WO2021214946A1 - リチウムイオン二次電池及びその製造方法 - Google Patents

リチウムイオン二次電池及びその製造方法 Download PDF

Info

Publication number
WO2021214946A1
WO2021214946A1 PCT/JP2020/017529 JP2020017529W WO2021214946A1 WO 2021214946 A1 WO2021214946 A1 WO 2021214946A1 JP 2020017529 W JP2020017529 W JP 2020017529W WO 2021214946 A1 WO2021214946 A1 WO 2021214946A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
ion secondary
lithium ion
electrode layer
green sheet
Prior art date
Application number
PCT/JP2020/017529
Other languages
English (en)
French (fr)
Inventor
吉田 俊広
勝田 祐司
佐藤 洋介
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2022516584A priority Critical patent/JP7423760B2/ja
Priority to PCT/JP2020/017529 priority patent/WO2021214946A1/ja
Publication of WO2021214946A1 publication Critical patent/WO2021214946A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery and a method for manufacturing the same.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2009-193940
  • the surface of lithium cobalt oxide is coated with lithium niobate to provide interfacial resistance. It is disclosed that the reduction of Reduction of interfacial resistance leads to improvement of charge / discharge characteristics.
  • the battery disclosed in Patent Document 1 is an all-solid-state battery using a green compact, and is an electrode when pores remain between particles or a conductive auxiliary agent for ensuring electron conduction between active materials is added. Energy density decreases.
  • Patent Document 2 (WO2019 / 093222A1) contains an oriented positive electrode plate which is a lithium composite oxide sintered body plate having a void ratio of 10 to 50%, Ti, and 0.4 V (vs. Li / Li). + )
  • An all-solid-state lithium battery is disclosed, which comprises a negative electrode plate capable of inserting and removing lithium ions and a solid electrolyte having a melting point of the oriented positive electrode plate or the negative electrode plate or a melting point lower than the decomposition temperature.
  • Such a solid electrolyte can permeate into the voids of the electrode plate as a melt, and strong interfacial contact can be realized. As a result, it is said that the battery resistance and the rate performance at the time of charging / discharging can be remarkably improved, and the yield of battery manufacturing can be significantly improved.
  • Patent Document 3 (WO2019 / 221140A1) includes a positive electrode layer composed of a sintered body of a lithium composite oxide (for example, lithium cobalt oxide) and a titanium-containing sintered body (for example, lithium titanate).
  • a lithium ion secondary battery comprising a negative electrode layer, a ceramic separator, and an electrolyte impregnated in the ceramic separator is disclosed.
  • the positive electrode layer, the ceramic separator, and the negative electrode layer form one integrally sintered plate as a whole, whereby the positive electrode layer, the ceramic separator, and the negative electrode layer are bonded to each other.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2014-116156
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2014-116156
  • Batteries are disclosed, and it is described that these plurality of laminated batteries are stacked via a positive electrode current collecting foil and a negative electrode current collecting foil, and are electrically connected in parallel.
  • the positive electrode member, the low melting point solid electrolyte (for example, 3LiOH / Li 2 SO 4 ), and the negative electrode member are stacked so as to be arranged in the order of the current collector layer / positive electrode plate / solid electrolyte / negative electrode plate / current collector layer.
  • the obtained laminate is heated to melt the low melting point solid electrolyte, and the positive electrode plate and the negative electrode plate are impregnated with the electrolyte to form a unit cell in which the battery components are integrated.
  • a plurality of these unit cells are produced.
  • a stacked cell is formed by stacking a plurality of unit cells.
  • such a manufacturing process has the following problems.
  • the present inventors have now impregnated an integrally sintered body including a plurality of unit laminates including a positive electrode layer, a ceramic separator, and a negative electrode layer together with a current collecting layer with a molten electrolyte having a melting point of 600 ° C. or lower.
  • the laminated battery can be manufactured more efficiently without the above-mentioned problems. That is, it was found that a laminated battery type lithium ion secondary battery having a plurality of unit cells can be manufactured with a significantly small number of steps and a high yield while being a method suitable for improving energy density.
  • an object of the present invention is to manufacture a laminated battery type lithium ion secondary battery having a plurality of unit cells, while using a method suitable for improving energy density, with a significantly small number of steps and a high yield. It is in.
  • the process of firing the green sheet laminate to form an integrally sintered body A step of impregnating the integrally sintered body with a molten electrolyte having a melting point of 600 ° C. or lower to obtain a lithium ion secondary battery.
  • a method for manufacturing a lithium ion secondary battery including the above is provided.
  • a plurality of unit cells including a positive electrode layer composed of a lithium composite oxide sintered body, a ceramic separator, and a negative electrode layer composed of a titanium-containing oxide sintered body in order.
  • the current collector layers arranged on both sides of the unit cell and At least an electrolyte having a melting point of 600 ° C. or less impregnated in the ceramic separator and
  • the plurality of unit cells are laminated in series or in parallel via the current collector layer to form a cell laminate, and the portion of the cell laminate other than the electrolyte is integrally fired as a whole.
  • a lithium ion secondary battery is provided in which the positive electrode layer, the ceramic separator, the negative electrode layer, and the current collector layer are bonded to each other.
  • the present invention relates to a method for manufacturing a laminated battery type lithium-ion secondary battery including a plurality of unit cells.
  • FIG. 1 conceptually shows the layer structure of the unit cell 12
  • FIG. 2 conceptually shows an example of the layer structure of the lithium ion secondary battery 10 manufactured by the method of the present invention.
  • the lithium ion secondary battery 10 includes a plurality of unit cells 12, current collector layers 20 arranged on both sides of the unit cells 12, and an electrolyte (not shown).
  • the unit cell 12 includes, in order, a positive electrode layer 14 made of a lithium composite oxide sintered body, a ceramic separator 16, and a negative electrode layer 18 made of a titanium-containing oxide sintered body.
  • the current collector layer 20 is arranged on both sides of the unit cell 12.
  • the electrolyte is a low melting point electrolyte having a melting point of 600 ° C. or lower, and is impregnated at least in the ceramic separator 16 and typically also in the positive electrode layer 14 and / or the negative electrode layer 18. Therefore, the electrolyte is not shown in FIGS. 1 and 2 because it cannot be visualized by itself.
  • a plurality of unit cells 12 are laminated in parallel or in series via the current collector layer 20 to form a cell laminate. That is, although FIG. 2 shows a form in which the unit cells 12 are stacked in parallel, even in a form in which the unit cells 12 are stacked in series as in the lithium ion secondary battery 10'shown in FIG. good.
  • the parts of the cell laminate other than the electrolyte form one integral sintered body as a whole, whereby the positive electrode layer 14, the ceramic separator 16, the negative electrode layer 18, and the current collector layer 20 are mutually formed. It is combined. According to such an integrally sintered body type battery, both high discharge capacity and excellent charge / discharge cycle performance can be achieved.
  • the lithium ion secondary battery 10 includes (1) formation of the green sheet laminate 22 and (2) firing of the green sheet laminate 22. It can be produced through the formation of the integrally sintered body 24 according to the above and (3) impregnation of the molten electrolyte 26 into the integrally sintered body 24.
  • the green sheet laminate 22 is a unit laminate of a plurality of unit laminates 12'containing a positive electrode green sheet 14', a separator green sheet 16', and a negative electrode green sheet 18' in order.
  • the current collector layers 20 are arranged on both sides of the body 12'and laminated in series or in parallel.
  • the manufacturing process according to the conventional method of stacking a plurality of unit cells to form a laminated cell has the following problems. i) Since the number of manufacturing processes increases in proportion to the number of unit cells, the number of processes inevitably increases. ii) Since it is necessary to carefully handle the thin and fragile electrode plates one by one, the handleability is inferior, and the yield is lowered. iii) Since the thickness of the electrode plate tends to vary or warp, it is necessary to thicken the solid electrolyte layer in order to avoid a short circuit between positive and negative, and the energy density is reduced by that amount. These problems are conveniently solved according to the present invention.
  • the green sheet laminate 22 provided with the plurality of unit laminates 12 ′′ together with the current collector layer 20 is fired in advance and melted into the obtained integrally sintered body 24. Since a battery having a plurality of unit cells 12 can be formed only by impregnating the electrolyte 26, the number of steps can be significantly reduced. That is, it is not necessary to go through the complicated process by the conventional method as described above.
  • the positive electrode green sheet 14', the separator green sheet 16', the negative electrode green sheet 18', and the current collector layer 20 are integrally fired without firing the electrode plates one by one.
  • the positive electrode and the negative electrode can be laminated in the form of a green sheet and converted into the integrally sintered body 24, the thickness of the electrode plate that is likely to occur by firing the electrode layer for each sheet. The problem of unevenness and warpage can be effectively suppressed. Therefore, even if the solid electrolyte layer is formed thinly, a short circuit between the positive and negative electrodes can be sufficiently avoided, and as a result, the energy density can be improved.
  • Green Sheet Laminated Body a plurality of unit laminated bodies 12'provided with a positive electrode green sheet 14', a separator green sheet 16', and a negative electrode green sheet 18' in order are connected in series.
  • the green sheet laminate 22 is formed by laminating in parallel.
  • the green sheet laminate 22 is formed while the current collector layers 20 are arranged on both sides of the unit laminate 12'. For example, if the unit laminates 12'are stacked while interposing one current collector layer 20 between the unit laminates 12', and finally the current collector layers 20 are formed on both the upper and lower surfaces of the green sheet laminate 22. good.
  • the unit laminates 12'with the current collector layers 20 formed on both sides may be stacked.
  • the two current collector layers 20 are interposed between the unit laminates 12'.
  • the method for producing or forming the positive electrode green sheet 14', the negative electrode green sheet 18', the separator green sheet 16', and the current collector layer 20 is as follows.
  • the positive electrode green sheet 14' is a green sheet capable of forming a lithium composite oxide sintered body by firing.
  • the positive electrode green sheet 14' can be produced as follows. First, a raw material powder composed of a lithium composite oxide is prepared. Examples of the raw material powder include LiCoO 2 powder and Li (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 powder. The volume-based D50 particle size of the raw material powder is preferably 0.3 to 30 ⁇ m. The raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound (for example, lithium carbonate) other than the lithium composite oxide is excessively added to the slurry in an amount of about 0.5 to 30 mol% for the purpose of promoting grain growth or compensating for volatile matter during the firing step described later. May be good. It is preferable that the slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 4000 to 10000 cP. The obtained slurry is molded into a sheet to obtain a lithium composite oxide-containing green sheet. Sheet molding is preferably performed using a molding method capable of applying a shearing force to the plate-shaped particles in the raw material powder.
  • the average inclination angle of the primary particles can be set to more than 0 ° and 30 ° or less with respect to the sheet surface.
  • the doctor blade method is suitable as a molding method capable of applying a shearing force to the plate-shaped particles.
  • the thickness of the lithium composite oxide-containing green sheet may be appropriately set so as to be the desired thickness as described above after firing.
  • the negative electrode green sheet 18' is a green sheet capable of forming a titanium-containing oxide sintered body by firing.
  • the titanium-containing green sheet as the negative electrode green sheet 18' may be produced by any method.
  • the production of a green sheet containing lithium titanate Li 4 Ti 5 O 12 (hereinafter, LTO) can be carried out as follows. First, a raw material powder (LTO powder) composed of lithium titanate Li 4 Ti 5 O 12 is prepared. As the raw material powder, a commercially available LTO powder may be used, or may be newly synthesized.
  • a powder obtained by hydrolyzing a mixture of titanium tetraisopropoxyalcohol and isopropoxylithium may be used, or a mixture containing lithium carbonate, titania and the like may be calcined.
  • the volume-based D50 particle size of the raw material powder is preferably 0.05 to 5.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m.
  • pulverization treatment for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.
  • pulverization treatment for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound other than LiMO 2 for example, lithium carbonate
  • the slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 4000 to 10000 cP.
  • the obtained slurry is formed into a sheet to obtain an LTO-containing green sheet.
  • Sheet molding can be performed by various well-known methods, but it is preferably performed by the doctor blade method.
  • the thickness of the LTO-containing green sheet may be appropriately set so as to be the desired thickness as described above after firing.
  • Separator Green Sheet 16' is a green sheet capable of forming a ceramic separator by firing.
  • the separator green sheet 16' can be produced as follows. First, a MgO, Al 2 O 3, ZrO 2, SiC, Si 3 N 4, AlN, MgAl 2 O 4, mullite, and at least one ceramic powder is selected from cordierite. Glass frit may be added to this ceramic powder.
  • the volume-based D50 particle size of the raw material powder is preferably 0.05 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m. When the particle size of the raw material powder is large, the pores tend to be large.
  • pulverization treatment for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • the slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 4000 to 10000 cP.
  • the obtained slurry is formed into a sheet to obtain a separator green sheet 16'.
  • Sheet molding can be performed by various well-known methods, but it is preferably performed by the doctor blade method.
  • the thickness of the separator green sheet 16' may be appropriately set so as to have a desired thickness as described above after firing.
  • the current collector layer 20 is not particularly limited as long as it is a layer containing a conductive material, but it is preferable that the current collector layer 20 forms a metal layer by firing.
  • the current collecting layer 20 may be formed by applying a metal paste (for example, Ag paste, Au paste, Pt paste or Pd paste) to one side of the positive electrode green sheet 14'and / or the negative electrode green sheet 18'.
  • the metal paste may be applied by any method, but it is preferable to apply the metal paste by printing because the current collector layer 20 having a thickness controlled with high accuracy can be formed with high productivity.
  • the pressing may be performed by a known method and is not particularly limited, but is preferably performed by a uniaxial press or a CIP (cold isotropic pressurization method).
  • a preferable press pressure is 10 to 5000 kgf / cm 2 , and more preferably 50 to 3000 kgf / cm 2 .
  • the sheets may be appropriately heated at the time of pressing to improve the crimping property between the sheets. It is preferable to punch the green sheet laminate thus crimped into a desired shape (for example, coin shape or chip shape) or size with a punching die.
  • the deviation between the positive electrode layer 14 and the negative electrode layer 18 can be eliminated.
  • the end face of the positive electrode layer 14 and the end face of the negative electrode layer 18 are aligned, so that the capacity of the battery can be maximized.
  • the green sheet laminated body 22 is calcined to obtain an integrally sintered body 24.
  • the green sheet laminate 22 is degreased and then fired.
  • Degreasing is preferably carried out by holding at 300 to 600 ° C. for 0.5 to 20 hours.
  • the firing is preferably carried out at 650 to 1000 ° C. for 0.01 to 20 hours, more preferably at 800 to 950 ° C. for 0.5 to 10 hours.
  • the rate of temperature rise during firing is preferably 50 to 1500 ° C./h, more preferably 200 to 1300 ° C./h.
  • an integrally sintered body 24 including a plurality of unit laminates 12 ′′ including the positive electrode layer 14, the ceramic separator 16 and the negative electrode layer 18 together with the current collector layer 20 is obtained. If the punching process is not performed at the stage of the green sheet laminated body 22 described above, a shift between the positive electrode layer 14 and the negative electrode layer 18 may occur in the integrally sintered body 24 in the final form. In this case, it is preferable to finish the end face of the integrally sintered body 24 by a method such as laser processing, cutting, or polishing to minimize or eliminate the deviation. As a result, the end face of the positive electrode layer 14 and the end face of the negative electrode layer 18 are aligned, so that the capacity of the battery can be maximized.
  • the integrally sintered body 24 is impregnated with the molten electrolyte 26 to obtain a lithium ion secondary battery 10. It is preferable that the integrally sintered body 24 is impregnated with the electrolyte 26 by putting the integrally sintered body 24 in the container 28 in advance and impregnating the molten electrolyte 26 therein.
  • the integrally sintered body 24 may be impregnated with the electrolyte 26 by pouring the molten electrolyte 26 into the container 28, or the molded body of the solid electrolyte may be placed adjacent to the integrally sintered body 24 (for example, integrally baked).
  • the integrally sintered body 24 may be impregnated with the electrolyte 26 by arranging it above and / or below the body 24 and melting the solid electrolyte by raising the temperature. As shown in FIG. 4C, the integrally sintered body 24 is immersed in the electrolyte 26 with the positive electrode layer 14, the ceramic separator 16, the negative electrode layer 18, and the current collecting layer 20 arranged side by side. It is preferable because it is easy to dispose.
  • the upper surface of the integrally sintered body 24 (the ends of the positive electrode layer 14, the ceramic separator 16, the negative electrode layer 18, and the current collector layer 20 are exposed) was melted by a method such as masking. It is preferable that the electrolyte 26 is absent. However, the integrally sintered body 24 may be immersed in the electrolyte 26 with the positive electrode layer 14, the ceramic separator 16, the negative electrode layer 18, and the current collector layer 20 arranged vertically.
  • the electrolyte 26 is preferably a solid electrolyte obtained by heating it to a temperature equal to or higher than the melting point and melting it.
  • the melting point of this solid electrolyte is 600 ° C. or lower, preferably 250 to 550 ° C., more preferably 275 to 500 ° C., and even more preferably 300 to 450 ° C. Having such a melting point allows the solid electrolyte to be melted and filled in the pores of the ceramic separator 16 and, if desired, in the pores of the positive electrode layer 14 and / or the negative electrode layer 18.
  • the low melting point solid electrolyte described above is preferably a LiOH / Li 2 SO 4 system solid electrolyte. Details of the LiOH / Li 2 SO 4 system solid electrolyte will be described later.
  • the integrally sintered body 24 that is, the lithium ion secondary battery 10) impregnated with the electrolyte 26 is taken out from the container 28 and subjected to final processing such as arrangement of terminals and an external circuit 30. , The final form of the battery.
  • the container 28 may be used as it is as a battery container without removing the integrally sintered body 24 from the container 28.
  • the integrally sintered body 24 impregnated with the electrolyte 26 is allowed to cool or cooled, and the molten electrolyte 26 is solidified. After the electrolyte 26 is solidified, it is preferable to scrape off the solid electrolyte adhering to the end face of the battery to expose the current collector layer 20 to the surface.
  • the lithium ion secondary battery 10 manufactured by the method of the present invention has a plurality of unit cells 12 and a current collecting layer 20 arranged on both sides of the unit cells 12. And an electrolyte 26 (shown only in FIG. 4; not shown in FIGS. 1-3).
  • the unit cell 12 includes, in order, a positive electrode layer 14 made of a lithium composite oxide sintered body, a ceramic separator 16, and a negative electrode layer 18 made of a titanium-containing oxide sintered body.
  • the current collector layer 20 is arranged on both sides of the unit cell 12.
  • the electrolyte is a low melting point electrolyte having a melting point of 600 ° C.
  • a plurality of unit cells 12 are laminated in parallel or in series via the current collector layer 20 to form a cell laminate.
  • the parts of the cell laminate other than the electrolyte form one integral sintered body as a whole, whereby the positive electrode layer 14, the ceramic separator 16, the negative electrode layer 18, and the current collector layer 20 are bonded to each other.
  • the positive electrode layer 14 is composed of a lithium composite oxide sintered body.
  • the fact that the positive electrode layer 14 is made of a sintered body means that the positive electrode layer 14 does not contain a binder or a conductive auxiliary agent. This is because even if the green sheet contains a binder, the binder disappears or burns out during degreasing and firing. Since the positive electrode layer 14 does not contain a binder, a high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the positive electrode active material.
  • the lithium composite oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one transition metal, and M is typically one or more of Co, Ni and Mn. Is an oxide represented by).
  • Lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately laminated with an oxygen layer sandwiched between them, that is, a transition metal ion layer and a lithium single layer are alternately laminated via oxide ions.
  • lithium composite oxides are Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NimnO 2 (lithium nickel manganate).
  • Li x NiCoO 2 lithium nickel cobaltate
  • Li x CoNiMnO 2 cobalt, nickel, lithium manganate
  • Li x ComnO 2 lithium cobalt manganate
  • cobalt, nickel, Lithium manganate eg Li (Ni 0.5 Co 0.2 Mn 0.3 ) O 2
  • Li x CoO 2 lithium cobaltate, typically LiCoO 2
  • Lithium composite oxides include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba. , Bi, and W may contain one or more elements selected from. Further, LiMPO 4 having an olivine structure (M is at least one selected from Fe, Co, Mn and Ni in the formula) and the like can also be preferably used.
  • the positive electrode layer 14 preferably contains pores.
  • the "pores" in the positive electrode layer 14 mean an internal space that is confirmed when the positive electrode layer 14 is evaluated as a simple substance that does not contain other constituent components.
  • the inclusion of pores, especially open pores, in the sintered body allows the electrolyte 26 to penetrate into the sintered body when incorporated into the battery as a positive electrode plate, resulting in improved lithium ion conductivity. be able to.
  • the positive electrode layer 14, that is, the lithium composite oxide sintered body preferably has a porosity of 20 to 60%, more preferably 25 to 55%, still more preferably 30 to 50%, and particularly preferably 30 to 45%. be.
  • the stress release effect due to the pores and the increase in capacity can be expected, and the mutual adhesion between the primary particles 11 can be further improved, so that the rate characteristics can be further improved.
  • the porosity of the sintered body is calculated by polishing the cross section of the positive electrode layer by CP (cross section polisher) polishing, observing the SEM at a magnification of 1000, and binarizing the obtained SEM image.
  • the average pore diameter of the positive electrode layer 14, that is, the lithium composite oxide sintered body is preferably 0.1 to 15.0 ⁇ m, more preferably 0.2 to 10.0 ⁇ m, and further preferably 0.3 to 5. It is 0 ⁇ m. Within the above range, the occurrence of local stress concentration in large pores is suppressed, and the stress in the sintered body is easily released uniformly.
  • the thickness of the positive electrode layer 14 is preferably 60 to 450 ⁇ m, more preferably 70 to 350 ⁇ m, and even more preferably 90 to 300 ⁇ m. Within such a range, the active material capacity per unit area is increased to improve the energy density of the lithium ion secondary battery 10, and the battery characteristics are deteriorated (particularly, the resistance value is increased) due to repeated charging and discharging. Can be suppressed.
  • the negative electrode layer 18 is made of a titanium-containing sintered body.
  • the titanium-containing sintered body preferably contains lithium titanate Li 4 Ti 5 O 12 (hereinafter, LTO) or niobium-titanium composite oxide Nb 2 TiO 7 , and more preferably contains LTO.
  • LTO lithium titanate Li 4 Ti 5 O 12
  • Nb 2 TiO 7 niobium-titanium composite oxide
  • LTO is typically known to have a spinel-type structure
  • other structures may be adopted during charging / discharging.
  • LTO reacts in a two-phase coexistence of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charging and discharging. Therefore, LTO is not limited to the spinel structure.
  • the negative electrode layer 18 is made of a sintered body means that the negative electrode layer 18 does not contain a binder or a conductive auxiliary agent. This is because even if the green sheet contains a binder, the binder disappears or burns out during firing. Since the negative electrode layer does not contain a binder, a high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the negative electrode active material (for example, LTO or Nb 2 TiO 7).
  • the negative electrode active material for example, LTO or Nb 2 TiO 7
  • the thickness of the negative electrode layer 18 is preferably 70 to 500 ⁇ m, preferably 85 to 400 ⁇ m, and more preferably 95 to 350 ⁇ m.
  • the thickness of the negative electrode layer 18 can be obtained, for example, by measuring the distance between the layer surfaces observed substantially in parallel when the cross section of the negative electrode layer 18 is observed by an SEM (scanning electron microscope).
  • the negative electrode layer 18 preferably contains pores.
  • the "pore" in the negative electrode layer 18 means an internal space that is confirmed when the negative electrode layer 18 is evaluated as a simple substance that does not contain other constituent components.
  • the porosity of the negative electrode layer 18 is preferably 20 to 60%, more preferably 30 to 55%, and even more preferably 35 to 50%. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
  • the average pore diameter of the negative electrode layer 18 is preferably 0.1 to 15.0 ⁇ m, more preferably 0.2 to 10.0 ⁇ m, and even more preferably 0.3 to 5 ⁇ m. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
  • the ceramic separator 16 is a microporous ceramic film.
  • the ceramic separator 16 is not only excellent in heat resistance, but also has an advantage that it can be manufactured together with the positive electrode layer 14 and the negative electrode layer 18 as one integrally sintered plate as a whole.
  • the ceramic contained in the ceramic separator 16 is preferably at least one selected from MgO, Al 2 O 3 , ZrO 2 , SiC, Si 3 N 4 , AlN, MgAl 2 O 4, mulite, and cordierite. , More preferably at least one selected from MgO, Al 2 O 3 , and ZrO 2.
  • the thickness of the ceramic separator 16 is preferably 3 to 50 ⁇ m, more preferably 3 to 40 ⁇ m, still more preferably 5 to 35 ⁇ m, and particularly preferably 10 to 30 ⁇ m.
  • the porosity of the ceramic separator 16 is preferably 20 to 80%, preferably 30 to 80%, and more preferably 40 to 80%.
  • the average pore diameter of the ceramic separator 16 is preferably 0.1 to 15.0 ⁇ m, more preferably 0.2 to 10.0 ⁇ m, and even more preferably 0.3 to 5.0 ⁇ m.
  • the "pore" in the ceramic separator 16 means an internal space confirmed when the ceramic separator 16 is evaluated as a simple substance containing no other constituent components.
  • the ceramic separator 16 may contain a glass component from the viewpoint of improving the adhesiveness with the positive electrode layer 14 and the negative electrode layer 18.
  • the content ratio of the glass component in the ceramic separator 16 is preferably 0.1 to 50% by weight, more preferably 0.5 to 40% by weight, still more preferably 0.5, based on the total weight of the ceramic separator 16. ⁇ 30% by weight.
  • the addition of the glass component to the ceramic separator 16 is preferably performed by adding a glass frit to the raw material powder of the ceramic separator 16. However, if the desired adhesiveness between the ceramic separator 16 and the positive electrode layer 14 and the negative electrode layer 18 can be ensured, the inclusion of the glass component in the ceramic separator 16 is not particularly required.
  • Electrolyte The electrolyte 26 is not particularly limited as long as it is a low melting point solid electrolyte having a melting point of 600 ° C. or lower, preferably 250 to 550 ° C., more preferably 275 to 500 ° C., and further preferably 300 to 450 ° C. Has a melting point. Having such a melting point, the solid electrolyte can be filled in the pores of the ceramic separator 16 and, if desired, in the pores of the positive electrode layer 14 and / or the negative electrode layer 18 through pressurization, heating, or the like.
  • the low melting point solid electrolyte described above is a LiOH / Li 2 SO 4 system solid electrolyte.
  • LiOH ⁇ Li 2 SO 4 based solid electrolyte is a solid electrolyte which is identified as 3LiOH ⁇ Li 2 SO 4 by X-ray diffraction.
  • This preferred solid electrolyte contains 3LiOH ⁇ Li 2 SO 4 as the main phase.
  • Whether or not the solid electrolyte contains 3 LiOH / Li 2 SO 4 can be confirmed by identifying it using 032-0598 of the ICDD database in the X-ray diffraction pattern.
  • “3LiOH / Li 2 SO 4 " refers to a crystal structure that can be regarded as the same as that of 3LiOH / Li 2 SO 4, and the crystal composition does not necessarily have to be the same as that of 3LiOH / Li 2 SO 4.
  • the solid electrolyte of the present invention contains a dopant such as boron (for example, 3LiOH / Li 2 SO 4 in which boron is dissolved and the X-ray diffraction peak is shifted to the high angle side), the crystal structure is 3LiOH / Li 2 SO. As long as it can be regarded as the same as 4 , it is referred to herein as 3LiOH ⁇ Li 2 SO 4.
  • the solid electrolyte used in the present invention also allows the inclusion of unavoidable impurities.
  • the LiOH ⁇ Li 2 SO 4 based solid electrolyte which is the main phase other than 3LiOH ⁇ Li 2 SO 4, may be included heterophase.
  • the heterogeneous phase may contain a plurality of elements selected from Li, O, H, S and B, or may consist only of a plurality of elements selected from Li, O, H, S and B. It may be.
  • Examples of the heterogeneous phase include LiOH, Li 2 SO 4 and / or Li 3 BO 3 derived from the raw material. In forming the 3LiOH ⁇ Li 2 SO 4 for these heterogeneous phase, although the unreacted starting materials are thought to have remained, because it does not contribute to the lithium ion conductive, non-Li 3 BO 3 is better the amount is less desirable.
  • a heterogeneous phase containing boron such as Li 3 BO 3
  • the solid electrolyte may be composed of a single phase of 3LiOH / Li 2 SO 4 in which boron is dissolved.
  • the LiOH / Li 2 SO 4 system solid electrolyte (particularly 3 LiOH / Li 2 SO 4 ) preferably further contains boron.
  • 3LiOH ⁇ Li 2 SO 4 by causing further contains boron in solid electrolyte identified as can significantly suppress a decrease in lithium ion conductivity even after holding at a high temperature for a long time. Boron is incorporated into one of the sites of the crystal structure of 3LiOH ⁇ Li 2 SO 4, is presumed to improve the stability against the temperature of the crystal structure.
  • the molar ratio (B / S) of boron B to sulfur S contained in the solid electrolyte is preferably more than 0.002 and less than 1.0, more preferably 0.003 or more and 0.9 or less, still more preferably.
  • the B / S is within the above range, the maintenance rate of lithium ion conductivity can be improved. Further, if the B / S is within the above range, the content of the unreacted heterogeneous phase containing boron becomes low, so that the absolute value of the lithium ion conductivity can be increased.
  • the current collector layer 20 is not particularly limited as long as it is a layer containing a conductive material, but the current collector layer 20 is at least one selected from the group consisting of Ag, Pt, Pd, Au and stainless steel. It is preferable to include seeds.
  • the thickness of the current collector layer 20 is preferably 5 to 50 ⁇ m, more preferably 7 to 40 ⁇ m, and even more preferably 10 to 30 ⁇ m.
  • the lithium ion secondary battery 10 may further contain an ionic liquid.
  • An ionic liquid is a salt that exists as a liquid in a wide temperature range (for example, normal temperature), and is typically a salt having a melting point of 100 ° C. or lower. It is impregnated in the gaps between the porous sintered plate and the molten electrolyte.
  • Ionic liquids include ionic liquid cations, ionic liquid anions and electrolytes.
  • Examples of the ionic liquid cation include imidazolium-based, pyridinium-based, pyrrolidinium-based, piperidinium-based, ammonium-based, and phosphonium-based cations, and examples thereof include 1-ethyl-3-methylimidazolium cation (EMI), 1 -Methyl-1-propylpyrrolidinium cation (MPPy), N-methyl-N-propylpyrrolidinium cation (P13), N-methyl-N-propylpiperidinium cation (PP13), N-butyl-N- Methylpyrrolidinium cation (BMP), N, N-diethyl-N-methyl-N (2-methoxyethyl) ammonium cation (DEME), tetraamyl (pentyl) ammonium cation, tetraethylammonium cation, N-butyl-N methylpyrroli
  • ionic liquid anions include bis (trifluoromethylsulfonyl) imide anions (TFSI), bis (fluorosulfonyl) imide anions (FSI), fluorine-inorganic anions, and combinations thereof.
  • electrolytes include bis (trifluoromethylsulfonyl) imide lithium salt (LiTFSI), bis (fluorosulfonyl) imide lithium salt (LiFSI), lithium hexafluoride phosphate, lithium bisoxalate borate, and lithium tetrafluoroborate. Lithium and combinations thereof can be mentioned. Further, as the grime-based ionic liquid, a mixed solution of an oligoether-based solvent (G3, G4, etc.) and LiTFSI can also be used.
  • LiNi x Co y Mn z O 2 with (x + y + z 1 ) and "NCM”, a Li 4 Ti 5 O 12 shall be referred to as "LTO”.
  • Example 1 (1) Preparation of NCM Green Sheet (Positive Green Sheet) First, the (Ni 0.5 Co 0.2 Mn 0.3 ) OH powder weighed so that the molar ratio of Li / (Ni + Co + Mn) was 1.15. (CorMax) and Li 2 CO 3 powder (manufactured by Honjo Chemical Co., Ltd.) are mixed, held at 750 ° C. for 10 hours, and the obtained powder is crushed with a pot mill so that the volume standard D50 is 10 ⁇ m. A powder composed of NCM particles was obtained.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer 4 parts by weight (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodor SP-O30, manufactured by Kao Co., Ltd.) were mixed.
  • DOP Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.
  • a dispersant product name: Leodor SP-O30, manufactured by Kao Co., Ltd.
  • the resulting mixture was stirred under reduced pressure to defoam and the viscosity was adjusted to 4000 cP to prepare an LCO slurry.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an NCM green sheet.
  • the thickness of the NCM green sheet was set so that the thickness after firing was 100 ⁇ m.
  • the obtained negative electrode raw material mixture was stirred under reduced pressure to defoam, and the viscosity was adjusted to 4000 cP to prepare an LTO slurry.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet.
  • the thickness of the LTO green sheet was set so that the thickness after firing was 140 ⁇ m.
  • MgO Green Sheet (Separator Green Sheet) Magnesium carbonate powder (manufactured by Konoshima Chemical Co., Ltd.) was heat-treated at 900 ° C. for 5 hours to obtain MgO powder. The obtained MgO powder and glass frit (manufactured by Nippon Frit Co., Ltd., CK0199) were mixed at a weight ratio of 4: 1.
  • the obtained raw material mixture was stirred under reduced pressure to defoam, and the viscosity was adjusted to 4000 cP to prepare a slurry.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form a separator green sheet.
  • the thickness of the separator green sheet was set so that the thickness after firing was 25 ⁇ m.
  • NCM green sheet positive electrode green sheet
  • MgO green sheet separatator green sheet
  • LTO green sheet negative electrode green sheet
  • a unit is used, and a laminate obtained by stacking 4 units of the single units so that the same electrodes face each other (that is, in parallel stacking) is pressed at 200 kgf / cm 2 by CIP (cold isotropic pressure pressurization method). Then, the green sheets were crimped to each other.
  • the laminated body crimped in this way was punched into a 55 mm square plate shape with a punching die.
  • the obtained plate-shaped laminate was degreased at 450 ° C.
  • the obtained coagulated product was pulverized in an Ar atmosphere in a mortar to obtain a solid electrolyte powder having an average particle size D50 of 5 to 50 ⁇ m.
  • the obtained solid electrolyte powder was analyzed by an X-ray diffractometer (XRD, X-ray source: CuK ⁇ ray) to obtain an X-ray diffraction pattern.
  • Metallic Si powder was added as an internal standard to align the 2 ⁇ position.
  • the present invention is not limited to the above examples, and various modifications described below can be implemented.
  • the battery thus obtained can also be charged and discharged.
  • the battery can be produced in the same manner as in Example 1 except that Al 2 O 3 powder or ZrO 2 powder is used instead of MgO powder.
  • -A battery can be produced in the same manner as in Example 1 except that Pt paste or Pd paste is used instead of Ag paste in the formation of the current collector layer ((4) above).
  • -A battery can be manufactured in the same manner as in Example 1 except that the thickness, porosity, and / or pore diameter of the positive electrode and / or the negative electrode are changed.
  • -A battery can be produced in the same manner as in Example 1 except that a LiCoO 2 green sheet is produced instead of the NCM green sheet in the production of the positive electrode green sheet ((1) above).
  • a LiCoO 2 green sheet is produced instead of the NCM green sheet in the production of the positive electrode green sheet ((1) above).
  • the single units are stacked so that different poles face each other (that is, in series stacking) instead of facing the same poles to form a laminated body. Except for this, a battery can be manufactured in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

複数の単位セルを備えた積層電池タイプのリチウムイオン二次電池を、エネルギー密度の向上に適した手法でありながら、格段に少ない工程数かつ高い歩留まりで製造可能な方法が提供される。この方法は、焼成によりリチウム複合酸化物焼結体を形成可能な正極グリーンシート、焼成によりセラミックセパレータを形成可能なセパレータグリーンシート、及び焼成によりチタン含有酸化物焼結体を形成可能な負極グリーンシートを順に備える複数個の単位積層体を、単位積層体の両面に集電層を配設しながら直列又は並列に積層してグリーンシート積層体を形成する工程と、グリーンシート積層体を焼成して一体焼結体とする工程と、一体焼結体に融点600℃以下の溶融された電解質を含浸させてリチウムイオン二次電池とする工程とを含む。

Description

リチウムイオン二次電池及びその製造方法
 本発明は、リチウムイオン二次電池及びその製造方法に関するものである。
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させる媒体として、希釈溶媒に可燃性の有機溶媒を用いた電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。このような問題を解消すべく、本質的な安全性確保のために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体電池の開発が進められている。このような全固体電池は、電解質が固体であることから、発火の心配がなく、漏液せず、また、腐食による電池性能の劣化等の問題も生じ難い。
 全固体電池として様々なものが提案されている。例えば、特許文献1(特開2009-193940号公報)には、硫化物系固体電解質とコバルト酸リチウムの圧粉全固体電池において、コバルト酸リチウムの表面をニオブ酸リチウムで被覆することで界面抵抗の低減を図ることが開示されている。界面抵抗の低減は充放電特性の向上につながる。特許文献1に開示される電池は、圧粉体を用いた全固体電池であり、粒子間に気孔が残存したり、活物質同士の電子伝導を担保する導電助剤を添加した場合には電極のエネルギー密度が低下する。
 これに対して、圧粉体電極ではなく焼結体電極を用いた全固体電池も提案されている。そのような電池は焼結体電極が導電助剤を含まないため、エネルギー密度が高いとの利点がある。例えば、特許文献2(WO2019/093222A1)には、空隙率が10~50%のリチウム複合酸化物焼結体板である配向正極板と、Tiを含み、かつ、0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板と、配向正極板又は負極板の融点若しくは分解温度よりも低い融点を有する固体電解質とを備えた、全固体リチウム電池が開示されている。この文献には、そのような低い融点を有する固体電解質として、LiOCl、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)(例えば3LiOH・LiSO)等の様々な材料が開示されている。このような固体電解質は融液として電極板の空隙に浸透させることができ、強固な界面接触を実現できる。その結果、電池抵抗及び充放電時のレート性能の顕著な改善、並びに電池製造の歩留まりも大幅な改善を実現できるとされている。
 正極層、セパレータ及び負極層が全体として1つの一体焼結体板を成す構成を採用することで、高い放電容量と優れた充放電サイクル性能の両立を図ったリチウムイオン二次電池も提案されている。例えば、特許文献3(WO2019/221140A1)には、リチウム複合酸化物(例えばコバルト酸リチウム)の焼結体で構成される正極層と、チタン含有焼結体(例えばチタン酸リチウム)で構成される負極層と、セラミックセパレータと、セラミックセパレータに含浸される電解質とを備えた、リチウムイオン二次電池が開示されている。この電池は、正極層、セラミックセパレータ及び負極層が全体として1つの一体焼結体板を成しており、それにより正極層、セラミックセパレータ及び負極層が互いに結合している。
 高電圧や大電流を得るために、複数の単位セルを組み合わせて作られた積層電池が広く採用されている。例えば、特許文献4(特開2014-116156号公報)には、リチウム電池の単位セルと、当該単位セルと交互に積層される内部電極層とを含むバイポーラ型の積層電池を複数個有する全固体電池が開示されており、これら複数の積層電池が、正極集電箔及び負極集電箔を介して積み重ねられ、かつ、並列に電気接続されることが記載されている。
特開2009-193940号公報 WO2019/093222A1 WO2019/221140A1 特開2014-116156号公報
 高電圧や大電流の実現及びレート特性向上の観点から、特許文献2に開示されるような焼結体電極を用いた全固体電池を用いて積層電池を作製できれば好都合である。この場合、従来法に従った場合、次のような手順を経ることが考えられる。まず、正極焼結板にAuスパッタ膜等を集電層として形成して正極部材とする一方、負極焼結板にAuスパッタ膜等を集電層として形成して負極部材とする。次に、正極部材、低融点固体電解質(例えば3LiOH・LiSO)、及び負極部材を、集電層/正極板/固体電解質/負極板/集電層の順に並ぶように積み重ねる。得られた積層体を加熱して低融点固体電解質を溶融させて正極板及び負極板に電解質を含浸させ、電池構成要素が一体化された単位セルとする。この単位セルを複数個作製する。複数個の単位セルを積み重ねることで積層セルとする。しかしながら、かかる製造プロセスは、次のような問題がある。i)単位セルの個数に比例して製造工程が増えるため、工程数が必然的に多くなる。ii)薄く割れやすい電極板を1枚ずつ慎重に取り扱う必要がある点でハンドリング性に劣るため、歩留まりが低下する。iii)電極板の厚さにバラツキや反りが生じやすいため、正負間の短絡を回避すべく固体電解質層を厚くする必要があり、エネルギー密度がその分低下する。したがって、これらの諸問題を伴わない、より効率的な積層電池の製造方法が望まれる。
 本発明者らは、今般、正極層、セラミックセパレータ、及び負極層を備える複数個の単位積層体を集電層とともに含む一体焼結体に、融点600℃以下の溶融された電解質を含浸させることにより、上述の諸問題を伴うことなく、より効率的に積層電池を製造できるとの知見を得た。すなわち、複数の単位セルを備えた積層電池タイプのリチウムイオン二次電池を、エネルギー密度の向上に適した手法でありながら、格段に少ない工程数かつ高い歩留まりで製造できるとの知見を得た。
 したがって、本発明の目的は、複数の単位セルを備えた積層電池タイプのリチウムイオン二次電池を、エネルギー密度の向上に適した手法でありながら、格段に少ない工程数かつ高い歩留まりで製造することにある。
 本発明の一態様によれば、
 焼成によりリチウム複合酸化物焼結体を形成可能な正極グリーンシート、焼成によりセラミックセパレータを形成可能なセパレータグリーンシート、及び焼成によりチタン含有酸化物焼結体を形成可能な負極グリーンシートを順に備える複数個の単位積層体を、前記単位積層体の両面に集電層を配設しながら直列又は並列に積層してグリーンシート積層体を形成する工程と、
 前記グリーンシート積層体を焼成して一体焼結体とする工程と、
 前記一体焼結体に融点600℃以下の溶融された電解質を含浸させてリチウムイオン二次電池とする工程と、
を含む、リチウムイオン二次電池の製造方法が提供される。
 本発明の他の一態様によれば、
 リチウム複合酸化物焼結体で構成される正極層、セラミックセパレータ、及びチタン含有酸化物焼結体で構成される負極層を順に備える、複数個の単位セルと、
 前記単位セルの両面に配設される集電層と、
 少なくとも前記セラミックセパレータに含浸された融点600℃以下の電解質と、
を備え、前記複数個の単位セルが前記集電層を介して直列又は並列に積層されてセル積層体を成しており、該セル積層体の前記電解質以外の部分が全体として1つの一体焼結体を成しており、それにより前記正極層、前記セラミックセパレータ、前記負極層、及び前記集電層が互いに結合している、リチウムイオン二次電池が提供される。
本発明のリチウムイオン二次電池を構成する単位セルの層構成を概念的に示す模式断面図である。 本発明のリチウムイオン二次電池の層構成の一例(単位セルが並列に積層された電池)を概念的に示す模式断面図である。 本発明のリチウムイオン二次電池の層構成の他の一例(単位セルが直列に積層された電池)を概念的に示す模式断面図である。 本発明のリチウムイオン二次電池の製造方法における、グリーンシート積層体の形成工程で得られるグリーンシート積層体の層構成を模式的に示す分解斜視図である。 本発明のリチウムイオン二次電池の製造方法における、グリーンシート積層体の焼成工程で得られる一体焼結体の層構成を示す模式断面図である。 本発明のリチウムイオン二次電池の製造方法における、一体焼結体への溶融された電解質の含浸工程を示す模式断面図である。
 リチウムイオン二次電池及びその製造方法
 本発明は、複数個の単位セルを備えた積層電池タイプのリチウムイオン二次電池の製造方法に関する。図1に単位セル12の層構成を概念的に示す一方、図2に本発明の方法で製造されるリチウムイオン二次電池10の層構成の一例を概念的に示す。リチウムイオン二次電池10は、複数個の単位セル12と、単位セル12の両面に配設される集電層20と、電解質(図示せず)とを備える。単位セル12は、リチウム複合酸化物焼結体で構成される正極層14、セラミックセパレータ16、及びチタン含有酸化物焼結体で構成される負極層18を順に備える。集電層20は、単位セル12の両面に配設される。電解質は、融点600℃以下の低融点電解質であり、少なくともセラミックセパレータ16に含浸され、典型的には、正極層14及び/又は負極層18にも含浸される。したがって、電解質は図1及び2においてそれ単独で描出できないため、図示していない。そして、複数個の単位セル12が集電層20を介して並列又は直列に積層されてセル積層体を成している。すなわち、図2は単位セル12が並列に積層された形態を示しているが、図3に示されるリチウムイオン二次電池10’のように単位セル12が直列に積層された形態であってもよい。いずれにしても、セル積層体の電解質以外の部分は全体として1つの一体焼結体を成しており、それにより、正極層14、セラミックセパレータ16、負極層18、及び集電層20は互いに結合している。かかる一体焼結体タイプの電池によれば、高い放電容量と優れた充放電サイクル性能の両立を図ることができる。
 そして、本発明の製造方法によれば、図4A~4Cに示されるように、リチウムイオン二次電池10は、(1)グリーンシート積層体22の形成、(2)グリーンシート積層体22の焼成による一体焼結体24の形成、及び(3)一体焼結体24への溶融された電解質26の含浸を経て製造することができる。特に、グリーンシート積層体22は、図4Aに示されるように、正極グリーンシート14’、セパレータグリーンシート16’、及び負極グリーンシート18’を順に備える複数個の単位積層体12’を、単位積層体12’の両面に集電層20を配設しながら直列又は並列に積層したものである。このグリーンシート積層体22を焼成して得られた一体焼結体24(正極層14、セラミックセパレータ16、及び負極層18を備える複数個の単位積層体12’’を集電層20とともに含む)に、融点600℃以下の溶融された電解質26を含浸させる。こうすることで、複数の単位セル12を備えた積層電池タイプのリチウムイオン二次電池10を、エネルギー密度の向上に適した手法でありながら、格段に少ない工程数かつ高い歩留まりで製造することができる。
 前述したように、複数個の単位セルを積み重ねることで積層セルとする従来法に従った製造プロセスは、次のような問題がある。i)単位セルの個数に比例して製造工程が増えるため、工程数が必然的に多くなる。ii)薄く割れやすい電極板を1枚ずつ慎重に取り扱う必要がある点でハンドリング性に劣るため、歩留まりが低下する。iii)電極板の厚さにバラツキや反りが生じやすいため、正負間の短絡を回避すべく固体電解質層を厚くする必要があり、エネルギー密度がその分低下する。これらの問題が、本発明によれば好都合に解消される。つまり、上記i)の問題については、予め複数個の単位積層体12’’を集電層20とともに備えたグリーンシート積層体22を焼成し、かつ、得られた一体焼結体24に溶融された電解質26を含浸させるだけで、複数の単位セル12を備えた電池を形成できるため、工程数の大幅な削減が可能となる。すなわち、前述したような従来法による煩雑な工程を経る必要が無い。上記ii)の問題については、電極板を1枚ずつ焼成せずに、正極グリーンシート14’、セパレータグリーンシート16’、負極グリーンシート18’、及び集電層20をまとめて一体焼成する。このため、一体焼結体24の形態でハンドリング可能となるため、薄く割れやすい電極板を1枚ずつ慎重に取り扱う必要が無くなる。こうして格段にハンドリング性が向上する結果、割れ等のダメージが低減することで、歩留まりが向上する。上記iii)の問題については、正極や負極をグリーンシートの形態で積層していって一体焼結体24に転化することができるため、1枚ごとの電極層の焼成によって生じやすい電極板の厚さのバラツキや反りの問題を効果的に抑制できる。このため、固体電解質層を薄く形成しても正負極間の短絡を十分に回避することができ、結果としてエネルギー密度の向上が図れる。
 以下、本発明の製造方法の各工程について説明する。
(1)グリーンシート積層体の形成
 まず、図4Aに示されるように、正極グリーンシート14’、セパレータグリーンシート16’、及び負極グリーンシート18’を順に備える複数個の単位積層体12’を直列又は並列に積層してグリーンシート積層体22を形成する。このとき、単位積層体12’の両面に集電層20を配設しながらグリーンシート積層体22を形成する。例えば、単位積層体12’同士の間に1つの集電層20を介在させながら単位積層体12’を積み重ねていき、最後にグリーンシート積層体22の上下両面に集電層20を形成すればよい。あるいは、単位積層体12’の両面に集電層20を形成したものを積み重ねていってもよく、この場合は単位積層体12’同士の間には2つの集電層20が介在することになる。正極グリーンシート14’、負極グリーンシート18’、セパレータグリーンシート16’、及び集電層20の作製ないし形成方法は以下のとおりである。
(1a)正極グリーンシートの作製
 正極グリーンシート14’は、焼成によりリチウム複合酸化物焼結体を形成可能なグリーンシートである。正極グリーンシート14’の作製は以下のように行うことができる。まず、リチウム複合酸化物で構成される原料粉末を用意する。原料粉末の例としてはLiCoO粉末やLi(Ni0.5Co0.2Mn0.3)O粉末が挙げられる。原料粉末の体積基準D50粒径は0.3~30μmが好ましい。原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、当該リチウム複合酸化物以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してリチウム複合酸化物含有グリーンシートを得る。シート成形は、原料粉末中の板状粒子にせん断力を印加可能な成形手法を用いて行われるのが好ましい。こうすることで、一次粒子の平均傾斜角をシート面に対して0°超30°以下にすることができる。板状粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。リチウム複合酸化物含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(1b)負極グリーンシートの作製
 負極グリーンシート18’は、焼成によりチタン含有酸化物焼結体を形成可能なグリーンシートである。負極グリーンシート18’としてのチタン含有グリーンシートはいかなる方法で製造されたものであってもよい。例えば、チタン酸リチウムLiTi12(以下、LTO)を含むグリーンシートの作製は以下のように行うことができる。まず、チタン酸リチウムLiTi12で構成される原料粉末(LTO粉末)を用意する。原料粉末は市販のLTO粉末を使用してもよいし、新たに合成してもよい。例えば、チタンテトライソプロポキシアルコールとイソプロポキシリチウムの混合物を加水分解して得た粉末を用いてもよいし、炭酸リチウム、チタニア等を含む混合物を焼成してもよい。原料粉末の体積基準D50粒径は0.05~5.0μmが好ましく、より好ましくは0.1~2.0μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してLTO含有グリーンシートを得る。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。LTO含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(1c)セパレータグリーンシートの作製
 セパレータグリーンシート16’は、焼成によりセラミックセパレータを形成可能なグリーンシートである。セパレータグリーンシート16’の作製は以下のように行うことができる。まず、MgO、Al、ZrO、SiC、Si、AlN、MgAl、ムライト、及びコーディエライトから選択される少なくとも1種のセラミック粉末を用意する。このセラミック粉末にはガラスフリットを添加させてもよい。原料粉末の体積基準D50粒径は0.05~20μmが好ましく、より好ましくは0.1~10μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してセパレータグリーンシート16’を得る。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。セパレータグリーンシート16’の厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(1d)集電層の形成
 集電層20は、導電性材料を含む層であれば特に限定されないが、焼成により金属層を形成するものが好ましい。集電層20の形成は、正極グリーンシート14’及び/又は負極グリーンシート18’の片面に、金属ペースト(例えばAgペースト、Auペースト、Ptペースト又はPdペースト)を塗布することにより行えばよい。金属ペーストの塗布はいかなる方法により行ってもよいが、印刷により行うのが高精度に制御された厚さの集電層20を高い生産性で形成できる点で好ましい。
(1e)その他
 グリーンシート積層体22をプレスしてグリーンシート同士を圧着するのが好ましい。プレスは公知の手法により行えばよく特に限定されないが、一軸プレスやCIP(冷間等方圧加圧法)により行われるのが好ましい。好ましいプレス圧は10~5000kgf/cmであり、より好ましくは50~3000kgf/cmである。プレス時に適宜加温してシート同士の圧着性を高めてもよい。こうして圧着されたグリーンシート積層体を打ち抜き型で所望の形状(例えばコイン形やチップ形)ないしサイズに打ち抜くのが好ましい。こうすることで、最終形態の一体焼結体板においては正極層14及び負極層18間のずれを無くすことができる。その結果、正極層14の端面と負極層18の端面が揃うので、電池の容量を最大化できる。
(2)グリーンシート積層体の焼成
 次に、図4Bに示されるように、グリーンシート積層体22を焼成して一体焼結体24とする。好ましくは、グリーンシート積層体22を脱脂した後、焼成するのが好ましい。脱脂は300~600℃で0.5~20時間保持することにより行われるのが好ましい。また、焼成は650~1000℃で0.01~20時間行うのが好ましく、より好ましくは800~950℃で0.5~10時間である。焼成時の昇温速度は50~1500℃/hが好ましく、より好ましくは200~1300℃/hである。こうして、正極層14、セラミックセパレータ16及び負極層18を含む複数の単位積層体12’’を集電層20とともに含む一体焼結体24が得られる。なお、前述したグリーンシート積層体22の段階で打ち抜き処理を施していない場合、最終形態の一体焼結体24においては正極層14及び負極層18間のずれが発生しうる。この場合は、一体焼結体24の端面を、レーザ加工、切削、研磨等の手法により仕上げ加工して、上記ずれを最小化又は無くすのが好ましい。その結果、正極層14の端面と負極層18の端面が揃うので、電池の容量を最大化できる。
(3)一体焼結体への溶融された電解質の含浸
 その後、図4Cに示されるように、一体焼結体24に溶融された電解質26を含浸させてリチウムイオン二次電池10とする。一体焼結体24への電解質26の含浸は、容器28内に予め一体焼結体24を入れておき、そこに溶融した電解質26を含浸させることにより行うのが好ましい。この場合、溶融された電解質26を容器28に流し込むことにより一体焼結体24に電解質26を含浸させてもよいし、固体電解質の成形体を一体焼結体24と隣接する位置(例えば一体焼結体24上及び/又は下)に配置しておき、昇温して固体電解質を溶融させることにより電解質26を一体焼結体24に含浸させてもよい。一体焼結体24は、正極層14、セラミックセパレータ16、負極層18及び集電層20が横に並ぶ向きで電解質26に浸漬させるのが、図4Cに示されるように端子や外部回路30を配設しやすい点で好ましい。この場合、一体焼結体24の上面(正極層14、セラミックセパレータ16、負極層18及び集電層20の端部が露出している)には、マスキングを施す等の手法により、溶融された電解質26が存在しないようにするのが好ましい。もっとも、一体焼結体24は、正極層14、セラミックセパレータ16、負極層18及び集電層20が縦に並ぶ向きで電解質26に浸漬させてもよい。
 電解質26は、固体電解質を融点以上の温度に加熱して溶融させたものであるのが好ましい。この固体電解質の融点は、600℃以下であり、好ましくは250~550℃、より好ましくは275~500℃、さらに好ましくは300~450℃の融点を有する。かかる融点を有することで固体電解質を溶融させて、セラミックセパレータ16の孔内、並びに所望により正極層14及び/又は負極層18の孔内に充填させることができる。上述した低融点固体電解質は、LiOH・LiSO系固体電解質であるのが好ましい。LiOH・LiSO系固体電解質の詳細については後述するものとする。
(4)任意工程
 好ましくは、電解質26で含浸された一体焼結体24(すなわちリチウムイオン二次電池10)を容器28から取り出して端子や外部回路30の配設等の最終加工を施すことにより、最終形態の電池とする。あるいは、一体焼結体24を容器28から取り出さずに容器28をそのまま電池容器として利用してもよい。いずれにしても、電解質26で含浸された一体焼結体24は放冷又は冷却され、溶融されていた電解質26は凝固される。電解質26の凝固後、電池の端面に付着している固体電解質を削り取り、集電層20を表面に露出させるのが好ましい。
(5)リチウムイオン二次電池
 前述したとおり、本発明の方法により製造されるリチウムイオン二次電池10は、複数個の単位セル12と、単位セル12の両面に配設される集電層20と、電解質26(図4にのみ示される;図1~3には図示せず)とを備える。単位セル12は、リチウム複合酸化物焼結体で構成される正極層14、セラミックセパレータ16、及びチタン含有酸化物焼結体で構成される負極層18を順に備える。集電層20は、単位セル12の両面に配設される。電解質は、融点600℃以下の低融点電解質であり、少なくともセラミックセパレータ16に含浸され、典型的には、正極層14及び/又は負極層18にも含浸される。そして、複数個の単位セル12が集電層20を介して並列又は直列に積層されてセル積層体を成している。セル積層体の電解質以外の部分は全体として1つの一体焼結体を成しており、それにより、正極層14、セラミックセパレータ16、負極層18、及び集電層20は互いに結合している。
(5a)正極層
 正極層14は、リチウム複合酸化物焼結体で構成される。正極層14が焼結体で構成されるということは、正極層14がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、脱脂及び焼成時にバインダーが消失又は焼失するからである。正極層14にはバインダーが含まれないため、正極活物質の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。
 リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni及びMnの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはコバルト・ニッケル・マンガン酸リチウム(例えばLi(Ni0.5Co0.2Mn0.3)O)又はLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。
 リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。また、オリビン構造を持つLiMPO(式中、MはFe、Co、MnおよびNiから選択される少なくとも1種である)等も好適に用いることができる。
 正極層14は気孔を含んでいるのが好ましい。ここで、正極層14における「気孔」とは、正極層14を他の構成成分を含まない単体として評価した場合に確認される内部空間を意味するものとする。焼結体が気孔、特に開気孔を含むことで、正極板として電池に組み込まれた場合に、電解質26を焼結体の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。
 正極層14、すなわちリチウム複合酸化物焼結体は気孔率が20~60%であるのが好ましく、より好ましくは25~55%、さらに好ましくは30~50%、特に好ましくは30~45%である。気孔による応力開放効果、及び高容量化が期待できるとともに、一次粒子11同士の相互密着性をより向上できるため、レート特性をより向上させることができる。焼結体の気孔率は、正極層の断面をCP(クロスセクションポリッシャ)研磨にて研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出される。
 正極層14、すなわちリチウム複合酸化物焼結体の平均気孔径は0.1~15.0μmであるのが好ましく、より好ましくは0.2~10.0μm、さらに好ましくは0.3~5.0μmである。上記範囲内であると、大きな気孔の局所における応力集中の発生を抑制して、焼結体内における応力が均一に開放されやすくなる。
 正極層14の厚さは60~450μmであるのが好ましく、より好ましくは70~350μm、さらに好ましくは90~300μmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウムイオン二次電池10のエネルギー密度を向上するとともに、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制できる。
(5b)負極層
 負極層18は、チタン含有焼結体で構成される。チタン含有焼結体は、チタン酸リチウムLiTi12(以下、LTO)又はニオブチタン複合酸化物NbTiOを含むのが好ましく、より好ましくはLTOを含む。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。
 負極層18が焼結体で構成されるということは、負極層18がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。負極層にはバインダーが含まれないため、負極活物質(例えばLTO又はNbTiO)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。
 負極層18の厚さは、70~500μmが好ましく、好ましくは85~400μm、より好ましくは95~350μmである。負極層18が厚いほど、高容量及び高エネルギー密度の電池を実現しやすくなる。負極層18の厚さは、例えば、負極層18の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される層面間の距離を測定することで得られる。
 負極層18は気孔を含んでいるのが好ましい。ここで、負極層18における「気孔」とは、負極層18を他の構成成分を含まない単体として評価した場合に確認される内部空間を意味するものとする。焼結体が気孔、特に開気孔を含むことで、負極層として電池に組み込まれた場合に、電解質を焼結体の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。
 負極層18の気孔率は20~60%が好ましく、より好ましくは30~55%、さらに好ましくは35~50%である。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 負極層18の平均気孔径は0.1~15.0μmが好ましく、より好ましくは0.2~10.0μmであり、さらに好ましくは0.3~5μmである。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
(5c)セラミックセパレータ
 セラミックセパレータ16は、セラミック製の微多孔膜である。セラミックセパレータ16は、耐熱性に優れるのは勿論のこと、正極層14及び負極層18と一緒に全体として1つの一体焼結体板として製造できるとの利点がある。セラミックセパレータ16に含まれるセラミックはMgO、Al、ZrO、SiC、Si、AlN、MgAl、ムライト、及びコーディエライトから選択される少なくとも1種であるのが好ましく、より好ましくはMgO、Al、及びZrOから選択される少なくとも1種である。セラミックセパレータ16の厚さは3~50μmであるのが好ましく、より好ましくは3~40μm、さらに好ましくは5~35μm、特に好ましくは10~30μmである。セラミックセパレータ16の気孔率は20~80%が好ましく、30~80%が好ましく、より好ましくは40~80%である。セラミックセパレータ16の平均気孔径は0.1~15.0μmが好ましく、より好ましくは0.2~10.0μm、さらに好ましくは0.3~5.0μmである。ここで、セラミックセパレータ16における「気孔」とは、セラミックセパレータ16を他の構成成分を含まない単体として評価した場合に確認される内部空間を意味するものとする。
 セラミックセパレータ16は、正極層14及び負極層18との接着性向上の観点から、ガラス成分を含有してもよい。この場合、セラミックセパレータ16に占めるガラス成分の含有割合はセラミックセパレータ16の全体重量に対して0.1~50重量%が好ましく、より好ましくは0.5~40重量%、さらに好ましくは0.5~30重量%である。セラミックセパレータ16へのガラス成分の添加はセラミックセパレータ16の原料粉末にガラスフリットを添加することにより行われるのが好ましい。もっとも、セラミックセパレータ16と、正極層14及び負極層18との所望の接着性が確保できるのであれば、セラミックセパレータ16におけるガラス成分の含有は特に必要とされない。
(5d)電解質
 電解質26は、600℃以下の融点を有する低融点固体電解質であれば特に限定されず、好ましくは250~550℃、より好ましくは275~500℃、さらに好ましくは300~450℃の融点を有する。かかる融点を有することで固体電解質を加圧や加熱等を経て、セラミックセパレータ16の孔内、並びに所望により正極層14及び/又は負極層18の孔内に充填させることができる。
 上述した低融点固体電解質は、LiOH・LiSO系固体電解質である。LiOH・LiSO系固体電解質は、LiOH及びLiSOの複合化合物であり、典型的な組成は一般式:xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)であり、代表例として、3LiOH・LiSO(上記一般式中x=0.75、y=0.25の組成)が挙げられる。好ましくは、LiOH・LiSO系固体電解質は、X線回折により3LiOH・LiSOと同定される固体電解質である。この好ましい固体電解質は3LiOH・LiSOを主相として含むものである。固体電解質に3LiOH・LiSOが含まれているか否かは、X線回折パターンにおいて、ICDDデータベースの032-0598を用いて同定することで確認可能である。ここで「3LiOH・LiSO」とは、結晶構造が3LiOH・LiSOと同一とみなせるものを指し、結晶組成が3LiOH・LiSOと必ずしも同一である必要はない。すなわち、3LiOH・LiSOと同等の結晶構造を有するかぎり、組成がLiOH:LiSO=3:1から外れるものも本発明の固体電解質に包含されるものとする。したがって、ホウ素等のドーパントを含有する固体電解質(例えばホウ素が固溶し、X線回折ピークが高角度側にシフトした3LiOH・LiSO)であっても、結晶構造が3LiOH・LiSOと同一とみなせるかぎり、3LiOH・LiSOとして本明細書では言及するものとする。同様に、本発明に用いる固体電解質は不可避不純物の含有も許容するものである。
 したがって、LiOH・LiSO系固体電解質には、主相である3LiOH・LiSO以外に、異相が含まれていてもよい。異相は、Li、O、H、S及びBから選択される複数の元素を含むものであってもよいし、あるいはLi、O、H、S及びBから選択される複数の元素のみからなるものであってもよい。異相の例としては、原料に由来するLiOH、LiSO及び/又はLiBO等が挙げられる。これらの異相については3LiOH・LiSOを形成する際に、未反応の原料が残存したものと考えられるが、リチウムイオン伝導に寄与しないため、LiBO以外はその量は少ない方が望ましい。もっとも、LiBOのようにホウ素を含む異相については、高温長時間保持後のリチウムイオン伝導度維持度の向上に寄与しうることから、所望の量で含有されてもよい。もっとも、固体電解質はホウ素が固溶された3LiOH・LiSOの単相で構成されるものであってもよい。
 LiOH・LiSO系固体電解質(特に3LiOH・LiSO)はホウ素をさらに含むのが好ましい。3LiOH・LiSOと同定される固体電解質にホウ素をさらに含有させることで、高温で長時間保持した後においてもリチウムイオン伝導度の低下を有意に抑制することができる。ホウ素は3LiOH・LiSOの結晶構造のサイトのいずれかに取り込まれ、結晶構造の温度に対する安定性を向上させるものと推察される。固体電解質中に含まれる硫黄Sに対するホウ素Bのモル比(B/S)は、0.002超1.0未満であるのが好ましく、より好ましくは0.003以上0.9以下、さらに好ましくは0.005以上0.8以下である。上記範囲内のB/Sであるとリチウムイオン伝導度の維持率を向上することが可能である。また、上記範囲内のB/Sであるとホウ素を含む未反応の異相の含有量が低くなるため、リチウムイオン伝導度の絶対値を高くすることができる。
(5e)集電層
 集電層20は、導電性材料を含む層であれば特に限定されないが、集電層20がAg、Pt、Pd、Au及びステンレス鋼からなる群から選択される少なくとも1種を含むのが好ましい。集電層20の厚さは好ましくは5~50μmであり、より好ましくは7~40μm、さらに好ましくは10~30μmである。
(5f)イオン液体
 所望により、リチウムイオン二次電池10には、イオン液体をさらに含有させてもよい。イオン液体は、幅広い温度範囲(例えば常温)で液体として存在する塩であり、典型的には100℃以下の融点を有する塩である。多孔焼結板及び溶融電解質の隙間等に含浸される。イオン液体は、イオン液体カチオンとイオン液体アニオンと電解質を含む。イオン液体カチオンには、イミダゾリウム系、ピリジニウム系、ピロリジニウム系、ピペリジニウム系、アンモニウム系、ホスホニウム系等のカチオンが挙げられ、例としては、1-エチル-3-メチルイミダゾリウムカチオン(EMI)、1-メチル-1-プロピルピロリジニウムカチオン(MPPy)、N-メチル-N-プロピルピロリジニウムカチオン(P13)、N-メチル-N-プロピルピペリジニウムカチオン(PP13)、N-ブチル-N-メチルピロリジニウムカチオン(BMP)、N、N-ジエチル-N-メチル-N(2-メトキシエチル)アンモニウムカチオン(DEME)、テトラアミル(ペンチル)アンモニウムカチオン、テトラエチルアンモニウムカチオン、N-ブチル-Nメチルピロリジニウムカチオンであり、これらの誘導体、及びこれらの任意の組み合わせが挙げられる。イオン液体アニオンの例としては、ビス(トリフルオロメチルスルホニル)イミドアニオン(TFSI)、ビス(フルオロスルホニル)イミドアニオン(FSI)、フッ素無機アニオン、及びこれらの組み合わせが挙げられる。電解質の例としては、ビス(トリフルオロメチルスルホニル)イミドリチウム塩(LiTFSI)、ビス(フルオロスルホニル)イミドリチウム塩(LiFSI)、六フッ化リン酸リチウム、リチウムビスオキサレートボレート、四フッ化ホウ酸リチウム、及びこれらの組み合わせが挙げられる。また、グライム系イオン液体として、オリゴエーテル系溶媒(G3、G4等)とLiTFSIの混合溶液も用いることができる。
 本発明を以下の例によってさらに具体的に説明する。なお、以下の例において、LiNiCoMn(x+y+z=1)を「NCM」と、LiTi12を「LTO」と略称するものとする。
 例1
(1)NCMグリーンシート(正極グリーンシート)の作製
 まず、Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された(Ni0.5Co0.2Mn0.3)OH粉末(CorMax社製)とLiCO粉末(本荘ケミカル株式会社製)を混合後、750℃で10時間保持し、得られた粉末をポットミルにて体積基準D50が10μmとなるように粉砕してNCM粒子からなる粉末を得た。得られたNCM粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、NCMグリーンシートを形成した。NCMグリーンシートの厚さは、焼成後の厚さが100μmになるようにした。
(2)LTOグリーンシート(負極グリーンシート)の作製
 まず、Li/Tiのモル比が0.84となるように秤量されたTiO粉末(石原産業株式会社製)とLiCO粉末(本荘ケミカル株式会社製)を混合後、1000℃で2時間保持し、得られた粉末をポットミルにて体積基準D50が2μmとなるように粉砕してNCM粒子からなる粉末を得た。得られたLTO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。LTOグリーンシートの厚さは、焼成後の厚さが140μmになるようにした。
(3)MgOグリーンシート(セパレータグリーンシート)の作製
 炭酸マグネシウム粉末(神島化学工業株式会社製)を900℃で5時間熱処理してMgO粉末を得た。得られたMgO粉末とガラスフリット(日本フリット株式会社製、CK0199)を重量比4:1で混合した。得られた混合粉末(体積基準D50粒径0.4μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、スラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、セパレータグリーンシートを形成した。セパレータグリーンシートの厚さは、焼成後の厚さが25μmになるようにした。
(4)集電層の形成
 NCMグリーンシート(正極グリーンシート)及びLTOグリーンシート(負極グリーンシート)の片面に、印刷機にてAgペースト(ノリタケ株式会社製)を印刷した。印刷層の厚さは、焼成後10μmになるようにした。
(5)積層、圧着及び焼成
 NCMグリーンシート(正極グリーンシート)、MgOグリーンシート(セパレータグリーンシート)及びLTOグリーンシート(負極グリーンシート)を集電層が外になるように順に積み重ねたものを単ユニットとし、該単ユニットを同極が対向するように(すなわち並列積層となるように)4ユニット積み重ねて得られた積層体をCIP(冷間等方圧加圧法)により200kgf/cmでプレスしてグリーンシート同士を圧着した。こうして圧着された積層体を打ち抜き型で55mm角の板状に打ち抜いた。得られた板状積層体を450℃で6時間脱脂した後、200℃/hで920℃まで昇温して10時間保持する焼成を行い、その後冷却した。こうして、正極層(NCM焼結体層、気孔率30%)、セラミックセパレータ(MgOセパレータ、気孔率50%)及び負極層(LTO焼結体層、気孔率30%)の単ユニットが4つ繋がった1つの一体焼結板(50mm角)を得た。
(6)固体電解質合成
 LiSO粉末(SigmaAldrich製、純度99%以上)及びLiOH粉末(SigmaAldrich製、純度98%以上)をLiSO:LiOHが3:1のモル比となるように混合して原料混合粉末を得た。これらの粉末は、露点-50℃以下のAr雰囲気中のグローブボックス中で取り扱い、吸湿等の変質が起こらないように十分に注意した。Ar雰囲気中で原料混合粉末を高純度アルミナ製のるつぼに投入し、このるつぼを電気炉にセットし、430℃で2時間熱処理を行い溶融物を作製した。引き続き、電気炉内にて100℃/hで溶融物を冷却して凝固物を形成した。得られた凝固物をAr雰囲気中にて乳鉢で粉砕することによって、平均粒径D50が5~50μmの固体電解質粉末を得た。得られた固体電解質粉末をX線回折装置(XRD、X線源:CuKα線)で分析することによりX線回折パターンを得た。なお、金属Si粉を内部標準として添加して2θ位置を合わせた。得られたX線回折パターンとICDDデータベースの032-0598とを対比することによって、3LiOH・LiSO結晶相の同定を行い、3LiOH・LiSOが存在することを確認した。
(7)電池作製
 上記(6)で合成した固体電解質を電解質槽内に入れ430℃にて溶融させた。上記(5)で得られた一体焼結板を、電解質層内の溶融された電解質に含浸させた後、電解質槽から取り出して電池を得た。電池を放冷して電解質を凝固させた後、電池の端面に付着している固体電解質を削り取り、集電層が表面に露出するようにした。正極の集電層同士をアルミニウム箔で繋いで正極端子に接続した。負極の集電層同士をアルミニウム箔で繋いで負極端子に接続した。含浸された電解質をX線回折装置(XRD、X線源:CuKα線)で分析し、3LiOH・LiSOが存在することを確認した。
(8)評価
 得られた電池を用い充放電操作を実施したところ、充放電することを確認した。
 各種変形態様の例示
 本発明は上記実施例に限定されるものではなく、以下に述べる各種変形態様が実施可能である。こうして得られる電池も充放電可能なものである。
‐ セパレータグリーンシートの作製(上記(3))において、MgO粉末の代わりにAl粉末又はZrO粉末を用いること以外は例1と同様にして電池を作製することができる。
‐ 集電層の形成(上記(4))において、Agペーストの代わりに、Ptペースト又はPdペーストを用いたこと以外は、例1と同様にして電池を作製することができる。
‐ 正極及び/又は負極の厚さ、気孔率、及び/又は気孔径を変えたこと以外は、例1と同様にして電池を作製することができる。
‐ 正極グリーンシートの作製(上記(1))において、NCMグリーンシートの代わりにLiCoOグリーンシートを作製したこと以外は、例1と同様にして電池を作製することができる。
‐ 単ユニットの積層(上記(5))の際、単ユニットを、同極が対向するのではなく、異なる極が対向するように(すなわち直列積層となるように)積み重ねて積層体を形成すること以外は、例1と同様にして電池を作製することができる。

 

Claims (18)

  1.  焼成によりリチウム複合酸化物焼結体を形成可能な正極グリーンシート、焼成によりセラミックセパレータを形成可能なセパレータグリーンシート、及び焼成によりチタン含有酸化物焼結体を形成可能な負極グリーンシートを順に備える複数個の単位積層体を、前記単位積層体の両面に集電層を配設しながら直列又は並列に積層してグリーンシート積層体を形成する工程と、
     前記グリーンシート積層体を焼成して一体焼結体とする工程と、
     前記一体焼結体に融点600℃以下の溶融された電解質を含浸させてリチウムイオン二次電池とする工程と、
    を含む、リチウムイオン二次電池の製造方法。
  2.  リチウム複合酸化物焼結体で構成される正極層、セラミックセパレータ、及びチタン含有酸化物焼結体で構成される負極層を順に備える、複数個の単位セルと、
     前記単位セルの両面に配設される集電層と、
     少なくとも前記セラミックセパレータに含浸された融点600℃以下の電解質と、
    を備え、前記複数個の単位セルが前記集電層を介して直列又は並列に積層されてセル積層体を成しており、該セル積層体の前記電解質以外の部分が全体として1つの一体焼結体を成しており、それにより前記正極層、前記セラミックセパレータ、前記負極層、及び前記集電層が互いに結合している、リチウムイオン二次電池。
  3.  請求項1に記載の方法により製造された、請求項2に記載のリチウムイオン二次電池。
  4.  前記電解質がLiOH・LiSO系固体電解質を含む、請求項2又は3に記載のリチウムイオン二次電池。
  5.  前記リチウム複合酸化物が層状岩塩構造を含む、請求項2~4のいずれか一項に記載のリチウムイオン二次電池。
  6.  前記チタン含有焼結体がチタン酸リチウムを含む、請求項2~5のいずれか一項に記載のリチウムイオン二次電池。
  7.  前記セラミックセパレータが、MgO、Al、ZrO、SiC、Si、AlN、MgAl、ムライト、及びコーディエライトからなる群から選択される少なくとも1種を含む、請求項2~6のいずれか一項に記載のリチウムイオン二次電池。
  8.  前記集電層がAg、Pt、Pd、Au及びステンレス鋼からなる群から選択される少なくとも1種を含む、請求項2~7のいずれか一項に記載のリチウムイオン二次電池。
  9.  前記正極層の厚さが60~450μmである、請求項2~8のいずれか一項に記載のリチウムイオン二次電池。
  10.  前記正極層の気孔率が20~60%である、請求項2~9のいずれか一項に記載のリチウムイオン二次電池。
  11.  前記正極層の平均気孔径が0.1~15.0μmである、請求項2~10のいずれか一項に記載のリチウムイオン二次電池。
  12.  前記負極層の厚さが70~500μmである、請求項2~11のいずれか一項に記載のリチウムイオン二次電池。
  13.  前記負極層の気孔率が20~60%である、請求項2~12のいずれか一項に記載のリチウムイオン二次電池。
  14.  前記負極層の平均気孔径が0.1~15.0μmである、請求項2~13のいずれか一項に記載のリチウムイオン二次電池。
  15.  前記セラミックセパレータの厚さが3~50μmである、請求項2~14のいずれか一項に記載のリチウムイオン二次電池。
  16.  前記セラミックセパレータの気孔率が20~80%である、請求項2~15のいずれか一項に記載のリチウムイオン二次電池。
  17.  前記セラミックセパレータの平均気孔径が0.1~15.0μmである、請求項2~16のいずれか一項に記載のリチウムイオン二次電池。
  18.  前記集電層の厚さが5~50μmである、請求項2~17のいずれか一項に記載のリチウムイオン二次電池。

     
PCT/JP2020/017529 2020-04-23 2020-04-23 リチウムイオン二次電池及びその製造方法 WO2021214946A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022516584A JP7423760B2 (ja) 2020-04-23 2020-04-23 リチウムイオン二次電池及びその製造方法
PCT/JP2020/017529 WO2021214946A1 (ja) 2020-04-23 2020-04-23 リチウムイオン二次電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017529 WO2021214946A1 (ja) 2020-04-23 2020-04-23 リチウムイオン二次電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2021214946A1 true WO2021214946A1 (ja) 2021-10-28

Family

ID=78270691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017529 WO2021214946A1 (ja) 2020-04-23 2020-04-23 リチウムイオン二次電池及びその製造方法

Country Status (2)

Country Link
JP (1) JP7423760B2 (ja)
WO (1) WO2021214946A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773827B2 (ja) * 2011-09-30 2015-09-02 京セラ株式会社 二次電池
JP2018097982A (ja) * 2016-12-09 2018-06-21 Fdk株式会社 全固体電池の製造方法
JP6392576B2 (ja) * 2014-08-06 2018-09-19 日本特殊陶業株式会社 リチウム電池
JP2019192609A (ja) * 2018-04-27 2019-10-31 日本碍子株式会社 全固体リチウム電池及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773827B2 (ja) * 2011-09-30 2015-09-02 京セラ株式会社 二次電池
JP6392576B2 (ja) * 2014-08-06 2018-09-19 日本特殊陶業株式会社 リチウム電池
JP2018097982A (ja) * 2016-12-09 2018-06-21 Fdk株式会社 全固体電池の製造方法
JP2019192609A (ja) * 2018-04-27 2019-10-31 日本碍子株式会社 全固体リチウム電池及びその製造方法

Also Published As

Publication number Publication date
JPWO2021214946A1 (ja) 2021-10-28
JP7423760B2 (ja) 2024-01-29

Similar Documents

Publication Publication Date Title
JP7009390B2 (ja) リチウムイオン電池及びその製造方法
JP4797105B2 (ja) リチウムイオン二次電池、及び、その製造方法
CN111033859B (zh) 固体电解质及全固体电池
WO2018088522A1 (ja) 二次電池
JP2016119257A (ja) 固体電解質、それを用いた全固体電池及び固体電解質の製造方法
JPWO2013137224A1 (ja) 全固体電池およびその製造方法
JP6995135B2 (ja) 二次電池
WO2013100000A1 (ja) 全固体電池およびその製造方法
JPWO2019189311A1 (ja) 全固体電池
JP7189163B2 (ja) リチウム二次電池
WO2013100002A1 (ja) 全固体電池およびその製造方法
JP7126518B2 (ja) 全固体リチウム電池及びその製造方法
WO2014050569A1 (ja) リチウムイオン二次電池用正極及びそれを用いたリチウムイオン二次電池
WO2021214946A1 (ja) リチウムイオン二次電池及びその製造方法
JP2021190302A (ja) 固体電解質、全固体電池、固体電解質の製造方法、および全固体電池の製造方法
KR20220069620A (ko) 이차전지용 복합고체 전해질, 이를 포함하는 이차전지 및 그 제조방법
WO2021090782A1 (ja) 全固体二次電池
JPWO2019221143A1 (ja) リチウム二次電池
WO2021100283A1 (ja) リチウム二次電池及びその充電状態の測定方法
WO2022044409A1 (ja) リチウムイオン二次電池
WO2023042801A1 (ja) 回路基板アセンブリの製造方法
WO2020217749A1 (ja) リチウム二次電池
WO2021100659A1 (ja) 複合電極及びそれを用いた電池
WO2020129975A1 (ja) 活物質材料および全固体電池
WO2020090801A1 (ja) コイン形リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932529

Country of ref document: EP

Kind code of ref document: A1