divalent linking group, and R 1 and R 2 are independent. Hydrocarbon atoms, halogen atoms, substituents having 1 to 20 carbon atoms which may contain aromatic groups, j1 and j2 each independently represent an integer of 1 or more, and m and n independently represent 0 or 1, respectively. Shown, W is at least one selected from the group represented by the following formula (2) or (3).
  • thermoplastic resin according to embodiment 1, wherein in the formula (1), Z is a phenacene-type polycyclic aromatic hydrocarbon.
  • ⁇ Aspect 3 The thermoplastic resin according to aspect 1 or 2, wherein in the formula (1), it is a polycyclic aromatic hydrocarbon in which three or four benzene rings are fused.
  • ⁇ Aspect 4 The thermoplastic resin according to any one of aspects 1 to 3, wherein Z is phenanthrene in the formula (1).
  • ⁇ Aspect 5 >> The thermoplastic resin according to any one of aspects 1 to 4, wherein the repeating unit represented by the formula (1) is represented by the following formula (4).
  • L 1 and L 2 each independently represent a divalent linking group
  • R 3 and R 4 may independently contain a hydrogen atom, a halogen atom, and an aromatic group, respectively, and have 1 to 1 to carbon atoms.
  • ⁇ Aspect 6 The thermoplastic resin according to any one of aspects 1 to 4, wherein in the formula (1), R 1 and R 2 each independently represent a hydrogen atom, a methyl group, a phenyl group, or a naphthyl group.
  • ⁇ Aspect 8 ⁇ At least one selected from the group in which X in the formula (3) consists of a phenylene group, a naphthalene diyl group, a group represented by the following formula (5) and a group represented by the following formula (6) is used as a repeating unit.
  • R 5 and R 6 are substituents or halogen atoms having 1 to 20 carbon atoms which may independently contain a hydrogen atom and an aromatic group, respectively.
  • thermoplastic resin according to any one of aspects 1 to 8, which comprises at least one selected from the group consisting of units represented by the following formulas (7) to (10) as a repeating unit.
  • R 7 and R 8 are substituents or halogen atoms having 1 to 20 carbon atoms which may independently contain a hydrogen atom and an aromatic group, respectively.
  • R 9 and R 10 are substituents or halogen atoms having 1 to 20 carbon atoms which may independently contain a hydrogen atom and an aromatic group, respectively.
  • R 11 and R 12 are substituents or halogen atoms having 1 to 20 carbon atoms which may independently contain a hydrogen atom and an aromatic group, respectively.
  • R 13 and R 14 are substituents or halogen atoms having 1 to 20 carbon atoms which may independently contain a hydrogen atom and an aromatic group, respectively, and U is a single bond or a divalent linking group. be.
  • ⁇ Aspect 10 The thermoplastic resin according to any one of aspects 1 to 9, which has a refractive index of 1.65 to 1.80.
  • ⁇ Aspect 11 The thermoplastic resin according to any one of aspects 1 to 10, wherein the specific viscosity is 0.12 to 0.40.
  • ⁇ Aspect 12 >> The thermoplastic resin according to any one of aspects 1 to 11, wherein the glass transition temperature is 130 to 170 ° C.
  • ⁇ Aspect 13 >> An optical member made of the thermoplastic resin according to any one of aspects 1 to 12.
  • ⁇ Aspect 14 The optical member according to aspect 13, which is an optical lens.
  • thermoplastic resin of the present invention has a high refractive index and a low Abbe number, an optical lens, a prism, an optical disk, a transparent conductive substrate, an optical card, a sheet, a film, an optical fiber, an optical film, an optical filter, a hard coat film, etc. It can be used as an optical member of the above, and is extremely useful as an optical lens for use in any of a mobile phone, a smartphone, a tablet terminal, a personal computer, a digital camera, a video camera, an in-vehicle camera, or a surveillance camera. The industrial effect it produces is exceptional.
  • thermoplastic resin of Example 1 It is a 0.1 mass% dichloromethane solution transmission spectrum of the thermoplastic resin of Example 1 and Comparative Example 2.
  • thermoplastic resin A thermoplastic resin containing a repeating unit represented by the following formula (1).
  • Z is a polycyclic aromatic hydrocarbon in which three or more benzene rings are fused, L 1 and L 2 each independently represent a divalent linking group, and R 1 and R 2 are independent. Hydrocarbon atoms, halogen atoms, substituents having 1 to 20 carbon atoms which may contain aromatic groups, j1 and j2 each independently represent an integer of 1 or more, and m and n independently represent 0 or 1, respectively. Shown, W is at least one selected from the group represented by the following formula (2) or (3).
  • Z is a polycyclic aromatic hydrocarbon having three or more fused benzene rings, preferably a polycyclic aromatic hydrocarbon having three or four fused benzene rings, and the benzene ring is preferable. Polycyclic aromatic hydrocarbons having three fused rings are more preferable.
  • the polycyclic aromatic hydrocarbon of Z preferably has a structure in which the benzene ring is condensed into an acene type or a phenacene type, and a structure in which the benzene ring is condensed into a phenacene type is more preferable.
  • Z is preferably phenanthrene, anthracene, phenalene, chrysene, tetracene, and pyrene, more preferably phenanthrene, anthracene, chrysene, and tetracene, and is stable due to the difference in frontier orbit when the number of fused rings increases.
  • Phenalene and chrysene are more preferable from the viewpoint of the above, and phenanthrene is particularly preferable from the viewpoint of absorption wavelength.
  • R 1 and R 2 independently represent a substituent having 1 to 20 carbon atoms which may contain a hydrogen atom, a halogen atom and an aromatic group, and represent a hydrogen atom, a methyl group and a phenyl.
  • a group, a naphthyl group, a thienyl group, and a benzothienyl group are preferable, a hydrogen atom, a methyl group, a phenyl group, and a naphthyl group are more preferable, a hydrogen atom and a methyl group are more preferable, and a hydrogen atom is particularly preferable.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom and the like are preferable.
  • substituent having 1 to 12 carbon atoms which may contain an aromatic group, a phenyl group, a naphthyl group, a thienyl group, a benzothienyl group or the like is preferable.
  • a 1-naphthyl group or a 2-naphthyl group is preferable.
  • thienyl group a 2-thienyl group or a 3-thienyl group is preferable.
  • benzothienyl group a 2-benzo [b] thienyl group or a 3-benzo [b] thienyl group is preferable.
  • L 1 and L 2 each independently represent a divalent linking group, preferably an alkylene group having 1 to 12 carbon atoms, and more preferably an alkylene group having 1 to 4 carbon atoms. , It is more preferable that it is an ethylene group.
  • the glass transition temperature (Tg) of the resin can be adjusted by adjusting the lengths of the linking groups of L 1 and L 2.
  • W is at least one selected from the group represented by the formula (2) or (3).
  • W is the formula (2)
  • the formula (1) is a carbonate unit
  • W is the formula (3)
  • the formula (1) is an ester unit.
  • the formula (1) can be obtained from a dihydroxy compound and a carbonate precursor such as a carbonic acid ester, or a dihydroxy compound and a dicarboxylic acid or an ester-forming derivative thereof.
  • m and n are independently 0 or 1, and more preferably 1.
  • j1 and j2 are integers of 1 or more, preferably integers of 1 to 4, and more preferably 1.
  • the repeating unit represented by the above formula (1) is the repeating unit represented by the following formula (4).
  • R 3 and R 4 are substituents having 1 to 20 carbon atoms which may independently contain a hydrogen atom, a halogen atom and an aromatic group, and j 3 and j 4 are independently integers of 0 or more.
  • L 1 , L 2 , m, n and W are the same as those in the above formula (1).
  • R 3 and R 4 independently represent a substituent having 1 to 20 carbon atoms which may contain a hydrogen atom, a halogen atom and an aromatic group, and the hydrogen atom, the methyl group and the like.
  • a phenyl group, a naphthyl group, a thienyl group, and a benzothienyl group are preferable, a hydrogen atom, a methyl group, a phenyl group, and a naphthyl group are more preferable, a hydrogen atom and a methyl group are more preferable, and a hydrogen atom is particularly preferable.
  • j3 and j4 are integers of 1 or more, preferably integers of 1 to 4, and more preferably 1.
  • X represents a divalent linking group, preferably a substituent which may contain an aromatic group having 1 to 30 carbon atoms, and is preferably a phenylene group, a naphthalenediyl group, or the following formula. It is more preferable that the group is represented by (5) or the following formula (6).
  • R 5 and R 6 each independently represent a hydrogen atom, a substituent having 1 to 20 carbon atoms or a halogen atom which may contain an aromatic group.
  • R 5 and R 6 each independently represent a hydrogen atom, a halogen atom, and a substituent having 1 to 20 carbon atoms which may contain an aromatic group, and are a hydrogen atom, a methyl group, and a phenyl.
  • a group, a naphthyl group, a thienyl group, and a benzothienyl group are preferable, a hydrogen atom, a methyl group, a phenyl group, and a naphthyl group are more preferable, a hydrogen atom and a methyl group are more preferable, and a hydrogen atom is particularly preferable.
  • the refractive index is improved by introducing an aromatic group with a single bond. From the relational expression between the molecular structure and the refractive index known as the Lorentz-Lorenz equation, it is known that the refractive index of a substance increases by increasing the polarizability of the molecule, and at the same time, the Abbe number also decreases.
  • the present invention can obtain a resin having a high refractive index and a low Abbe number, which has not been achieved by the prior art.
  • a high refractive index can be achieved because the polarizability can be improved more than the introduction of an aromatic group by a single bond.
  • the introduction of an aromatic ring by adopting a phenacene structure is considered to be able to solve the trade-off between the effect of improving the refractive index and the lengthening of the absorption wavelength, which has been a problem in the prior art.
  • the number of aromatic rings increased by only two when the phenyl group was introduced at the 6th and 6th positions and when biphenanthrene was used, but biphenanthrene had a higher refractive index.
  • the lengthening of the absorption wavelength can be suppressed.
  • the phenacene structure is considered to be useful as a structure of an optical application material.
  • the repeating unit represented by the formula (1) may be contained in an amount of 5 mol% or more, 10 mol% or more, 15 mol% or more, 20 mol% or more, 25 mol% or more, 30 mol% or more, 100 mol% or less, 90 mol% or less. , 80 mol% or less, 70 mol% or less, 60 mol% or less, or 50 mol% or less may be contained.
  • the repeating unit represented by the above formula (1) is preferably 10 mol% or more and 100 mol% or less, more preferably 20 mol% or more and 100 mol% or less, still more preferably 20 mol% or more and 80 mol% or less, particularly preferably. Can be contained in an amount of 20 mol% or more and 70 mol% or less. It is preferable that the repeating unit represented by the formula (1) is in the above range because the balance between refractive index, heat resistance and moldability is excellent.
  • thermoplastic resin of the present invention at least one selected from the group consisting of the units represented by the formulas (7) to (10) can contain a repeating unit.
  • R 7 and R 8 are the same as R 5 and R 6 in the above formula (5).
  • R 9 and R 10 are the same as R 5 and R 6 in the above formula (5).
  • R 11 and R 12 are the same as R 5 and R 6 in the above formula (5).
  • the mol ratio of the repeating unit represented by the formula (1) to the group consisting of the units represented by the formulas (7) to (10) is preferably 95: 5 to 5:95. It is more preferably 80:20 to 20:80, and even more preferably 70:30 to 30:70.
  • the mol ratio of the repeating unit represented by the formula (1) and at least one repeating unit selected from the group consisting of the units represented by the formulas (7) to (10) is within the above range, In addition to having a high refractive index, it is preferable because it has an excellent balance of moldability.
  • the specific viscosity of the thermoplastic resin of the present invention is preferably 0.12 to 0.40, more preferably 0.14 to 0.35, and even more preferably 0.16 to 0.30. It is preferable that the specific viscosity is within the above range because the balance between moldability and mechanical strength is excellent.
  • the specific viscosity is measured by measuring the specific viscosity ( ⁇ SP) of a solution of 0.7 g of thermoplastic resin in 100 ml of methylene chloride at 20 ° C. with an Ostwald viscometer and calculating from the following formula.
  • thermoplastic resin of the present invention is 1.650 or more, 1.660 or more, 1.670 or more, 1.680 or more, 1 when measured at a temperature of 20 ° C. and a wavelength of 587.56 nm. It may be .690 or more, or 1.700 or more, 1.800 or less, 1.790 or less, 1.780 or less, 1.770 or less, 1.760 or less, or 1.750 or less. good.
  • the refractive index is at least the lower limit, the spherical aberration of the optical lens can be reduced, and the focal length of the optical lens can be shortened.
  • thermoplastic resin of the present invention has a high refractive index, but it is preferable that the thermoplastic resin has a lower Abbe number.
  • the Abbe number of the thermoplastic resin of the present invention may be 5 or more, 7 or more, 9 or more, 10 or more, 12 or more or 14 or more, 24 or less, 23 or less, 22 or less, 21 or less, 20 or less, 19 It may be less than or equal to 18 or less.
  • the Abbe number ( ⁇ d) is preferably 5 to 22, more preferably 7 to 22, and even more preferably 10 to 21.
  • the thermoplastic resin of the present invention may have a glass transition temperature (Tg) of 130 ° C. or higher, 135 ° C. or higher, 140 ° C. or higher, 145 ° C. or higher, or 150 ° C. or higher, 180 ° C. or lower, 175 ° C. or lower, 170. It may be °C or less, 165 °C or less, 160 °C or less.
  • Tg glass transition temperature
  • the temperature is preferably 130 to 180 ° C, more preferably 140 to 175 ° C, and even more preferably 140 to 170 ° C.
  • the glass transition temperature is within the above range, the balance between heat resistance and moldability is excellent, which is preferable.
  • ) of the orientation birefringence is preferably 10.0 ⁇ 10 -3 or less, and 5.0 ⁇ 10 -3 or less, 3.0. It is more preferably ⁇ 10 -3 or less.
  • is within the above range, the optical distortion of the optical lens is small, which is preferable.
  • ⁇ n is calculated by the following formula by stretching a film having a thickness of 100 ⁇ m obtained from the thermoplastic resin of the present invention twice at a temperature of Tg + 10 ° C. and measuring the phase difference at a wavelength of 589 nm.
  • thermoplastic resin of the present invention preferably has a water absorption rate of 0.25% by mass or less, and more preferably 0.20% by weight or less after being immersed in water at 23 ° C. for 24 hours. When the water absorption rate is within the above range, the change in optical characteristics due to water absorption is small, which is preferable.
  • the thermoplastic resin of the present invention preferably has a spectral transmittance of 360 nm of 40% or more, more preferably 50% or more, further preferably 60% or more, and particularly preferably 70% or more. When it is within the above range, visible light can be transmitted, which is preferable.
  • ⁇ Raw material for thermoplastic resin> (Glycol component of formula (1))
  • the diol component used as a raw material of the formula (1) is mainly a diol component represented by the formula (a), and may be used alone or in combination of two or more.
  • Z, R 1 , R 2 , L 1 , L 2 , j1, j2, m and n are the same as the respective formulas in the formula (1).
  • diol compound represented by the formula (1) examples include bianthracenols, biphenanthrenols, biphenalenols, binaphthasenols, bicrisenols, and bipyrenols.
  • carbonate component of the above formula (1) examples of the carbonate component used in the unit represented by the above formula (1) of the thermoplastic resin of the present invention include phosgene and carbonate ester.
  • the carbonate ester examples include esters such as an aryl group having 6 to 10 carbon atoms, an aralkyl group, and an alkyl group having 1 to 4 carbon atoms which may be substituted.
  • diaryl carbonates such as diphenyl carbonate, ditril carbonate, bis (chlorophenyl) carbonate, bis (m-credyl) carbonate and dinaphthyl carbonate, dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, dibutyl carbonate and dicyclohexyl carbonate, and ethyl.
  • Alkylaryl carbonate such as phenyl carbonate and cyclohexylphenyl carbonate, or dialkenyl carbonate such as divinyl carbonate, diisopropenyl carbonate and dipropenyl carbonate can be mentioned.
  • diaryl carbonate is preferable, and diphenyl carbonate is more preferable.
  • dicarboxylic acid component of the above formula (1) As the dicarboxylic acid component used in the unit represented by the formula (1) of the thermoplastic resin of the present invention, the dicarboxylic acid represented by the formula (b) or an ester-forming derivative thereof is preferably used.
  • X represents a divalent linking group, and the same can be said as described in the formula (3).
  • the dicarboxylic acid component used in the thermoplastic resin of the present invention includes 2,2'-bis (carboxymethoxy) -1,1'-binaphthyl and 6,6'-diphenyl-2, which are the raw materials of the formula (5).
  • monocyclic aromatic dicarboxylic acid components such as phthalic acid, isophthalic acid, and terephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 1,4-naphthalene.
  • Group dicarboxylic acid components include isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, 2,2'-bis (carboxymethoxy) -1,1'-binaphthyl, 9,9-bis (2-carboxyethyl). ) Fluolene is preferable, and 2,6-naphthalenedicarboxylic acid, 2,2'-bis (carboxymethoxy) -1,1'-binaphthyl and 9,9-bis (2-carboxyethyl) fluorene are more preferable. These may be used alone or in combination of two or more types.
  • ester-forming derivative acid chloride or esters such as methyl ester, ethyl ester and phenyl ester may be used.
  • the thermoplastic resin of the present invention may further have repeating units of the formulas (7) to (10), and the dihydroxy compound components used as raw materials of the formulas (7) to (10) are shown below. These may be used alone or in combination of two or more.
  • the dihydroxy compound component used as the raw material of the formula (7) of the present invention is 2,2'-bis (2-hydroxyethoxy) -1,1'-binaphthyl, 2,2'-bis (2-hydroxyethoxy)-. 3,3'-diphenyl-1,1'-binaphthyl, 2,2'-bis (2-hydroxyethoxy) -6,6'-diphenyl-1,1'-binaphthyl, 2,2'-bis (2-) Hydroxyethoxy) -7,7'-diphenyl-1,1'-binaphthyl, 2,2′-bis (2-hydroxyethoxy) -3,3′-dimethyl-1,1′-binaphthyl, 2,2′- Bis (2-hydroxyethoxy) -6,6'-dimethyl-1,1'-binaphthyl, 2,2'-bis (2-hydroxyethoxy) -7,7'-dimethyl-1,1'-binaphthyl
  • the dihydroxy compound component used as the raw material of the formula (8) of the present invention is 9,9-bis (4- (2-hydroxyethoxy) fluorene, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene. , 9,9-bis (4- (2-hydroxyethoxy) -3-methylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-cyclohexylphenyl) fluorene, 9,9-bis Examples thereof include (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene, 9,9-bis (4- (2-) 2-bis). Hydroxyethoxy) -3-phenylphenyl) fluorene is particularly preferred. These may be used alone or in combination of two or more.
  • the dihydroxy compound component used as the raw material of the formula (9) of the present invention is 9,9-bis (6- (2-hydroxyethoxy) -2-naphthyl) fluorene and 9,9-bis (6- (2-hydroxy). Ethoxy) -2-naphthyl) -2,7-diphenylfluorene can be mentioned.
  • the dihydroxy compound component used as the raw material of the formula (10) of the present invention is 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 1,1. -Bis (4-hydroxyphenyl) -1-phenylethane, 1,3-bis (2- (4-hydroxyphenyl) -2-propyl) benzene, 1,1-bis (4-hydroxyphenyl) -3,3 , 5-trimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 1,1-bis (4-hydroxyphenyl) decane, bis (4-hydroxyphenyl) sulfide, Bis (4-hydroxy-3-methylphenyl) sulfide, biphenol, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-Hydroxy-3-cycl
  • thermoplastic resin of the present invention may be copolymerized with other dihydroxy compound components to the extent that the characteristics of the present invention are not impaired.
  • the other dihydroxy compound component is preferably less than 30 mol% in all repeating units.
  • thermoplastic resin of the present invention examples include ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, and tricyclo [5.2.1.0].
  • Decandimethanol Decandimethanol, cyclohexane-1,4-dimethanol, decalin-2,6-dimethanol, norbornan dimethanol, pentacyclopentadecanemethanol, cyclopentane-1,3-dimethanol, spiroglycol, isosorbide , Isomannide, isoidide, hydroquinone, resorcinol, bis (4- (2-hydroxyethoxy) phenyl) sulfone, 1,1'-bi-2-naphthol, dihydroxynaphthalene, bis (2-hydroxyethoxy) naphthalene and the like. These may be used alone or in combination of two or more kinds.
  • thermoplastic resin of the present invention is produced, for example, by reacting a dihydroxy compound component with a carbonate precursor such as phosgene or a carbonic acid diester, or reacting a diol component with a dicarboxylic acid or an ester-forming derivative thereof.
  • a carbonate precursor such as phosgene or a carbonic acid diester
  • a diol component with a dicarboxylic acid or an ester-forming derivative thereof.
  • ⁇ Manufacturing method> Manufacturing method of polycarbonate resin
  • the thermoplastic resin of the present invention is a polycarbonate resin, it is obtained by reacting a reaction means known per se, for example, a dihydroxy compound component and a carbonate precursor by an interfacial polymerization method or a melt polymerization method.
  • thermoplastic resin of the present invention is a polyester resin
  • a reaction product known per se for example, a dihydroxy compound component and a dicarboxylic acid or an ester-forming derivative thereof are subjected to an esterification reaction or a transesterification reaction to obtain a reaction product. May be transesterified to obtain a high molecular weight compound having a desired molecular weight.
  • thermoplastic resin of the present invention is a polyester carbonate resin
  • it can be produced by reacting a dihydroxy compound component and a dicarboxylic acid or an ester-forming derivative thereof with a carbonate precursor such as phosgen or carbonate ester.
  • a carbonate precursor such as phosgen or carbonate ester.
  • the same method as the polycarbonate resin or polyester resin can be used.
  • the optical member of the present invention contains the above-mentioned thermoplastic resin.
  • Such an optical member is not particularly limited as long as it is an optical application in which the above-mentioned thermoplastic resin is useful, but is not limited to an optical lens, an optical fiber, a transparent conductive substrate, an optical card, a sheet, a film, an optical fiber, a lens, and a prism. , Optical film, substrate, optical filter, hard coat film and the like.
  • the optical member of the present invention may be composed of a resin composition containing the above-mentioned thermoplastic resin, and the resin composition may contain, if necessary, a heat stabilizer, a plasticizer, a light stabilizer, and the like.
  • Additives such as a polymer metal inactivating agent, a flame retardant, a lubricant, an antistatic agent, a surfactant, an antibacterial agent, an ultraviolet absorber, a mold release agent, and an antioxidant can be blended.
  • Antioxidants include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] and 1,6-hexanediol-bis [3- (3,5-di).
  • -Tert-Butyl-4-hydroxyphenyl) propionate pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]
  • octadecyl-3- (3,5-di-) tert-Butyl-4-hydroxyphenyl) propionate 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylene Bis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-die
  • the blending amount of the antioxidant is preferably 0.50 parts by mass or less, more preferably 0.05 to 0.40 parts by mass, and 0. It is more preferably 05 to 0.20 parts by mass or 0.10 to 0.40 parts by mass, and particularly preferably 0.20 to 0.40 parts by mass.
  • Examples of the optical member of the present invention include an optical lens. Examples of such an optical lens include an optical lens for a mobile phone, a smartphone, a tablet terminal, a personal computer, a digital camera, a video camera, an in-vehicle camera, a surveillance camera, and the like.
  • the optical lens of the present invention can be molded and processed by any method such as injection molding, compression molding, injection compression molding, melt extrusion molding, casting, etc., but injection molding is particularly preferable.
  • the degree of decompression was adjusted to 20 kPa over 5 minutes.
  • the temperature is raised to 250 ° C. at a heating rate of 60 ° C./hr, and after the outflow of phenol reaches 70%, the pressure is reduced at 60 kPa / hr, and the polymerization reaction is carried out until the predetermined power is reached, and the reaction is completed.
  • the resin was removed from the rear flask.
  • the obtained polycarbonate resin was analyzed by 1 H NMR, and it was found that the 10,10'-bis (2-hydroxyethoxy) -9,9'-biphenanthrene component was introduced in 20 mL% with respect to all the monomers. confirmed.
  • Example 2 A polycarbonate resin was produced in the same manner as in Example 1 except that BHEBPhe and BPEF were changed to the ratios shown in Table 1. Using the polycarbonate resin, the copolymerization ratio, the refractive index, the Abbe number, and the light transmittance at Tg, 360 nm and 500 nm were evaluated, and the results are shown in Table 1.
  • Example 3 A polycarbonate resin was produced in the same manner as in Example 1 except that BHEBPhe was changed to the ratio shown in Table 1.
  • Example 4 BHEBPhe, 2,2'-bis (2-hydroxyethoxy) -1,1'-binaphthyl (hereinafter, may be abbreviated as BHEB), 2,2'-bis (carboxymethoxy) -1,1'-binaphthyl (Hereinafter, it may be abbreviated as BCMB) was used in the ratio shown in Table 1, the DPC was changed to 4.50 parts by mass (21 mL part), and titanium tetrabutoxide 3.4 ⁇ as a catalyst.
  • BHEB 2,2'-bis (2-hydroxyethoxy) -1,1'-binaphthyl
  • BCMB 2,2'-bis (carboxymethoxy) -1,1'-binaphthyl
  • thermoplastic resin was evaluated by the following method.
  • ⁇ Copolymerization ratio> The composition ratio of each polymer was calculated by 1 H NMR measurement of the obtained resin using JNM-ECZ400S manufactured by JEOL Ltd. CDCl 3 was used as the solvent.
  • ⁇ Optical characteristics> (Refractive index) After preparing and polishing a 3 mm thick test piece of each polymer, the refractive index nd (587.56 nm) at 20 ° C. was measured using a Carnew precision refractometer KPR-2000 manufactured by Shimadzu Corporation.
  • Abbe number The measurement wavelength of the Abbe number was calculated from the refractive indexes of 486.13 nm, 587.56 nm, and 656.27 nm using the following formula.
  • ⁇ d (nd-1) / (nF-nC) nd: Refractive index at wavelength 587.56 nm, nF: Refractive index at wavelength 486.13 nm, nC: means the refractive index at a wavelength of 656.27 nm. (Absolute value of orientation birefringence) After dissolving the thermoplastic resin in methylene chloride, it was cast on a glass petri dish and sufficiently dried to prepare a cast film having a thickness of 100 ⁇ m.
  • the film was stretched twice at Tg + 10 ° C., the phase difference (Re) at 589 nm was measured using an ellipsometer M-220 manufactured by JASCO Corporation, and the absolute value of orientation birefringence (
  • Examples 1 to 4 using BHEBPhe have obtained excellent results as an optical lens having a high refractive index and a low Abbe number.
  • Example 1 when comparing Example 1 and Comparative Example 2, it can be seen that in the structure in which the aromatic ring is increased by one from the vinyl phthalene of Comparative Example 1, the lengthening of the absorption wavelength is suppressed in Example 1.
  • Having a polycyclic aromatic hydrocarbon in which three or more benzene rings are fused can increase the polarizability and is effective in achieving both a high refractive index and a high Abbe number. Is.
  • thermoplastic resin of the present invention is used as an optical material, and is used for optical members such as optical lenses, prisms, optical disks, transparent conductive substrates, optical cards, sheets, films, optical fibers, optical films, optical filters, and hard coat films. It can be very useful especially for optical lenses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】本発明は、高い屈折率及び低アッベ数を有する熱可塑性樹脂及びそれを含む光学部材を提供することを目的とする。 【解決手段】下記式(1)で表される繰り返し単位を含む熱可塑性樹脂。 (式中、Zはベンゼン環が3つ以上縮環した多環芳香族炭化水素であり、LおよびLはそれぞれ独立に2価の連結基を示し、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基、j1およびj2はそれぞれ独立に1以上の整数を示し、mおよびnはそれぞれ独立に0または1を示し、Wは下記式(2)または(3)で表される群より選ばれる少なくとも1つである。) (式中、Xは2価の連結基を示す。)

Description

熱可塑性樹脂および光学部材
 本発明は、高い屈折率を有し、かつ耐熱性と成形性とをバランスさせることができる熱可塑性樹脂に関する。
 カメラ、ビデオカメラあるいはカメラ付携帯電話、テレビ電話あるいはカメラ付ドアホンなどには、撮像モジュールが用いられている。近年、この撮像モジュールに用いられる光学系では、特に小型化が求められている。光学系を小型化していくと光学系の色収差が大きな問題となる。そこで、光学レンズの屈折率を高く、かつアッベ数を小さくして高分散にした光学レンズ材料と、屈折率を低くかつアッベ数を大きくして低分散にした光学レンズ材料を組み合わせることで、色収差の補正を行うことができることが知られている。
 光学系の材料として従来用いられていたガラスは要求される様々な光学特性を実現することが可能であると共に、環境耐性に優れているが、加工性が悪いという問題があった。これに対し、ガラス材料に比べて安価であると共に加工性に優れる樹脂が光学部品に用いられてきている。特に、フルオレン骨格やビナフタレン骨格を有する樹脂が、高屈折率である等の理由から使用されている。例えば、特許文献1や2には、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを用いた屈折率1.64の高屈折率樹脂が記載されている。しかしながら、屈折率が不十分であり、更なる高屈折率化が求められている。また、特許文献3には、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレンを有する熱可塑性樹脂が記載されている。
 高屈折率化を達成するため、特許文献4ではフルオレン骨格に、特許文献5にはビナフタレン骨格に芳香環を導入した熱可塑性樹脂が記載されている。しかしながら、近年の急速な技術革新に伴って、さらなる高屈折率化が求められている。
国際公開第2007/142149号公報 特開平7-198901号公報 特開2015-86265号公報 国際公開第2019/044214号公報 国際公開第2019/044875号公報
 本発明が解決しようとする課題は、高い屈折率及び低アッベ数を有する熱可塑性樹脂及びそれを含む光学部材を提供することにある。
 本発明者らはこの目的を達成せんとして鋭意研究を重ねた結果、3つ以上のベンゼン環が縮環した構造を含む熱可塑性樹脂が前記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は、以下の通りである。
≪態様1≫
 下記式(1)で表される繰り返し単位を含む熱可塑性樹脂。
Figure JPOXMLDOC01-appb-C000011
(式中、Zはベンゼン環が3つ以上縮環した多環芳香族炭化水素であり、LおよびLはそれぞれ独立に2価の連結基を示し、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基、j1およびj2はそれぞれ独立に1以上の整数を示し、mおよびnはそれぞれ独立に0または1を示し、Wは下記式(2)または(3)で表される群より選ばれる少なくとも1つである。)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(式中、Xは2価の連結基を示す。)
≪態様2≫
 前記式(1)において、Zがフェナセン型の多環芳香族炭化水素である態様1に記載の熱可塑性樹脂。
≪態様3≫
 前記式(1)において、Zが3つもしくは4つのベンゼン環が縮環した多環芳香族炭化水素である態様1または2に記載の熱可塑性樹脂。
≪態様4≫
 前記式(1)において、Zがフェナントレンである態様1~3のいずれか一項に記載の熱可塑性樹脂。
≪態様5≫
 前記式(1)で表される繰り返し単位が下記式(4)で表される態様1~4のいずれか一項に記載の熱可塑性樹脂。
Figure JPOXMLDOC01-appb-C000014
(式中、LおよびLはそれぞれ独立に2価の連結基を示し、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基、j3およびj4はそれぞれ独立に1以上の整数を示し、mおよびnはそれぞれ独立に0または1を示し、Wは前記式(2)または(3)で表される群より選ばれる少なくとも1つである。)
≪態様6≫
 前記式(1)中、RおよびRがそれぞれ独立に水素原子、メチル基、フェニル基、またはナフチル基を示す、態様1~4のいずれか一項に記載の熱可塑性樹脂。
≪態様7≫
 前記式(4)中、RおよびRがそれぞれ独立に水素原子、メチル基、フェニル基、またはナフチル基を示す、態様5に記載の熱可塑性樹脂。
≪態様8≫
 前記式(3)中のXがフェニレン基、ナフタレンジイル基、下記式(5)で表される基および下記式(6)で表される基からなる群より選ばれる少なくとも一つを繰り返し単位として含む態様1~7のいずれか一項に記載の熱可塑性樹脂。
Figure JPOXMLDOC01-appb-C000015
(式中、RおよびRはそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000016
≪態様9≫
 下記式(7)~(10)で表される単位からなる群より選ばれる少なくとも1つを繰り返し単位として含む態様1~8のいずれか一項に記載の熱可塑性樹脂。
Figure JPOXMLDOC01-appb-C000017
(式中、RおよびRはそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000018
(式中、RおよびR10はそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000019
(式中、R11およびR12はそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000020
(式中、R13およびR14はそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子であり、Uは単結合または2価の連結基である。)
≪態様10≫
 屈折率が1.65~1.80である態様1~9のいずれかに記載の熱可塑性樹脂。
≪態様11≫
 比粘度が0.12~0.40である態様1~10のいずれかに記載の熱可塑性樹脂。
≪態様12≫
 ガラス転移温度が、130~170℃である、態様1~11のいずれか一項に記載の熱可塑性樹脂。
≪態様13≫
 態様1~12のいずれかに記載の熱可塑性樹脂からなる光学部材。
≪態様14≫
 光学レンズである態様13に記載の光学部材。
 本発明の熱可塑性樹脂は、高い屈折率及び低アッベ数を有するため、光学レンズ、プリズム、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、光学膜、光学フィルター、ハードコート膜等の光学部材に用いることができ、特に携帯電話、スマートフォン、タブレット端末、パソコン、デジタルカメラ、ビデオカメラ、車載カメラ、又は監視カメラのいずれかに用いるための光学レンズに極めて有用であり、そのため、その奏する産業上の効果は格別である。
実施例1及び比較例2の熱可塑性樹脂の0.1質量%ジクロロメタン溶液透過スペクトルである。
 本発明をさらに詳しく説明する。
<熱可塑性樹脂>
 下記式(1)で表される繰り返し単位を含む熱可塑性樹脂。
Figure JPOXMLDOC01-appb-C000021
(式中、Zはベンゼン環が3つ以上縮環した多環芳香族炭化水素であり、LおよびLはそれぞれ独立に2価の連結基を示し、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基、j1およびj2はそれぞれ独立に1以上の整数を示し、mおよびnはそれぞれ独立に0または1を示し、Wは下記式(2)または(3)で表される群より選ばれる少なくとも1つである。)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(式中、Xは2価の連結基を示す。)
 前記式(1)において、Zはベンゼン環が3つ以上縮環した多環芳香族炭化水素であり、ベンゼン環が3つまたは4つ縮環した多環芳香族炭化水素が好ましく、ベンゼン環が3つ縮環した多環芳香族炭化水素がより好ましい。
 また、前記式(1)において、Zの多環芳香族炭化水素は、ベンゼン環がアセン型またはフェナセン型に縮環した構造が好ましく、フェナセン型に縮環した構造がより好ましい。
 前記式(1)において、Zは、フェナトレン、アントラセン、フェナレン、クリセン、テトラセン、ピレンが好ましく、フェナトレン、アントラセン、クリセン、テトラセンがより好ましく、縮環数が増えたときのフロンティア軌道の違いによる安定性の観点からフェナトレン、クリセンがさらに好ましく、吸収波長の観点からフェナントレンが特に好ましい。
 前記式(1)においてRおよびRはそれぞれ独立に、水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基を示し、水素原子、メチル基、フェニル基、ナフチル基、チエニル基、ベンゾチエニル基が好ましく、水素原子、メチル基、フェニル基、ナフチル基がより好ましく、水素原子、メチル基がさらに好ましく、水素原子が特に好ましい。
 また、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが好ましい。
 また、芳香族基を含んでいてもよい炭素原子数1~12の置換基としては、フェニル基、ナフチル基、チエニル基またはベンゾチエニル基などが好ましい。
 また、ナフチル基の具体例として、1-ナフチル基または2-ナフチル基などが好ましい。
 また、チエニル基の具体例として、2-チエニル基または3-チエニル基などが好ましい。
 また、ベンゾチエニル基の具体例として、2-ベンゾ[b]チエニル基または3-ベンゾ[b]チエニル基などが好ましい。
 前記式(1)において、L、Lはそれぞれ独立に2価の連結基を示し、炭素数1~12のアルキレン基であると好ましく、炭素数1~4のアルキレン基であるとより好ましく、エチレン基であるとさらに好ましい。L、Lの連結基の長さを調整することによって、樹脂のガラス転移温度(Tg)を調整することができる。
 前記式(1)において、Wは前記式(2)または(3)で表される群より選ばれる少なくとも1つである。Wが前記式(2)である場合、前記式(1)はカーボネート単位となり、Wが前記式(3)である場合、前記式(1)はエステル単位となる。
 前記式(1)はジヒドロキシ化合物と炭酸エステルなどのカーボネート前駆物質、またはジヒドロキシ化合物とジカルボン酸またはそのエステル形成性誘導体とから得ることができる。
 前記式(1)において、mおよびnはそれぞれ独立に0または1であり、1であることがより好ましい。
 前記式(1)において、j1およびj2は1以上の整数であり、1~4の整数であることが好ましく、1であることがより好ましい。
 また、前記式(1)で表される繰り返し単位が下記式(4)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000024
(式中、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基、j3およびj4はそれぞれ独立に0以上の整数を示し、L、L、m、nおよびWは前記式(1)と同様である。)
 前記式(4)において、RおよびRはそれぞれ独立に、水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基を示し、水素原子、メチル基、フェニル基、ナフチル基、チエニル基、ベンゾチエニル基が好ましく、水素原子、メチル基、フェニル基、ナフチル基がより好ましく、水素原子、メチル基がさらに好ましく、水素原子が特に好ましい。
 前記式(4)において、j3およびj4は1以上の整数であり、1~4の整数であることが好ましく、1であることがより好ましい。
 前記式(3)において、Xは2価の連結基を示し、炭素原子数1~30の芳香族基を含んでいてもよい置換基であることが好ましく、フェニレン基、ナフタレンジイル基、下記式(5)または下記式(6)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000025
(式中、RおよびRはそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子を示す。)
Figure JPOXMLDOC01-appb-C000026
 前記式(5)において、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基を示し、水素原子、メチル基、フェニル基、ナフチル基、チエニル基、ベンゾチエニル基が好ましく、水素原子、メチル基、フェニル基、ナフチル基がより好ましく、水素原子、メチル基がさらに好ましく、水素原子が特に好ましい。
 本発明の効果である高い屈折率及び低アッベ数を有することができる理由として以下のことが考えられる。
 特許文献4、5では、単結合で芳香族基を導入することにより屈折率を向上させている。Lorentz-Lorenz式として知られている分子構造と屈折率の関係式から、分子の分極率を上げることによって物質の屈折率が高くなることが知られており、それと同時にアッベ数も低くなる。
 本発明は、従来技術では達成できていない、高い屈折率及び低アッベ数を有する樹脂を得ることができるものである。3つ以上の縮環構造をもつことにより、単結合によって芳香族基を導入する以上に分極率を向上させることができるため、高屈折率を達成することができると考えられる。
 また、フェナセン構造にすることによる芳香環導入は、従来技術で課題であった屈折率向上の効果と吸収波長の長波長化のトレードオフを解決することができると考えられる。例えば、ビナフタレン構造から、6,6位にフェニル基を導入した場合とビフェナントレンにした場合では、芳香環の数は同じく二つ増えただけであるが、ビフェナントレンの方が屈折率は高く、かつ、吸収波長の長波長化も抑えられることが分かった。このように、フェナセン構造が光学用途材料の構造として有用であると考えられる。
 前記式(1)で表される繰り返し単位を、5mоl%以上、10mol%以上、15mol%以上、20mol%以上、25mol%以上、30mol%以上で含んでいてもよく、100mol%以下、90mol%以下、80mol%以下、70mol%以下、60mol%以下または50mol%以下で含んでいてもよい。本発明の樹脂は、上記式(1)で表される繰返し単位を、好ましくは10mol%以上100mol%以下、より好ましくは20mol%以上100mol%以下、さらに好ましくは20mol%以上80mol%以下、特に好ましくは20mol%以上70mol%以下で含むことができる。前記式(1)で表される繰り返し単位が前記範囲であると屈折率、耐熱性と成形性のバランスに優れるため好ましい。
 本発明の熱可塑性樹脂において、前記式(7)~(10)で表される単位からなる群より選ばれる少なくとも1つを繰り返し単位を含むことができる。
Figure JPOXMLDOC01-appb-C000027
(式中、RおよびRは前記式(5)のRおよびRと同様である。)
Figure JPOXMLDOC01-appb-C000028
(式中、RおよびR10は前記式(5)のRおよびRと同様である。)
Figure JPOXMLDOC01-appb-C000029
(式中、R11およびR12は前記式(5)のRおよびRと同様である。)
Figure JPOXMLDOC01-appb-C000030
(式中、R13およびR14は前記式(5)のRおよびRと同様であり、Uは単結合または2価の連結基を示す。)
 前記式(1)で表される繰り返し単位と前記式(7)~(10)で表される単位からなる群との繰り返し単位のmol比が95:5~5:95であることが好ましく、80:20~20:80であるとより好ましく、70:30~30:70であるとさらに好ましい。前記式(1)で表される繰り返し単位と前記式(7)~(10)で表される単位からなる群より選ばれる少なくとも1つの繰り返し単位とのmol比が、前記範囲内であると、高屈折率であることに加え、成形性のバランスにも優れるため好ましい。
<熱可塑性樹脂の物性>
 本発明の熱可塑性樹脂の比粘度は、0.12~0.40であることが好ましく、0.14~0.35であるとより好ましく、0.16~0.30であるとさらに好ましい。比粘度が上記範囲内であると成形性と機械強度のバランスに優れるため好ましい。
 比粘度の測定方法は、熱可塑性樹脂0.7gを塩化メチレン100mlに溶解した溶液の20℃における比粘度(ηSP)を、オストワルド粘度計にて測定し、以下の式から算出する。
  比粘度(ηSP)=(t-t)/t
[tは、塩化メチレンの落下秒数、tは、試料溶液の落下秒数]
 本発明の熱可塑性樹脂の屈折率は、温度:20℃、波長:587.56nmで測定した場合に、1.650以上であり、1.660以上、1.670以上、1.680以上、1.690以上、又は1.700以上であってもよく、1.800以下であり、1.790以下、1.780以下、1.770以下、1.760以下または1.750以下であってもよい。1.650~1.800であることが好ましく、1.670~1.800であるとより好ましく、1.680~1.800であるとさらに好ましい。屈折率が下限以上の場合、光学レンズの球面収差を低減でき、さらに光学レンズの焦点距離を短くすることができる。
 発明の熱可塑性樹脂は高屈折率であるが、さらに低アッベ数であることが好ましい。
 本発明の熱可塑性樹脂のアッベ数は、5以上、7以上、9以上、10以上、12以上又は14以上であってもよく、24以下、23以下、22以下、21以下、20以下、19以下又は18以下であってもよい。アッベ数(νd)は、5~22であることが好ましく、7~22であることがより好ましく、10~21であるとさらに好ましい。
 ここで、アッベ数は、温度:20℃、波長:486.13nm、587.56nm、656.27nmの屈折率から、下記式を用いて算出する:
  νd=(nd-1)/(nF-nC)
  nd:波長587.56nmにおける屈折率、
  nF:波長486.13nmにおける屈折率、
  nC:波長656.27nmにおける屈折率を意味する。
 本発明の熱可塑性樹脂は、ガラス転移温度(Tg)は130℃以上、135℃以上、140℃以上、145℃以上、または150℃以上であってもよく、180℃以下、175℃以下、170℃以下、165℃以下、160℃以下であってもよい。130~180℃であることが好ましく、140~175℃であるとより好ましく、140~170℃であるとさらに好ましい。ガラス転移温度が上記範囲内であると、耐熱性と成形性のバランスに優れるため好ましい。
 本発明の熱可塑性樹脂は、配向複屈折の絶対値(|Δn|)は10.0×10-3以下であることが好ましく、5.0×10-3以下であることが、3.0×10-3以下であることがさらに好ましい。|Δn|が上記範囲内であると、光学レンズの光学歪が小さくなるため好ましい。
 Δnは、本発明の熱可塑性樹脂より得られる厚さ100μmのフィルムをTg+10℃の温度で2倍延伸し、波長589nmにおける位相差を測定して下記式により求める。
  |Δn|=|Re/d|
  Δn:配向複屈折
  Re:位相差(nm)
   d:厚さ(nm)
 本発明の熱可塑性樹脂は、23℃の水に、24時間浸漬した後の吸水率が0.25質量%以下であると好ましく、0.20重量%以下であるとより好ましい。吸水率が上記範囲内であると、吸水による光学特性の変化が小さいため好ましい。
 本発明の熱可塑性樹脂は、360nmの分光透過率が40%以上であると好ましく、50%以上だとより好ましく、60%以上だとさらに好ましく、70%以上だと特に好ましい。上記範囲内であると、可視光を透過することができるため好ましい。
<熱可塑性樹脂の原料>
(式(1)のジオール成分)
 式(1)の原料となるジオール成分は、主として式(a)で表されるジオール成分であり、単独で使用してもよく、又は二種以上組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000031
 前記式(a)において、Z、R、R、L、L、j1、j2、m及びnは、前記式(1)における各式と同じである。
 以下、前記式(a)で表されるジオール成分の代表的具体例を示すが、前記式(1)に用いられる原料としては、それらによって限定されるものではない。
 式(1)で表されるジオール化合物において、具体例として、ビアントラセノール類、ビフェナントレノール類、ビフェナレノール類、ビナフタセノール類、ビクリセノール類、ビピレノール類があげられる。具体的には、下記式(a-1)で表される、2,2’-ジヒドロキシ-1,1’-ビアントラセン、10,10’-ジヒドロキシ-9,9’-ビアントラセン、2,2’-ジヒドロキシ-1,1’-ビフェナントレン、3,3’-ジヒドロキシ-4,4’-ビフェナントレン、10,10’-ジヒドロキシ-9,9’-ビフェナントレン、2,2’-ジヒドロキシ-1,1’-ビフェナレン、3,3’-ジヒドロキシ-2,2’-ビナフタセン、12,12’-ジヒドロキシ-5,5’-ビナフタセン、3,3’-ジヒドロキシ-4,4’-ビクリセン、5,5’-ジヒドロキシ-6,6’-ビクリセン、2,2’-ジヒドロキシ-1,1-ビピレン、7,7’-ジヒドロキシ-2,2’-ビピレン、下記式(a-2)で表される、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビアントラセン、10,10’-ビス(2-ヒドロキシエトキシ)-9,9’-ビアントラセン、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビフェナントレン、3,3’-ビス(2-ヒドロキシエトキシ)-4,4’-ビフェナントレン、10,10’-ビス(2-ヒドロキシエトキシ)-9,9’-ビフェナントレン、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビフェナレン、3,3’-ビス(2-ヒドロキシエトキシ)-2,2’-ビナフタセン、12,12’-ビス(2-ヒドロキシエトキシ)-5,5’-ビナフタセン、3,3’-ビス(2-ヒドロキシエトキシ)-4,4’-ビクリセン、5,5’-ビス(2-ヒドロキシエトキシ)-6,6’-ビクリセン、2,2’-ビス(2-ヒドロキシエトキシ)-1,1-ビピレン、7,7’-ビス(2-ヒドロキシエトキシ)-2,2’-ビピレンが好ましく挙げられ、2,2’-ジヒドロキシ-1,1’-ビフェナントレン、3,3’-ジヒドロキシ-4,4’-ビフェナントレン、10,10’-ジヒドロキシ-9,9’-ビフェナントレン、3,3’-ジヒドロキシ-4,4’-ビクリセン、5,5’-ジヒドロキシ-6,6’-ビクリセン、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビフェナントレン、3,3’-ビス(2-ヒドロキシエトキシ)-4,4’-ビフェナントレン、10,10’-ビス(2-ヒドロキシエトキシ)-9,9’-ビフェナントレン、3,3’-ビス(2-ヒドロキシエトキシ)-4,4’-ビクリセン、5,5’-ビス(2-ヒドロキシエトキシ)-6,6’-ビクリセンがより好ましく、2,2’-ジヒドロキシ-1,1’-ビフェナントレン、3,3’-ジヒドロキシ-4,4’-ビフェナントレン、10,10’-ジヒドロキシ-9,9’-ビフェナントレン、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビフェナントレン、3,3’-ビス(2-ヒドロキシエトキシ)-4,4’-ビフェナントレン、10,10’-ビス(2-ヒドロキシエトキシ)-9,9’-ビフェナントレン、がさらに好ましく、10,10’-ジヒドロキシ-9,9’-ビフェナントレン、10,10’-ビス(2-ヒドロキシエトキシ)-9,9’-ビフェナントレンが特に好ましい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(前記式(1)のカーボネート成分)
 本発明の熱可塑性樹脂の前記式(1)で表される単位に使用するカーボネート成分としては、ホスゲン、カーボネートエステルがあげられる。カーボネートエステルは、置換されていてもよい炭素数6~10のアリール基、アラルキル基あるいは炭素数1~4のアルキル基などのエステルが挙げられる。具体的にはジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、ビス(m-クレジル)カーボネート、ジナフチルカーボネートなどの炭酸ジアリール、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネートなどの炭酸ジアルキル、エチルフェニルカーボネート、シクロヘキシルフェニルカーボネートなどの炭酸アルキルアリール、または、ジビニルカーボネート、ジイソプロぺニルカーボネート、ジプロペニルカーボネートなどの炭酸ジアルケニルなどが挙げられ、なかでも炭酸ジアリールが好ましく、ジフェニルカーボネートがより好ましい。
(前記式(1)のジカルボン酸成分)
 本発明の熱可塑性樹脂の前記式(1)で表される単位に使用するジカルボン酸成分は主として、式(b)で表されるジカルボン酸、またはそのエステル形成性誘導体が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000034
 前記式(b)において、Xは2価の連結基を示し、前記式(3)で説明したことと同様なことが言える。
 以下、前記式(b)で表されるジカルボン酸またはそのエステル形成性誘導体の代表的具体例を示すが、本発明の前記式(b)に用いられる原料としては、それらによって限定されるものではない。
 本発明の熱可塑性樹脂に使用するジカルボン酸成分としては、前記式(5)の原料となる2,2’-ビス(カルボキシメトキシ)-1,1’-ビナフチル、6,6’-ジフェニル-2,2’-ビス(カルボキシメトキシ)-1,1’-ビナフチル、6,6’-ジブロモ-2,2’-ビス(カルボキシメトキシ)-1,1’-ビナフチル、前記式(6)の原料となる9,9-ビス(2-カルボキシエチル)フルオレンのほか、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸成分、フタル酸、イソフタル酸、テレフタル酸等の単環式芳香族ジカルボン酸成分、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9-ビス(カルボキシメチル)フルオレン、9,9-ビス(1-カルボキシエチル)フルオレン、9,9-ビス(1-カルボキシプロピル)フルオレン、9,9-ビス(2-カルボキシプロピル)フルオレン、9,9-ビス(2-カルボキシ-1-メチルエチル)フルオレン、9,9-ビス(2-カルボキシ-1-メチルプロピル)フルオレン、9,9-ビス(2-カルボキシブチル)フルオレン、9,9-ビス(2-カルボキシ-1-メチルブチル)フルオレン、9,9-ビス(5-カルボキシペンチル)フルオレン、9,9-ビス(カルボキシシクロヘキシル)フルオレン等の多環式芳香族ジカルボン酸成分、2,2’-ビフェニルジカルボン酸等のビフェニルジカルボン酸成分、1,4-シクロヘキサンジカルボン酸、2,6-デカリンジカルボン酸等の脂環族ジカルボン酸成分が挙げられ、イソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、2,2’-ビス(カルボキシメトキシ)-1,1’-ビナフチル、9,9-ビス(2-カルボキシエチル)フルオレンが好ましく、2,6-ナフタレンジカルボン酸、2,2’-ビス(カルボキシメトキシ)-1,1’-ビナフチル、9,9-ビス(2-カルボキシエチル)フルオレンがより好ましい。これらは単独または二種類以上組み合わせて用いても良い。また、エステル形成性誘導体としては酸クロライドや、メチルエステル、エチルエステル、フェニルエステル等のエステル類を用いてもよい。
(前記式(7)~(10)の成分)
 本発明の熱可塑性樹脂は、さらに前記式(7)~(10)の繰り返し単位を有していてもよく、前記式(7)~(10)の原料となるジヒドロキシ化合物成分を下記に示す。これらは単独で使用してもよく、または二種以上組み合わせて用いてもよい。
 本発明の前記式(7)の原料となるジヒドロキシ化合物成分は、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフチル、2,2’-ビス(2-ヒドロキシエトキシ)-3,3’-ジフェニル-1,1’-ビナフチル、2,2’-ビス(2-ヒドロキシエトキシ)-6,6’-ジフェニル-1,1’-ビナフチル、2,2’-ビス(2-ヒドロキシエトキシ)-7,7’-ジフェニル-1,1’-ビナフチル、2,2’-ビス(2-ヒドロキシエトキシ)-3,3’-ジメチル-1,1’-ビナフチル、2,2’-ビス(2-ヒドロキシエトキシ)-6,6’-ジメチル-1,1’-ビナフチル、2,2’-ビス(2-ヒドロキシエトキシ)-7,7’-ジメチル-1,1’-ビナフチルが挙げられる。
 本発明の前記式(8)の原料となるジヒドロキシ化合物成分は、9,9-ビス(4-(2-ヒドロキシエトキシ)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン等が例示され、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレンが特に好ましい。これらは単独で使用してもよく、または二種以上組み合わせて用いてもよい。
 本発明の前記式(9)の原料となるジヒドロキシ化合物成分は、9,9-ビス(6-(2-ヒドロキシエトキシ)-2-ナフチル)フルオレン、9,9-ビス(6-(2-ヒドロキシエトキシ)―2-ナフチル)-2,7-ジフェニルフルオレンが挙げられる。
 本発明の前記式(10)の原料となるジヒドロキシ化合物成分は、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)デカン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、ビフェノール、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン、ビス(4-ヒドロキシフェニル)スルホン、10,10-ビス(4-ヒドロキシフェニル)アントロン等が例示され、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルフィドが特に好ましい。これらは単独で使用してもよく、または二種以上組み合わせて用いてもよい。
(前記式(1)~(10)以外の共重合成分)
 本発明の熱可塑性樹脂は、本発明の特性を損なわない程度に他のジヒドロキシ化合物成分を共重合してもよい。他のジヒドロキシ化合物成分は、全繰り返し単位中30mol%未満が好ましい。
 本発明の熱可塑性樹脂に使用するその他のジヒドロキシ化合物成分としては、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、トリシクロ[5.2.1.02,6]デカンジメタノール、シクロヘキサン-1,4-ジメタノール、デカリン-2,6-ジメタノール、ノルボルナンジメタノール、ペンタシクロペンタデカンジメタノール、シクロペンタン-1,3-ジメタノール、スピログリコール、イソソルビド、イソマンニド、イソイジド、ヒドロキノン、レゾルシノール、ビス(4-(2-ヒドロキシエトキシ)フェニル)スルホン、1,1’-ビ-2-ナフトール、ジヒドロキシナフタレン、ビス(2-ヒドロキシエトキシ)ナフタレン等が例示され、これらは単独または二種類以上組み合わせて用いても良い。
 本発明の熱可塑性樹脂は、例えばジヒドロキシ化合物成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法やジオール成分にジカルボン酸またはそのエステル形成性誘導体を反応させる方法等により製造される。以下にその具体例を示す。
<製造方法>
(ポリカーボネート樹脂の製造方法)
 本発明の熱可塑性樹脂がポリカーボネート樹脂である場合はそれ自体公知の反応手段、例えばジヒドロキシ化合物成分とカーボネート前駆物質を界面重合法または溶融重合法によって反応させて得られる。ポリカーボネート樹脂を製造するに当たっては、必要に応じて触媒、末端停止剤、酸化防止剤等を使用してもよい。
(ポリエステル樹脂の製造方法)
 本発明の熱可塑性樹脂がポリエステル樹脂である場合はそれ自体公知の反応手段、例えばジヒドロキシ化合物成分とジカルボン酸またはそのエステル形成性誘導体とをエステル化反応もしくはエステル交換反応させ、得られた反応生成物を重縮合反応させ、所望の分子量の高分子量体とすればよい。
(ポリエステルカーボネート樹脂の製造方法)
 本発明の熱可塑性樹脂がポリエステルカーボネート樹脂である場合は、ジヒドロキシ化合物成分およびジカルボン酸またはそのエステル形成性誘導体と、ホスゲンやカーボネートエステルなどのカーボネート前駆物質とを反応させることにより製造することができる。重合方法は前記ポリカーボネート樹脂またはポリエステル樹脂と同様の方法を用いることができる。
<光学部材>
 本発明の光学部材は、上記の熱可塑性樹脂を含む。そのような光学部材としては、上記の熱可塑性樹脂が有用となる光学用途であれば、特に限定されないが、光学レンズ、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、レンズ、プリズム、光学膜、基盤、光学フィルター、ハードコート膜等を挙げることができる。
 また、本発明の光学部材には、上記の熱可塑性樹脂を含む樹脂組成物から構成されていてもよく、その樹脂組成物には、必要に応じて熱安定剤、可塑剤、光安定剤、重合金属不活性化剤、難燃剤、滑剤、帯電防止剤、界面活性剤、抗菌剤、紫外線吸収剤、離型剤、酸化防止剤等の添加剤を配合することができる。
 酸化防止剤としては、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート及び3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。酸化防止剤の配合量は、熱可塑性樹脂組成物100質量部に対して、0.50質量部以下であることが好ましく、0.05~0.40質量部であることがより好ましく、0.05~0.20質量部あるいは0.10~0.40質量部であることが更に好ましく、0.20~0.40質量部であることが特に好ましい。
<光学レンズ>
 本発明の光学部材として、特に光学レンズを挙げることができる。このような光学レンズとしては、携帯電話、スマートフォン、タブレット端末、パソコン、デジタルカメラ、ビデオカメラ、車載カメラ、監視カメラ等のための光学レンズを挙げることができる。
 本発明の光学レンズは、射出成形、圧縮成形、射出圧縮成形、溶融押出成形、キャスティング等の任意の方法により成形、加工することができるが、射出成形が特に好適である。
 射出成形の成形条件は特に限定されないが、成形機のシリンダー温度は180~320℃が好ましく、220~300℃がより好ましく、240~280℃が特に好ましい。また、金型温度は70~130℃が好ましく、80~125℃がより好ましく、90~120℃が特に好ましい。射出圧力は5~170MPaが好ましく、50~160MPaがより好ましく、100~150MPaが特に好ましい。
 本発明を以下の実施例でさらに具体的に説明をするが、本発明はこれによって限定されるものではない。
≪製造例≫
[実施例1]
 10,10’-ビス(2-ヒドロキシエトキシ)-9,9’-ビフェナントレン(以下、BHEBPheと省略することがある)を9.50質量部(20mоl部)、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(以下、BPEFと省略することがある)35.08質量部(80mоl部)、ジフェニルカーボネート(以下、DPCと省略することがある)21.64質量部(101mоl部)、及び触媒として濃度60mmol/Lの濃度で炭酸水素ナトリウムを8.40×10-5質量部(1.00×10-3mоl部)を加え、窒素雰囲気下180℃に加熱し溶融させた。その後、5分間かけて減圧度を20kPaに調整した。60℃/hrの昇温速度で250℃まで昇温を行い、フェノールの流出量が70%になった後で60kPa/hrで減圧し、所定の電力に到達するまで重合反応を行い、反応終了後フラスコから樹脂を取り出した。得られたポリカーボネート樹脂を、1H NMRにより分析し、10,10’-ビス(2-ヒドロキシエトキシ)-9,9’-ビフェナントレン成分が全モノマーに対して、20mоl%導入されていることを確認した。該ポリカーボネート樹脂を用いて、共重合比、屈折率、アッベ数、Tg、360nmと500nmにおける光透過率を評価し、結果を表1に示した。
[実施例2]
 BHEBPhe、BPEFを表1に記載の比率に変更したこと以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。該ポリカーボネート樹脂を用いて、共重合比、屈折率、アッベ数、Tg、360nmと500nmにおける光透過率を評価し、結果を表1に示した。
[実施例3]
 BHEBPheを表1に記載の比率に変更したこと以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。該ポリカーボネート樹脂を用いて、共重合比、屈折率、アッベ数、Tg、360nmと500nmにおける光透過率を評価し、結果を表1に示した。
[実施例4]
 BHEBPhe、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフチル(以下、BHEBと省略することがある)、2,2’-ビス(カルボキシメトキシ)-1,1’-ビナフチル(以下、BCMBと省略することがある)を表1に記載の比率で用いたことと、DPCを4.50質量部(21mоl部)に変更したことと、触媒としてチタンテトラブトキシド3.4×10-3質量部(1.00×10-2mоl部)を用いたこと以外は実施例1と同様にして、ポリエステルカーボネート樹脂を製造した。該ポリエステルカーボネート樹脂を用いて、共重合比、屈折率、アッベ数、Tg、360nmと500nmにおける光透過率を評価し、結果を表1に示した。
[比較例1~3]
 実施例1から表1に記載のように組成を変更して、比較例1~3のポリカーボネート樹脂のペレットを得た。該ポリカーボネート樹脂を用いて、共重合比、屈折率、アッベ数、Tg、360nmと500nmにおける光透過率を評価し、結果を表1に示した。
 得られた熱可塑性樹脂について下記の方法で評価を行った。
<共重合比>
 得られた樹脂を日本電子(株)製JNM-ECZ400Sを用いてH NMR測定することによって、各ポリマーの組成比を算出した。溶媒はCDClを用いた。
<光学特性>
(屈折率)
 各ポリマーの3mm厚試験片を作製し研磨した後、島津製作所製のカルニュー精密屈折計KPR-2000を使用して、20℃における屈折率nd(587.56nm)を測定した。
(アッベ数)
 アッベ数の測定波長は、486.13nm、587.56nm、656.27nmの屈折率から下記の式を用いて算出した。
  νd=(nd-1)/(nF-nC)
  nd:波長587.56nmでの屈折率、
  nF:波長486.13nmでの屈折率、
  nC:波長656.27nmでの屈折率を意味する。
(配向複屈折の絶対値)
 熱可塑性樹脂を塩化メチレンに溶解した後、ガラスシャーレ上にキャストし、十分乾燥することで厚さ100μmのキャストフィルムを作製した。該フィルムをTg+10℃で2倍延伸し、日本分光(株)製エリプソメーターM-220を用いて589nmにおける位相差(Re)を測定し、下記式より配向複屈折の絶対値(|Δn|)を求めた。
  |Δn|=|Re/d|
    Δn:配向複屈折
    Re:位相差(nm)
     d:厚さ(nm)
(光透過率)
 得られた樹脂6.7mgをジクロロメタン(比重:1.33g/mL)5mLに溶解させ0.1質量%溶液を作製する。その溶液の250nmから780nmの透過率を、日立製U-3310形分光光度計を用いて測定した。
<ガラス転移温度(Tg)>
 得られた樹脂をティー・エイ・インスツルメント・ジャパン(株)製Discovery DSC25Auto型により、昇温速度20℃/minで測定した。試料は5~10mgで測定した。
≪結果≫
 熱可塑性樹脂に関する例の評価の結果を表1に示す。また、実施例1及び比較例2の熱可塑性樹脂の0.1質量%ジクロロメタン溶液透過スペクトルを図1に示す。
Figure JPOXMLDOC01-appb-T000035
 
 BHEBPheを用いた実施例1~4は、高い屈折率及び低アッベ数を有する、光学レンズとして優れる結果が得られていることが分かる。
 また、実施例1と比較例2を比較すると、ともに比較例1のビナフタレンから芳香環が一つ増えた構造において、実施例1では吸収波長の長波長化が抑えられていることが分かる。
 式(1)の繰り返し単位のようなベンゼン環が3つ以上縮環した多環芳香族炭化水素を持つことで分極率を高めることができ高屈折率と高アッベ数を両立することに効果的である。
 本発明の熱可塑性樹脂は、光学材料に用いられ、光学レンズ、プリズム、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、光学膜、光学フィルター、ハードコート膜等の光学部材に用いることができ、特に光学レンズに極めて有用である。

Claims (14)

  1.  下記式(1)で表される繰り返し単位を含む熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Zはベンゼン環が3つ以上縮環した多環芳香族炭化水素であり、LおよびLはそれぞれ独立に2価の連結基を示し、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基、j1およびj2はそれぞれ独立に1以上の整数を示し、mおよびnはそれぞれ独立に0または1を示し、Wは下記式(2)または(3)で表される群より選ばれる少なくとも1つである。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式中、Xは2価の連結基を示す。)
  2.  前記式(1)において、Zがフェナセン型の多環芳香族炭化水素である請求項1に記載の熱可塑性樹脂。
  3.  前記式(1)において、Zが3つもしくは4つのベンゼン環が縮環した多環芳香族炭化水素である請求項1または2に記載の熱可塑性樹脂。
  4.  前記式(1)において、Zがフェナントレンである請求項1~3のいずれか一項に記載の熱可塑性樹脂。
  5.  前記式(1)で表される繰り返し単位が下記式(4)で表される請求項1~4のいずれか一項に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (式中、LおよびLはそれぞれ独立に2価の連結基を示し、RおよびRはそれぞれ独立に水素原子、ハロゲン原子、芳香族基を含んでいてもよい炭素原子数1~20の置換基、j3およびj4はそれぞれ独立に1以上の整数を示し、mおよびnはそれぞれ独立に0または1を示し、Wは前記式(2)または(3)で表される群より選ばれる少なくとも1つである。)
  6.  前記式(1)中、RおよびRがそれぞれ独立に水素原子、メチル基、フェニル基、またはナフチル基を示す、請求項1~4のいずれか一項に記載の熱可塑性樹脂。
  7.  前記式(4)中、RおよびRがそれぞれ独立に水素原子、メチル基、フェニル基、またはナフチル基を示す、請求項5に記載の熱可塑性樹脂。
  8.  前記式(3)中のXがフェニレン基、ナフタレンジイル基、下記式(5)で表される基および下記式(6)で表される基からなる群より選ばれる少なくとも一つを繰り返し単位として含む請求項1~7のいずれか一項に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000005
    (式中、RおよびRはそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000006
  9.  下記式(7)~(10)で表される単位からなる群より選ばれる少なくとも1つを繰り返し単位として含む請求項1~8のいずれか一項に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000007
    (式中、RおよびRはそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、RおよびR10はそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000009
    (式中、R11およびR12はそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子である。)
    Figure JPOXMLDOC01-appb-C000010
    (式中、R13およびR14はそれぞれ独立して水素原子、芳香族基を含んでもよい炭素原子数1~20の置換基又はハロゲン原子であり、Uは単結合または2価の連結基である。)
  10.  屈折率が1.65~1.80である請求項1~9のいずれかに記載の熱可塑性樹脂。
  11.  比粘度が0.12~0.40である請求項1~10のいずれかに記載の熱可塑性樹脂。
  12.  ガラス転移温度が、130~170℃である、請求項1~11のいずれか一項に記載の熱可塑性樹脂。
  13.  請求項1~12のいずれかに記載の熱可塑性樹脂からなる光学部材。
  14.  光学レンズである請求項13に記載の光学部材。
     
PCT/JP2021/015452 2020-04-28 2021-04-14 熱可塑性樹脂および光学部材 WO2021220811A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/919,088 US20230192950A1 (en) 2020-04-28 2021-04-14 Thermoplastic resin and optical member
KR1020227040276A KR20230008118A (ko) 2020-04-28 2021-04-14 열가소성 수지 및 광학 부재
JP2022517619A JP7465956B2 (ja) 2020-04-28 2021-04-14 熱可塑性樹脂および光学部材
CN202180031560.1A CN115461388B (zh) 2020-04-28 2021-04-14 热塑性树脂和光学部件
JP2023206174A JP2024028870A (ja) 2020-04-28 2023-12-06 熱可塑性樹脂および光学部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-078848 2020-04-28
JP2020078848 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021220811A1 true WO2021220811A1 (ja) 2021-11-04

Family

ID=78373502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015452 WO2021220811A1 (ja) 2020-04-28 2021-04-14 熱可塑性樹脂および光学部材

Country Status (6)

Country Link
US (1) US20230192950A1 (ja)
JP (2) JP7465956B2 (ja)
KR (1) KR20230008118A (ja)
CN (1) CN115461388B (ja)
TW (1) TW202206494A (ja)
WO (1) WO2021220811A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176687A1 (ja) * 2022-03-14 2023-09-21 本州化学工業株式会社 ビフェナントレン化合物又はそのアルカリ金属塩
WO2023195505A1 (ja) * 2022-04-07 2023-10-12 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
WO2024019028A1 (ja) * 2022-07-19 2024-01-25 三菱瓦斯化学株式会社 熱可塑性樹脂および光学部材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072872A (ja) * 1999-07-02 2001-03-21 Konica Corp 樹脂組成物および光学用レンズ
JP2015086265A (ja) * 2013-10-29 2015-05-07 帝人株式会社 熱可塑性樹脂およびそれらからなる光学部材
JP2015193548A (ja) * 2014-03-31 2015-11-05 大阪ガスケミカル株式会社 新規ジオール化合物及びポリエステル
WO2019044875A1 (ja) * 2017-08-30 2019-03-07 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法、及び、光学レンズ
WO2019044214A1 (ja) * 2017-08-30 2019-03-07 帝人株式会社 熱可塑性樹脂および光学部材
WO2020175663A1 (ja) * 2019-02-27 2020-09-03 三菱瓦斯化学株式会社 熱可塑性樹脂、その製造方法、及び、光学レンズ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198901A (ja) 1993-12-27 1995-08-01 Kanebo Ltd プラスチックレンズ用ポリエステル樹脂
CN101467073A (zh) * 2006-06-05 2009-06-24 三菱瓦斯化学株式会社 光学透镜
JP5808960B2 (ja) * 2011-06-20 2015-11-10 帝人株式会社 高屈折率かつ耐熱性に優れたポリカーボネート共重合体及び光学レンズ
US20160319069A1 (en) * 2014-02-28 2016-11-03 Teijin Limited Polycarbonate and optical member comprising the same
JP6523915B2 (ja) * 2015-10-23 2019-06-05 帝人株式会社 ポリカーボネート樹脂及び光学部材
WO2017099227A1 (ja) * 2015-12-11 2017-06-15 三菱ケミカル株式会社 芳香族ポリカーボネート樹脂、芳香族ポリカーボネート樹脂組成物及び芳香族ポリカーボネート樹脂成形体の製造方法
JP6831650B2 (ja) * 2016-03-28 2021-02-17 大阪ガスケミカル株式会社 高屈折率ポリカーボネート系樹脂及び成形体
WO2018008483A1 (ja) * 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP7082872B2 (ja) * 2016-12-26 2022-06-09 大阪ガスケミカル株式会社 高耐熱性ポリカーボネート樹脂及び成形体
JP6916026B2 (ja) * 2017-04-06 2021-08-11 帝人株式会社 熱可塑性樹脂
CN113667110B (zh) 2021-09-06 2023-01-13 万华化学集团股份有限公司 一种光学聚碳酸酯树脂及其制备方法
JP2024005732A (ja) 2022-06-30 2024-01-17 三井化学株式会社 ジオール化合物、光学用樹脂、ポリカーボネート樹脂、および光学成形体
WO2024019028A1 (ja) 2022-07-19 2024-01-25 三菱瓦斯化学株式会社 熱可塑性樹脂および光学部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072872A (ja) * 1999-07-02 2001-03-21 Konica Corp 樹脂組成物および光学用レンズ
JP2015086265A (ja) * 2013-10-29 2015-05-07 帝人株式会社 熱可塑性樹脂およびそれらからなる光学部材
JP2015193548A (ja) * 2014-03-31 2015-11-05 大阪ガスケミカル株式会社 新規ジオール化合物及びポリエステル
WO2019044875A1 (ja) * 2017-08-30 2019-03-07 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法、及び、光学レンズ
WO2019044214A1 (ja) * 2017-08-30 2019-03-07 帝人株式会社 熱可塑性樹脂および光学部材
WO2020175663A1 (ja) * 2019-02-27 2020-09-03 三菱瓦斯化学株式会社 熱可塑性樹脂、その製造方法、及び、光学レンズ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176687A1 (ja) * 2022-03-14 2023-09-21 本州化学工業株式会社 ビフェナントレン化合物又はそのアルカリ金属塩
WO2023195505A1 (ja) * 2022-04-07 2023-10-12 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
WO2024019028A1 (ja) * 2022-07-19 2024-01-25 三菱瓦斯化学株式会社 熱可塑性樹脂および光学部材

Also Published As

Publication number Publication date
CN115461388B (zh) 2024-03-26
CN115461388A (zh) 2022-12-09
JPWO2021220811A1 (ja) 2021-11-04
US20230192950A1 (en) 2023-06-22
TW202206494A (zh) 2022-02-16
KR20230008118A (ko) 2023-01-13
JP7465956B2 (ja) 2024-04-11
JP2024028870A (ja) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2021220811A1 (ja) 熱可塑性樹脂および光学部材
JP6689146B2 (ja) 熱可塑性樹脂
JP6689147B2 (ja) 熱可塑性樹脂
JP6739255B2 (ja) 熱可塑性樹脂
JP6916026B2 (ja) 熱可塑性樹脂
JP7221706B2 (ja) 熱可塑性樹脂および光学部材
WO2021014962A1 (ja) 熱可塑性樹脂及びそれを含む光学部材
WO2023074439A1 (ja) 熱可塑性樹脂および光学部材
WO2023074471A1 (ja) 熱可塑性樹脂および光学部材
JP2024026220A (ja) 熱可塑性樹脂及びそれを含む光学部材
EP2918623A1 (en) Polyformal resin copolymer and production method
JP2022011687A (ja) 熱可塑性樹脂および光学部材
CN116457415A (zh) 热塑性树脂和包含该热塑性树脂的光学部件
WO2022190800A1 (ja) 熱可塑性樹脂および光学部材
JPWO2020175572A1 (ja) 熱可塑性樹脂および光学部材
JP2020193301A (ja) ポリカーボネート樹脂及びそれを含む光学部材
CN115702214B (zh) 树脂组合物
JP7506173B2 (ja) 熱可塑性樹脂及びそれを含む光学部材
JP2023139355A (ja) 熱可塑性樹脂、それからなる光学部材およびジオール化合物
JP2024055310A (ja) 熱可塑性樹脂組成物及びそれを含む光学部材
JP2024016426A (ja) 熱可塑性樹脂および光学部材
JP2023067738A (ja) 熱可塑性樹脂および光学部材
WO2024075643A1 (ja) 熱可塑性樹脂組成物及びそれを含む光学部材
WO2022158123A1 (ja) 熱可塑性樹脂およびそれからなる光学部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517619

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227040276

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796971

Country of ref document: EP

Kind code of ref document: A1