WO2021205806A1 - 硬化性樹脂、硬化性樹脂組成物、及び、硬化物 - Google Patents

硬化性樹脂、硬化性樹脂組成物、及び、硬化物 Download PDF

Info

Publication number
WO2021205806A1
WO2021205806A1 PCT/JP2021/009703 JP2021009703W WO2021205806A1 WO 2021205806 A1 WO2021205806 A1 WO 2021205806A1 JP 2021009703 W JP2021009703 W JP 2021009703W WO 2021205806 A1 WO2021205806 A1 WO 2021205806A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
cured product
group
groups
integer
Prior art date
Application number
PCT/JP2021/009703
Other languages
English (en)
French (fr)
Inventor
立宸 楊
龍一 松岡
広義 神成
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020227032188A priority Critical patent/KR20220164699A/ko
Priority to JP2021529432A priority patent/JP6962507B1/ja
Priority to US17/917,232 priority patent/US20230159695A1/en
Priority to CN202180023844.6A priority patent/CN115348977B/zh
Publication of WO2021205806A1 publication Critical patent/WO2021205806A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • C08F22/1006Esters of polyhydric alcohols or polyhydric phenols, e.g. ethylene glycol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters

Definitions

  • the present invention relates to a curable resin having an indan skeleton, a curable resin composition containing the curable resin, and a cured product obtained from the curable resin composition.
  • vinyl group-containing curable resins having various chemical structures have been conventionally proposed.
  • a curable resin for example, a curable resin such as bisphenol divinylbenzyl ether or novolac polyvinylbenzyl ether has been proposed (see, for example, Patent Documents 1 and 2).
  • these vinylbenzyl ethers cannot give a cured product having sufficiently small dielectric properties, and the obtained cured product has a problem in stable use in a high frequency band, and further, bisphenol divinylbenzyl ether. Was not sufficiently high in heat resistance.
  • the conventional curable resin containing a vinyl group containing polyvinylbenzyl ether can withstand the low dielectric loss tangent required for electrical insulating material applications, especially for high frequency electrical insulating materials, and lead-free soldering. It did not give a cured product having both heat resistance.
  • Japanese Unexamined Patent Publication No. 63-68537 Japanese Unexamined Patent Publication No. 64-65110 Special Table 1-503238 Gazette Japanese Unexamined Patent Publication No. 9-31006 Japanese Unexamined Patent Publication No. 2005-314556
  • the problem to be solved by the present invention is to provide a cured product having excellent heat resistance and dielectric properties (low dielectric properties) by using a curable resin having an indane skeleton.
  • the present inventors have conducted a curable resin having an indan skeleton capable of contributing to heat resistance and low dielectric properties, and a curable resin containing the curable resin. We have found that the cured product obtained from the resin composition is excellent in heat resistance and low dielectric properties, and have completed the present invention.
  • the present invention relates to a curable resin having an indane skeleton represented by the following general formula (1).
  • X represents a (meth) acryloyl group.
  • Ra and Rb are independently alkyl groups, aryl groups, aralkyl groups, or cycloalkyl groups having 1 to 12 carbon atoms, respectively, and j.
  • k and l independently indicate an integer of 0 to 4.
  • n is an average number of repeating units, indicates a numerical value of 0.5 to 20, and m is an integer of 0 to 2.
  • the straight line from Ra, X and the carbon atom to the aromatic ring indicates that it may be bonded to any position on the aromatic ring.
  • the curable resin of the present invention is preferably a resin having an indane skeleton represented by the following general formula (2).
  • R 1 and R 2 are independently hydrogen atoms, alkyl groups having 1 to 12 carbon atoms, aryl groups, aralkyl groups, or cycloalkyl groups, respectively, and R 1 and R 2 and never both R 2 are hydrogen atoms at the same time, n is the average number of repeating units, indicating the numerical value of 0.5 to 20.
  • the curable resin composition of the present invention preferably contains the curable resin.
  • the cured product of the present invention is preferably obtained by subjecting the curable resin composition to a curing reaction.
  • the curable resin of the present invention can contribute to heat resistance and low dielectric properties
  • the cured product obtained from the curable resin composition containing the curable resin has heat resistance and dielectric properties (low dielectric properties). Excellent in characteristics) and useful.
  • the present invention relates to a curable resin having an indane skeleton represented by the following general formula (1).
  • X represents a (meth) acryloyl group.
  • Ra and Rb are independently alkyl groups, aryl groups, aralkyl groups, or cycloalkyl groups having 1 to 12 carbon atoms, respectively, and j.
  • k and l independently indicate an integer of 0 to 4.
  • n is an average number of repeating units, indicates a numerical value of 0.5 to 20, and m is an integer of 0 to 2.
  • the straight line from Ra, X and the carbon atom to the aromatic ring indicates that it may be bonded to any position on the aromatic ring.
  • the curable resin having the indan skeleton has a low-polarity indan skeleton, the proportion of polar functional groups in the structure of the curable resin is reduced, and the curable resin produced by using the curable resin is cured.
  • the material is preferable because it has excellent dielectric properties. Further, since the curable resin has an indane skeleton, it is excellent in flexibility and flexibility, and improvement in brittleness is expected, which is preferable.
  • X is a (meth) acryloyl group serving as a cross-linking group, that is, an acryloyl group or a methacryloyl group, and a methacryloyl group is particularly preferable.
  • a (meth) acryloyl group in the curable resin a cured product having a lower dielectric adjacency than other cross-linking groups (for example, vinylbenzyl ether group (styryl group), dihydroxybenzene group, etc.) can be obtained. It is obtained and becomes a preferable embodiment.
  • the vinylbenzyl ether group (styryl) contained in the conventionally used curable resin is not clear.
  • (group) or the like it has an ether group which is a polar group, and when it has a dihydroxybenzene group, it has a plurality of hydroxyl groups which are polar groups.
  • ester group based on the meta) acryloyl group contributes to the lower molecular motility (when it has a highly polar polar group such as an ether group or a hydroxyl group, the dielectric constant and the dielectric tangent are Tends to be higher).
  • the cross-linking group is a methacryloyl group
  • the structure contains a methyl group, it is presumed that steric hindrance becomes large and the molecular motility is further lowered, and a cured product having a lower dielectric loss tangent can be obtained, which is preferable. ..
  • the cross-linking density is increased and the heat resistance is improved.
  • Ra independently represents an alkyl group having 1 to 12 carbon atoms, an aryl group, an aralkyl group, or a cycloalkyl group, and preferably an alkyl group having 1 to 4 carbon atoms. It is an aryl group or a cycloalkyl group.
  • Rb independently represents an alkyl group having 1 to 12 carbon atoms, an aryl group, an aralkyl group, or a cycloalkyl group, and preferably an alkyl group having 1 to 4 carbon atoms. It is an aryl group or a cycloalkyl group.
  • j represents an integer of 1 to 3, preferably an integer of 1 to 2.
  • k and l each independently represent an integer of 0 to 4, preferably an integer of 0 to 2. When it is within the above range, the reactivity is excellent, which is a preferable embodiment.
  • m represents an integer of 0 to 2, that is, when m is 0, it is a benzene ring, when m is 1, it is a naphthalene ring, and when m is 2, it is an anthracene ring. Yes, preferably a benzene ring with 0 m.
  • the solvent solubility is excellent, which is a preferable embodiment.
  • n is the average number of repeating units, showing a numerical value of 0.5 to 20, preferably 0.5 to 5, and more preferably 0.95 to 2.5. .. Having an indane skeleton within the above range is excellent in solvent solubility, which is a preferable embodiment.
  • n is less than 0.5, the content ratio of the refractory substance in the structure of the curable resin having the indane skeleton becomes high, the solvent solubility is inferior, and the high degree contributing to brittleness. Since the proportion of the molecular weight component is low, the brittleness of the obtained cured product is lowered, and the flexibility and flexibility may be lowered, which is not preferable.
  • n exceeds 20
  • the viscosity becomes high when dissolved in a solvent, and there is a concern that the heat resistance of the obtained cured product is inferior.
  • the high molecular weight component becomes too large, and the cured product is molded. When doing so, there is a concern that the fluidity will decrease and the handleability will be inferior, which is not preferable.
  • the value of n is particularly preferably 0.95 to 2.5 from the viewpoint of the high thermal deformation temperature of the cured product, the high glass transition temperature, and the like.
  • the curable resin Since the curable resin has an indan skeleton, an alicyclic structure having an excellent balance between heat resistance and dielectric properties is introduced into the structure of the curable resin, and a cured product produced using the curable resin. Is preferable because it has an excellent balance between heat resistance and dielectric properties (particularly low dielectric tangent), and further low dielectric properties can be exhibited by having a (meth) acryloyl group as a cross-linking group in the molecular structure. ..
  • the curable resin of the present invention preferably has an indane skeleton represented by the following general formula (2).
  • R 1 and R 2 are independently hydrogen atoms, alkyl groups having 1 to 12 carbon atoms, aryl groups, aralkyl groups, or cycloalkyl groups, respectively, and R 1 and R 2 and Both of R 2 are not hydrogen atoms at the same time, n is the average number of repeating units, and indicates a numerical value of 0.5 to 20.
  • R 1 and R 2 are independently hydrogen atoms, alkyl groups having 1 to 12 carbon atoms, aryl groups, aralkyl groups, or cycloalkyl groups, and both are hydrogen atoms at the same time. It is not present, and is preferably an alkyl group having 1 to 4 carbon atoms, an aryl group, or a cycloalkyl group.
  • the alkyl group having 1 to 12 carbon atoms or the like the flatness in the vicinity of the benzene ring is lowered, and the crystallinity is lowered, so that the solvent solubility is improved and the melting point is lowered, which is a preferable embodiment.
  • n is the average number of repeating units, showing a numerical value of 0.5 to 20, preferably 0.5 to 5, and more preferably 0.95 to 2.5. .. Having an indane skeleton within the above range is excellent in solvent solubility, which is a preferable embodiment. If n is less than 0.5, the content ratio of the refractory substance in the structure of the curable resin having an indane skeleton becomes high, the solvent solubility is inferior, and the high degree contributing to brittleness. Since the proportion of the molecular weight component is low, the brittleness of the obtained cured product is lowered, and the flexibility and flexibility may be lowered, which is not preferable.
  • n exceeds 20
  • the viscosity becomes high when dissolved in a solvent, and there is a concern that the heat resistance of the obtained cured product is inferior.
  • the high molecular weight component becomes too large, and the cured product is molded. When doing so, there is a concern that the fluidity will decrease and the handleability will be inferior, which is not preferable.
  • the value of n is particularly preferably 0.95 to 2.5 from the viewpoint of the high thermal deformation temperature of the cured product, the high glass transition temperature, and the like.
  • the curable resin Since the curable resin has an indan skeleton, an alicyclic structure having an excellent balance between heat resistance and dielectric properties is introduced into the structure of the curable resin, and a cured product produced using the curable resin. Has an excellent balance between heat resistance and dielectric properties (particularly low dielectric loss tangent), and by having a methacryloyl group at the end of the molecular structure, steric damage becomes larger than in the case of an acryloyl group, and further. It is preferable because it can exhibit low dielectric properties.
  • the following general formula (3) represents a monovalent functional group in which Rc is independently selected from the group consisting of the following general formulas (4) and (5), and the ortho of at least one of the two Rc is Rc.
  • the position is a hydrogen atom, and Rb and l are compounds showing the same as above.
  • the following general formula (6-1) is when m in the above general formula (1) is 0, that is, when the curable resin having an indane skeleton is a benzene ring, and i is 1 or 2. Is preferable, and i is more preferably 1.
  • the following general formula (6-2) is a case where m in the above general formula (1) is 1, that is, a naphthalene ring, i is preferably 1 or 2, and i is 1. More preferably.
  • the following general formula (6-3) is a case where m in the above general formula (1) is 2, that is, an anthracene ring, i is preferably 1 or 2, and i is 1. More preferably.
  • Ra and k are phenols or derivatives thereof, respectively, which are similar to the above, and are compounds of the above general formula (3) and any of the following general formulas (6-1) to (6-3).
  • an intermediate phenol compound represented by the following general formula (7) can be obtained.
  • Ra, Rb, k, l, i and n in the following general formula (7) indicate the same as above.
  • the following general formula (7) exemplifies the case where m in the above general formula (1) is 0, that is, the case of a benzene ring.
  • the average number of repeating units n is a low melting point (low softening point), a low melt viscosity, and excellent handleability. Therefore, the average number of repeating units n indicates a numerical value of 0.5 to 20, preferably 0.5 to 5, and more preferably 0.95 to 2.5. Having an indane skeleton in the structure of the intermediate phenol compound is excellent in solvent solubility, which is a preferable embodiment. If n is less than 0.5, the content ratio of the refractory substance in the structure of the intermediate phenol compound becomes high, the solvent solubility is inferior, and the high molecular weight component contributing to brittleness.
  • the ratio is low, the brittleness of the cured product obtained by using the curable resin having an indan skeleton using the intermediate phenol compound as a raw material (precursor) is lowered, and further, the flexibility and flexibility are also lowered. It is not preferable because there is a risk of doing so.
  • n exceeds 20, the viscosity becomes high when dissolved in a solvent, and there is a concern that the heat resistance of the obtained cured product is inferior. Further, the high molecular weight component becomes too large, and the cured product is molded. At that time, there is a concern that the fluidity will decrease and the handleability will be inferior, which is not preferable.
  • compound (a) is not particularly limited, but is typically p- and m-diisopropenylbenzene, p- and. m-bis ( ⁇ -hydroxyisopropyl) benzene ( ⁇ , ⁇ '-dihydroxy-1,3-diisopropylbenzene), p- and m-bis ( ⁇ -chloroisopropyl) benzene, 1- ( ⁇ -hydroxyisopropyl) -3 -Isopropenylbenzene, 1- ( ⁇ -hydroxyisopropyl) -4-isopropenylbenzene or a mixture thereof is used.
  • nuclear alkyl group substituents of these compounds such as diisopropenyltoluene and bis ( ⁇ -hydroxyisopropyl) toluene can also be used, and further nuclear halogen substituents such as chlorodiisopropenylbenzene and chlorobis ( ⁇ ). -Hydroxyisopropyl) benzene and the like can also be used.
  • examples of the compound (a) include 2-chloro-1,4-diisopropenylbenzene, 2-chloro-1,4-bis ( ⁇ -hydroxyisopropyl) benzene, and 2-bromo-1,4-di.
  • the substituent contained in the compound (a) is not particularly limited, and the above-exemplified compounds can be used. However, in the case of a substituent having a large steric disorder, a substituent having a small steric disorder is used. Stacking of the obtained intermediate phenol compounds is unlikely to occur, and crystallization of the intermediate phenol compounds is unlikely to occur, that is, the solvent solubility of the intermediate phenol compounds is improved, which is a preferable embodiment.
  • the compound represented by any of the above general formulas (6-1) to (6-3) is phenol or a derivative thereof, and is not particularly limited, but is typical.
  • cresols such as o-cresol, m-cresol, p-cresol; phenol; 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol (2,6-dimethyl) Phenol
  • xylenol such as 3,4-xylenol, 3,5-xylenol
  • ethylphenol such as o-ethylphenol, m-ethylphenol, p-ethylphenol
  • butylphenol such as isopropylphenol, butylphenol, pt-butylphenol
  • Alkylphenol such as p-pentylphenol, p-octylphenol, p-nonylphenol, p
  • phenols or derivatives thereof may be used alone or in combination of two or more.
  • the compound (b) having an alkyl group having 1 to 4 carbon atoms should be used. Is preferable.
  • the compound (a) and the compound (b) are converted into moles of the compound (b) with respect to the compound (a).
  • An intermediate phenol compound having an indan skeleton by reacting the ratio (compound (b) / compound (a)) at a ratio of preferably 0.1 to 10, more preferably 0.2 to 8 in the presence of a charged acid catalyst. Can be obtained.
  • Examples of the acid catalyst used in the reaction include inorganic acids such as phosphoric acid, hydrochloric acid and sulfuric acid, oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, fluoromethanesulfonic acid and other organic acids, and active white clay.
  • Acidic white clay, silica alumina, zeolite, solid acids such as strongly acidic ion exchange resin, heteropolyhydrochloride, etc. can be mentioned, but it is a homogeneous catalyst that can be easily removed by neutralization with a base and washing with water after the reaction. It is preferable to use oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, fluoromethanesulfonic acid.
  • the blending amount of the acid catalyst is such that the acid catalyst is blended in the range of 0.001 to 40 parts by mass with respect to 100 parts by mass of the compound (a) and the compound (b), which are the raw materials to be charged first.
  • 0.001 to 25 parts by mass is preferable from the viewpoint of handleability and economy.
  • the reaction temperature is usually in the range of 50 to 300 ° C., but in order to suppress the formation of isomer structures, avoid side reactions such as thermal decomposition, and obtain a high-purity intermediate phenol compound, 80 ⁇ 200 ° C. is preferable.
  • the reaction time the reaction does not proceed completely in a short time, and side reactions such as a thermal decomposition reaction of the product occur when the reaction time is long. Therefore, under the reaction temperature conditions, the total reaction time is usually 0. It is in the range of .5 to 24 hours, but preferably in the range of 0.5 to 12 hours in total.
  • phenol or a derivative thereof also serves as a solvent
  • a solvent capable of co-boiling dehydration such as toluene, xylene, or chlorobenzene is used. After completing the dehydration reaction, the solvent may be distilled off, and then the reaction may be carried out within the above reaction temperature range.
  • Examples of the organic solvent used for synthesizing the intermediate phenol compound include ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, cyclohexanone and acetophenone, N, N-dimethylformamide and N, N-dimethylacetamide. , Dimethylsulfoxide, N-methyl-2-pyrrolidone, aprotonic solvents such as acetonitrile and sulfolane, cyclic ethers such as dioxane and tetrahydrofuran, esters such as ethyl acetate and butyl acetate, aromatics such as benzene, toluene and xylene. Examples thereof include system solvents, and these may be used alone or in combination.
  • ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, cyclohexanone and aceto
  • the hydroxyl group equivalent (phenol equivalent) of the intermediate phenol compound is preferably 200 to 2000 g / eq, and more preferably 220 to 500 g / eq, from the viewpoint of heat resistance.
  • the hydroxyl group equivalent (phenol equivalent) of the intermediate phenol compound is calculated by a titration method and refers to a neutralization titration method based on JIS K0070.
  • the curable resin having an indane skeleton is a known method such as reaction of the intermediate phenol compound with anhydrous (meth) acrylic acid or (meth) acrylic acid chloride in the presence of a basic or acidic catalyst. Can be obtained by
  • anhydrous (meth) acrylic acid examples include methacrylic anhydride and methacrylic anhydride.
  • examples of the (meth) acrylic acid chloride include methacrylic acid chloride and acrylic acid chloride. These may be used alone or in combination. Above all, it is preferable to use methacrylic anhydride, which can obtain a cured product having a lower dielectric loss tangent.
  • the basic catalyst include dimethylaminopyridine, alkaline earth metal hydroxide, alkali metal carbonate, and alkali metal hydroxide.
  • the acidic catalyst include sulfuric acid and methanesulfonic acid.
  • dimethylaminopyridine is excellent in terms of catalytic activity.
  • anhydrous (meth) acrylic acid or the like The reaction between the intermediate phenol compound and the anhydrous (meth) acrylic acid or the (meth) acrylic acid chloride (hereinafter, may be referred to as “anhydrous (meth) acrylic acid or the like”) is the intermediate.
  • anhydrous (meth) acrylic acid or the like To 1 mol of the hydroxyl group contained in the phenol compound, 1 to 5 mol of the above-mentioned anhydrous (meth) acrylic acid or the like is added, and 0.03 to 1 basic catalyst is added all at once or gradually while adding 30. Examples thereof include a method of reacting at a temperature of about 150 ° C. for 1 to 40 hours.
  • an organic solvent in combination during the reaction with anhydrous (meth) acrylic acid or the like (introduction of (meth) acryloyl group), the reaction rate in the synthesis of a curable resin having an indane skeleton can be increased.
  • an organic solvent is not particularly limited, and for example, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol and tertiary butanol, and methyl.
  • Examples include cellosolves such as cellosolve and ethyl cellosolve, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, aprotic polar solvents such as acetonitrile, dimethylsulfoxide and dimethylformamide, and toluene. Be done. Each of these organic solvents may be used alone, or two or more kinds may be used in combination as appropriate to adjust the polarity.
  • the reaction product is washed with water and then unreacted anhydrous (meth) acrylic acid or the like under heating and reduced pressure conditions.
  • the combined organic solvent is distilled off.
  • the curable resin having an indan skeleton is again dissolved in an organic solvent such as toluene, methylisobutylketone or methylethylketone, and hydroxideed. Further reaction can be carried out by adding an aqueous solution of an alkali metal hydroxide such as sodium or potassium hydroxide.
  • phase transfer catalyst such as a quaternary ammonium salt or a crown ether may be present for the purpose of improving the reaction rate.
  • the amount used is preferably in the range of 0.1 to 10% by mass with respect to the curable resin having an indane skeleton to be used.
  • the produced salt is removed by filtration or washing with water, and the organic solvent is distilled off under heating and reduced pressure conditions to obtain a curable resin having a target indane skeleton having a low content of hydrolyzable chlorine. be able to.
  • the softening point of the curable resin having an indane skeleton is preferably 150 ° C. or lower, more preferably 30 to 100 ° C. It is preferable that the softening point of the curable resin having the indane skeleton is within the above range because the processability is excellent.
  • the curable resin composition of the present invention preferably contains the curable resin having the indane skeleton. Since the curable resin having an indane skeleton has an indane skeleton, it has excellent solvent solubility, easy preparation of a curable resin composition, excellent handleability, and in the structure of the curable resin having the indane skeleton. Since the proportion of polar functional groups is small, a cured product having excellent dielectric properties can be obtained.
  • the curable resin composition of the present invention can be used without particular limitation as long as the purpose is not impaired, and alkenyl group-containing compounds such as vinylids, allyl ether compounds, allylamine compounds, triallyl cyanurate, and alkenyl phenols can be used.
  • alkenyl group-containing compounds such as vinylids, allyl ether compounds, allylamine compounds, triallyl cyanurate, and alkenyl phenols can be used.
  • a system compound, a vinyl group-containing polyolefin compound, or the like can also be added.
  • other thermosetting resins such as a thermosetting polyimide resin, an epoxy resin, a phenol resin, an active ester resin, a benzoxazine resin, and a cyanate resin can also be appropriately blended depending on the intended purpose.
  • the curable resin composition of the present invention may contain a curing agent.
  • the curing agent include amine compounds, amide compounds, acid anhydride compounds, phenolic compounds, cyanate ester compounds and the like. These curing agents may be used alone or in combination of two or more.
  • a curing accelerator may be appropriately used in combination with the curable resin composition of the present invention, if necessary.
  • Various types of curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • phosphorus compounds such as triphenylphosphine or imidazoles are preferable from the viewpoint of excellent curability, heat resistance, electrical properties, moisture resistance reliability and the like.
  • These curing accelerators can be used alone or in combination of two or more.
  • the amount of the curing accelerator added is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin, for example.
  • the curable resin composition of the present invention can be blended with a non-halogen flame retardant that does not substantially contain a halogen atom in order to exhibit flame retardancy.
  • a non-halogen flame retardant include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, organic metal salt flame retardants, and the like, and these are used alone or in combination. be able to.
  • An inorganic filler can be added to the curable resin composition of the present invention, if necessary.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide and the like.
  • fused silica When the blending amount of the inorganic filler is particularly large, it is preferable to use fused silica.
  • the molten silica can be used in either a crushed form or a spherical shape, but in order to increase the blending amount of the molten silica and suppress an increase in the melt viscosity of the molding material, it is better to mainly use a spherical one. preferable.
  • a conductive filler such as silver powder or copper powder can be used.
  • Various compounding agents such as a silane coupling agent, a mold release agent, a pigment, and an emulsifier can be added to the curable resin composition of the present invention, if necessary.
  • the cured product of the present invention is preferably obtained by subjecting the curable resin composition to a curing reaction.
  • the curable resin composition can be obtained by uniformly mixing each component such as the above-mentioned curing agent in addition to the curable resin having the indane skeleton alone or the curable resin having the indane skeleton.
  • a cured product can be easily obtained by the same method as a conventionally known method. Examples of the cured product include molded products such as laminates, cast products, adhesive layers, coating films, and films.
  • thermosetting and ultraviolet curing reactions examples include thermosetting and ultraviolet curing reactions.
  • the thermosetting reaction is easily carried out even without a catalyst, but if a faster reaction is desired, an organic peroxide or an azo compound is used. It is effective to add a polymerization initiator such as, a phosphine compound, or a basic catalyst such as a tertiary amine. Examples thereof include benzoyl peroxide, dicumyl peroxide, azobisisobutyronitrile, triphenylphosphine, triethylamine, imidazoles and the like.
  • the cured product obtained by the curable resin composition of the present invention is excellent in heat resistance and dielectric properties, it can be suitably used for heat-resistant members and electronic members.
  • it can be suitably used for prepregs, circuit boards, semiconductor encapsulants, semiconductor devices, build-up films, build-up boards, adhesives, resist materials and the like.
  • it can be suitably used for a matrix resin of a fiber reinforced resin, and is particularly suitable as a prepreg having high heat resistance.
  • the curable resin having the indane skeleton contained in the curable resin composition can be made into a paint because it exhibits excellent solubility in various solvents.
  • the heat-resistant members and electronic members thus obtained can be suitably used for various purposes.
  • industrial mechanical parts For example, industrial mechanical parts, general mechanical parts, automobile / railway / vehicle parts, space / aviation-related parts, electronic / electrical parts, etc.
  • Examples include, but are not limited to, building materials, container / packaging materials, daily necessities, sports / leisure products, and housing materials for wind power generation.
  • ⁇ GPC measurement evaluation of number average molecular weight and average number of repeating units
  • the measurement was carried out using the following measuring device and measuring conditions, and a GPC chart of a curable resin having an indane skeleton obtained by the synthesis method shown below was obtained. From the results of the GPC chart, the average number of repeating units n that contributes to the indane skeleton in the curable resin having an indane skeleton was calculated based on the number average molecular weight (Mn) of the curable resin having an indane skeleton.
  • Mn number average molecular weight
  • Measuring device "HLC-8320 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G3000HXL” manufactured by Tosoh Corporation + Tosoh Corporation Made by “TSK-GEL G4000HXL” Detector: RI (Differential Refractometer) Data processing: "GPC Workstation EcoSEC-WorkStation” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow velocity 1.0 ml / min Standard: The following monodisperse polystyrene with a known molecular weight was used in accordance with the measurement manual of the above-mentioned "GPC workstation EcoSEC-WorkStation".
  • Example 1 48.9 g (0.4 mol) of 2,6-dimethylphenol and 272.0 g (1) of ⁇ , ⁇ '-dihydroxy-1,3-diisopropylbenzene in a 1 L flask equipped with a thermometer, a cooling tube, a Dean Stark trap, and a stirrer. .4 mol), 280 g of xylene, and 70 g of active white clay were charged and heated to 120 ° C. with stirring. Further, the distillate was removed with a Dean-Stark tube, the temperature was raised to 210 ° C., and the reaction was carried out for 3 hours.
  • the average number of repeating units n was calculated by GPC measurement, the GPC chart of which is shown in FIG. 1, and the number average molecular weight (Mn).
  • Mn number average molecular weight
  • Tg glass transition point temperature
  • the dielectric constant and dielectric loss tangent at a frequency of 10 GHz by the split post dielectric resonator method using a network analyzer N5247A manufactured by Keysight Technology Co., Ltd. was measured. If the dielectric loss tangent is 10 ⁇ 10 -3 or less, there is no practical problem, preferably 7.5 ⁇ 10 -3 or less, and if the dielectric constant is 3 or less, there is no practical problem. There is no problem, preferably 2.7 or less, and more preferably 2.5 or less.
  • Comparative Example 1 since the curable resin having an indane skeleton does not have a (meth) acryloyl group, the dielectric loss tangent is higher than that of the example, and both heat resistance and dielectric properties are achieved. It was confirmed that there was no such thing.
  • the cured product obtained by using the curable resin of the present invention is excellent in heat resistance and dielectric properties, and therefore can be suitably used for heat-resistant members and electronic members.
  • prepregs, semiconductor encapsulants, and circuits It can be suitably used for substrates, build-up films, build-up substrates, etc., adhesives and resist materials. Further, it can be suitably used for a matrix resin of a fiber reinforced resin, and is suitable as a prepreg having high heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

インダン骨格を有する硬化性樹脂を使用することで、耐熱性、及び、誘電特性(低誘電特性)に優れた硬化物を提供する。具体的には、下記式で表されるインダン骨格を有することを特徴とする硬化性樹脂、これを含む樹脂組成物、その硬化物を提供する。Xは(メタ)アクリロイル基、Ra及びRbは、炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基、jは1~3の整数、k、lは0~4の整数。nは平均繰り返し単位数であり、0.5~20、mは0~2の整数。

Description

硬化性樹脂、硬化性樹脂組成物、及び、硬化物
 本発明は、インダン骨格を有する硬化性樹脂、前記硬化性樹脂を含有する硬化性樹脂組成物、前記硬化性樹脂組成物より得られる硬化物に関する。
 近年の情報通信量の増加に伴い、高周波数帯域での情報通信が盛んに行われるようになり、より優れた電気特性、なかでも高周波数帯域での伝送損失を低減させるため、低誘電率と低誘電正接を有する電気絶縁材料が求められてきている。
 さらにそれら電気絶縁材料が使われているプリント基板あるいは電子部品は、実装時に高温のハンダリフローに曝されるため、耐熱性に優れた高いガラス転移温度を示す材料が求められ、特に最近は、環境問題の観点から、融点の高い鉛フリーのハンダが使われるため、より耐熱性の高い電気絶縁材料の要求が高まってきている。
 これらの要求に対し、従来から、種々の化学構造を持つビニル基含有の硬化性樹脂が提案されている。このような硬化性樹脂としては、例えば、ビスフェノールのジビニルベンジルエーテル、あるいはノボラックのポリビニルベンジルエーテルなどの硬化性樹脂が提案されている(例えば、特許文献1及び2参照)。しかし、これらのビニルベンジルエーテルは、誘電特性が十分に小さい硬化物を与えることができず、得られる硬化物は高周波数帯域で安定して使用するには問題があり、さらにビスフェノールのジビニルベンジルエーテルは、耐熱性においても十分に高いとはいえないものであった。
 上記特性を向上させたビニルベンジルエーテルに対して、誘電特性等の向上を図るため、特定構造のポリビニルベンジルエーテルがいくつか提案されている(例えば、特許文献3~5参照)。しかし、誘電正接を抑える試みや、耐熱性を向上させる試みがなされているが、これらの特性の向上は、未だ十分とは言えず、さらなる特性改善が望まれている。
 このように、従来のポリビニルベンジルエーテルを含むビニル基含有の硬化性樹脂は、電気絶縁材料用途、特に高周波数対応の電気絶縁材料用途として必要な低い誘電正接と、鉛フリーのハンダ加工に耐えうる耐熱性とを兼備する硬化物を与えるものではなかった。
特開昭63-68537号公報 特開昭64-65110号公報 特表平1-503238号公報 特開平9-31006号公報 特開2005-314556号公報
 従って、本発明が解決しようとする課題は、インダン骨格を有する硬化性樹脂を使用することで、耐熱性、及び、誘電特性(低誘電特性)に優れた硬化物を提供することにある。
 そこで、本発明者らは、上記課題を解決するため、鋭意検討した結果、耐熱性、及び、低誘電特性に寄与できるインダン骨格を有する硬化性樹脂、及び、前記硬化性樹脂を含有する硬化性樹脂組成物より得られる硬化物が、耐熱性、及び、低誘電特性に優れることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記一般式(1)で表されるインダン骨格を有することを特徴とする硬化性樹脂に関する。
Figure JPOXMLDOC01-appb-C000003
・・・(1)
(上記式(1)中、Xは(メタ)アクリロイル基を表す。Ra及びRbはそれぞれ独立に炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基であり、jは1~3の整数を示し、k、lはそれぞれ独立に0~4の整数を示す。nは平均繰り返し単位数であり、0.5~20の数値を示す、mは0~2の整数を示す。なお、Ra、X及び炭素原子から芳香環への直線は、当該芳香環上のいずれの箇所に結合していてもよいことを示す。)
 また、本発明の硬化性樹脂は、下記一般式(2)で表されるインダン骨格を有する樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
・・・(2)
(上記式(2)中、R及びRは、それぞれ独立に水素原子、炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基であり、かつ、R及びRの両方が同時に水素原子であることはなく、nは平均繰り返し単位数であり、0.5~20の数値を示す。)
 本発明の硬化性樹脂組成物は、前記硬化性樹脂を含有することが好ましい。
 本発明の硬化物は、前記硬化性樹脂組成物を硬化反応させて得られることが好ましい。
 本発明の硬化性樹脂は、耐熱性、及び、低誘電特性に寄与できるため、前記硬化性樹脂を含有する硬化性樹脂組成物より得られる硬化物が、耐熱性、及び、誘電特性(低誘電特性)に優れ、有用である。
実施例1で得られたインダン骨格を有する硬化性樹脂のGPCチャート図である。
 以下、本発明を詳細に説明する。
 本発明は、下記一般式(1)で表されるインダン骨格を有することを特徴とする硬化性樹脂に関する。
Figure JPOXMLDOC01-appb-C000005
・・・(1)
(上記式(1)中、Xは(メタ)アクリロイル基を表す。Ra及びRbはそれぞれ独立に炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基であり、jは1~3の整数を示し、k、lはそれぞれ独立に0~4の整数を示す。nは平均繰り返し単位数であり、0.5~20の数値を示す、mは0~2の整数を示す。なお、Ra、X及び炭素原子から芳香環への直線は、当該芳香環上のいずれの箇所に結合していてもよいことを示す。)
 前記インダン骨格を有する硬化性樹脂が、低極性であるインダン骨格を有することにより、前記硬化性樹脂の構造中に極性官能基の割合が少なくなり、前記硬化性樹脂を使用して製造される硬化物は、誘電特性に優れるため、好ましい。また、前記硬化性樹脂はインダン骨格を有することで、可撓性、及び、柔軟性に優れ、耐脆性の改善も見込まれ、好ましい。
 上記式(1)中、Xは、架橋基となる(メタ)アクリロイル基であり、つまり、アクリロイル基、又は、メタクリロイル基であり、特に、メタクリロイル基が好ましい。前記硬化性樹脂中に、(メタ)アクリロイル基を有することで、その他の架橋基(例えば、ビニルベンジルエーテル基(スチリル基)やジヒドロキシベンゼン基など)と比べて、低い誘電正接を有する硬化物が得られ、好ましい態様となる。
 なお、前記(メタ)アクリロイル基を有することで、低誘電特性を発現する硬化物が得られる詳細な理由は明らかではないが、従来用いられている硬化性樹脂に含まれるビニルベンジルエーテル基(スチリル基)などの場合、極性基であるエーテル基を有し、また、ジヒドロキシベンゼン基を有する場合、極性基である複数のヒドロキシル基を有することになり、本発明の硬化性樹脂のように、(メタ)アクリロイル基に基づくエステル基の方が、分子運動性が低いことが寄与していることが推測される(エーテル基やヒドロキシル基などの極性の高い極性基を有すると、誘電率や誘電正接が高くなる傾向にある)。
 また、架橋基がメタクリロイル基の場合、構造中にメチル基を含むため、立体障害が大きくなり、分子運動性が更に低くなることが推測され、より低誘電正接の硬化物を得られるため、好ましい。また、架橋基が複数の場合、架橋密度が上がり、耐熱性が向上する。
 上記式(1)中、Raは、それぞれ独立に炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基を表し、好ましくは、炭素原子数1~4のアルキル基、アリール基、又は、シクロアルキル基である。前記炭素原子数1~12のアルキル基等であることで、後述する、ベンゼン環、ナフタレン環、及び、アントラセン環のいずれかの近傍の平面性が低下し、結晶性低下により、溶剤溶解性が向上するとともに、融点が低くなり、好ましい態様となる。また、前記Raを有することで、立体障害となり、分子運動性が更に低くなることが推測され、より低誘電正接の硬化物を得られるため、好ましい。
 上記式(1)中、Rbは、それぞれ独立に炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基を表し、好ましくは、炭素原子数1~4のアルキル基、アリール基、又は、シクロアルキル基である。前記炭素原子数1~12のアルキル基等であることで、後述する、ベンゼン環、ナフタレン環、及び、アントラセン環のいずれかの近傍の平面性が低下し、結晶性低下により、溶剤溶解性が向上するとともに、融点が低くなり、好ましい態様となる。
 上記式(1)中、jは1~3の整数を示し、好ましくは、1~2の整数である。前記範囲内にあることにより、可撓性が確保され、好ましい態様となる。なお、架橋基となる上記Xが同一のベンゼン環等に複数導入されることで、複数の架橋基同士が、分子運動性を阻害し(抑制し合い)、置換基である上記Raが存在しない場合であっても、低い誘電正接を示す硬化物が得られ、好ましい。
 上記式(1)中、k及びlは、それぞれ独立に0~4の整数を示し、好ましくは、0~2の整数である。前記範囲内にあることにより、反応性が優れ、好ましい態様となる。
 上記式(1)中、mは0~2の整数を示し、つまり、mが0の場合はベンゼン環であり、mが1の場合はナフタレン環であり、mが2の場合はアントラセン環であり、好ましくは、mが0のベンゼン環である。前記範囲内にあることにより、溶剤溶解性が優れ、好ましい態様となる。
 上記式(1)中、nは平均繰り返し単位数であり、0.5~20の数値を示し、好ましくは、0.5~5であり、より好ましくは、0.95~2.5である。前記範囲内でインダン骨格を有することで、溶剤溶解性に優れ、好ましい態様となる。なお、前記nが0.5未満であると、前記インダン骨格を有する硬化性樹脂の構造中の高融点物質の含有割合が高くなり、溶剤溶解性に劣り、更に、可撓性に寄与する高分子量成分の割合が低くなるため、得られる硬化物の耐脆性が低下し、更に、可撓性や柔軟性も低下する恐れがあり好ましくない。また、前記nが20を越えると、溶剤に溶解した際に粘度が高くなり、更に得られる硬化物の耐熱性が劣ることが懸念され、更に、高分子量成分が多くなりすぎ、硬化物を成形する際に、流動性が低下し、ハンドリング性に劣ることが懸念され、好ましくない。また、前記nの値としては、硬化物の高熱変形温度、高ガラス転移温度等の観点から、0.95~2.5が特に好ましい。
 前記硬化性樹脂がインダン骨格を有することにより、前記硬化性樹脂の構造中に耐熱性と誘電特性のバランスに優れる脂環式構造が導入され、前記硬化性樹脂を使用して製造される硬化物は、耐熱性と誘電特性(特に低誘電正接)とのバランスに優れ、また、分子構造中に、架橋基となる(メタ)アクリロイル基を有することで、更なる低誘電特性を発現でき、好ましい。
 また、本発明の硬化性樹脂は、下記一般式(2)で表されるインダン骨格を有することが好ましい。
Figure JPOXMLDOC01-appb-C000006
・・・(2)
(上記式(2)中、R及びRは、それぞれ独立に水素原子、炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基であり、かつ、R及びRの両方が同時に水素原子であることはなく、nは平均繰り返し単位数であり、0.5~20の数値を示す。)
 上記式(2)中、R及びRはそれぞれ独立に水素原子、炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基であり、かつ両方が同時に水素原子であることはなく、好ましくは、炭素原子数1~4のアルキル基、アリール基、又は、シクロアルキル基である。前記炭素原子数1~12のアルキル基等であることで、ベンゼン環の近傍の平面性が低下し、結晶性低下により、溶剤溶解性が向上するとともに、融点が低くなり、好ましい態様となる。また、前記R及びRを有することで、立体障害が大きくなり(但し、水素原子ではない場合)、分子運動性が更に低くなることが推測され、より低誘電正接の硬化物を得られるため、好ましい。
 上記式(2)中、nは平均繰り返し単位数であり、0.5~20の数値を示し、好ましくは、0.5~5であり、より好ましくは、0.95~2.5である。前記範囲内でインダン骨格を有することで、溶剤溶解性に優れ、好ましい態様となる。なお、前記nが0.5未満であれば、前記インダン骨格を有する硬化性樹脂の構造中の高融点物質の含有割合が高くなり、溶剤溶解性に劣り、更に、可撓性に寄与する高分子量成分の割合が低くなるため、得られる硬化物の耐脆性が低下し、更に、可撓性や柔軟性も低下する恐れがあり好ましくない。また、前記nが20を越えると、溶剤に溶解した際に粘度が高くなり、更に得られる硬化物の耐熱性が劣ることが懸念され、更に、高分子量成分が多くなりすぎ、硬化物を成形する際に、流動性が低下し、ハンドリング性に劣ることが懸念され、好ましくない。また、前記nの値としては、硬化物の高熱変形温度、高ガラス転移温度等の観点から、0.95~2.5が特に好ましい。
 前記硬化性樹脂がインダン骨格を有することにより、前記硬化性樹脂の構造中に耐熱性と誘電特性のバランスに優れる脂環式構造が導入され、前記硬化性樹脂を使用して製造される硬化物は、耐熱性と誘電特性(特に低誘電正接)とのバランスに優れ、また、分子構造の末端に、メタクリロイル基を有することで、アクリロイル基の場合に比べて、立体障害が大きくなり、更なる低誘電特性を発現でき、好ましい。
 <中間体フェノール化合物の製造方法>
 前記インダン骨格を有する硬化性樹脂の製造方法として、まずは、前記インダン骨格を有する硬化性樹脂の原料(前駆体)である中間体フェノール化合物の製造方法を以下に説明する。
 下記一般式(3)は、Rcはそれぞれ独立に下記一般式(4)及び(5)よりなる群から選択される一価の官能基を示しており、2つのRcの少なくとも一方のRcのオルト位が水素原子で、Rb及びlは、上記と同様のものを示す化合物である。
Figure JPOXMLDOC01-appb-C000007
・・・・(3)
Figure JPOXMLDOC01-appb-C000008
・・・・(4)
Figure JPOXMLDOC01-appb-C000009
・・・・(5)
 下記一般式(6-1)は、上記一般式(1)中のmが0の場合、つまり、インダン骨格を有する硬化性樹脂が、ベンゼン環の場合であり、iは1又は2であることが好ましく、iが1であることがより好ましい。また、下記一般式(6-2)は、上記一般式(1)中のmが1の場合、つまり、ナフタレン環の場合であり、iは1又は2であることが好ましく、iが1であることがより好ましい。また、下記一般式(6-3)は、上記一般式(1)中のmが2の場合、つまり、アントラセン環の場合であり、iは1又は2であることが好ましく、iが1であることがより好ましい。インダン骨格を有する硬化性樹脂が、水酸基(フェノール性水酸基)を有することで、構造中の末端にフェノール性水酸基を導入することが可能となり、好ましい態様となる。なお、Ra及びkは、それぞれ上記と同様のものを示すフェノールまたはその誘導体であり、上記一般式(3)の化合物と、下記一般式(6-1)~(6-3)のいずれかの化合物を、酸触媒存在下に反応させることにより、下記一般式(7)で示される中間体フェノール化合物を得ることができる。なお、下記一般式(7)中のRa、Rb、k、l、i及びnは上記と同様のものを示す。また、下記一般式(7)は上記一般式(1)中のmが0の場合、つまり、ベンゼン環の場合を例示している。
Figure JPOXMLDOC01-appb-C000010
・・・・(6-1)
Figure JPOXMLDOC01-appb-C000011
・・・・(6-2)
Figure JPOXMLDOC01-appb-C000012
・・・・(6-3)
Figure JPOXMLDOC01-appb-C000013
・・・・(7)
Figure JPOXMLDOC01-appb-C000014
・・・(8)
 前記中間体フェノール化合物の特徴であるインダン骨格(上記一般式(8)参照)において、平均繰り返し単位数nは、低い融点(低軟化点)で、かつ溶融粘度が低く、ハンドリング性に優れたものとするため、平均繰り返し単位数nは、0.5~20の数値を示し、好ましくは、0.5~5であり、より好ましくは、0.95~2.5である。前記中間体フェノール化合物の構造中に、インダン骨格を有することで、溶剤溶解性に優れ、好ましい態様となる。なお、前記nが0.5未満であれば、前記中間体フェノール化合物の構造中の高融点物質の含有割合が高くなり、溶剤溶解性に劣り、更に、可撓性に寄与する高分子量成分の割合が低くなるため、前記中間体フェノール化合物を原料(前駆体)とするインダン骨格を有する硬化性樹脂を用いて得られる硬化物の耐脆性が低下し、更に、可撓性や柔軟性も低下する恐れがあり好ましくない。また、前記nが20を越えると、溶剤に溶解した際に粘度が高くなり、得られる硬化物の耐熱性が劣ることが懸念され、更に、高分子量成分が多くなりすぎ、硬化物を成形する際に、流動性が低下し、ハンドリング性に劣ることが懸念され、好ましくない。
 本発明において用いる上記一般式(3)で表される化合物(以下、「化合物(a)」)は、特に限定されないが、典型的には、p-及びm-ジイソプロペニルベンゼン、p-及びm-ビス(α-ヒドロキシイソプロピル)ベンゼン(α,α’-ジヒドロキシ-1,3-ジイソプロピルベンゼン)、p-及びm-ビス(α-クロロイソプロピル)ベンゼン、1-(α-ヒドロキシイソプロピル)-3-イソプロペニルベンゼン、1-(α-ヒドロキシイソプロピル)-4-イソプロペニルベンゼンあるいはこれらの混合物を用いる。またこれらの化合物の核アルキル基置換体、例えば、ジイソプロペニルトルエン及びビス(α-ヒドロキシイソプロピル)トルエン等も用いることができ、さらに核ハロゲン置換体、例えば、クロロジイソプロペニルベンゼン及びクロロビス(α-ヒドロキシイソプロピル)ベンゼン等も用いることができる。
 その他、前記化合物(a)として、例えば、2-クロロ-1,4-ジイソプロペニルベンゼン、2-クロロ-1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、2-ブロモ-1,4-ジイソプロペニルベンゼン、2-ブロモ-1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、2-ブロモ-1,3-ジイソプロペニルベンゼン、2-ブロモ-1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン、4-ブロモ-1,3-ジイソプロピルベンゼン、4-ブロモ-1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン、5-ブロモ-1,3-ジイソプロペニルベンゼン、5-ブロモ-1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン、2-メトキシ-1,4-ジイソプロペニルベンゼン、2-メトキシ-1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、5-エトキシ-1,3-ジイソプロペニルベンゼン、5-エトキシ-1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン、2-フェノキシ-1,4-ジイソプロペニルベンゼン、2-フェノキシ-1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、2,4-ジイソプロペニルベンゼンチオール、2,4-ビス(α-ヒドロキシイソプロピル)ベンゼンチオール、2,5-ジイソプロペニルベンゼンチオール、2,5-ビス(αヒドロキシイソプロピル)ベンゼンチオール、2-メチルチオ-1,4-ジイソプロペニルベンゼン、2-メチルチオ-1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、2-フェニルチオ-1,3-ジイソプロペニルベンゼン、2-フェニルチオ-1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン、2-フェニル-1,4-ジイソプロペニルベンゼン、2-フェニル-1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、2-シクロペンチル-1,4-ジイソプロペニルベンゼン、2-シクロペンチル-1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、5-ナフチル-1,3-ジイソプロペニルベンゼン、5-ナフチル-1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン、2-メチル-1,4-ジイソプロペニルベンゼン、2-メチル-1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、5-ブチル-1,3-ジイソプロペニルベンゼン、5-ブチル-1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン、5-シクロヘキシル-1,3-ジイソプロペニルベンゼン、5-シクロヘキシル-1,3-ビス(α-ヒドロキシイソプロピル)ベンゼンなどを例示することができる。
 なお、前記化合物(a)中に含まれる置換基としては、特に限定はされず、上記例示の化合物を使用できるが、立体障害の大きな置換基の場合、立体障害の小さな置換基に比べて、得られる中間体フェノール化合物同士のスタッキングが生じにくく、中間体フェノール化合物同士の結晶化が起こりにくく、つまり、中間体フェノール化合物の溶剤溶解性が向上し、好ましい態様となる。
 また、上記一般式(6-1)~(6-3)のいずれかで表される化合物(以下、「化合物(b)」)としては、フェノール又はその誘導体であり、特に限定されないが、典型的には、o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール;フェノール;2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール(2,6-ジメチルフェノール)、3,4-キシレノール、3,5-キシレノール等のキシレノール;o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール;イソプロピルフェノール、ブチルフェノール、p-t-ブチルフェノール等のブチルフェノール;p-ペンチルフェノール、p-オクチルフェノール、p-ノニルフェノール、p-クミルフェノール等のアルキルフェノール;フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等のハロゲン化フェノール;o-フェニルフェノール、p-フェニルフェノール、2-シクロヘキシルフェノール、2-ベンジルフェノール、アミノフェノール、ニトロフェノール、ジニトロフェノール、トリニトロフェノール等の1置換フェノール;1-ナフトール、2-ナフトール、1-アントラセンノール、2-アントラセンノール等の縮合多環式フェノール;レゾルシン、アルキルレゾルシン、ピロガロール、カテコール、アルキルカテコール、ハイドロキノン、アルキルハイドロキノン、フロログルシン等の多価フェノール等が挙げられる。これらフェノール又はその誘導体は、それぞれ単独で用いても良いし、2種以上を併用しても良い。中でも、例えば、2,6-キシレノールや2,4-キシレノールといったフェノール性水酸基に対してオルト位、パラ位のうち2つがアルキル置換された化合物を使用することが、より好ましい態様となる。但し、立体障害が大きすぎると、中間体フェノール化合物の合成時における反応性を阻害する場合も懸念されるため、例えば、炭素原子数1~4のアルキル基を有する化合物(b)を使用することが好ましい。
 本発明に用いる上記一般式(7)で表される中間体フェノール化合物の製造方法においては、前記化合物(a)と前記化合物(b)を、前記化合物(a)に対する前記化合物(b)のモル比(化合物(b)/化合物(a))を、好ましくは0.1~10、より好ましくは0.2~8で仕込み酸触媒存在下に反応させることにより、インダン骨格を有する中間体フェノール化合物を得ることができる。
 前記反応に用いる酸触媒には、例えば、リン酸、塩酸、硫酸のような無機酸、シュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸等の有機酸、活性白土、酸性白土、シリカアルミナ、ゼオライト、強酸性イオン交換樹脂のような固体酸、ヘテロポリ塩酸等を挙げることができるが、反応後、塩基による中和と水による洗浄で簡便に除去できる均一系触媒であるシュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸を用いることが好ましい。
 前記酸触媒の配合量は、最初に仕込む原料の前記化合物(a)、及び、前記化合物(b)の総量100質量部に対して、酸触媒を0.001~40質量部の範囲で配合されるが、ハンドリング性と経済性の点から、0.001~25質量部が好ましい。
 前記反応温度は、通常50~300℃の範囲であればよいが、異性体構造の生成を抑制し、熱分解等の副反応を避け、高純度の中間体フェノール化合物を得るためには、80~200℃が好ましい。
 前記反応時間としては、短時間では反応が完全に進行せず、また長時間にすると生成物の熱分解反応等の副反応が起こることから、前記反応温度条件下で、通常は、のべ0.5~24時間の範囲であるが、好ましくは、のべ0.5~12時間の範囲である。
 前記中間体フェノール化合物の製造方法においては、フェノール又はその誘導体が溶剤を兼ねるため、必ずしも他の溶剤は用いなくても良いが、溶剤を用いることも可能である。例えば、脱水反応を兼ねた反応系の場合、具体的には、α-ヒドロキシプロピル基を有する化合物を原料として反応させる場合には、トルエン、キシレン、又はクロロベンゼン等の共沸脱水可能な溶剤を用いて、脱水反応を完結させた後、溶剤を留去してから、上記反応温度の範囲で反応を行う方法を採用してもよい。
 前記中間体フェノール化合物を合成するために使用される有機溶媒としては、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、アセトニトリル、スルホラン等の非プロトン性溶媒、ジオキサン、テトラヒドロフラン等の環状エーテル類、酢酸エチル、酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレン等の芳香族系溶媒等が挙げられ、またこれらは単独で用いても混合して用いてもよい。
 前記中間体フェノール化合物の水酸基当量(フェノール当量)としては、耐熱性の観点から、好ましくは、200~2000g/eqであり、より好ましくは、220~500g/eqである。なお、中間体フェノール化合物の水酸基当量(フェノール当量)は、滴定法により算出したものであり、JIS K0070に準拠した中和滴定法を指す。
 <インダン骨格を有する硬化性樹脂の製造方法>
 前記インダン骨格を有する硬化性樹脂の製造方法((メタ)アクリロイル基の導入)について、以下に説明する。
 前記インダン骨格を有する硬化性樹脂は、塩基性、又は、酸性触媒存在下で、前記中間体フェノール化合物に、無水(メタ)アクリル酸、又は、(メタ)アクリル酸クロリドとの反応といった公知の方法によって得ることができる。
 前記無水(メタ)アクリル酸としては、例えば、無水アクリル酸と無水メタクリル酸が挙げられる。前記(メタ)アクリル酸クロリドとしては、例えば、メタクリル酸クロリドとアクリル酸クロリドが挙げられる。これらはそれぞれ単独で用いても混合して用いてもよい。中でも、より低誘電正接の硬化物が得られる無水メタクリル酸を用いることが好ましい。
 前記塩基性触媒としては、具体的には、ジメチルアミノピリジン、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、及び、アルカリ金属水酸化物等が挙げられる。前記酸性触媒としては、具体的には、硫酸、メタンスルホン酸等が挙げられる。特にジメチルアミノピリジンが触媒活性の点から優れている。
 前記中間体フェノール化合物と前記無水(メタ)アクリル酸、又は、前記(メタ)アクリル酸クロリド(以下、「無水(メタ)アクリル酸等」という場合がある。)との反応としては、前記中間体フェノール化合物に含まれる水酸基1モルに対し、前記無水(メタ)アクリル酸等を1~5モルを添加し、0.03~1の塩基性触媒を一括添加、又は、徐々に添加しながら、30~150℃の温度で、1~40時間反応させる方法が挙げられる。
 また、前記無水(メタ)アクリル酸等との反応((メタ)アクリロイル基の導入)時に、有機溶媒を併用することにより、インダン骨格を有する硬化性樹脂の合成における反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4-ジオキサン、1、3-ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒、トルエン等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調製するために、適宜2種以上を併用してもよい。
 上述の無水(メタ)アクリル酸等との反応((メタ)アクリロイル基の導入)の終了後は、反応生成物を水洗した後、加熱減圧条件下で未反応の無水(メタ)アクリル酸等や併用した有機溶媒を留去する。更に、得られるインダン骨格を有する硬化性樹脂中の加水分解性ハロゲンを一層低減するために、インダン骨格を有する硬化性樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるインダン骨格を有する硬化性樹脂に対して0.1~10質量%の範囲が好ましい。反応終了後は生成した塩を濾過又は水洗などにより除去し、加熱減圧条件下で有機溶媒を留去することにより、加水分解性塩素の含有率が低い目的のインダン骨格を有する硬化性樹脂を得ることができる。
 前記インダン骨格を有する硬化性樹脂の軟化点としては、150℃以下であることが好ましく、30~100℃であることがより好ましい。前記インダン骨格を有する硬化性樹脂の軟化点が前記範囲内であると、加工性に優れるため好ましい。
 <硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、前記インダン骨格を有する硬化性樹脂を含有することが好ましい。前記インダン骨格を有する硬化性樹脂がインダン骨格を有することにより、溶剤溶解性に優れ、硬化性樹脂組成物の調製が容易で、ハンドリング性に優れ、前記インダン骨格を有する硬化性樹脂の構造中に極性官能基の割合が少ないため、誘電特性に優れた硬化物を得ることができる。
 〔その他樹脂等〕
 本発明の硬化性樹脂組成物には、目的を損なわない範囲で特に限定なく使用でき、アルケニル基含有化合物、例えば、ビスマレイミド類、アリルエーテル系化合物、アリルアミン系化合物、トリアリルシアヌレート、アルケニルフェノール系化合物、ビニル基含有ポリオレフィン化合物等を添加することもできる。また、その他の熱硬化性樹脂、例えば、熱硬化性ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、活性エステル樹脂、ベンゾオキサジン樹脂、シアネート樹脂等も目的に応じて適宜配合することも可能である。
 〔硬化剤〕
 本発明の硬化性樹脂組成物には、硬化剤を含有することができる。前記硬化剤としては、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ-ル系化合物、シアネートエステル化合物などが挙げられる。これらの硬化剤は、単独でも2種類以上の併用でも構わない。
 〔硬化促進剤〕
 本発明の硬化性樹脂組成物には、必要に応じて、硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール類、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、トリフェニルフォスフィン等のリン系化合物、又は、イミダゾール類が好ましい。これらの硬化促進剤は、単独で用いることも2種以上を併用することもできる。また、前記硬化促進剤の添加量は、例えば、前記エポキシ樹脂100質量部に対して、0.01~10質量部の範囲で用いることが好ましい。
 〔難燃剤〕
 本発明の硬化性樹脂組成物には、必要に応じて、難燃性を発揮させるために、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合することができる。前記非ハロゲン系難燃剤として、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、これらを単独、あるいは、組み合わせて用いることができる。
 〔充填剤〕
 本発明の硬化性樹脂組成物には、必要に応じて、無機質充填剤を配合することができる。前記無機質充填剤として、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填剤の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、かつ、成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。また、前記硬化性樹脂組成物を以下に詳述する導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
 〔その他配合剤〕
 本発明の硬化性樹脂組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
 <硬化物>
 本発明の硬化物は、前記硬化性樹脂組成物を硬化反応させて得られることが好ましい。前記硬化性樹脂組成物は、前記インダン骨格を有する硬化性樹脂単独、もしくは、前記インダン骨格を有する硬化性樹脂に加えて、上述した硬化剤などの各成分を均一に混合することにより得られ、従来知られている方法と同様の方法で容易に硬化物とすることができる。前記硬化物としては、積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
 前記硬化反応としては、熱硬化や紫外線硬化反応などが挙げられ、中でも熱硬化反応としては、無触媒下でも容易に行われるが、さらに速く反応させたい場合には、有機過酸化物、アゾ化合物のような重合開始剤やホスフィン系化合物、第3級アミンの様な塩基性触媒の添加が効果的である。例えば、ベンゾイルパーオキシド、ジクミルパーオキシド、アゾビスイソブチロニトリル、トリフェニルホスフィン、トリエチルアミン、イミダゾール類等が挙げられる。
 <用途>
 本発明の硬化性樹脂組成物により得られる硬化物が、耐熱性、及び、誘電特性に優れることから、耐熱部材や電子部材に好適に使用可能である。特に、プリプレグ、回路基板、半導体封止材、半導体装置、ビルドアップフィルム、ビルドアップ基板、接着剤やレジスト材料などに好適に使用できる。また、繊維強化樹脂のマトリクス樹脂にも好適に使用でき、高耐熱性のプリプレグとして特に適している。また、前記硬化性樹脂組成物に含まれる前記インダン骨格を有する硬化性樹脂は、各種溶剤への優れた溶解性を示すことから塗料化が可能である。こうして得られる耐熱部材や電子部材は、各種用途に好適に使用可能であり、例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品、宇宙・航空関連部品、電子・電気部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品、風力発電用筐体部材等が挙げられるが、これらに限定される物ではない。
 次に本発明を実施例、比較例により具体的に説明するが、以下において、「部」及び「%」は特に断わりのない限り質量基準である。なお、以下に示す条件に硬化性樹脂、及び、前記硬化性樹脂を用いて得られる硬化物を合成し、更に得られた硬化物について、以下の条件にて測定又は計算し、評価を行った。
 <GPC測定(数平均分子量、及び、平均繰り返し単位数の評価)>
 以下の測定装置、測定条件を用いて測定し、以下に示す合成方法で得られたインダン骨格を有する硬化性樹脂のGPCチャートを得た。前記GPCチャートの結果より、インダン骨格を有する硬化性樹脂の数平均分子量(Mn)に基づき、インダン骨格を有する硬化性樹脂中のインダン骨格に寄与する平均繰り返し単位数nを算出した。具体的にはnが0~4の化合物について、理論分子量とGPCにおけるそれぞれの実測値分子量とで散布図上にプロット、近似直線を引き、直線上の実測値Mn(1)が示す点より数平均分子量(Mn)を求め、平均繰り返し単位数nを算出した。
 測定装置:東ソー株式会社製「HLC-8320 GPC」
 カラム:東ソー株式会社製ガードカラム「HXL-L」+東ソー株式会社製「TSK-GEL G2000HXL」+東ソー株式会社製「TSK-GEL G2000HXL」+東ソー株式会社製「TSK-GEL G3000HXL」+東ソー株式会社製「TSK-GEL G4000HXL」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
 測定条件:カラム温度 40℃
      展開溶媒 テトラヒドロフラン
      流速 1.0ml/分
 標準:前記「GPCワークステーション EcoSEC-WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料:合成例で得られたインダン骨格を有する硬化性樹脂の固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
 (実施例1)
 温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた1Lフラスコに2,6-ジメチルフェノール48.9g(0.4mol)、α,α’-ジヒドロキシ-1,3-ジイソプロピルベンゼン272.0g(1.4mol)、キシレン280g、及び、活性白土70gを仕込み、攪拌しながら120℃まで加熱した。さらに留出水をディーンスターク管で取り除きながら210℃になるまで昇温し、3時間反応させた。その後140℃まで冷却し、2,6-ジメチルフェノール146.6g(1.2mol)を仕込んだ後、220℃まで昇温し、3時間反応させた。反応後、100℃まで空冷し、トルエン300gで希釈して、ろ過により活性白土を除き、減圧下で溶剤、及び、未反応物等の低分子量物を留去することにより、中間体フェノール化合物365.3gを得た。得られた中間体フェノール化合物の水酸基当量(フェノール当量)は299であった。
 温度計、冷却管、攪拌機を取り付けた2Lフラスコに、得られた中間体フェノール化合物365.3gとトルエン700gを仕込み約85℃で攪拌した。次にジメチルアミノピリジン29.9g(0.24mol)を仕込み。固体がすべて溶解したと思われる時点で無水メタクリル酸277.5g(1.8mol)を1時間かけて滴下した。滴下終了後、85℃でさらに3時間反応させた。反応液を、5Lのビーカー中マグネチックスターラーで激しく撹拌したメタノール4000g中に1時間かけて滴下した。得られた沈殿物を、メンブランフィルターで減圧濾過後乾燥し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。なお、平均繰り返し単位数nは、GPC測定を行い、そのGPCチャートが図1であり、数平均分子量(Mn)により、算出した。以下、その他実施例、及び、比較例についても、同様に平均繰り返し単位数nを算出した。
Figure JPOXMLDOC01-appb-C000015
 (実施例2)
 上記実施例1における無水メタクリル酸を、無水アクリル酸227.0g(1.8mol)に変更した以外は、上記実施例1と同様の方法で合成を実施し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。
Figure JPOXMLDOC01-appb-C000016
 (実施例3)
 上記実施例1における2,6-ジメチルフェノールを、o-フェニルフェノール306.3g(1.8mol)に変更した以外は、上記実施例1と同様の方法で合成を実施し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。
Figure JPOXMLDOC01-appb-C000017
 (実施例4)
 上記実施例1における2,6-ジメチルフェノールを、2-シクロヘキシルフェノール317.3g(1.8mol)に変更した以外は、上記実施例1と同様の方法で合成を実施し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。
Figure JPOXMLDOC01-appb-C000018
 (実施例5)
 上記実施例1における2,6-ジメチルフェノールを、2-ベンジルフェノール331.6g(1.8mol)に変更した以外は、上記実施例1と同様の方法で合成を実施し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。
Figure JPOXMLDOC01-appb-C000019
 (実施例6)
 上記実施例1における2,6-ジメチルフェノールを、フェノール169.4g(1.8mol)に変更した以外は、上記実施例1と同様の方法で合成を実施し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。
Figure JPOXMLDOC01-appb-C000020
 (実施例7)
 上記実施例1における2,6-ジメチルフェノールを、カテコール198.2g(1.8mol)に変更し、無水メタクリル酸の添加量を555.0g(1.8×2mol)に変更した以外は、上記実施例1と同様の方法で合成を実施し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。
Figure JPOXMLDOC01-appb-C000021
 (実施例8)
 上記実施例1における2,6-ジメチルフェノールを、ピロガロール227.0g(1.8mol)に変更し、無水メタクリル酸の添加量を832.5g(1.8×3mol)に変更した以外は、上記実施例1と同様の方法で合成を実施し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。
Figure JPOXMLDOC01-appb-C000022
 (実施例9)
 上記実施例1における2,6-ジメチルフェノールを、2-ナフトール259.5g(1.8mol)に変更した以外は、上記実施例1と同様の方法で合成を実施し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。
Figure JPOXMLDOC01-appb-C000023
 (比較例1)
 温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた1Lフラスコに2,6-ジメチルフェノール48.9g(0.4mol)、α,α’-ジヒドロキシ-1,3-ジイソプロピルベンゼン272.0g(1.4mol)、キシレン280g、及び、活性白土70gを仕込み、攪拌しながら120℃まで加熱した。さらに留出水をディーンスターク管で取り除きながら210℃になるまで昇温し、3時間反応させた。その後140℃まで冷却し、2,6-ジメチルフェノール146.6g(1.2mol)を仕込んだ後、220℃まで昇温し、3時間反応させた。反応後、100℃まで空冷し、トルエン300gで希釈して、ろ過により活性白土を除き、減圧下で溶剤、及び、未反応物等の低分子量物を留去することにより、中間体フェノール化合物365.3gを得た。得られた中間体フェノール化合物の水酸基当量(フェノール当量)は299であった。
 温度計、冷却管、攪拌機を取り付けた2Lフラスコに、得られた中間体フェノール化合物365.3g、2,4-ジニトロフェノール(2,4-DNP)0.184g(0.001mol)、テトラブチルアンモニウムブロミド(TBAB)23.5g(0.073mol)、クロロメチルスチレン209g(1.37mol)、及び、メチルエチルケトン400gを加え攪拌しながら75℃に昇温した。次いで、75℃に保った反応容器に48%-NaOHaqを20分かけて滴下した。滴下終了後、さらに75℃で4h攪拌を継続した。4h後、室温まで冷却し、トルエン100gを加え、さらに10%HClを加えて中和した。その後、水相を分液することにより分離し、さらに水300mで3回分液洗浄した。得られた有機相を蒸留することにより濃縮し、メタノールを加えて生成物を再沈殿した。沈殿を濾過・乾燥し、下記構造式のインダン骨格を有する硬化性樹脂(平均繰り返し単位数n=1.6)を得た。
Figure JPOXMLDOC01-appb-C000024
 <樹脂フィルム(硬化物)の作成>
 実施例、及び、比較例で得られた硬化性樹脂(固体粉末)を5cm角の正方形の型枠に入れ、ステンレス板で挟み、真空プレスにセットした。常圧常温下で1.5MPaまで加圧した。次に10torrまで減圧後、熱硬化温度より50℃高い温度まで30分かけて加温した。さらに2時間静置後、室温まで徐冷した。その結果、平均膜厚が100μmの均一な樹脂フィルム(硬化物)を作製した。
 <耐熱性の評価>
 得られた樹脂フィルム(硬化物)について、パーキンエルマー製DSC装置(Pyris Diamond)を用い、室温から20℃/分の昇温条件で測定した際に観測される発熱ピーク温度(熱硬化温度)の観測後、それより50℃高い温度で30分間保持した。ついで、20℃/分の降温条件で室温まで試料を冷却し、さらに、再度20℃/分の昇温条件で昇温し、樹脂フィルム(硬化物)のガラス転移点温度(Tg)(℃)を測定した。なお、ガラス転移点温度(Tg)としては、100℃以上であれば、実用上問題がなく、好ましくは、150℃以上である。
 <誘電特性の評価>
 得られた樹脂フィルム(硬化物)の面内方向の誘電特性について、キーサイト・テクノロジー社のネットワークアナライザーN5247Aを用いて、スプリットポスト誘電体共振器法により、周波数10GHzについて誘電率、及び、誘電正接を測定した。なお、誘電正接としては、10×10-3以下であれば、実用上問題がなく、好ましくは、7.5×10-3以下であり、誘電率としては、3以下であれば、実用上問題がなく、好ましくは、2.7以下であることが好ましく、より好ましくは、2.5以下である。
Figure JPOXMLDOC01-appb-T000025
 上記表1の評価結果より、実施例1~9においては、硬化性樹脂を使用することで得られる硬化物は、耐熱性、及び、誘電特性(特に低誘電正接)に優れることが確認された。中でも、硬化性樹脂の構造中の各末端にメタクリロイル基を1つ有する硬化性樹脂を用いた実施例1、及び、3~6においては、誘電率の低下が認められ、低誘電特性の向上が認められた。また、硬化性樹脂の構造中の各末端にメタクリロイル基を複数有する実施例7及び8においては、耐熱性の向上が認められた。一方、比較例1においては、インダン骨格を有する硬化性樹脂中に(メタ)アクリロイル基を有さないため、実施例と比較して、誘電正接が高く、耐熱性と誘電特性の両立が図れていないことが確認された。
 本発明の硬化制樹脂を使用し得られる硬化物は、耐熱性、及び、誘電特性に優れることから、耐熱部材や電子部材に好適に使用可能であり、特に、プリプレグ、半導体封止材、回路基板、ビルドアップフィルム、ビルドアップ基板等や、接着剤やレジスト材料に好適に使用可能である。また、繊維強化樹脂のマトリクス樹脂にも好適に使用可能であり、高耐熱性のプリプレグとして適している。

Claims (4)

  1.  下記一般式(1)で表されるインダン骨格を有することを特徴とする硬化性樹脂。
    Figure JPOXMLDOC01-appb-C000001
    ・・・(1)
    (上記式(1)中、Xは(メタ)アクリロイル基を表す。Ra及びRbは、それぞれ独立に炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基であり、jは1~3の整数を示し、k、lはそれぞれ独立に0~4の整数を示す。nは平均繰り返し単位数であり、0.5~20の数値を示し、mは0~2の整数を示す。なお、Ra、X及び炭素原子から芳香環への直線は、当該芳香環上のいずれの箇所に結合していてもよいことを示す。)
  2.  下記一般式(2)で表されるインダン骨格を有する請求項1に記載の硬化性樹脂。
    Figure JPOXMLDOC01-appb-C000002
    ・・・(2)
    (上記式(2)中、R及びRは、それぞれ独立に水素原子、炭素原子数1~12のアルキル基、アリール基、アラルキル基、又は、シクロアルキル基であり、かつ、R及びRの両方が同時に水素原子であることはなく、nは平均繰り返し単位数であり、0.5~20の数値を示す。)
  3.  請求項1又は2に記載の硬化性樹脂を含有することを特徴とする硬化性樹脂組成物。
  4.  請求項3に記載の硬化性樹脂組成物を硬化反応させて得られることを特徴とする硬化物。
PCT/JP2021/009703 2020-04-06 2021-03-11 硬化性樹脂、硬化性樹脂組成物、及び、硬化物 WO2021205806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227032188A KR20220164699A (ko) 2020-04-06 2021-03-11 경화성 수지, 경화성 수지 조성물, 및, 경화물
JP2021529432A JP6962507B1 (ja) 2020-04-06 2021-03-11 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
US17/917,232 US20230159695A1 (en) 2020-04-06 2021-03-11 Curable resin, curable resin composition, and cured product
CN202180023844.6A CN115348977B (zh) 2020-04-06 2021-03-11 硬化性树脂、硬化性树脂组合物及硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020068475 2020-04-06
JP2020-068475 2020-04-06

Publications (1)

Publication Number Publication Date
WO2021205806A1 true WO2021205806A1 (ja) 2021-10-14

Family

ID=78023748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009703 WO2021205806A1 (ja) 2020-04-06 2021-03-11 硬化性樹脂、硬化性樹脂組成物、及び、硬化物

Country Status (6)

Country Link
US (1) US20230159695A1 (ja)
JP (1) JP6962507B1 (ja)
KR (1) KR20220164699A (ja)
CN (1) CN115348977B (ja)
TW (1) TW202138409A (ja)
WO (1) WO2021205806A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008079A1 (ja) * 2021-07-29 2023-02-02 Dic株式会社 硬化性樹脂組成物、および、硬化物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240076816A (ko) * 2021-11-18 2024-05-30 디아이씨 가부시끼가이샤 경화성 수지, 경화성 수지 조성물 및 경화물
TW202346461A (zh) 2022-03-14 2023-12-01 日商三菱瓦斯化學股份有限公司 樹脂組成物、硬化物、預浸體、覆金屬箔疊層板、樹脂複合片、印刷配線板、及半導體裝置
JPWO2023176765A1 (ja) 2022-03-14 2023-09-21
TW202346398A (zh) 2022-03-14 2023-12-01 日商三菱瓦斯化學股份有限公司 樹脂、樹脂組成物、硬化物、預浸體、覆金屬箔疊層板、樹脂複合片、印刷配線板、及半導體裝置
TW202342631A (zh) 2022-03-14 2023-11-01 日商三菱瓦斯化學股份有限公司 樹脂組成物、硬化物、預浸體、覆金屬箔疊層板、樹脂複合片、印刷配線板、及半導體裝置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247202A (ja) * 1992-03-06 1993-09-24 Sumitomo Chem Co Ltd 熱硬化性樹脂組成物およびそれを用いた銅張り積層板
JPH06287230A (ja) * 1993-04-01 1994-10-11 Teijin Ltd ジアリル化合物および該化合物を用いた架橋重合体の製造方法
WO2008123235A1 (ja) * 2007-03-30 2008-10-16 Dic Corporation 高分子安定化液晶組成物、液晶表示素子、液晶表示素子の製造方法
JP2010014869A (ja) * 2008-07-02 2010-01-21 Dic Corp 液晶素子
JP2010202778A (ja) * 2009-03-04 2010-09-16 Adeka Corp 重合性化合物、これを含有する重合性組成物及びその重合体
JP2011168673A (ja) * 2010-02-17 2011-09-01 Tokyo Institute Of Technology 1−メチレンインダン重合体及びその製造方法、ブロック共重合体及びその製造方法、並びに、光学フィルム。
JP2012036233A (ja) * 2010-08-03 2012-02-23 Osaka City Univ マレイミド系重合体
JP2012193362A (ja) * 2011-03-03 2012-10-11 Jx Nippon Oil & Energy Corp インダン系重合体及びその製造方法、並びにインデン系重合体及びその製造方法
JP2013080033A (ja) * 2011-10-03 2013-05-02 Shin Etsu Chem Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2019183020A (ja) * 2018-04-11 2019-10-24 株式会社Adeka 重合性組成物、ブラックマトリクス用感光性組成物及びカラーフィルタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707558A (en) 1986-09-03 1987-11-17 The Dow Chemical Company Monomers and oligomers containing a plurality of vinylbenzyl ether groups, method for their preparation and cured products therefrom
DE3773398D1 (de) 1986-12-29 1991-10-31 Allied Signal Inc Thermohaertbare polymere von mit styrol endenden tetrakis-phenolen.
JPH0710902B2 (ja) 1987-09-04 1995-02-08 昭和高分子株式会社 硬化性樹脂組成物
JP3414556B2 (ja) 1995-07-24 2003-06-09 昭和高分子株式会社 ポリビニルベンジルエーテル化合物およびその製造方法
JP4591946B2 (ja) 2004-04-28 2010-12-01 日本化薬株式会社 ポリ(ビニルベンジル)エーテル化合物およびその製造方法
JP6629692B2 (ja) * 2016-07-22 2020-01-15 Jfeケミカル株式会社 ビスマレイミド化合物およびその製造方法
TWI799550B (zh) * 2018-03-27 2023-04-21 日商富士軟片股份有限公司 壓印用硬化性組成物、脫模劑、硬化物、圖案形成方法和微影方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247202A (ja) * 1992-03-06 1993-09-24 Sumitomo Chem Co Ltd 熱硬化性樹脂組成物およびそれを用いた銅張り積層板
JPH06287230A (ja) * 1993-04-01 1994-10-11 Teijin Ltd ジアリル化合物および該化合物を用いた架橋重合体の製造方法
WO2008123235A1 (ja) * 2007-03-30 2008-10-16 Dic Corporation 高分子安定化液晶組成物、液晶表示素子、液晶表示素子の製造方法
JP2010014869A (ja) * 2008-07-02 2010-01-21 Dic Corp 液晶素子
JP2010202778A (ja) * 2009-03-04 2010-09-16 Adeka Corp 重合性化合物、これを含有する重合性組成物及びその重合体
JP2011168673A (ja) * 2010-02-17 2011-09-01 Tokyo Institute Of Technology 1−メチレンインダン重合体及びその製造方法、ブロック共重合体及びその製造方法、並びに、光学フィルム。
JP2012036233A (ja) * 2010-08-03 2012-02-23 Osaka City Univ マレイミド系重合体
JP2012193362A (ja) * 2011-03-03 2012-10-11 Jx Nippon Oil & Energy Corp インダン系重合体及びその製造方法、並びにインデン系重合体及びその製造方法
JP2013080033A (ja) * 2011-10-03 2013-05-02 Shin Etsu Chem Co Ltd ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP2019183020A (ja) * 2018-04-11 2019-10-24 株式会社Adeka 重合性組成物、ブラックマトリクス用感光性組成物及びカラーフィルタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008079A1 (ja) * 2021-07-29 2023-02-02 Dic株式会社 硬化性樹脂組成物、および、硬化物

Also Published As

Publication number Publication date
CN115348977B (zh) 2023-11-21
TW202138409A (zh) 2021-10-16
CN115348977A (zh) 2022-11-15
JP6962507B1 (ja) 2021-11-05
JPWO2021205806A1 (ja) 2021-10-14
KR20220164699A (ko) 2022-12-13
US20230159695A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
JP6962507B1 (ja) 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
JP5330013B2 (ja) エポキシ樹脂組成物および硬化物
WO2007080998A1 (ja) シアナト基含有環状ホスファゼン化合物およびその製造方法
TWI466911B (zh) A soluble imide skeleton resin, a soluble imide skeleton resin solution composition, a hardened resin composition and a hardened product thereof
JP7524930B2 (ja) 硬化性樹脂、その製造方法、及び硬化性樹脂組成物、硬化物
CN102026963B (zh) 具有高脂族碳含量的芳族二氰酸酯化合物
JP2005264154A (ja) 新規なシアネートエステル化合物、難燃性樹脂組成物、およびその硬化物
JP5234962B2 (ja) プリプレグ、積層板およびプリント配線板
JP5079721B2 (ja) エポキシ樹脂組成物および成形物
JP7415272B2 (ja) インダンビスフェノール化合物、硬化性樹脂組成物、及び、硬化物
WO2022137915A1 (ja) 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
KR101814313B1 (ko) 열경화성 수지 조성물 및 그 용도
TW202140600A (zh) 固化性樹脂、固化性樹脂組成物、固化物、電子器件、堆疊板材料、電子零件密封材及固化性樹脂的製造方法
JP5937431B2 (ja) 樹脂組成物およびその硬化物
JP2013119608A (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2021130744A (ja) 硬化性樹脂組成物、及び、硬化物
JP2022102140A (ja) 硬化性樹脂、硬化性樹脂組成物、及び、硬化物
WO2024122556A1 (ja) 鎖連結剤、硬化性樹脂組成物及びその硬化物、鎖連結方法、エポキシ樹脂
WO2024070773A1 (ja) 多官能ビニル化合物、その組成物、及び硬化物
WO2024071047A1 (ja) 多官能ビニル樹脂、その製造方法、組成物及び硬化物
WO2024029602A1 (ja) 樹脂組成物及び硬化物
WO2022186292A1 (ja) エポキシ樹脂、それらの製造方法、それらを用いたエポキシ樹脂組成物及び硬化物
WO2023276760A1 (ja) アリルエーテル化合物、その樹脂組成物、及びその硬化物、並びにアリルエーテル化合物の製造方法
JP2021130743A (ja) 硬化性樹脂組成物、及び、硬化物
JP2010195851A (ja) エポキシ樹脂組成物、プリプレグおよび硬化物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021529432

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785337

Country of ref document: EP

Kind code of ref document: A1