WO2021201280A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2021201280A1
WO2021201280A1 PCT/JP2021/014331 JP2021014331W WO2021201280A1 WO 2021201280 A1 WO2021201280 A1 WO 2021201280A1 JP 2021014331 W JP2021014331 W JP 2021014331W WO 2021201280 A1 WO2021201280 A1 WO 2021201280A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
width direction
circumferential
land portion
tire width
Prior art date
Application number
PCT/JP2021/014331
Other languages
English (en)
French (fr)
Inventor
賢人 石津
佳史 小石川
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to DE112021000862.5T priority Critical patent/DE112021000862T5/de
Priority to CN202180023126.9A priority patent/CN115315359B/zh
Priority to US17/907,625 priority patent/US20230191849A1/en
Publication of WO2021201280A1 publication Critical patent/WO2021201280A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Definitions

  • the present invention relates to a tire.
  • Some of the conventional tires have a tread part for the purpose of achieving both steering stability, ice and snow performance that is driving performance on snowy roads and frozen road surfaces, and wet performance that is driving performance on wet road surfaces.
  • the method for improving the ice and snow performance include a method in which a lug groove extending in the tire width direction is bent in the tire circumferential direction while extending in the tire width direction. By bending the lug groove, the volume of the lug groove can be increased, so that more snow can enter the lug groove to increase the snow column shearing force, and the edge length can be secured. Therefore, the edge effect can be increased.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a tire capable of satisfying dry performance, wet performance, and ice / snow performance.
  • the tire according to the present invention has a plurality of circumferential grooves extending in the tire circumferential direction, a plurality of lug grooves extending in the tire width direction, and both sides in the tire width direction.
  • a plurality of land portions that are partitioned by the circumferential groove and are partitioned by the lug grooves on both sides in the tire circumferential direction are provided, and the widthwise edge portion that is the edge portion of the lug groove in the land portion is the tire circumference.
  • the tire has a plurality of widthwise bent portions that extend in the direction and bend in the tire circumferential direction, and among the plurality of widthwise bent portions possessed by one widthwise edge portion, the center of the land portion in the tire width direction is the tire.
  • the widthwise bending portion closest to the land portion centerline on the outer side in the tire width direction with respect to the land portion centerline passing in the circumferential direction is defined as the outer bending portion, and a plurality of the widthwise bending portions possessed by one widthwise edge portion.
  • the width direction edge portion is the outer bending portion.
  • the portion between the and the inner bent portion is formed in a linear shape, and the land portion has the width w1 in the tire width direction from the outermost position of the land portion in the tire width direction to the outer bent portion and the land portion.
  • the relationship between the innermost position in the tire width direction of the portion and the width w2 in the tire width direction from the inner bent portion satisfies w2 ⁇ w1, the maximum width wb in the tire width direction of the land portion, and the outer bent portion.
  • the relationship between the inner bent portion and the width wc in the tire width direction is within the range of 0.2 ⁇ (wc / wb) ⁇ 0.6.
  • the outer circumferential edge which is the circumferential edge portion on the outer side in the tire width direction.
  • the portion is preferably formed in a straight shape extending in the tire circumferential direction.
  • the inner circumferential edge which is the circumferential edge portion inside the tire width direction preferably has a circumferentially bent portion that is convex and bends inward in the tire width direction.
  • the intersection of one of the width direction edge portions and the inner circumferential edge portion is defined as ⁇
  • the other width is defined as ⁇ .
  • the distance w ⁇ between the intersection ⁇ and the circumferential bending portion in the tire width direction has a relationship of 0.1 ⁇ (w ⁇ / wb) with the maximum width wb in the tire width direction of the land portion.
  • the distance w ⁇ between the intersection ⁇ and the circumferentially bent portion in the tire width direction is within the range of ⁇ 0.2
  • the relationship between the maximum width wb in the tire width direction of the land portion is 0.1 ⁇ ( It is preferably within the range of w ⁇ / wb) ⁇ 0.2.
  • the width w1 in the tire width direction from the outermost position to the outer bent portion has a relationship with the maximum width wb in the tire width direction of the land portion (w1 / wb) ⁇ 0.3.
  • the width w2 in the tire width direction from the innermost position to the inner bent portion satisfies (w2 / wb) ⁇ 0.1 in relation to the maximum width wb in the tire width direction of the land portion. Is preferable.
  • the distance Lk between the outer bent portion and the inner bent portion in the tire circumferential direction has a relationship of 0.05 ⁇ (Lk / Lb) ⁇ with the total length Lb of the land portion in the tire circumferential direction. It is preferably in the range of 0.2.
  • the tire according to the present invention has the effect of being able to satisfy both dry performance, wet performance, and ice and snow performance.
  • FIG. 1 is a plan view showing a tread portion of a tread portion of a pneumatic tire according to an embodiment.
  • FIG. 2 is a detailed view of part A of FIG.
  • FIG. 3 is a detailed view of part A of FIG. 1, and is an explanatory view of the magnitude of the amplitude of the edge portion in the width direction in the tire circumferential direction.
  • FIG. 4 is a detailed view of part A of FIG. 1, and is an explanatory view of the shape of the edge portion in the inner peripheral direction.
  • FIG. 5A is a chart showing the results of the performance evaluation test of the pneumatic tire.
  • FIG. 5B is a chart showing the results of the performance evaluation test of the pneumatic tire.
  • FIG. 5C is a chart showing the results of the performance evaluation test of the pneumatic tire.
  • a pneumatic tire 1 will be used as an example of the tire according to the present invention.
  • the pneumatic tire 1, which is an example of a tire, can be filled with an inert gas such as air or nitrogen and other gases.
  • the tire radial direction means a direction orthogonal to the tire rotation axis (not shown) which is the rotation axis of the pneumatic tire 1, and the inside in the tire radial direction is the tire rotation axis in the tire radial direction.
  • the facing side, the outer side in the tire radial direction means the side away from the tire rotation axis in the tire radial direction.
  • the tire circumferential direction refers to a circumferential direction centered on the tire rotation axis.
  • the tire width direction means a direction parallel to the tire rotation axis, the inside in the tire width direction is the side toward the tire equatorial plane (tire equatorial line) CL in the tire width direction, and the outside in the tire width direction is the tire width direction. Refers to the side away from the tire equatorial plane CL.
  • the tire equatorial plane CL is a plane that is orthogonal to the tire rotation axis and passes through the center of the tire width of the pneumatic tire 1
  • the tire equatorial plane CL is a tire that is the center position in the tire width direction of the pneumatic tire 1.
  • the position in the width direction coincides with the center line in the width direction.
  • the tire width is the width of the outermost portions in the tire width direction in the tire width direction, that is, the distance between the portions farthest from the tire equatorial plane CL in the tire width direction.
  • the tire equatorial line is a line on the tire equatorial plane CL along the tire circumferential direction of the pneumatic tire 1.
  • the tire meridional cross section means a cross section when the tire is cut on a plane including the tire rotation axis.
  • FIG. 1 is a plan view showing a tread surface 3 of a tread portion 2 of a pneumatic tire 1 according to an embodiment.
  • a tread portion 2 is arranged on the outermost portion in the tire radial direction, and the surface of the tread portion 2, that is, a vehicle on which the pneumatic tire 1 is mounted (not shown).
  • a plurality of grooves are formed on each of the tread surface 3 on both sides in the tire width direction centered on the tire equatorial plane CL, and a plurality of land portions 30 are divided by the plurality of grooves.
  • the groove has a plurality of circumferential grooves 10 extending in the tire circumferential direction and a plurality of lug grooves 15 extending in the tire width direction, and the land portion 30 partitioned by the plurality of grooves has a plurality of circumferences thereof. It is partitioned by a directional groove 10 and a lug groove 15.
  • three circumferential grooves 10 are arranged side by side in the tire width direction, one of the three circumferential grooves 10 is arranged on the tire equatorial plane CL, and the remaining two are arranged.
  • One tire is arranged on each side of the tire equatorial plane CL in the tire width direction.
  • the circumferential groove 10 located at the center in the tire width direction is provided as the center circumferential groove 11, and the center circumferential groove 11 in the tire width direction.
  • the circumferential grooves 10 located on both sides are provided as the outermost peripheral groove 12. That is, of the plurality of circumferential grooves 10, the outermost peripheral groove 12 is a circumferential groove 10 located on both sides of the tire equatorial plane CL in the tire width direction and is located on the outermost side in the tire width direction.
  • the center circumferential groove 11 is formed by repeatedly bending in the tire width direction while extending in the tire circumferential direction. That is, the center circumferential groove 11 is formed in a zigzag shape by oscillating in the tire width direction while extending in the tire circumferential direction. Further, the outermost peripheral direction groove 12 is formed so as to extend linearly in the tire circumferential direction.
  • the circumferential groove 10 formed as described above has a groove width of 8.0 mm or more and 20.0 mm or less, and a groove depth of 7.0 mm or more and 15.0 mm or less. There is.
  • the land portion 30 located inside the outermost peripheral direction groove 12 in the tire width direction is the center land portion 31 and is located outside the outermost outer peripheral direction groove 12 in the tire width direction.
  • the land portion 30 is a shoulder land portion 32.
  • one center circumferential groove 11 is arranged on the tire equatorial plane CL between the two outermost outer peripheral groove 12s located on both sides of the tire equatorial plane CL in the tire width direction. Therefore, two rows of the center land portion 31 located inside the outermost peripheral groove 12 in the tire width direction are arranged on both sides of the center circumferential groove 11 in the tire width direction.
  • the inner side in the tire circumferential direction is partitioned by the center circumferential direction groove 11, and the outer side in the tire circumferential direction is the most. It is partitioned by an outer peripheral groove 12. Further, in each of the two rows of shoulder land portions 32 arranged on the outer side in the tire width direction of the two outermost peripheral direction grooves 12, the inner side in the tire width direction is partitioned by the outermost outermost direction groove 12.
  • the lug groove 15 has a groove width of 5.0 mm or more and 15.0 mm or less, and a groove depth of 7.0 mm or more and 15.0 mm or less.
  • the lug grooves 15 are arranged on the inner side of the outermost peripheral direction groove 12 in the tire width direction and the outer side in the tire width direction, respectively, and among the plurality of lug grooves 15, the lug grooves 15 are located inside the outermost outer peripheral direction groove 12 in the tire width direction.
  • Reference numeral 15 is a center lug groove 16.
  • a plurality of center lug grooves 16 are arranged side by side in the tire circumferential direction on both sides of the center circumferential groove 11 in the tire width direction.
  • the inner end in the tire width direction opens in the center circumferential groove 11, and the outer end in the tire width direction is the outermost circumference. It opens in the directional groove 12. Further, the center lug grooves 16 located on both sides of the center circumferential groove 11 in the tire width direction are arranged at positions different from each other in the tire circumferential direction.
  • the center lug groove 16 is bent a plurality of times in the tire circumferential direction while extending in the tire width direction. That is, the center lug groove 16 has a plurality of bent portions. In the present embodiment, each center lug groove 16 is bent twice in the tire circumferential direction while extending in the tire width direction, and therefore each center lug groove 16 has two bent portions.
  • a bottom raising portion 16a is formed at a position between the end portion on the center circumferential direction groove 11 side and the end portion on the outermost peripheral direction groove 12 side.
  • the bottom raising portion 16a is arranged at a portion between the two bent portions in the center lug groove 16. Since both ends of the center lug groove 16 open to the circumferential groove 10, the center land portion 31 is partitioned by the circumferential groove 10 on both sides in the tire width direction and by the lug groove 15 on both sides in the tire circumferential direction. , So-called block-shaped land portion 30 is formed.
  • the lug groove 15 located on the outer side of the outermost peripheral direction groove 12 in the tire width direction is a shoulder lug groove 17.
  • a plurality of shoulder lug grooves 17 are arranged side by side in the tire circumferential direction in each of the two rows of shoulder land portions 32, and each shoulder lug groove 17 has an inner end portion in the tire width direction opened in the outermost outer peripheral direction groove 12. doing.
  • the shoulder lug groove 17 is formed so as to straddle the ground contact end T in the tire width direction, whereby the shoulder lug groove 17 is the position of the outermost outer peripheral direction groove 12 located inside the ground contact end T in the tire width direction. To the outside of the ground contact end T in the tire width direction.
  • the shoulder lug groove 17 is bent a plurality of times in the tire circumferential direction while extending in the tire width direction, and the bottom of the shoulder lug groove 17 is raised to a position inside the tire width direction with respect to the ground contact end T.
  • the portion 17a is formed.
  • the ground contact end T referred to here is applied with a load corresponding to the normal load by assembling the pneumatic tire 1 to the regular rim to fill the normal internal pressure and placing the tire 1 perpendicular to the flat plate in a stationary state.
  • the regular rim referred to here is a "standard rim" specified by JATTA, a "Design Rim” specified by TRA, or a "Measuring Rim” specified by ETRTO.
  • the normal internal pressure is the "maximum air pressure” specified by JATTA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" specified by TRA, or "INFLATION PRESSURES" specified by ETRTO.
  • the normal load is the "maximum load capacity" specified by JATTA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" specified by TRA, or "LOAD CAPACITY" specified by ETRTO.
  • a plurality of sipes 20 are formed on the tread 3, and the sipes 20 are arranged in each land portion 30 of the center land portion 31 and the shoulder land portion 32. That is, the center sipe 21 is arranged on the center land portion 31, and the shoulder sipe 22 is arranged on the shoulder land portion 32.
  • the sipe 20 referred to here is formed in a fine groove shape on the tread surface 3, and the wall surfaces forming the fine groove when the pneumatic tire 1 is rim-assembled on a regular rim and under normal internal pressure internal pressure conditions and no load is applied. When a fine groove is located on the ground contact surface formed on the flat plate when the load is applied in the vertical direction on the flat plate, or when the land portion 30 where the fine groove is formed collapses, the fine groove is concerned.
  • the wall surfaces forming the groove or at least a part of the portion provided on the wall surface come into contact with each other due to the deformation of the land portion 30.
  • the sipe width which is the distance between the wall surfaces forming the narrow groove, is less than 1 mm, and the sipe depth is within the range of 4.0 mm or more and 12.0 mm or less. ..
  • the center sipe 21, which is the sipe 20 arranged in the center land portion 31, is formed so as to extend in the tire width direction, and both ends are opened in the circumferential groove 10. That is, in the center sipe 21, the inner end in the tire width direction opens in the center circumferential groove 11, and the outer end in the tire width direction opens in the outermost peripheral groove 12. Further, the center sipe 21 is formed substantially parallel to the center lug groove 16. Therefore, the center sipe 21 is bent twice in the tire circumferential direction while extending in the tire width direction, similarly to the center lug groove 16.
  • the number of center sipe 21 formed in this way differs depending on the size of the pitch between the adjacent center lug grooves 16 in the tire circumferential direction. That is, the center lug grooves 16 have a plurality of sizes different in one circumference in the tire circumferential direction as the distance between the center lug grooves 16 adjacent to each other in the tire circumferential direction, that is, as the pitch in the tire circumferential direction. Has a pitch. For this reason, the center lug grooves 16 adjacent to each other in the tire circumferential direction do not all have the same pitch in one round in the tire circumferential direction, and include portions arranged at different pitches.
  • the center sipe 21 arranged between the center lug grooves 16 adjacent to each other in the tire circumferential direction has a pitch among the portions between the center lug grooves 16 adjacent to each other in the tire circumferential direction arranged at different pitches in this way.
  • the number of tires is large in the part where the number is relatively large, and the number is small in the part where the pitch is relatively small.
  • the shoulder sipe 22 which is a sipe 20 arranged on the shoulder land portion 32, is formed so as to extend in the tire width direction, and the inner end portion in the tire width direction opens with respect to the outermost outer peripheral direction groove 12 and is formed in the outermost outer peripheral direction. It extends outward from the position of the groove 12 in the tire width direction. Further, the shoulder sipe 22 is formed so as to straddle the ground contact end T in the tire width direction by extending in the tire width direction, and the end portion on the opposite side of the end portion on the side that opens into the outermost peripheral direction groove 12 is formed. It ends within the shoulder land portion 32. Further, the shoulder sipe 22 oscillates a plurality of times in the tire circumferential direction while extending in the tire width direction in a part of the range between the ends on both sides in the extending direction.
  • the number of shoulder sipes 22 arranged differs depending on the size of the pitch between adjacent shoulder lug grooves 17 as in the case of the center sipes 21 arranged in the center land portion 31. That is, similarly to the center lug groove 16, the shoulder lug grooves 17 adjacent to each other in the tire circumferential direction are arranged at a pitch of a plurality of sizes having different sizes. Of the portions between the shoulder lug grooves 17 adjacent to each other in the tire circumferential direction, which are arranged at different pitches, the number of shoulder sipes 22 is large in the portion where the pitch is relatively large, and in the portion where the pitch is relatively small. It is arranged in a small number.
  • FIG. 2 is a detailed view of part A of FIG. 2 to 4 are explanatory views for explaining the shape of the center land portion 31, and the bottom raising portion 16a and the sipe 20 of the center lug groove 16 are provided so that the shape of the center land portion 31 can be easily recognized.
  • the figure is omitted. Since the center lug groove 16 which is a lug groove 15 for partitioning both sides of the center land portion 31 in the tire circumferential direction is bent a plurality of times in the tire circumferential direction while extending in the tire width direction, the lug groove 15 in the center land portion 31
  • the width direction edge portion 40 which is the edge portion 35 of the tire, is also bent a plurality of times in the tire circumferential direction while extending in the tire width direction. That is, the widthwise edge portions 40 located on both sides of the center land portion 31 in the tire circumferential direction have a plurality of widthwise bent portions 41 that extend in the tire circumferential direction and bend in the tire circumferential direction.
  • the center lug groove 16 since the center lug groove 16 extends in the tire width direction and is bent twice in the tire circumferential direction, the width direction edge portions 40 located on both sides of the center land portion 31 in the tire circumferential direction are also tires. It has two bent portions 41 in the width direction while extending in the width direction. In other words, since the width direction edge portion 40 has the width direction bending portion 41 that bends in the tire circumferential direction, the center lug groove 16 also extends in the tire width direction and bends in the tire circumferential direction.
  • the width-direction bending portion 41 located on the outer side in the tire width direction is the outer bending portion 42, and the width-direction bending portion 41 located on the inner side in the tire width direction.
  • the portion 41 is an inner bent portion 43.
  • the outer bent portion 42 refers to the land portion center line CB that passes through the center of the land portion 30 in the tire width direction in the tire circumferential direction among the plurality of width direction bent portions 41 possessed by one width direction edge portion 40. Therefore, the bent portion 41 in the width direction is closest to the land center line CB on the outer side in the tire width direction.
  • the inner bent portion 43 has a width direction closest to the land center line CB on the inner side in the tire width direction with respect to the land center line CB among a plurality of width direction bent portions 41 possessed by one width direction edge portion 40. It is a bent portion 41.
  • the outer bent portion 42 and the inner bent portion 43 of one widthwise edge portion 40 are bent in opposite directions in the tire circumferential direction. That is, the outer bent portion 42 is bent in a direction that is convex in one direction in the tire circumferential direction, and the inner bent portion 43 is bent in a direction that is convex in the other direction in the tire circumferential direction. Further, in the width direction edge portions 40 located on both sides of the center land portion 31 in the tire circumferential direction, the bending directions of both outer bending portions 42 in the tire circumferential direction are the same direction, and the inner sides of both. The bending directions of the bent portions 43 in the tire circumferential direction are the same as each other.
  • width direction edge portion 40 a portion between the outer bent portion 42 and the inner bent portion 43 is formed in a straight line. Further, the width direction edge portion 40 is also formed in a straight line from the outer bending portion 42 to the end portion of the width direction edge portion 40 on the outermost peripheral direction groove 12 side, and is formed in the width direction from the inner bending portion 43. The portion of the edge portion 40 between the edge portion 40 and the end portion on the center circumferential direction groove 11 side is also formed in a straight line.
  • the width direction edge portion 40 that extends in the tire width direction and bends in the tire circumferential direction has an inclination angle ⁇ w in the tire width direction with respect to the tire circumferential direction of 60 ° or more and 90 ° or less at any position. It is within the range.
  • the center circumferential groove 11 which is the circumferential groove 10 for partitioning the inside of the center land portion 31 in the tire width direction, extends in the tire circumferential direction and repeatedly bends in the tire width direction, the center land portion 31 is formed.
  • the inner peripheral edge portion 52 which is the edge portion 35 of the center circumferential groove 11, is also bent in the tire width direction while extending in the tire circumferential direction.
  • the inner peripheral edge portion 52 is the edge portion 35 of the circumferential groove 10 in the center land portion 31, and among the circumferential edge portions 50 located on both sides of the center land portion 31 in the tire width direction, the tire width direction. It is an inner peripheral edge portion 50.
  • the inner peripheral edge portion 52 has a circumferentially bent portion 53 that is formed by bending in the tire width direction while extending in the tire circumferential direction so as to be convex and bend inward in the tire width direction. That is, the inner peripheral edge portion 52 is bent once in the direction of being convex inward in the tire width direction at the portion of the circumferential bending portion 53 while extending in the tire circumferential direction.
  • the inner circumferential edge portion 52 that extends in the tire circumferential direction and bends in the tire width direction has an inclination angle ⁇ c2 in the tire width direction with respect to the tire circumferential direction within a range of 10 ° or more and 40 ° or less at any position. ing.
  • the outermost peripheral groove 12 which is the circumferential groove 10 for partitioning the outer side of the center land portion 31 in the tire width direction is formed so as to extend linearly in the tire circumferential direction, the outermost outer periphery of the center land portion 31.
  • the outer peripheral edge portion 51 which is the edge portion 35 of the directional groove 12, is also formed in a straight shape extending in the tire circumferential direction.
  • the outer circumferential edge portion 51 is the edge portion 35 of the circumferential groove 10 in the center land portion 31, and among the circumferential edge portions 50 located on both sides of the center land portion 31 in the tire width direction, the tire width direction.
  • the outer peripheral edge portion 50 is formed.
  • the center land portion 31 has a width w1 in the tire width direction from the outermost position 36 in the tire width direction of the center land portion 31 to the outer bending portion 42, and the innermost position 37 in the tire width direction of the center land portion 31.
  • the relationship with the width w2 in the tire width direction up to the inner bent portion 43 satisfies w2 ⁇ w1. That is, the center land portion 31 has a width w1 in the tire width direction from the outermost position 36 in the tire width direction to the outer bent portion 42 in the tire width direction from the innermost position 37 in the tire width direction to the inner bent portion 43. It is larger than the width w2.
  • the outermost position 36 is a position in the tire width direction of the outer peripheral edge portion 51 extending linearly in the tire circumferential direction.
  • the innermost position 37 is a position in the tire width direction of the circumferential bending portion 53, which is a portion of the inner peripheral edge portion 52 that is convex and bends inward in the tire width direction.
  • the width w1 from the outermost position 36 to the outer bent portion 42 of the center land portion 31 and the width w2 from the innermost position 37 to the inner bent portion 43 satisfy the relationship of (w1 / w2) ⁇ 5.
  • the center land portion 31 has a relationship of 1 ⁇ (w1 / w2) ⁇ 5 between the width w1 from the outermost position 36 to the outer bending portion 42 and the width w2 from the innermost position 37 to the inner bending portion 43. It is preferable to meet.
  • the relationship between the width w1 in the tire width direction from the outermost position 36 to the outer bending portion 42 and the maximum width wb in the tire width direction of the center land portion 31 is (w1 / wb) ⁇ . It satisfies 0.3.
  • the relationship between the width w2 in the tire width direction from the innermost position 37 to the inner bending portion 43 and the maximum width wb in the tire width direction of the center land portion 31 is (w2 / wb) ⁇ . It satisfies 0.1.
  • the maximum width wb of the center land portion 31 in the tire width direction is the outermost position 36 of the center land portion 31 in the tire width direction and the innermost position 37 of the center land portion 31 in the tire width direction in the tire width direction. It is a distance.
  • the relationship between the maximum width wb of the center land portion 31 in the tire width direction and the width wc of the outer bent portion 42 and the inner bent portion 43 in the tire width direction is 0.2 ⁇ (wc). / Wb) It is within the range of ⁇ 0.6.
  • FIG. 3 is a detailed view of part A of FIG. 1, and is an explanatory view of the magnitude of the amplitude of the width direction edge portion 40 in the tire circumferential direction.
  • the center land portion 31 includes the distance Lk between the outer bent portion 42 and the inner bent portion 43 in the tire circumferential direction and the center land portion 31 in each of the width direction edge portions 40 located on both sides of the center land portion 31 in the tire circumferential direction.
  • the relationship with the total length Lb in the tire circumferential direction is within the range of 0.05 ⁇ (Lk / Lb) ⁇ 0.2.
  • the total length Lb of the center land portion 31 in the tire circumferential direction is the distance in the tire circumferential direction between the points farthest in the tire circumferential direction among the points forming the center land portion 31. That is, the total length Lb of the center land portion 31 in the tire circumferential direction includes a portion located on the most one side of the center land portion 31 in the tire circumferential direction and a portion located on the most opposite side of the center land portion 31 in the tire circumferential direction. The distance is in the tire circumferential direction.
  • FIG. 4 is a detailed view of part A of FIG. 1, and is an explanatory view of the shape of the inner peripheral direction edge portion 52.
  • the intersection of the inner circumferential edge portion 52 and one width direction edge portion 40 is ⁇
  • the intersection of the inner circumferential edge portion 52 and the other width direction edge portion 40 is ⁇ .
  • the relationship between the distance Lh between the intersection ⁇ and the intersection ⁇ in the tire circumferential direction and the distance L3 between the intersection ⁇ and the circumferential bending portion 53 in the tire circumferential direction is 0.4 ⁇ (L3 / Lh) ⁇ 0.6. It is within the range of.
  • intersection ⁇ is the intersection of one of the width direction edge portions 40 and the inner circumferential edge portion 52 of the width direction edge portions 40 located on both sides of the tire circumferential direction of the center land portion 31.
  • is the intersection of the other width direction edge portion 40 and the inner peripheral direction edge portion 52.
  • the inner peripheral edge portion 52 of the center land portion 31 has a relationship between the distance w ⁇ in the tire width direction between the intersection ⁇ and the circumferential bending portion 53 and the maximum width wb in the tire width direction of the center land portion 31. It is within the range of 0.1 ⁇ (w ⁇ / wb) ⁇ 0.2.
  • the relationship between the distance w ⁇ between the intersection ⁇ and the circumferential bending portion 53 in the tire width direction and the maximum width wb in the tire width direction of the center land portion 31 is 0.1. It is within the range of ⁇ (w ⁇ / wb) ⁇ 0.2.
  • the pneumatic tire 1 is, for example, a pneumatic tire 1 for a light truck to be mounted on a light truck.
  • the pneumatic tire 1 is rim-assembled on the rim wheel, filled with air inside, and mounted on the vehicle in an inflated state.
  • the pneumatic tire 1 rotates while the tread surface 3 located below the tread surface 3 of the tread portion 2 is in contact with the road surface.
  • the driving force and braking force are transmitted to the road surface or a turning force is generated mainly by the frictional force between the tread surface 3 and the road surface. It runs by running.
  • the edge effect of the circumferential groove 10, the lug groove 15, and the sipe 20 is also used. That is, when traveling on a snowy road surface or an ice road surface, the edge of the circumferential groove 10, the edge of the lug groove 15, and the edge of the sipe 20 are caught on the snow surface or the ice surface, and the vehicle travels by using the resistance. Further, when traveling on an ice road surface, the water on the surface of the ice road surface is absorbed by the sipe 20 to remove the water film between the ice road surface and the tread surface 3, so that the ice road surface and the tread surface 3 can easily come into contact with each other. Become. As a result, the tread surface 3 has a large resistance to the road surface on ice due to the frictional force and the edge effect, and the running performance of the vehicle equipped with the pneumatic tire 1 can be ensured.
  • the pneumatic tire 1 when traveling on a snowy road surface, the pneumatic tire 1 compacts the snow on the road surface with the tread surface 3, and the snow on the road surface enters the lug groove 15 to compact the snow in the groove. become.
  • a so-called snow column shearing force which is a shearing force acting on the snow in the groove, is generated between the pneumatic tire 1 and the snow. do.
  • the shearing force of the snow column creates resistance between the pneumatic tire 1 and the road surface, so that the driving force and braking force can be transmitted to the road surface, resulting in snow traction. Can be secured. As a result, the vehicle can ensure the running performance on the snowy road surface.
  • the widthwise edge portion 40 of the center land portion 31 further has a plurality of widthwise bending portions 41 that bend in the tire circumferential direction. Therefore, since the width direction edge portion 40 has a plurality of width direction bending portions 41, the length of the edge becomes longer, so that the edge effect can be easily exerted, and the width direction formed by bending. The bent portion 41 also makes it easier to exert the edge effect. As a result, the running performance on the ice road surface can be improved. Further, since the width direction edge portion 40 is bent, the length of the lug groove 15 formed by the width direction edge portion 40 at the edge with respect to the tread surface 3 becomes longer, so that water or snow that can enter the lug groove 15 can enter. The amount of can be increased. As a result, the drainage property can be improved and the shearing force of the snow column can be improved, so that the traveling performance on a wet road surface and the traveling performance on a snowy road surface can be improved.
  • the groove Increasing the area reduces the rigidity of the land portion 30.
  • the rigidity of the land portion 30 is reduced, the land portion 30 is easily deformed by the load when traveling on a dry road surface, for example, when a large load is applied to the land portion 30 due to cornering, lane change, or the like. There is a risk that running stability will easily decrease.
  • the widthwise edge portion 40 of the center land portion 31 is from the outermost position 36 located on the outer side of the land portion center line CB in the tire width direction to the outer bending portion 42.
  • the relationship between the width w1 in the tire width direction and the width w2 in the tire width direction from the innermost position 37 located on the outer side of the land center line CB in the tire width direction to the inner bent portion 43 satisfies w2 ⁇ w1.
  • the relationship between the maximum width wb of the center land portion 31 in the tire width direction and the width wc of the outer bent portion 42 and the inner bent portion 43 in the tire width direction is 0.2 ⁇ (wc / wb) ⁇ 0. Since it is within the range of 6, the deformation of the center land portion 31 when a large load is applied to the center land portion 31 can be more reliably suppressed. That is, when the relationship between the maximum width wb of the center land portion 31 in the tire width direction and the width wc of the outer bent portion 42 and the inner bent portion 43 in the tire width direction is (wc / wb) ⁇ 0.2.
  • the width wc of the outer bent portion 42 and the inner bent portion 43 in the tire width direction is too small, the distance between the outer bent portion 42 and the inner bent portion 43 may become too close. In this case, the rigidity of the portion between the outer bent portion 42 and the inner bent portion 43 in the center land portion 31 becomes too low, so that when a large load is applied to the center land portion 31, the center land portion 31 is deformed. It may be difficult to suppress. Further, when the relationship between the maximum width wb of the center land portion 31 in the tire width direction and the width wc of the outer bent portion 42 and the inner bent portion 43 in the tire width direction is (wc / wb)> 0.6.
  • the relationship between the maximum width wb of the center land portion 31 in the tire width direction and the width wc of the outer bent portion 42 and the inner bent portion 43 in the tire width direction is 0.2 ⁇ (wc / wb) ⁇ . If it is within the range of 0.6, the rigidity of the portion between the outer bent portion 42 and the inner bent portion 43 of the center land portion 31 becomes too low, or the position of the center land portion 31 closer to the outside in the tire width direction. It is possible to prevent the rigidity of the tire from becoming too low. As a result, deformation of the center land portion 31 when a large load is applied to the center land portion 31 can be more reliably suppressed, and running stability on a dry road surface can be ensured. As a result, the dry performance, the wet performance, and the ice / snow performance can be more reliably satisfied.
  • the circumferential groove 10 for partitioning the outer side in the tire width direction of the center land portion 31 can be formed in a straight shape.
  • the ease of flow of water flowing in the circumferential groove 10 can be ensured, and the drainage property in the circumferential groove 10 can be improved, so that the running performance on a wet road surface can be improved.
  • the wet performance can be improved more reliably.
  • the center land portion 31 has a circumferential bending portion 53 in which the inner peripheral direction edge portion 52 is convex and bends inward in the tire width direction, the edge component of the inner peripheral direction edge portion 52 can be increased. It is possible to improve the running performance on an ice road surface. Further, since the inner circumferential edge portion 52 is bent, the length of the center circumferential groove 11 formed by the inner circumferential edge portion 52 is increased so that the edge with respect to the tread 3 can be inserted into the center circumferential groove 11. The amount of snow that can be made can be increased. As a result, the shearing force of the snow column can be improved, so that the running performance on the snowy road surface can be improved. As a result, the ice and snow performance can be improved more reliably.
  • the distance Lh in the tire circumferential direction of the intersection ⁇ and the intersection ⁇ which are the intersections of the widthwise edge portions 40 and the inner circumferential edge portions 52 on both sides in the tire circumferential direction, and the tire of the intersection ⁇ and the circumferential bending portion 53. Since the relationship with the distance L3 in the circumferential direction is within the range of 0.4 ⁇ (L3 / Lh) ⁇ 0.6, the rigidity of the center land portion 31 can be made uniform. That is, the relationship between the distance Lh between the intersection ⁇ and the intersection ⁇ and the distance L3 between the intersection ⁇ and the circumferential bending portion 53 is (L3 / Lh) ⁇ 0.4 or (L3 / Lh)> 0.
  • the position of the circumferentially bent portion 53 in the tire circumferential direction may be too biased in any direction in the tire circumferential direction.
  • the rigidity of the center land portion 31 may be greatly biased depending on the position in the tire circumferential direction, and the deformation of the center land portion 31 with respect to the load tends to be significantly different depending on the position in the tire circumferential direction, so that uneven wear occurs. It may be easier to do.
  • the relationship between the distance Lh between the intersection ⁇ and the intersection ⁇ and the distance L3 between the intersection ⁇ and the circumferential bending portion 53 is within the range of 0.4 ⁇ (L3 / Lh) ⁇ 0.6.
  • the dry performance can be improved more reliably while suppressing the occurrence of uneven wear.
  • the relationship between the distance w ⁇ in the tire width direction between the intersection ⁇ and the circumferential bending portion 53 and the maximum width wb in the tire width direction of the land portion 30 is 0.1 ⁇ (w ⁇ / wb) ⁇ 0.2.
  • the relationship between the distance w ⁇ between the intersection ⁇ and the circumferentially bent portion 53 in the tire width direction and the maximum width wb in the tire width direction of the land portion 30 is 0.1 ⁇ (w ⁇ / wb) ⁇ 0. Since it is within the range of .2, while ensuring the rigidity of the circumferential bending portion 53 of the center land portion 31, the running performance on the ice road surface can be improved more reliably, and the running performance on the snow road surface can be improved. can do.
  • the relationship between the distance w ⁇ between the intersection ⁇ and the circumferential bending portion 53 and the maximum width wb of the land portion 30 is (w ⁇ / wb) ⁇ 0.1, or the intersection ⁇ and the circumferential bending portion 53
  • the relationship between the distance w ⁇ and the maximum width wb of the land portion 30 is (w ⁇ / wb) ⁇ 0.1
  • the protrusion amount of the circumferential bending portion 53 may be too small.
  • even if the circumferential bending portion 53 is provided it is difficult to increase the edge component of the inner circumferential edge portion 52, so that it may be difficult to effectively improve the running performance on the ice road surface.
  • the relationship between the distance w ⁇ between the intersection ⁇ and the circumferential bending portion 53 and the maximum width wb of the land portion 30 is (w ⁇ / wb)> 0.2, or the intersection ⁇ and the circumferential bending portion 53
  • the relationship between the distance w ⁇ and the maximum width wb of the land portion 30 is (w ⁇ / wb)> 0.2
  • the protrusion amount of the circumferential bending portion 53 is too large, so that the circumference of the center land portion 31
  • the relationship between the distance w ⁇ between the intersection ⁇ and the circumferential bending portion 53 and the maximum width wb of the land portion 30 is within the range of 0.1 ⁇ (w ⁇ / wb) ⁇ 0.2, and the intersection ⁇
  • the relationship between the distance w ⁇ from the circumferential bending portion 53 and the maximum width wb of the land portion 30 is within the range of 0.1 ⁇ (w ⁇ / wb) ⁇ 0.2
  • the vicinity of the circumferential bending portion 53 By increasing the edge component of the inner peripheral edge portion 52 while ensuring the rigidity of the vehicle, the traveling performance on the ice road surface is improved, and by increasing the length of the center circumferential groove 11, the traveling on the snowy road surface is performed. Performance can be improved. As a result, it is possible to more reliably improve the ice and snow performance while suppressing the occurrence of uneven wear.
  • the relationship between the width w1 in the tire width direction from the outermost position 36 to the outer bent portion 42 and the maximum width wb in the tire width direction of the land portion 30 satisfies (w1 / wb) ⁇ 0.3, and is the maximum. Since the relationship between the width w2 in the tire width direction from the inner position 37 to the inner bent portion 43 and the maximum width wb in the tire width direction of the land portion 30 satisfies (w2 / wb) ⁇ 0.1, the center land portion The rigidity of any of the positions 31 on the outer side in the tire width direction and the position on the inner side in the tire width direction can be set to an appropriate value.
  • the inner bending from the innermost position 37 is performed. Since the width w2 up to the portion 43 becomes too small, there is a possibility that the rigidity of the position of the center land portion 31 toward the inside in the tire width direction becomes too low. In this case, the difference between the rigidity of the center land portion 31 at the position closer to the inside in the tire width direction and the rigidity at the position closer to the outside in the tire width direction may become too large, and uneven wear occurs due to the excessive rigidity difference. It may be easier to do.
  • the relationship between the width w1 from the outermost position 36 to the outer bent portion 42 and the maximum width wb of the land portion 30 satisfies (w1 / wb) ⁇ 0.3, and the inner bent portion from the innermost position 37
  • the relationship between the width w2 up to 43 and the maximum width wb of the land portion 30 satisfies (w2 / wb) ⁇ 0.1
  • the position of the center land portion 31 on the outer side in the tire width direction and the inner side in the tire width direction is appropriately large. As a result, the dry performance can be improved more reliably while suppressing the occurrence of uneven wear.
  • the width w1 in the tire width direction from the outermost position 36 of the center land portion 31 to the outer bending portion 42 and the width w2 in the tire width direction from the innermost position 37 to the inner bending portion 43 are (w1 / w2).
  • the relationship between the width w1 from the outermost position 36 of the center land portion 31 to the outer bending portion 42 and the width w2 from the innermost position 37 to the inner bending portion 43 is (w1 / w2) ⁇ 5.
  • the relationship between the distance Lk between the outer bent portion 42 and the inner bent portion 43 of the center land portion 31 in the tire circumferential direction and the total length Lb of the land portion 30 in the tire circumferential direction is 0.05 ⁇ (Lk / Lb). Since it is within the range of ⁇ 0.2, while ensuring the rigidity in the vicinity of the widthwise edge portion 40 of the center land portion 31, the running performance on the ice road surface can be improved more reliably, and the running performance on the snow road surface can be improved. It can be improved.
  • the relationship between the distance Lk between the outer bent portion 42 and the inner bent portion 43 in the tire circumferential direction and the total length Lb of the land portion 30 is within the range of 0.05 ⁇ (Lk / Lb) ⁇ 0.2.
  • the running performance on the ice road surface is improved by increasing the edge component of the width direction edge portion 40 while ensuring the rigidity in the vicinity of the width direction edge portion 40, or the length of the center lug groove 16 is increased. By lengthening it, it is possible to improve the running performance on a snowy road surface. As a result, it is possible to more reliably improve the ice and snow performance while suppressing the occurrence of uneven wear.
  • the width direction bending portion 41 is formed at two positions on the width direction edge portion 40, but the width direction bending portion 41 formed on one width direction edge portion 40 is 3. It may be more than one place.
  • the outer bending portion 42 and the inner bending portion 43 which are the width direction bending portions 41 closest to the land center line CB, are formed on both sides of the land center line CB in the tire width direction of the land portion 30. It suffices if it is formed, and a widthwise bent portion 41 other than the outer bent portion 42 and the inner bent portion 43 may be further formed.
  • another widthwise bending portion 41 may be formed on the side opposite to the side where the land center line CB is located with respect to the outer bending portion 42, and the land center line CB may be formed with respect to the inner bending portion 43.
  • Another widthwise bent portion 41 may be formed on the opposite side to the side where the position is located.
  • the width direction bending portion 41 is formed by bending the width direction edge portion 40 in a square shape
  • the circumferential bending portion 53 has an inner circumferential edge portion 52 in a square shape.
  • the widthwise bending portion 41 and the circumferential bending portion 53 may not be formed in a square shape.
  • the width direction bending portion 41 and the circumferential direction bending portion 53 may be formed by bending the width direction edge portion 40 and the inner circumferential edge portion 52 by, for example, bending with a small radius of curvature.
  • the circumferential groove 10 is provided with three, but the circumferential groove 10 may be other than three.
  • the circumferential groove 10 may be, for example, two or four or more.
  • the width direction edge portion 40 having a plurality of width direction bending portions 41 has a land portion 30 located inside the outermost peripheral direction groove 12 which is a circumferential groove 10 located on the outermost side in the tire width direction as a center land portion.
  • the edge portion 35 of the lug groove 15 that divides both sides of the center land portion 31 in the tire circumferential direction in the case of 31 may be used. That is, the position of the land portion 30 having the width direction edge portion 40 having a plurality of width direction bending portions 41 does not matter as long as it is the land portion 30 located inside the outermost peripheral direction groove 12 in the tire width direction.
  • the pneumatic tire 1 has been described as an example of the tire according to the present invention, but the tire according to the present invention may be other than the pneumatic tire 1.
  • the tire according to the present invention may be, for example, a so-called airless tire that can be used without being filled with gas.
  • Example 5A to 5C are charts showing the results of performance evaluation tests of pneumatic tires.
  • the performance evaluation test the dry performance, which is the running performance on a dry road surface, the wet performance, which is the running performance on a wet road surface, and the ice-snow performance, which is the running performance on an ice-snow road surface, were tested.
  • the tire nominal 195 / 65R15 91T size pneumatic tire 1 specified by JATTA was rim-assembled on the JATTA standard rim wheel with a rim size of 15 x 6.0J, and the front wheel drive with an exhaust volume of 1400cc. This was done by mounting test tires on the evaluation vehicle of the passenger vehicle, adjusting the air pressure to 230 kPa for the front wheels and 220 kPa for the rear wheels, and running on the evaluation vehicle.
  • the dry performance the steering stability when driving on the dry handling road surface of the test course with the evaluation vehicle equipped with the test tire was compared by the sensory evaluation of the test driver.
  • the dry performance is evaluated by expressing the sensory evaluation of the test driver as an index with the conventional example described later as 100, and the larger the index, the higher the steering stability on the dry road surface and the better the dry performance. There is.
  • the steering stability of the evaluation vehicle equipped with the test tires when running on the wet handling road surface of the test course sprinkled to a depth of 1 mm was compared by the sensory evaluation of the test driver.
  • Wet performance is evaluated by expressing the sensory evaluation of the test driver as an index with the conventional example described later as 100, and it is shown that the larger the index, the higher the steering stability on the wet road surface and the better the wet performance. There is.
  • the traction and steering stability of the evaluation vehicle equipped with the test tires when running on the snow-packed handling road surface of the test course were compared by the sensory evaluation of the test driver.
  • the ice and snow performance is evaluated by expressing the sensory evaluation of the test driver as an index with the conventional example described later as 100. The larger the index, the higher the traction and steering stability on the ice and snow road surface, and the better the ice and snow performance. Is shown.
  • the performance evaluation test compares the conventional pneumatic tire, which is an example of the conventional pneumatic tire, the pneumatic tires 1 according to the present invention, Examples 1 to 17, and the pneumatic tire 1 according to the present invention. Twenty-one types of pneumatic tires with Comparative Examples 1 to 3 which are pneumatic tires were used. Of these, in the conventional example, the width w1 in the tire width direction from the outermost position 36 to the outer bent portion 42 of the land portion 30 and the width w2 in the tire width direction from the innermost position 37 to the inner bent portion 43 are large. Are the same size.
  • Comparative Example 1 the relationship between the width w1 in the tire width direction from the outermost position 36 of the land portion 30 to the outer bending portion 42 and the width w2 in the tire width direction from the innermost position 37 to the inner bending portion 43.
  • w2 > w1.
  • Comparative Example 2 the relationship between the width w1 in the tire width direction from the outermost position 36 of the land portion 30 to the outer bending portion 42 and the width w2 in the tire width direction from the innermost position 37 to the inner bending portion 43.
  • Examples 1 to 17, which are examples of the pneumatic tire 1 according to the present invention the width w1 in the tire width direction from the outermost position 36 to the outer bent portion 42 of the land portion 30 and the innermost position are all present.
  • the relationship between the width w2 in the tire width direction from 37 to the inner bent portion 43 satisfies w2 ⁇ w1, the maximum width wb of the land portion 30, and the width of the outer bent portion 42 and the inner bent portion 43 in the tire width direction.
  • the relationship with wc is within the range of 0.2 ⁇ (wc / wb) ⁇ 0.6.
  • W ⁇ / wb the ratio of the width w1 in the tire width direction from the outermost position 36 to the outer bent portion 42 to the maximum width wb of the land portion 30 (w1 / wb), the maximum width wb of the land portion 30.
  • the ratio (w2 / wb) of the width w2 in the tire width direction from the inner position 37 to the inner bent portion 43 is different from each other.
  • the pneumatic tires 1 according to Examples 1 to 17 are compared with the conventional examples and Comparative Examples 1 to 3. Therefore, it was found that the deterioration of the dry performance, the wet performance, and the ice / snow performance can be suppressed, and the overall performance of the dry performance, the wet performance, and the ice / snow performance can be improved. That is, the pneumatic tire 1 according to Examples 1 to 17 can satisfy the dry performance, the wet performance, and the ice / snow performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

ドライ性能及びウェット性能と、氷雪性能とを満たすために、陸部30におけるラグ溝15のエッジ部35である幅方向エッジ部40は、タイヤ周方向に屈曲する幅方向屈曲部41を複数有し、タイヤ幅方向外側で陸部中心線CBに最も近い幅方向屈曲部41を外側屈曲部42とし、タイヤ幅方向内側で陸部中心線CBに最も近い幅方向屈曲部41を内側屈曲部43とする場合に、陸部30は、陸部30のタイヤ幅方向における最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、陸部30のタイヤ幅方向における最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2との関係が、w2<w1を満たし、陸部30のタイヤ幅方向における最大幅wbと、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcとの関係が、0.2≦(wc/wb)≦0.6の範囲内である。

Description

タイヤ
 本発明は、タイヤに関する。
 従来のタイヤの中には、操縦安定性と、雪道や凍った路面での走行性能である氷雪性能や濡れた路面での走行性能であるウェット性能等との両立を目的として、トレッド部に形成する溝の形状を工夫しているものがある。例えば、特許文献1~6に記載されたタイヤでは、ラグ溝の形状を工夫することにより、操縦安定性や氷雪路面での走行性能、ウェット性能の向上等を図っている。
特開2015-202818号公報 特開2018-172059号公報 特開2018-43628号公報 特開2018-12437号公報 特開2017-226368号公報 特許第5824124号公報
 ここで、ライトトラック系のシビアスノー付きオールシーズンタイヤのような、氷雪路面以外の路面の走行時における走行性能も求められるタイヤでは、氷雪性能に加え、乾燥した路面での走行性能であるドライ性能や、濡れた路面での走行性能であるウェット性能も求められる。氷雪性能を高めるための手法としては、例えば、タイヤ幅方向に延びるラグ溝を、タイヤ幅方向に延びつつタイヤ周方向に屈曲させる手法が挙げられる。ラグ溝を屈曲させることにより、ラグ溝の体積を大きくすることができるため、より多くの雪をラグ溝に入り込ませて雪柱せん断力を増加させることができ、また、エッジ長を確保することができるため、エッジ効果を増加させることができる。ラグ溝を屈曲させた場合、これらにより、氷雪性能を高めることができる。しかし、単にラグ溝を屈曲させても、ドライ性能やウェット性能を向上させるのは困難になっており、ドライ性能及びウェット性能と、氷雪性能とを全て満たすのは、大変困難なものとなっていた。
 本発明は、上記に鑑みてなされたものであって、ドライ性能及びウェット性能と、氷雪性能とを満たすことのできるタイヤを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るタイヤは、タイヤ周方向に延びる複数の周方向溝と、タイヤ幅方向に延びる複数のラグ溝と、タイヤ幅方向における両側が前記周方向溝により区画され、タイヤ周方向における両側が前記ラグ溝により区画される複数の陸部と、を備え、前記陸部における前記ラグ溝のエッジ部である幅方向エッジ部は、タイヤ周方向に延びると共に、タイヤ周方向に屈曲する幅方向屈曲部を複数有し、1つの前記幅方向エッジ部が有する複数の前記幅方向屈曲部のうち、前記陸部のタイヤ幅方向における中心をタイヤ周方向に通る陸部中心線に対してタイヤ幅方向外側で前記陸部中心線に最も近い前記幅方向屈曲部を外側屈曲部とし、1つの前記幅方向エッジ部が有する複数の前記幅方向屈曲部のうち、前記陸部中心線に対してタイヤ幅方向内側で前記陸部中心線に最も近い前記幅方向屈曲部を内側屈曲部とする場合に、前記幅方向エッジ部は、前記外側屈曲部と前記内側屈曲部との間の部分が直線状に形成され、前記陸部は、前記陸部のタイヤ幅方向における最外側位置から前記外側屈曲部までのタイヤ幅方向における幅w1と、前記陸部のタイヤ幅方向における最内側位置から前記内側屈曲部までのタイヤ幅方向における幅w2との関係が、w2<w1を満たし、前記陸部のタイヤ幅方向における最大幅wbと、前記外側屈曲部と前記内側屈曲部とのタイヤ幅方向における幅wcとの関係が、0.2≦(wc/wb)≦0.6の範囲内であることを特徴とする。
 また、上記タイヤにおいて、前記周方向溝のエッジ部であり、前記陸部のタイヤ幅方向両側に位置する周方向エッジ部のうち、タイヤ幅方向外側の前記周方向エッジ部である外側周方向エッジ部は、タイヤ周方向に延びるストレート形状で形成されることが好ましい。
 また、上記タイヤにおいて、前記周方向溝のエッジ部であり、前記陸部のタイヤ幅方向両側に位置する周方向エッジ部のうち、タイヤ幅方向内側の前記周方向エッジ部である内側周方向エッジ部は、タイヤ幅方向内側に凸となって屈曲する周方向屈曲部を有することが好ましい。
 また、上記タイヤにおいて、前記陸部のタイヤ周方向両側に位置する前記幅方向エッジ部のうち、一方の前記幅方向エッジ部と前記内側周方向エッジ部との交点をαとし、他方の前記幅方向エッジ部と前記内側周方向エッジ部との交点をβとする場合に、交点αと交点βとのタイヤ周方向における距離Lhと、前記交点αと前記周方向屈曲部とのタイヤ周方向における距離L3との関係が、0.4≦(L3/Lh)≦0.6の範囲内であることが好ましい。
 また、上記タイヤにおいて、前記交点αと前記周方向屈曲部とのタイヤ幅方向における距離wαは、前記陸部のタイヤ幅方向における最大幅wbとの関係が、0.1≦(wα/wb)≦0.2の範囲内であり、前記交点βと前記周方向屈曲部とのタイヤ幅方向における距離wβは、前記陸部のタイヤ幅方向における最大幅wbとの関係が、0.1≦(wβ/wb)≦0.2の範囲内であることが好ましい。
 また、上記タイヤにおいて、前記最外側位置から前記外側屈曲部までのタイヤ幅方向における幅w1は、前記陸部のタイヤ幅方向における最大幅wbとの関係が、(w1/wb)≧0.3を満たし、前記最内側位置から前記内側屈曲部までのタイヤ幅方向における幅w2は、前記陸部のタイヤ幅方向における最大幅wbとの関係が、(w2/wb)≧0.1を満たすことが好ましい。
 また、上記タイヤにおいて、前記外側屈曲部と前記内側屈曲部とのタイヤ周方向における距離Lkは、前記陸部のタイヤ周方向における全長Lbとの関係が、0.05≦(Lk/Lb)≦0.2の範囲内であることが好ましい。
 本発明に係るタイヤは、ドライ性能及びウェット性能と、氷雪性能とを満たすことができる、という効果を奏する。
図1は、実施形態に係る空気入りタイヤのトレッド部の踏面を示す平面図である。 図2は、図1のA部詳細図である。 図3は、図1のA部詳細図であり、幅方向エッジ部のタイヤ周方向の振幅の大きさについての説明図である。 図4は、図1のA部詳細図であり、内側周方向エッジ部の形状についての説明図である。 図5Aは、空気入りタイヤの性能評価試験の結果を示す図表である。 図5Bは、空気入りタイヤの性能評価試験の結果を示す図表である。 図5Cは、空気入りタイヤの性能評価試験の結果を示す図表である。
 以下に、本発明に係るタイヤの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能、且つ、容易に想到できるもの、或いは実質的に同一のものが含まれる。
[実施形態]
 以下の説明では、本発明に係るタイヤの一例として、空気入りタイヤ1を用いて説明する。タイヤの一例である空気入りタイヤ1は、空気、窒素等の不活性ガス及びその他の気体を充填することができる。
 また、以下の説明において、タイヤ径方向とは、空気入りタイヤ1の回転軸であるタイヤ回転軸(図示省略)と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向においてタイヤ回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向においてタイヤ回転軸から離れる側をいう。また、タイヤ周方向とは、タイヤ回転軸を中心軸とする周り方向をいう。また、タイヤ幅方向とは、タイヤ回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面(タイヤ赤道線)CLに向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。タイヤ赤道面CLとは、タイヤ回転軸に直交すると共に、空気入りタイヤ1のタイヤ幅の中心を通る平面であり、タイヤ赤道面CLは、空気入りタイヤ1のタイヤ幅方向における中心位置であるタイヤ幅方向中心線と、タイヤ幅方向における位置が一致する。タイヤ幅は、タイヤ幅方向において最も外側に位置する部分同士のタイヤ幅方向における幅、つまり、タイヤ幅方向においてタイヤ赤道面CLから最も離れている部分間の距離である。タイヤ赤道線とは、タイヤ赤道面CL上にあって空気入りタイヤ1のタイヤ周方向に沿う線をいう。また、以下の説明では、タイヤ子午断面とは、タイヤ回転軸を含む平面でタイヤを切断したときの断面をいう。
 図1は、実施形態に係る空気入りタイヤ1のトレッド部2の踏面3を示す平面図である。図1に示す空気入りタイヤ1は、タイヤ径方向の最も外側となる部分にトレッド部2が配設されており、トレッド部2の表面、即ち、当該空気入りタイヤ1を装着する車両(図示省略)の走行時に路面と接触する部分は、踏面3として形成されている。踏面3には、タイヤ赤道面CLを中心とするタイヤ幅方向における両側のそれぞれに複数の溝が形成されており、複数の溝によって複数の陸部30が区画されている。溝は、タイヤ周方向に延びる複数の周方向溝10と、タイヤ幅方向に延びる複数のラグ溝15とを有しており、複数の溝により区画される陸部30は、これらの複数の周方向溝10やラグ溝15により区画されている。
 本実施形態では、周方向溝10は3本がタイヤ幅方向に並んで配置されており、3本の周方向溝10は、1本がタイヤ赤道面CL上に配置され、残りの2本は、タイヤ幅方向におけるタイヤ赤道面CLの両側にそれぞれ1本ずつ配置されている。タイヤ幅方向に並ぶ3本の周方向溝10のうち、タイヤ幅方向における中央に位置する周方向溝10は、センター周方向溝11として設けられており、タイヤ幅方向におけるセンター周方向溝11の両側に位置する周方向溝10は、最外周方向溝12として設けられている。つまり、複数の周方向溝10のうち、最外周方向溝12は、タイヤ幅方向におけるタイヤ赤道面CLの両側のそれぞれでタイヤ幅方向における最外側に位置する周方向溝10になっている。
 複数の周方向溝10のうち、センター周方向溝11は、タイヤ周方向に延びつつタイヤ幅方向に繰り返し屈曲して形成されている。即ち、センター周方向溝11は、タイヤ周方向に延びつつタイヤ幅方向に振幅することにより、ジグザグ状に形成されている。また、最外周方向溝12は、タイヤ周方向に直線状に延びて形成されている。これらのように形成される周方向溝10は、溝幅が8.0mm以上20.0mm以下の範囲内になっており、溝深さが7.0mm以上15.0mm以下の範囲内になっている。
 また、複数の陸部30のうち、最外周方向溝12のタイヤ幅方向内側に位置する陸部30は、センター陸部31になっており、最外周方向溝12のタイヤ幅方向外側に位置する陸部30は、ショルダー陸部32になっている。本実施形態では、タイヤ赤道面CLのタイヤ幅方向における両側に位置する2本の最外周方向溝12の間には、1本のセンター周方向溝11がタイヤ赤道面CL上に配置されているため、最外周方向溝12のタイヤ幅方向内側に位置するセンター陸部31は、センター周方向溝11のタイヤ幅方向における両側に2列が配置されている。つまり、最外周方向溝12のタイヤ幅方向内側に位置する2列のセンター陸部31は、いずれもタイヤ周方向における内側が、センター周方向溝11によって区画され、タイヤ周方向における外側は、最外周方向溝12によって区画されている。また、2本の最外周方向溝12のそれぞれのタイヤ幅方向外側に配置される2列のショルダー陸部32は、いずれもタイヤ幅方向における内側が、最外周方向溝12によって区画されている。
 ラグ溝15は、溝幅が5.0mm以上15.0mm以下の範囲内になっており、溝深さが7.0mm以上15.0mm以下の範囲内になっている。ラグ溝15は、最外周方向溝12のタイヤ幅方向内側とタイヤ幅方向外側とのそれぞれに配置され、複数のラグ溝15のうち、最外周方向溝12のタイヤ幅方向内側に位置するラグ溝15は、センターラグ溝16になっている。センターラグ溝16は、センター周方向溝11のタイヤ幅方向両側のそれぞれにおいて、複数がタイヤ周方向に並んで配置されている。センター周方向溝11のタイヤ幅方向両側に位置するセンターラグ溝16は、いずれもタイヤ幅方向における内側の端部がセンター周方向溝11に開口し、タイヤ幅方向における外側の端部が最外周方向溝12に開口している。また、センター周方向溝11のタイヤ幅方向両側に位置するセンターラグ溝16は、タイヤ周方向における位置が互いに異なる位置に配置されている。
 センターラグ溝16は、タイヤ幅方向に延びつつ、タイヤ周方向に複数回屈曲している。即ち、センターラグ溝16は、複数の屈曲部を有している。本実施形態では、各センターラグ溝16は、タイヤ幅方向に延びつつタイヤ周方向に2回屈曲しており、このため、各センターラグ溝16は、2箇所の屈曲部を有している。
 また、センターラグ溝16の溝底には、センター周方向溝11側の端部と最外周方向溝12側の端部との間の位置に、底上げ部16aが形成されている。底上げ部16aは、センターラグ溝16における2箇所の屈曲部同士の間の部分に配置されている。センターラグ溝16は、両端が周方向溝10に開口するため、センター陸部31は、タイヤ幅方向における両側が周方向溝10により区画され、タイヤ周方向における両側がラグ溝15により区画される、いわゆるブロック形状の陸部30として形成されている。
 また、複数のラグ溝15のうち、最外周方向溝12のタイヤ幅方向外側に位置するラグ溝15は、ショルダーラグ溝17になっている。ショルダーラグ溝17は、2列のショルダー陸部32のそれぞれに複数がタイヤ周方向に並んで配置され、各ショルダーラグ溝17は、タイヤ幅方向における内側の端部が最外周方向溝12に開口している。また、ショルダーラグ溝17は、接地端Tをタイヤ幅方向に跨いで形成されており、これにより、ショルダーラグ溝17は、接地端Tのタイヤ幅方向内側に位置する最外周方向溝12の位置から、接地端Tのタイヤ幅方向外側にかけて配置されている。また、ショルダーラグ溝17は、タイヤ幅方向に延びつつ、タイヤ周方向に複数回屈曲しており、ショルダーラグ溝17の溝底には、接地端Tよりもタイヤ幅方向内側の位置に、底上げ部17aが形成されている。
 なお、ここでいう接地端Tは、空気入りタイヤ1を正規リムにリム組みして正規内圧を充填し、静止状態にて平板に対して垂直に置かれて正規荷重に相当する荷重を加えられたときの、踏面3における平板に接触する領域のタイヤ幅方向の両最外端をいい、タイヤ周方向に連続する。ここでいう正規リムとは、JATMAで規定する「標準リム」、TRAで規定する「Design Rim」、或いは、ETRTOで規定する「Measuring Rim」である。また、正規内圧とは、JATMAで規定する「最高空気圧」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、或いはETRTOで規定する「INFLATION PRESSURES」である。また、正規荷重とは、JATMAで規定する「最大負荷能力」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、或いはETRTOで規定する「LOAD CAPACITY」である。
 また、踏面3には、複数のサイプ20が形成されており、サイプ20は、センター陸部31とショルダー陸部32との各陸部30に配置されている。即ち、センター陸部31には、センターサイプ21が配置され、ショルダー陸部32には、ショルダーサイプ22が配置されている。ここでいうサイプ20は、踏面3に細溝状に形成されるものであり、空気入りタイヤ1を正規リムにリム組みし、正規内圧の内圧条件で、無負荷時には細溝を構成する壁面同士が接触しないが、平板上で垂直方向に負荷させたときの平板上に形成される接地面の部分に細溝が位置する際、または細溝が形成される陸部30の倒れ込み時には、当該細溝を構成する壁面同士、或いは壁面に設けられる部位の少なくとも一部が、陸部30の変形によって互いに接触するものをいう。本実施形態では、サイプ20は、細溝を構成する壁面同士の間隔であるサイプ幅が、1mm未満になっており、サイプ深さが4.0mm以上12.0mm以下の範囲内になっている。
 センター陸部31に配置されるサイプ20であるセンターサイプ21は、タイヤ幅方向に延びて形成されており、両端が周方向溝10に開口している。つまり、センターサイプ21は、タイヤ幅方向における内側の端部がセンター周方向溝11に開口し、タイヤ幅方向における外側の端部が最外周方向溝12に開口している。また、センターサイプ21は、センターラグ溝16と略平行に形成されている。このため、センターサイプ21は、センターラグ溝16と同様に、タイヤ幅方向に延びつつタイヤ周方向に2回屈曲している。
 このように形成されるセンターサイプ21は、タイヤ周方向に隣り合うセンターラグ溝16同士のピッチの大きさによって、隣り合うセンターラグ溝16同士の間に配置される本数が異なっている。つまり、センターラグ溝16は、タイヤ周方向に隣り合うセンターラグ溝16同士の間隔、即ち、タイヤ周方向におけるピッチとして、タイヤ周方向における1周の中で、大きさが異なる複数の大きさのピッチを有している。このため、タイヤ周方向に隣り合うセンターラグ溝16同士は、タイヤ周方向における1周の全て同じピッチになっておらず、異なるピッチで配置される部分も含んでいる。タイヤ周方向に隣り合うセンターラグ溝16同士の間に配置されるセンターサイプ21は、このように異なるピッチで配置されるタイヤ周方向に隣り合うセンターラグ溝16同士の間の部分のうち、ピッチが比較的大きい部分では本数が多く、ピッチが比較的小さい部分では少ない本数で配置されている。
 ショルダー陸部32に配置されるサイプ20であるショルダーサイプ22は、タイヤ幅方向に延びて形成されており、タイヤ幅方向における内側端部が最外周方向溝12に対して開口し、最外周方向溝12の位置からタイヤ幅方向外側に向かって延びている。また、ショルダーサイプ22は、タイヤ幅方向に延在することにより、接地端Tをタイヤ幅方向に跨いで形成され、最外周方向溝12に開口する側の端部の反対側の端部は、ショルダー陸部32内で終端している。さらに、ショルダーサイプ22は、延在方向における両側の端部同士の間の一部の範囲で、タイヤ幅方向に延びつつタイヤ周方向に複数回振幅している。
 また、ショルダーサイプ22は、センター陸部31に配置されるセンターサイプ21と同様に、隣り合うショルダーラグ溝17同士のピッチの大きさによって、配置される本数が異なっている。つまり、ショルダーラグ溝17は、センターラグ溝16と同様に、タイヤ周方向に隣り合うショルダーラグ溝17は、大きさが異なる複数の大きさのピッチで配置されている。ショルダーサイプ22は、このように異なるピッチで配置されるタイヤ周方向に隣り合うショルダーラグ溝17同士の間の部分のうち、ピッチが比較的大きい部分では本数が多く、ピッチが比較的小さい部分では少ない本数で配置されている。
 図2は、図1のA部詳細図である。なお、図2~図4は、センター陸部31の形状を説明するための説明図であり、センター陸部31の形状が認識し易くなるようにセンターラグ溝16の底上げ部16aとサイプ20を省略して図示している。センター陸部31のタイヤ周方向における両側を区画するラグ溝15であるセンターラグ溝16は、タイヤ幅方向に延びつつタイヤ周方向に複数回屈曲しているため、センター陸部31におけるラグ溝15のエッジ部35である幅方向エッジ部40も、タイヤ幅方向に延びつつタイヤ周方向に複数回屈曲している。即ち、センター陸部31のタイヤ周方向における両側に位置する幅方向エッジ部40は、それぞれタイヤ周方向に延びると共に、タイヤ周方向に屈曲する幅方向屈曲部41を複数有している。
 本実施形態では、センターラグ溝16は、タイヤ幅方向に延びつつタイヤ周方向に2回屈曲しているため、センター陸部31のタイヤ周方向における両側に位置する幅方向エッジ部40も、タイヤ幅方向に延びつつ、幅方向屈曲部41を2箇所有している。換言すると、幅方向エッジ部40が、タイヤ周方向に屈曲する幅方向屈曲部41を有することにより、センターラグ溝16もタイヤ幅方向に延びつつタイヤ周方向に屈曲している。
 幅方向エッジ部40が有する2箇所の幅方向屈曲部41のうち、タイヤ幅方向外側に位置する幅方向屈曲部41は外側屈曲部42になっており、タイヤ幅方向内側に位置する幅方向屈曲部41は内側屈曲部43になっている。詳しくは、外側屈曲部42は、1つの幅方向エッジ部40が有する複数の幅方向屈曲部41のうち、陸部30のタイヤ幅方向における中心をタイヤ周方向に通る陸部中心線CBに対して、タイヤ幅方向外側で陸部中心線CBに最も近い幅方向屈曲部41になっている。また、内側屈曲部43は、1つの幅方向エッジ部40が有する複数の幅方向屈曲部41のうち、陸部中心線CBに対してタイヤ幅方向内側で陸部中心線CBに最も近い幅方向屈曲部41になっている。
 1つの幅方向エッジ部40が有する外側屈曲部42と内側屈曲部43とは、タイヤ周方向における屈曲の方向が互いに反対方向になっている。即ち、外側屈曲部42は、タイヤ周方向における一方の方向に凸となる向きで屈曲しており、内側屈曲部43は、タイヤ周方向における他方の方向に凸となる向きで屈曲している。また、センター陸部31のタイヤ周方向における両側に位置する幅方向エッジ部40同士では、双方の外側屈曲部42同士のタイヤ周方向における屈曲の方向が互いに同じ方向になっており、双方の内側屈曲部43同士のタイヤ周方向における屈曲の方向が互いに同じ方向になっている。
 また、幅方向エッジ部40は、外側屈曲部42と内側屈曲部43との間の部分が直線状に形成されている。さらに、幅方向エッジ部40は、外側屈曲部42から幅方向エッジ部40における最外周方向溝12側の端部との間の部分も直線状に形成されており、内側屈曲部43から幅方向エッジ部40におけるセンター周方向溝11側の端部との間の部分も直線状に形成されている。これらのように、タイヤ幅方向に延びつつタイヤ周方向に屈曲する幅方向エッジ部40は、タイヤ周方向に対するタイヤ幅方向への傾斜角度θwが、いずれの位置においても60°以上90°以下の範囲内になっている。
 また、センター陸部31のタイヤ幅方向における内側を区画する周方向溝10であるセンター周方向溝11は、タイヤ周方向に延びつつタイヤ幅方向に繰り返し屈曲しているため、センター陸部31におけるセンター周方向溝11のエッジ部35である内側周方向エッジ部52も、タイヤ周方向に延びつつタイヤ幅方向に屈曲している。この場合における内側周方向エッジ部52は、センター陸部31における周方向溝10のエッジ部35であり、センター陸部31のタイヤ幅方向両側に位置する周方向エッジ部50のうち、タイヤ幅方向内側の周方向エッジ部50になっている。内側周方向エッジ部52は、タイヤ周方向に延びつつタイヤ幅方向に屈曲して形成されることにより、タイヤ幅方向内側に凸となって屈曲する周方向屈曲部53を有している。即ち、内側周方向エッジ部52は、タイヤ周方向に延びつつ、周方向屈曲部53の部分でタイヤ幅方向内側に凸となる向きで1回屈曲している。タイヤ周方向に延びつつタイヤ幅方向に屈曲する内側周方向エッジ部52は、タイヤ周方向に対するタイヤ幅方向への傾斜角度θc2が、いずれの位置においても10°以上40°以下の範囲内になっている。
 また、センター陸部31のタイヤ幅方向における外側を区画する周方向溝10である最外周方向溝12は、タイヤ周方向に直線状に延びて形成されているため、センター陸部31における最外周方向溝12のエッジ部35である外側周方向エッジ部51も、タイヤ周方向に延びるストレート形状で形成されている。この場合における外側周方向エッジ部51は、センター陸部31における周方向溝10のエッジ部35であり、センター陸部31のタイヤ幅方向両側に位置する周方向エッジ部50のうち、タイヤ幅方向外側の周方向エッジ部50になっている。タイヤ周方向にストレート形状で延びる外側周方向エッジ部51は、タイヤ周方向に対するタイヤ幅方向への傾斜角度θc1(実施形態ではθc1=0°であるため図示省略)が、いずれの位置においても0°以上10°以下の範囲内になっている。
 また、センター陸部31は、センター陸部31のタイヤ幅方向における最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、センター陸部31のタイヤ幅方向における最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2との関係が、w2<w1を満たしている。即ち、センター陸部31は、タイヤ幅方向における最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1が、タイヤ幅方向における最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2より大きくなっている。
 この場合における最外側位置36は、タイヤ周方向に直線状に延びる外側周方向エッジ部51のタイヤ幅方向における位置になっている。また、最内側位置37は、内側周方向エッジ部52において、タイヤ幅方向内側に凸となって屈曲する部分である周方向屈曲部53のタイヤ幅方向における位置になっている。
 なお、センター陸部31の最外側位置36から外側屈曲部42までの幅w1と、最内側位置37から内側屈曲部43までの幅w2とは、(w1/w2)≦5の関係を満たすが好ましい。即ち、センター陸部31は、最外側位置36から外側屈曲部42までの幅w1と、最内側位置37から内側屈曲部43までの幅w2は、1<(w1/w2)≦5の関係を満たすのが好ましい。
 また、センター陸部31は、最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、センター陸部31のタイヤ幅方向における最大幅wbとの関係が、(w1/wb)≧0.3を満たしている。また、センター陸部31は、最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2と、センター陸部31のタイヤ幅方向における最大幅wbとの関係が、(w2/wb)≧0.1を満たしている。この場合におけるセンター陸部31のタイヤ幅方向における最大幅wbは、センター陸部31のタイヤ幅方向における最外側位置36とセンター陸部31のタイヤ幅方向における最内側位置37とのタイヤ幅方向における距離になっている。
 さらに、センター陸部31は、センター陸部31のタイヤ幅方向における最大幅wbと、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcとの関係が、0.2≦(wc/wb)≦0.6の範囲内になっている。
 図3は、図1のA部詳細図であり、幅方向エッジ部40のタイヤ周方向の振幅の大きさについての説明図である。センター陸部31は、センター陸部31のタイヤ周方向両側に位置する幅方向エッジ部40のいずれも、外側屈曲部42と内側屈曲部43とのタイヤ周方向における距離Lkと、センター陸部31のタイヤ周方向における全長Lbとの関係が、0.05≦(Lk/Lb)≦0.2の範囲内になっている。この場合におけるセンター陸部31のタイヤ周方向における全長Lbは、センター陸部31を形成する各点のうち、タイヤ周方向に最も離れた点間のタイヤ周方向における距離になっている。即ち、センター陸部31のタイヤ周方向における全長Lbは、センター陸部31におけるタイヤ周方向の最も一方側に位置する部分と、センター陸部31におけるタイヤ周方向の最も他方側に位置する部分とのタイヤ周方向に距離になっている。
 図4は、図1のA部詳細図であり、内側周方向エッジ部52の形状についての説明図である。センター陸部31は、内側周方向エッジ部52と一方の幅方向エッジ部40との交点をαとし、内側周方向エッジ部52と他方の幅方向エッジ部40との交点をβとする場合に、交点αと交点βとのタイヤ周方向における距離Lhと、交点αと周方向屈曲部53とのタイヤ周方向における距離L3との関係が、0.4≦(L3/Lh)≦0.6の範囲内になっている。この場合における交点αは、センター陸部31のタイヤ周方向両側に位置する幅方向エッジ部40のうち、一方の幅方向エッジ部40と内側周方向エッジ部52との交点になっており、交点βは、他方の幅方向エッジ部40と内側周方向エッジ部52との交点になっている。
 また、センター陸部31の内側周方向エッジ部52は、交点αと周方向屈曲部53とのタイヤ幅方向における距離wαと、センター陸部31のタイヤ幅方向における最大幅wbとの関係が、0.1≦(wα/wb)≦0.2の範囲内になっている。また、内側周方向エッジ部52は、同様に交点βと周方向屈曲部53とのタイヤ幅方向における距離wβと、センター陸部31のタイヤ幅方向における最大幅wbとの関係が、0.1≦(wβ/wb)≦0.2の範囲内になっている。
 本実施形態に係る空気入りタイヤ1は、例えば、小型トラックに装着する小型トラック用の空気入りタイヤ1になっている。空気入りタイヤ1を車両に装着する際には、空気入りタイヤ1をリムホイールにリム組みし、内部に空気を充填してインフレートした状態で車両に装着する。空気入りタイヤ1を装着した車両が走行すると、トレッド部2の踏面3のうち下方に位置する踏面3が路面に接触しながら空気入りタイヤ1は回転する。空気入りタイヤ1を装着した車両で乾燥した路面を走行する場合には、主に踏面3と路面との間の摩擦力により、駆動力や制動力を路面に伝達したり、旋回力を発生させたりすることにより走行する。また、濡れた路面を走行する際には、踏面3と路面との間の水が周方向溝10やラグ溝15等の溝やサイプ20に入り込み、これらの溝で踏面3と路面との間の水を排水しながら走行する。これにより、踏面3は路面に接地し易くなり、踏面3と路面との間の摩擦力により、車両は走行することが可能になる。
 また、雪上路面や氷上路面を走行する際には、周方向溝10やラグ溝15、サイプ20のエッジ効果も用いて走行する。つまり、雪上路面や氷上路面を走行する際には、周方向溝10のエッジやラグ溝15のエッジ、サイプ20のエッジが雪面や氷面に引っ掛かることによる抵抗も用いて走行する。また、氷上路面を走行する際には、氷上路面の表面の水をサイプ20で吸水し、氷上路面と踏面3との間の水膜を除去することにより、氷上路面と踏面3は接触し易くなる。これにより、踏面3は、摩擦力やエッジ効果によって氷上路面との間の抵抗が大きくなり、空気入りタイヤ1を装着した車両の走行性能を確保することができる。
 また、雪上路面を走行する際には、空気入りタイヤ1は路面上の雪を踏面3で押し固めると共に、路面上の雪がラグ溝15に入り込むことにより、これらの雪も溝内で押し固める状態になる。この状態で、空気入りタイヤ1に駆動力や制動力が作用すると、溝内の雪に対して作用するせん断力である、いわゆる雪柱せん断力が、空気入りタイヤ1と雪との間で発生する。雪上路面を走行する際には、この雪柱せん断力によって空気入りタイヤ1と路面との間で抵抗が発生することにより、駆動力や制動力を路面に伝達することができ、スノートラクション性を確保することができる。これにより、車両は雪上路面での走行性能を確保することができる。
 本実施形態に係る空気入りタイヤ1では、さらに、センター陸部31の幅方向エッジ部40は、タイヤ周方向に屈曲する幅方向屈曲部41を複数有している。このため、幅方向エッジ部40は、幅方向屈曲部41を複数有している分、エッジの長さが長くなるため、エッジ効果を発揮し易くなり、また、屈曲して形成される幅方向屈曲部41によっても、エッジ効果を発揮し易くなる。これにより、氷上路面での走行性能を向上させることができる。また、幅方向エッジ部40が屈曲することにより、踏面3に対するエッジが幅方向エッジ部40によって形成されるラグ溝15の長さが長くなるため、ラグ溝15に入り込ませることのできる水や雪の量を増加させることができる。これにより、排水性を向上させたり、雪柱せん断力を向上させたりすることができるため、濡れた路面を走行性能や雪上路面での走行性能を向上させることができる。
 氷雪路面や濡れた路面での走行性能の確保は、これらのようにラグ溝15の影響が大きく、ラグ溝15の溝面積を増加させることが有効な手法になっているが、一方で、溝面積を増加させると、陸部30の剛性が低下する。陸部30の剛性が低下した場合、乾燥した路面の走行時において、例えば、コーナリングやレーンチェンジ等によって陸部30に大きめの荷重が作用した際に、陸部30が荷重によって変形し易くなり、走行安定性が低下し易くなる虞がある。
 これに対し、本実施形態に係る空気入りタイヤ1は、センター陸部31の幅方向エッジ部40は、陸部中心線CBのタイヤ幅方向外側に位置する最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、陸部中心線CBのタイヤ幅方向外側に位置する最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2との関係が、w2<w1を満たしている。これにより、センター陸部31の幅方向エッジ部40が幅方向屈曲部41を複数有する場合でも、センター陸部31における陸部中心線CBのタイヤ幅方向外側寄りの位置の剛性を確保することができる。コーナリング時やレーンチェンジ時には、陸部30のタイヤ幅方向外側寄りの位置に大きな荷重が作用し易くなるため、センター陸部31のタイヤ幅方向外側寄りの位置の剛性が高くなることにより、コーナリングやレーンチェンジを行った際にセンター陸部31に作用する荷重によるセンター陸部31の変形を抑えることができる。従って、乾燥した路面での走行時に、荷重によって陸部30が変形することに起因して安定性が低下することを抑制することができ、走行安定性を確保することができる。これらの結果、ドライ性能及びウェット性能と、氷雪性能とを満たすことができる。
 また、センター陸部31のタイヤ幅方向における最大幅wbと、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcとの関係が、0.2≦(wc/wb)≦0.6の範囲内であるため、センター陸部31に大きな荷重が作用した際におけるセンター陸部31の変形をより確実に抑制することができる。つまり、センター陸部31のタイヤ幅方向における最大幅wbと、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcとの関係が、(wc/wb)<0.2である場合は、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcが小さ過ぎるため、外側屈曲部42と内側屈曲部43との距離が近くなり過ぎる虞がある。この場合、センター陸部31における外側屈曲部42と内側屈曲部43との間の部分の剛性が低くなり過ぎるため、センター陸部31に大きな荷重が作用した際に、センター陸部31の変形を抑え難くなる虞がある。また、センター陸部31のタイヤ幅方向における最大幅wbと、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcとの関係が、(wc/wb)>0.6である場合は、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcが大き過ぎるため、センター陸部31の最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1を確保し難くなる虞がある。この場合、センター陸部31のタイヤ幅方向外側寄りの位置の剛性を確保し難くなるため、コーナリング時やレーンチェンジ時等にセンター陸部31のタイヤ幅方向外側寄りの位置に大きな荷重が作用した際に、センター陸部31の変形を抑え難くなる虞がある。
 これに対し、センター陸部31のタイヤ幅方向における最大幅wbと、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcとの関係が、0.2≦(wc/wb)≦0.6の範囲内である場合は、センター陸部31の外側屈曲部42と内側屈曲部43との間の部分の剛性が低くなり過ぎたり、センター陸部31のタイヤ幅方向外側寄りの位置の剛性が低くなり過ぎたりすることを抑制することができる。これにより、センター陸部31に大きな荷重が作用した際におけるセンター陸部31の変形をより確実に抑制することができ、乾燥した路面での走行安定性を確保することができる。この結果、より確実にドライ性能及びウェット性能と、氷雪性能とを満たすことができる。
 また、センター陸部31は、外側周方向エッジ部51がストレート形状で形成されるため、センター陸部31のタイヤ幅方向外側を区画する周方向溝10をストレート形状にすることができる。これにより、周方向溝10内を流れる水の流れ易さを確保することができ、周方向溝10での排水性を高めることができるため、濡れた路面での走行性能を高めることができる。この結果、より確実にウェット性能を向上させることができる。
 また、センター陸部31は、内側周方向エッジ部52が、タイヤ幅方向内側に凸となって屈曲する周方向屈曲部53を有するため、内側周方向エッジ部52のエッジ成分を増加させることができ、氷上路面での走行性能を向上させることができる。また、内側周方向エッジ部52が屈曲することにより、踏面3に対するエッジが内側周方向エッジ部52によって形成されるセンター周方向溝11の長さが長くなるため、センター周方向溝11に入り込ませることのできる雪の量を増加させることができる。これにより、雪柱せん断力を向上させたることができるため、雪上路面での走行性能を向上させることができる。これらの結果、より確実に氷雪性能を向上させることができる。
 また、タイヤ周方向両側の幅方向エッジ部40と内側周方向エッジ部52のそれぞれの交点である交点α及び交点βのタイヤ周方向における距離Lhと、交点αと周方向屈曲部53とのタイヤ周方向における距離L3との関係が、0.4≦(L3/Lh)≦0.6の範囲内であるため、センター陸部31の剛性の均一化を図ることができる。つまり、交点αと交点βとの距離Lhと、交点αと周方向屈曲部53との距離L3との関係が、(L3/Lh)<0.4であったり、(L3/Lh)>0.6であったりする場合は、周方向屈曲部53のタイヤ周方向における位置が、タイヤ周方向におけるいずれかの方向に偏り過ぎる虞がある。この場合、センター陸部31の剛性が、タイヤ周方向における位置によって大きく偏る虞があり、荷重負荷に対するセンター陸部31の変形が、タイヤ周方向における位置によって大きく異なり易くなるため、偏摩耗が発生し易くなる虞がある。
 これに対し、交点αと交点βとの距離Lhと、交点αと周方向屈曲部53との距離L3との関係が、0.4≦(L3/Lh)≦0.6の範囲内である場合は、周方向屈曲部53のタイヤ周方向における位置の偏りを抑制することができ、センター陸部31の剛性の均一化を図ることができる。この結果、偏摩耗の発生を抑えつつ、より確実にドライ性能を向上させることができる。
 また、交点αと周方向屈曲部53とのタイヤ幅方向における距離wαと、陸部30のタイヤ幅方向における最大幅wbとの関係が、0.1≦(wα/wb)≦0.2の範囲内であり、交点βと周方向屈曲部53とのタイヤ幅方向における距離wβと、陸部30のタイヤ幅方向における最大幅wbとの関係が、0.1≦(wβ/wb)≦0.2の範囲内であるため、センター陸部31の周方向屈曲部53の剛性を確保しつつ、より確実に氷上路面での走行性能を向上させたり、雪上路面での走行性能を向上させたりすることができる。
 つまり、交点αと周方向屈曲部53との距離wαと陸部30の最大幅wbとの関係が、(wα/wb)<0.1であったり、交点βと周方向屈曲部53との距離wβと陸部30の最大幅wbとの関係が、(wβ/wb)<0.1であったりする場合は、周方向屈曲部53の突出量が小さ過ぎる虞がある。この場合、周方向屈曲部53を設けても、内側周方向エッジ部52のエッジ成分を増加させ難くなるため、氷上路面での走行性能を効果的に向上させ難くなる虞がある。またこの場合、内側周方向エッジ部52に周方向屈曲部53を設けても、センター周方向溝11の長さを効果的に長くし難くなるため、雪柱せん断力を向上させ難くなり、雪上路面での走行性能を効果的に向上させ難くなる虞がある。また、交点αと周方向屈曲部53との距離wαと陸部30の最大幅wbとの関係が、(wα/wb)>0.2であったり、交点βと周方向屈曲部53との距離wβと陸部30の最大幅wbとの関係が、(wβ/wb)>0.2であったりする場合は、周方向屈曲部53の突出量が大き過ぎるため、センター陸部31における周方向屈曲部53近傍の剛性を確保し難くなる虞がある。この場合、周方向屈曲部53の近傍の剛性が低くなり過ぎることに起因して、偏摩耗が発生し易くなる虞がある。
 これに対し、交点αと周方向屈曲部53との距離wαと陸部30の最大幅wbとの関係が、0.1≦(wα/wb)≦0.2の範囲内であり、交点βと周方向屈曲部53との距離wβと陸部30の最大幅wbとの関係が、0.1≦(wβ/wb)≦0.2の範囲内である場合は、周方向屈曲部53近傍の剛性を確保しつつ、内側周方向エッジ部52のエッジ成分を増加させることによって氷上路面での走行性能を向上させたり、センター周方向溝11の長さを長くすることによって雪上路面での走行性能を向上させたりすることができる。この結果、偏摩耗の発生を抑えつつ、より確実に氷雪性能を向上させることができる。
 また、最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、陸部30のタイヤ幅方向における最大幅wbとの関係が、(w1/wb)≧0.3を満たし、最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2と、陸部30のタイヤ幅方向における最大幅wbとの関係が、(w2/wb)≧0.1を満たすため、センター陸部31のタイヤ幅方向外側寄りの位置とタイヤ幅方向内側寄りの位置とのいずれの位置の剛性も、適度な大きさにすることができる。つまり、最外側位置36から外側屈曲部42までの幅w1と、陸部30の最大幅wbとの関係が、(w1/wb)<0.3である場合は、最外側位置36から外側屈曲部42までの幅w1が小さくなり過ぎるため、センター陸部31のタイヤ幅方向外側寄りの位置の剛性を確保し難くなる虞がある。この場合、コーナリング時やレーンチェンジ時等にセンター陸部31のタイヤ幅方向外側寄りの位置に大きな荷重が作用した際に、センター陸部31の変形を抑え難くなる虞がある。また、最内側位置37から内側屈曲部43までの幅w2と、陸部30の最大幅wbとの関係が、(w2/wb)<0.1である場合は、最内側位置37から内側屈曲部43までの幅w2が小さくなり過ぎるため、センター陸部31のタイヤ幅方向内側寄りの位置の剛性が低くなり過ぎる虞がある。この場合、センター陸部31のタイヤ幅方向内側寄りの位置の剛性とタイヤ幅方向外側寄りの位置の剛性との差が大きくなり過ぎる虞があり、過大な剛性差に起因して偏摩耗が発生し易くなる虞がある。
 これに対し、最外側位置36から外側屈曲部42までの幅w1と陸部30の最大幅wbとの関係が、(w1/wb)≧0.3を満たし、最内側位置37から内側屈曲部43までの幅w2と陸部30の最大幅wbとの関係が、(w2/wb)≧0.1を満たす場合は、センター陸部31のタイヤ幅方向外側寄りの位置とタイヤ幅方向内側寄りの位置とのいずれの位置の剛性も、適度な大きさにすることができる。この結果、偏摩耗の発生を抑えつつ、より確実にドライ性能を向上させることができる。
 また、センター陸部31の最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2とが、(w1/w2)≦5の関係を満たすことにより、センター陸部31のタイヤ幅方向外側寄りの位置の剛性とタイヤ幅方向内側寄りの位置の剛性との差が大きくなり過ぎることを抑制することができる。つまり、センター陸部31の最外側位置36から外側屈曲部42までの幅w1と、最内側位置37から内側屈曲部43までの幅w2との関係が、(w1/w2)>5である場合は、センター陸部31のタイヤ幅方向内側寄りの位置の剛性とタイヤ幅方向外側寄りの位置の剛性との差が大きくなり過ぎる虞がある。この場合、過大な剛性差に起因して偏摩耗が発生し易くなる虞がある。
 これに対し、センター陸部31の最外側位置36から外側屈曲部42までの幅w1と、最内側位置37から内側屈曲部43までの幅w2との関係が、(w1/w2)≦5を満たす場合は、センター陸部31のタイヤ幅方向外側寄りの位置の剛性とタイヤ幅方向内側寄りの位置の剛性との差が大きくなり過ぎることを抑制することができる。この結果、より確実に偏摩耗の発生を抑制することができる。
 また、センター陸部31の外側屈曲部42と内側屈曲部43とのタイヤ周方向における距離Lkと、陸部30のタイヤ周方向における全長Lbとの関係が、0.05≦(Lk/Lb)≦0.2の範囲内であるため、センター陸部31の幅方向エッジ部40近傍の剛性を確保しつつ、より確実に氷上路面での走行性能を向上させたり、雪上路面での走行性能を向上させたりすることができる。つまり、外側屈曲部42と内側屈曲部43とのタイヤ周方向における距離Lkと、陸部30の全長Lbとの関係が、(Lk/Lb)<0.05である場合は、外側屈曲部42と内側屈曲部43とのタイヤ周方向における距離Lkが小さ過ぎるため、幅方向エッジ部40に複数の幅方向屈曲部41を形成しても、エッジの長さやセンターラグ溝16の長さを長くし難くなる虞がある。この場合、幅方向エッジ部40のエッジ長さが長くなることによるエッジ効果や、センターラグ溝16の長さを長くなることによる雪柱せん断力を効果的に向上させ難くなるため、氷雪性能を効果的に向上させ難くなる虞がある。また、外側屈曲部42と内側屈曲部43とのタイヤ周方向における距離Lkと、陸部30の全長Lbとの関係が、(Lk/Lb)>0.2である場合は、外側屈曲部42と内側屈曲部43とのタイヤ周方向における距離Lkが大き過ぎるため、センター陸部31における幅方向エッジ部40近傍の剛性が低くなり過ぎる虞がある。この場合、センター陸部31の幅方向エッジ部40近傍の剛性と、幅方向エッジ部40以外の位置の剛性との差が大きくなり過ぎる虞があり、過大な剛性差に起因して偏摩耗が発生し易くなる虞がある。
 これに対し、外側屈曲部42と内側屈曲部43とのタイヤ周方向における距離Lkと、陸部30の全長Lbとの関係が、0.05≦(Lk/Lb)≦0.2の範囲内である場合は、幅方向エッジ部40近傍の剛性を確保しつつ、幅方向エッジ部40のエッジ成分を増加させることによって氷上路面での走行性能を向上させたり、センターラグ溝16の長さを長くすることによって雪上路面での走行性能を向上させたりすることができる。この結果、偏摩耗の発生を抑えつつ、より確実に氷雪性能を向上させることができる。
[変形例]
 なお、上述した実施形態では、幅方向エッジ部40には、幅方向屈曲部41が2箇所に形成されているが、1つの幅方向エッジ部40に形成される幅方向屈曲部41は、3箇所以上であってもよい。幅方向エッジ部40は、陸部30のタイヤ幅方向における陸部中心線CBの両側それぞれで陸部中心線CBから最も近い幅方向屈曲部41である外側屈曲部42と内側屈曲部43とが形成されていればよく、外側屈曲部42及び内側屈曲部43以外の幅方向屈曲部41がさらに形成されていてもよい。即ち、外側屈曲部42に対して陸部中心線CBが位置する側の反対側に他の幅方向屈曲部41が形成されていてもよく、内側屈曲部43に対して陸部中心線CBが位置する側の反対側に他の幅方向屈曲部41が形成されていてもよい。
 また、上述した実施形態では、幅方向屈曲部41は、幅方向エッジ部40が角状に屈曲することによって形成されており、周方向屈曲部53は、内側周方向エッジ部52が角状に屈曲することによって形成されているが、幅方向屈曲部41や周方向屈曲部53は、角状に形成されていなくてもよい。幅方向屈曲部41や周方向屈曲部53は、幅方向エッジ部40や内側周方向エッジ部52が、例えば、小さな曲率半径で湾曲することにより屈曲して形成されていてもよい。
 また、上述した実施形態では、周方向溝10は3本が設けられているが、周方向溝10は3本以外であってもよい。周方向溝10は、例えば、2本であってもよく、4本以上であってもよい。幅方向屈曲部41を複数有する幅方向エッジ部40は、タイヤ幅方向における最外側に位置する周方向溝10である最外周方向溝12のタイヤ幅方向内側に位置する陸部30をセンター陸部31とする際における、センター陸部31のタイヤ周方向における両側を区画するラグ溝15のエッジ部35であればよい。即ち、幅方向屈曲部41を複数有する幅方向エッジ部40を有する陸部30は、最外周方向溝12のタイヤ幅方向内側に位置する陸部30であれば、その位置は問わない。
 また、上述した実施形態では、本発明に係るタイヤの一例として空気入りタイヤ1を用いて説明したが、本発明に係るタイヤは、空気入りタイヤ1以外であってもよい。本発明に係るタイヤは、例えば、気体を充填することなく使用することができる、いわゆるエアレスタイヤであってもよい。
[実施例]
 図5A~図5Cは、空気入りタイヤの性能評価試験の結果を示す図表である。以下、上記の空気入りタイヤ1について、従来例の空気入りタイヤと、本発明に係る空気入りタイヤ1と、本発明に係る空気入りタイヤ1と比較する比較例の空気入りタイヤとについて行なった性能の評価試験について説明する。性能評価試験は、乾燥した路面での走行性能であるドライ性能と、濡れた路面での走行性能であるウェット性能と、氷雪路面での走行性能である氷雪性能とについての試験を行った。
 性能評価試験は、JATMAで規定されるタイヤの呼びが195/65R15 91Tサイズの空気入りタイヤ1を、リムサイズ15×6.0JのJATMA標準のリムホイールにリム組みし、排気量が1400ccの前輪駆動の乗用車の評価車両に試験タイヤを装着して、空気圧を前輪230kPa、後輪220kPaに調整して評価車両で走行をすることにより行った。
 各試験項目の評価方法は、ドライ性能については、試験タイヤを装着した評価車両で、テストコースのドライハンドリング路面を走行した際の操縦安定性を、テストドライバーの官能評価により比較した。ドライ性能は、テストドライバーの官能評価を、後述する従来例を100として指数で表すことによって評価し、指数が大きいほどドライ路面での操縦安定性が高く、ドライ性能に優れていることを示している。
 また、ウェット性能については、試験タイヤを装着した評価車両で、水深1mmになるように撒水したテストコースのウェットハンドリング路面を走行した際の操縦安定性を、テストドライバーの官能評価により比較した。ウェット性能は、テストドライバーの官能評価を、後述する従来例を100として指数で表すことによって評価し、指数が大きいほどウェット路面での操縦安定性が高く、ウェット性能に優れていることを示している。
 また、氷雪性能については、試験タイヤを装着した評価車両で、テストコースの圧雪ハンドリング路面を走行した際のトラクション性や操縦安定性をテストドライバーの官能評価により比較した。氷雪性能は、テストドライバーの官能評価を、後述する従来例を100として指数で表すことによって評価し、指数が大きいほど氷雪路面でのトラクション性や操縦安定性が高く、氷雪性能に優れていることを示している。
 性能評価試験は、従来の空気入りタイヤの一例である従来例の空気入りタイヤと、本発明に係る空気入りタイヤ1である実施例1~17と、本発明に係る空気入りタイヤ1と比較する空気入りタイヤである比較例1~3との21種類の空気入りタイヤについて行った。このうち、従来例は、陸部30の最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2との大きさが同じ大きさになっている。また、比較例1は、陸部30の最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2との関係が、w2>w1になっている。また、比較例2は、陸部30の最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2との関係が、w2<w1になっているものの、陸部30の最大幅wbと、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcとの関係が、(wc/wb)<0.2になっている。また、比較例3は、陸部30の最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2との関係が、w2<w1になっているものの、陸部30の最大幅wbと、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcとの関係が、(wc/wb)>0.6になっている。
 これに対し、本発明に係る空気入りタイヤ1の一例である実施例1~17は、全て陸部30の最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1と、最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2との関係が、w2<w1を満たし、陸部30の最大幅wbと、外側屈曲部42と内側屈曲部43とのタイヤ幅方向における幅wcとの関係が、0.2≦(wc/wb)≦0.6の範囲内になっている。さらに、実施例1~17に係る空気入りタイヤ1は、外側周方向エッジ部51はストレート形状であるか否かや、内側周方向エッジ部52は周方向屈曲部53を有しているか否か、交点αと交点βとのタイヤ周方向における距離Lhに対する、交点αと周方向屈曲部53とのタイヤ周方向における距離L3の比(L3/Lh)、陸部30の最大幅wbに対する、交点αと周方向屈曲部53とのタイヤ幅方向における距離wαの比(wα/wb)、陸部30の最大幅wbに対する、交点βと周方向屈曲部53とのタイヤ幅方向における距離wβの比(wβ/wb)、陸部30の最大幅wbに対する、最外側位置36から外側屈曲部42までのタイヤ幅方向における幅w1の比(w1/wb)、陸部30の最大幅wbに対する、最内側位置37から内側屈曲部43までのタイヤ幅方向における幅w2の比(w2/wb)が、それぞれ異なっている。
 これらの空気入りタイヤ1を用いて性能評価試験を行った結果、図5A~図5Cに示すように、実施例1~17に係る空気入りタイヤ1は、従来例や比較例1~3に対して、ドライ性能とウェット性能と氷雪性能とのいずれの性能についても性能の低下を抑え、ドライ性能とウェット性能と氷雪性能とを合わせた総合的な性能を向上させることができることが分かった。つまり、実施例1~17に係る空気入りタイヤ1は、ドライ性能及びウェット性能と、氷雪性能とを満たすことができる。
 1 空気入りタイヤ(タイヤ)
 2 トレッド部
 3 踏面
 10 周方向溝
 11 センター周方向溝
 12 最外周方向溝
 15 ラグ溝
 16 センターラグ溝
 16a、17a 底上げ部
 17 ショルダーラグ溝
 20 サイプ
 21 センターサイプ
 22 ショルダーサイプ
 30 陸部
 31 センター陸部
 32 ショルダー陸部
 35 エッジ部
 36 最外側位置
 37 最内側位置
 40 幅方向エッジ部
 41 幅方向屈曲部
 42 外側屈曲部
 43 内側屈曲部
 50 周方向エッジ部
 51 外側周方向エッジ部
 52 内側周方向エッジ部
 53 周方向屈曲部

Claims (7)

  1.  タイヤ周方向に延びる複数の周方向溝と、
     タイヤ幅方向に延びる複数のラグ溝と、
     タイヤ幅方向における両側が前記周方向溝により区画され、タイヤ周方向における両側が前記ラグ溝により区画される複数の陸部と、
     を備え、
     前記陸部における前記ラグ溝のエッジ部である幅方向エッジ部は、タイヤ周方向に延びると共に、タイヤ周方向に屈曲する幅方向屈曲部を複数有し、
     1つの前記幅方向エッジ部が有する複数の前記幅方向屈曲部のうち、前記陸部のタイヤ幅方向における中心をタイヤ周方向に通る陸部中心線に対してタイヤ幅方向外側で前記陸部中心線に最も近い前記幅方向屈曲部を外側屈曲部とし、
     1つの前記幅方向エッジ部が有する複数の前記幅方向屈曲部のうち、前記陸部中心線に対してタイヤ幅方向内側で前記陸部中心線に最も近い前記幅方向屈曲部を内側屈曲部とする場合に、
     前記幅方向エッジ部は、前記外側屈曲部と前記内側屈曲部との間の部分が直線状に形成され、
     前記陸部は、前記陸部のタイヤ幅方向における最外側位置から前記外側屈曲部までのタイヤ幅方向における幅w1と、前記陸部のタイヤ幅方向における最内側位置から前記内側屈曲部までのタイヤ幅方向における幅w2との関係が、w2<w1を満たし、
     前記陸部のタイヤ幅方向における最大幅wbと、前記外側屈曲部と前記内側屈曲部とのタイヤ幅方向における幅wcとの関係が、0.2≦(wc/wb)≦0.6の範囲内であることを特徴とするタイヤ。
  2.  前記周方向溝のエッジ部であり、前記陸部のタイヤ幅方向両側に位置する周方向エッジ部のうち、タイヤ幅方向外側の前記周方向エッジ部である外側周方向エッジ部は、タイヤ周方向に延びるストレート形状で形成される請求項1に記載のタイヤ。
  3.  前記周方向溝のエッジ部であり、前記陸部のタイヤ幅方向両側に位置する周方向エッジ部のうち、タイヤ幅方向内側の前記周方向エッジ部である内側周方向エッジ部は、タイヤ幅方向内側に凸となって屈曲する周方向屈曲部を有する請求項1または2に記載のタイヤ。
  4.  前記陸部のタイヤ周方向両側に位置する前記幅方向エッジ部のうち、一方の前記幅方向エッジ部と前記内側周方向エッジ部との交点をαとし、他方の前記幅方向エッジ部と前記内側周方向エッジ部との交点をβとする場合に、交点αと交点βとのタイヤ周方向における距離Lhと、前記交点αと前記周方向屈曲部とのタイヤ周方向における距離L3との関係が、0.4≦(L3/Lh)≦0.6の範囲内である請求項3に記載のタイヤ。
  5.  前記交点αと前記周方向屈曲部とのタイヤ幅方向における距離wαは、前記陸部のタイヤ幅方向における最大幅wbとの関係が、0.1≦(wα/wb)≦0.2の範囲内であり、
     前記交点βと前記周方向屈曲部とのタイヤ幅方向における距離wβは、前記陸部のタイヤ幅方向における最大幅wbとの関係が、0.1≦(wβ/wb)≦0.2の範囲内である請求項4に記載のタイヤ。
  6.  前記最外側位置から前記外側屈曲部までのタイヤ幅方向における幅w1は、前記陸部のタイヤ幅方向における最大幅wbとの関係が、(w1/wb)≧0.3を満たし、
     前記最内側位置から前記内側屈曲部までのタイヤ幅方向における幅w2は、前記陸部のタイヤ幅方向における最大幅wbとの関係が、(w2/wb)≧0.1を満たす請求項1~5のいずれか1項に記載のタイヤ。
  7.  前記外側屈曲部と前記内側屈曲部とのタイヤ周方向における距離Lkは、前記陸部のタイヤ周方向における全長Lbとの関係が、0.05≦(Lk/Lb)≦0.2の範囲内である請求項1~6のいずれか1項に記載のタイヤ。
PCT/JP2021/014331 2020-04-03 2021-04-02 タイヤ WO2021201280A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112021000862.5T DE112021000862T5 (de) 2020-04-03 2021-04-02 Reifen
CN202180023126.9A CN115315359B (zh) 2020-04-03 2021-04-02 轮胎
US17/907,625 US20230191849A1 (en) 2020-04-03 2021-04-02 Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-067856 2020-04-03
JP2020067856A JP6996584B2 (ja) 2020-04-03 2020-04-03 タイヤ

Publications (1)

Publication Number Publication Date
WO2021201280A1 true WO2021201280A1 (ja) 2021-10-07

Family

ID=77929203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014331 WO2021201280A1 (ja) 2020-04-03 2021-04-02 タイヤ

Country Status (5)

Country Link
US (1) US20230191849A1 (ja)
JP (1) JP6996584B2 (ja)
CN (1) CN115315359B (ja)
DE (1) DE112021000862T5 (ja)
WO (1) WO2021201280A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183203U (ja) * 1978-02-14 1986-11-15
JPH08113011A (ja) * 1994-10-17 1996-05-07 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2001508725A (ja) * 1997-01-20 2001-07-03 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 特に、重荷重車両の駆動輪用の低転がり抵抗タイヤ
JP2005289122A (ja) * 2004-03-31 2005-10-20 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
JP2010241267A (ja) * 2009-04-06 2010-10-28 Sumitomo Rubber Ind Ltd 空気入りタイヤ
WO2016063713A1 (ja) * 2014-10-20 2016-04-28 横浜ゴム株式会社 空気入りタイヤ
US20160121658A1 (en) * 2014-11-04 2016-05-05 The Goodyear Tire & Rubber Company Tread for a snow tire
JP2017035900A (ja) * 2015-08-06 2017-02-16 住友ゴム工業株式会社 空気入りタイヤ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700808B2 (ja) * 1988-09-27 1998-01-21 株式会社ブリヂストン 空気入りタイヤ
JP2809344B2 (ja) * 1989-07-06 1998-10-08 住友ゴム工業 株式会社 ラジアルタイヤ
JPH05169923A (ja) * 1991-12-25 1993-07-09 Bridgestone Corp 空気入りラジアルタイヤ
JPH11198612A (ja) * 1998-01-13 1999-07-27 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP4750398B2 (ja) * 2004-10-04 2011-08-17 株式会社ブリヂストン 空気入りタイヤ
JP4783004B2 (ja) * 2004-11-19 2011-09-28 住友ゴム工業株式会社 重荷重用ラジアルタイヤ
JP4843661B2 (ja) * 2008-10-28 2011-12-21 住友ゴム工業株式会社 重荷重用タイヤ
JP5210334B2 (ja) * 2010-02-05 2013-06-12 住友ゴム工業株式会社 重荷重用タイヤ
WO2011111394A1 (ja) 2010-03-12 2011-09-15 株式会社ブリヂストン 空気入りタイヤ
JP6135070B2 (ja) * 2012-08-22 2017-05-31 横浜ゴム株式会社 空気入りタイヤ
JP5932761B2 (ja) * 2013-12-18 2016-06-08 住友ゴム工業株式会社 空気入りタイヤ
JP2015202818A (ja) 2014-04-15 2015-11-16 株式会社ブリヂストン 空気入りタイヤ
JP5971280B2 (ja) * 2014-06-02 2016-08-17 横浜ゴム株式会社 空気入りタイヤ
JP2017226368A (ja) 2016-06-24 2017-12-28 住友ゴム工業株式会社 空気入りタイヤ
JP6819110B2 (ja) 2016-07-21 2021-01-27 住友ゴム工業株式会社 タイヤ
JP6299823B2 (ja) * 2016-08-31 2018-03-28 横浜ゴム株式会社 空気入りタイヤ
JP6814577B2 (ja) 2016-09-14 2021-01-20 Toyo Tire株式会社 空気入りタイヤ
JP6777487B2 (ja) * 2016-09-27 2020-10-28 Toyo Tire株式会社 空気入りタイヤ
JP6816613B2 (ja) 2017-03-31 2021-01-20 住友ゴム工業株式会社 タイヤ
CN206589579U (zh) * 2017-03-23 2017-10-27 万力轮胎股份有限公司 一种轮胎
CN109397992A (zh) * 2017-08-15 2019-03-01 厦门正新橡胶工业有限公司 一种自行车轮胎的胎面花纹
JP6916068B2 (ja) * 2017-08-31 2021-08-11 Toyo Tire株式会社 空気入りタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183203U (ja) * 1978-02-14 1986-11-15
JPH08113011A (ja) * 1994-10-17 1996-05-07 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2001508725A (ja) * 1997-01-20 2001-07-03 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 特に、重荷重車両の駆動輪用の低転がり抵抗タイヤ
JP2005289122A (ja) * 2004-03-31 2005-10-20 Sumitomo Rubber Ind Ltd 重荷重用タイヤ
JP2010241267A (ja) * 2009-04-06 2010-10-28 Sumitomo Rubber Ind Ltd 空気入りタイヤ
WO2016063713A1 (ja) * 2014-10-20 2016-04-28 横浜ゴム株式会社 空気入りタイヤ
US20160121658A1 (en) * 2014-11-04 2016-05-05 The Goodyear Tire & Rubber Company Tread for a snow tire
JP2017035900A (ja) * 2015-08-06 2017-02-16 住友ゴム工業株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
DE112021000862T5 (de) 2022-11-17
JP2021160693A (ja) 2021-10-11
JP6996584B2 (ja) 2022-01-17
CN115315359A (zh) 2022-11-08
CN115315359B (zh) 2024-03-08
US20230191849A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
US10894446B2 (en) Tire
US8496036B2 (en) Pneumatic tire with tread having center rib, curved oblique grooves and connecting groove portions
JP5102711B2 (ja) 空気入りタイヤ
JP5140115B2 (ja) 空気入りタイヤ
KR101799111B1 (ko) 공기 타이어
CN108688411B (zh) 充气轮胎
CN107539031B (zh) 轮胎
JP6558297B2 (ja) 空気入りタイヤ
JP4518641B2 (ja) 空気入りタイヤ
CN110091676B (zh) 轮胎
CN112829519A (zh) 轮胎
WO2021201280A1 (ja) タイヤ
JP2013103567A (ja) 空気入りタイヤ
CN112622529B (zh) 轮胎
WO2018034088A1 (ja) 空気入りタイヤ
JP7230673B2 (ja) 空気入りタイヤ
JP7318472B2 (ja) タイヤ
CN113524986A (zh) 轮胎
CN113580850A (zh) 轮胎
JP7180771B2 (ja) タイヤ
WO2021201283A1 (ja) タイヤ
RU2800060C1 (ru) Шина
RU2799950C1 (ru) Шина
RU2799952C1 (ru) Шина
JP7111261B2 (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781757

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21781757

Country of ref document: EP

Kind code of ref document: A1