WO2021184563A1 - 一种泡沫镍基电解水制氢催化剂的制备方法 - Google Patents

一种泡沫镍基电解水制氢催化剂的制备方法 Download PDF

Info

Publication number
WO2021184563A1
WO2021184563A1 PCT/CN2020/097313 CN2020097313W WO2021184563A1 WO 2021184563 A1 WO2021184563 A1 WO 2021184563A1 CN 2020097313 W CN2020097313 W CN 2020097313W WO 2021184563 A1 WO2021184563 A1 WO 2021184563A1
Authority
WO
WIPO (PCT)
Prior art keywords
foamed nickel
catalyst
hydrogen production
water electrolysis
nickel
Prior art date
Application number
PCT/CN2020/097313
Other languages
English (en)
French (fr)
Inventor
商晓东
Original Assignee
苏州楚捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州楚捷新材料科技有限公司 filed Critical 苏州楚捷新材料科技有限公司
Publication of WO2021184563A1 publication Critical patent/WO2021184563A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to a preparation method of a foamed nickel-based electrolysis water hydrogen production catalyst, which belongs to the field of energy and catalytic materials.
  • Hydrogen energy is considered to be one of the most promising new energy sources in the 21st century.
  • hydrogen can be produced through thermal conversion or water splitting reactions catalyzed by electricity and light energy.
  • electrocatalytic water splitting is an efficient and environmentally friendly hydrogen production technology with broad application prospects. Therefore, it is very important to develop efficient and inexpensive hydrogen production catalysts from electrolysis of water.
  • precious metal platinum, etc. are considered to be the most efficient catalysts for hydrogen production from electrolysis of water, but its high price, low reserves, and poor stability limit the large-scale application of precious metal catalysts. Therefore, the development of a cheap, stable and high-efficiency water electrolysis catalyst for hydrogen production is an important issue to be solved urgently in the development of the hydrogen economy.
  • the price of transition metal is relatively low, and its sulfide has good electrocatalytic activity, which has attracted the attention of the majority of researchers.
  • transition metal compounds are used as electrocatalytic hydrogen evolution catalysts, which usually need to be loaded on other conductive substrates with adhesives for convenient application.
  • this combination of catalyst and substrate is not strong and will hinder the transfer of charges in severe cases. And it limits the full exposure of the active sites of the catalyst, reduces the activity and efficiency of the catalyst, and causes waste of materials and energy.
  • the present invention provides a method for preparing a highly efficient foamed nickel-based hydrogen production catalyst based on electrolysis of water.
  • the preparation method has the advantages of simple process flow, extremely easy operation, and potential for mass production.
  • the prepared catalyst has an ultra-thin nanosheet structure and is supported in situ on foamed nickel.
  • the stable structure of the self-grown ultra-thin nanosheets of macroporous nickel foam increases the electron transfer rate, fully exposes the active sites of the catalyst, and is beneficial to mass transfer and hydrogen precipitation.
  • Rhenium doping not only makes Ni 3 S 2 grow into ultra-thin nanometers
  • the sheet which has rich edges, greatly increases the electrochemically active area, and makes it oriented to grow and exposes the high-index crystal face with the highest electrocatalytic HER activity
  • the Re-S bond is constructed, the electronic structure of Ni 3 S 2 is regulated, and the intrinsic activity of the electrocatalytic decomposition of water and hydrogen is improved, and finally a highly efficient foamed nickel-based Re x Ni 3-x S 2 (0 ⁇ x ⁇ 3) Ultra-thin nano-sheet composite material electrolysis water hydrogen production catalyst.
  • the technical scheme of the present invention is: a preparation method of a foamed nickel-based electrolysis water hydrogen production catalyst, including the following steps: dissolving ammonium perrhenate, thioacetamide, ammonium fluoride, and cyclohexamethylenetetramine
  • the precursor solution is obtained in ionized water, transferred to the hydrothermal kettle, foamed nickel is added, and a two-stage solvothermal one-pot reaction is carried out.
  • the temperature of the first stage is 120°C
  • the holding time is 4h
  • the second stage The temperature is 220 DEG C
  • the holding time is 24 hours; after the reaction is completed, it is naturally cooled, the product is taken out, washed, and dried to obtain a foamed nickel-based electrolyzed water hydrogen production catalyst.
  • the mass ratio of ammonium perrhenate, thioacetamide, ammonium fluoride, cyclohexamethylenetetramine and deionized water used is 3.3:6:5:6:10 .
  • the size of the added foamed nickel is 0.5 ⁇ 4 cm 2 , and the precursor solution is immersed in the foamed nickel.
  • the present invention adopts rhenium-doped modified transition metal nickel sulfide ultra-thin nanosheets grown in situ on foamed nickel as a catalyst for hydrogen production from electrolysis of water, which reduces the cost of the catalyst compared to a noble metal oxide catalyst.
  • the present invention uses rhenium-doped modified transition metal nickel sulfide ultra-thin nanosheets grown in situ on foamed nickel as a catalyst for hydrogen production from electrolysis of water. Compared with a single-component and unmodified transition metal For the sulfide nanosheet catalyst, the intrinsic activity of the catalyst is improved, and the number of exposed active sites is increased.
  • perrhenate is directly added as a rhenium source in a solvothermal one-pot reaction.
  • Ni 3 S 2 grows oriented, exposing the high-index crystal plane with the highest electrocatalytic HER activity
  • rhenium doping builds the Re-S bond, which regulates the electronic structure of Ni 3 S 2 and improves its intrinsic activity of electrocatalytic water splitting and hydrogen evolution; rhenium doping makes Ni 3 S 2 grow into ultra-thin nanosheets.
  • Thin nanosheets have rich edges, which increase the surface area of the material, and provide a large number of electrocatalytic active sites, which further improves the catalytic performance; finally, Re x Ni 3-x S 2 with stable structure, uniform composition and improved performance is obtained. Ultra-thin nanosheets, the doping modification method is simple and effective.
  • the structure of the catalyst of the present invention is Re x Ni 3-x S 2 ultra-thin nanosheets composed of rhenium-doped modified Ni 3 S 2 supported by macroporous nickel foam, which is compared with general powder or block catalysts The in-situ growth of nickel foam improves the electron transfer rate.
  • the complex nanosheet structure is conducive to mass transfer and hydrogen precipitation.
  • the ultra-thin nanosheet has a large specific surface area and a large number of active edges, which increases the catalytic activity area.
  • the rhenium ions can effectively dope the modified Ni 3 S 2 and make the orientation growth to expose the high-index crystal planes.
  • the ultra-thin rhenium-doped Ni 3 S 2 nanosheets are uniformly grown in situ on the foamed nickel to obtain a foamed nickel-based Re x Ni 3-x S 2 ultra-thin nanosheet composite with stable structure and uniform composition. Water hydrogen catalyst.
  • Figure 1 shows the hydrogen production catalyst for the electrolysis of water by the foamed nickel-based Re x Ni 3-x S 2 ultra-thin nanosheet composite prepared in Example 1 and the hydrogen production by the foamed nickel-based Ni 3 S 2 nanosheet composite prepared in Comparative Example 1.
  • (a) is the overall scanning electron microscope image of the foamed nickel-based Re x Ni 3-x S 2 ultra-thin nanosheet composite material for hydrogen production from water electrolysis obtained in Example 1;
  • (b) is the overall scanning electron microscope image obtained in Example 1 Scanning pictures of the foamed nickel-based Re x Ni 3-x S 2 ultra-thin nanosheet composite material for water electrolysis hydrogen production catalyst under high magnification;
  • Example 4 is an atomic force microscope characterization diagram of the foamed nickel-based Re x Ni 3-x S 2 ultra-thin nanosheet composite material for hydrogen production from water electrolysis prepared in Example 1;
  • Figure 5 is a graph showing the electrochemical performance of the foamed nickel-based Re x Ni 3-x S 2 ultra-thin nanosheet composite material for hydrogen production from water electrolysis catalyst obtained in Example 1: linear sweep voltammetry curve (a) and Tafel slope Curve (b).
  • Solvothermal one-pot reaction 6.6mg ammonium perrhenate, 12mg thioacetamide, 10mg ammonium fluoride, 12mg cyclohexamethylenetetramine dissolved in 20mL deionized water, and filled into a 100mL high temperature and high pressure reactor
  • put the washed 0.5 ⁇ 4cm 2 foamed nickel in the kettle then put the high temperature and high pressure reactor into a 120°C constant temperature oven, keep it warm for 4 hours, then heat up to 220°C, keep it warm for 24 hours, cool it naturally, and take it out
  • the foamed nickel-based Re x Ni 3-x S 2 ultra-thin nano-sheet composite material is obtained, and the number is Re x Ni 3-x S 2 /NF.
  • Example 1 The difference from Example 1 is that ammonium perrhenate is not added in the solvothermal one-pot reaction, and the others are the same as in Example 1, to obtain a foamed nickel-based Ni 3 S 2 composite material, numbered Ni 3 S 2 /NF.
  • Figure 1 is an X-ray diffraction analysis diagram of the catalyst Re x Ni 3-x S 2 /NF prepared in Example 1 and the Ni 3 S 2 /NF prepared in Comparative Example 1. It can be seen from Figure 1 that the catalysts prepared in Example 1 and Comparative Example 1 all have characteristic peaks of Ni 3 S 2 and metallic nickel, located at 21.7°, 31.1°, 37.8°, 38.2°, 49.7°, 55.2°
  • the diffraction peaks at corresponds to the (101), (110), (003), (113), and (122) crystal planes of Ni 3 S 2 (JCPDS No.44-1418), respectively, marked with a solid circle symbol in the figure
  • the diffraction peaks at 44.5°, 51.8°, and 76.4° correspond to the elemental Ni (JCPDS No.04-0850) in the base foam nickel, which is marked with an inverted triangle symbol in the figure.
  • Comparative Example 1 has more characteristic peaks of Ni(OH) 2 in composition than Example 1.
  • the diffraction peaks at 19.3°, 33.1°, 38.5° and 59.0° correspond to Ni(OH) 2 (
  • the (001), (100), (101), and (110) crystal planes of JCPDS No.14-0117) are marked with hollow circles in the figure, indicating that rhenium doping can inhibit the hydroxide of nickel.
  • Figure 2 is a scanning electron micrograph of the catalyst Re x Ni 3-x S 2 /NF prepared in Example 1 (a, b are different magnifications).
  • the macroporous nickel foam skeleton can be observed, and the nanosheets have grown in situ on the macroporous nickel foam skeleton.
  • the Re x Ni 3-x S 2 nanosheets are closely clustered, exposing abundant open voids and edges. The structure provides an open space for mass transfer and hydrogen evolution.
  • Figure 3 is a high-resolution transmission electron microscope image of the catalyst Re x Ni 3-x S 2 /NF prepared in Example 1 (a, b are different magnifications).
  • 3a it can be observed that the nanosheets have a uniform contrast and a complete structure.
  • the (110) and (003) crystal plane stripes of Ni 3 S 2 in 3b are clearly visible, indicating that the exposed crystal plane of Ni 3 S 2 is the high-index crystal plane with the highest electrocatalytic HER activity
  • no clear lattice fringes of ReS 2 were observed, indicating that nickel and rhenium did not form a complex of two sulfides or polysulfides containing two metal elements.
  • Figure 4 is an atomic force microscope characterization diagram of the catalyst Re x Ni 3-x S 2 /NF prepared in Example 1.
  • the thickness of each Re x Ni 3-x S 2 nanosheet is about 1.5 nm, indicating that it is only 2-3
  • the thickness of the molecular layer can prove that the Re x Ni 3-x S 2 formed by the rhenium-doped Ni 3 S 2 nanosheet is an ultra-thin nanosheet.
  • Figure 5 shows the electrolyzed water performance curve of the Re x Ni 3-x S 2 /NF composite material, which are the linear sweep voltammetry curve (a) and the Tafel slope curve (b), respectively.
  • the catalyst Re x Ni 3-x S 2 /NF prepared in Example 1 and the catalyst Ni 3 S 2 /NF prepared in Comparative Example 1 were tested for the performance of the hydrogen production experiment by electrolysis of water.
  • the test adopts a three-electrode system to test linear sweep voltammetry curve, Tafel slope curve, electrochemical impedance spectroscopy Nyquist curve and overpotential histogram.
  • the three-electrode system is divided into working electrode, reference electrode and counter electrode.
  • the reference electrode is an Ag/AgCl electrode
  • the counter electrode is a carbon rod
  • the working electrode is the catalyst material itself.
  • the platinum sheet electrode is used to clamp the catalyst and then directly used as the working electrode.
  • Figure 5 shows the electrolyzed water performance curve of the Re x Ni 3-x S 2 /NF composite material, which are the linear sweep voltammetry curve (a) and the Tafel slope curve (b), respectively. It can be clearly seen from Figure 5(a) that the overpotential of Re x Ni 3-x S 2 /NF at 10 mA cm -2 is as low as 62 mV, which is lower than that of Ni 3 S 2 /NF. It shows higher catalytic performance; it is obvious from Figure 5(b) that the Tafel slope of Re x Ni 3-x S 2 /NF composite material is 113mV decade -1 , which is compared with Ni 3 S 2 / The NF material has a smaller Tafel slope.
  • the preparation method of in-situ growth of foamed nickel is beneficial to increase the electron transfer rate in the electrocatalytic process, thereby accelerating the rate of the electrocatalytic hydrogen evolution reaction;
  • rhenium doping makes Ni 3 S 2 oriented growth, exposing the highest electrocatalytic HER activity High index crystal plane
  • the Re-S bond is also constructed, while the electronic structure of Ni 3 S 2 is regulated, and the intrinsic activity of the electrocatalytic decomposition of water and hydrogen evolution is improved.
  • Rhenium doping makes Ni 3 S 2 grow into ultra-thin nanosheets, ultra-thin nano-sheets.
  • the sheet has a rich edge, which increases the surface area of the material, and provides a large number of electrocatalytic active sites, which further improves the catalytic performance; the multi-level structure of the ultra-thin nanosheet supported by the three-dimensional macroporous nickel foam skeleton has a large and stable specific surface area. Conducive to full exposure of electrocatalytic active sites, mass transfer and hydrogen evolution.
  • the preparation method of the solvothermal one-pot reaction to prepare the foamed nickel-based Re x Ni 3-x S 2 ultra-thin nano-sheet composite material combines a variety of modification methods to effectively improve the foamed nickel-based Re x Ni 3- x S 2 Ultra-thin nano-sheet composite material has the intrinsic catalytic activity of the water electrolysis hydrogen production catalyst and the water electrolysis hydrogen production efficiency.
  • Solvothermal one-pot reaction 6.6mg ammonium perrhenate, 12mg thioacetamide, 10mg ammonium fluoride, 12mg cyclohexamethylenetetramine dissolved in 20mL deionized water, and filled into a 100mL high temperature and high pressure reactor
  • put the washed 0.5 ⁇ 4cm 2 foamed nickel in the kettle then put the high-temperature and high-pressure reaction kettle into a 120°C constant temperature oven, keep it warm for 2 hours, then heat up to 220°C, keep it warm for 6 hours, cool it naturally, and take it out.
  • the foamed nickel-based 8h-Re x Ni 3-x S 2 composite material is obtained.
  • the catalytic performance test was carried out according to the method of Example 1.
  • the 8h-Re x Ni 3-x S 2 /NF prepared in Comparative Example 2 had an overpotential of 150 mV at 10 mA cm -2 and a Tafel slope of 131 mV decade -1 ,
  • the catalytic performance is worse than that of Re x Ni 3-x S 2 /NF prepared in Example 1. It shows that too short reaction time is not conducive to the formation of Re-doped ultra-thin nanosheet composites with high catalytic performance and good crystallinity.
  • Solvothermal one-pot reaction 6.6mg ammonium perrhenate, 12mg thioacetamide, 10mg ammonium fluoride, 12mg cyclohexamethylenetetramine dissolved in 20mL deionized water, and filled into a 100mL high temperature and high pressure reactor
  • put the washed 0.5 ⁇ 4cm 2 foamed nickel in the kettle then put the high temperature and high pressure reaction kettle into a 120°C constant temperature oven, keep it warm for 8 hours, then heat up to 220°C, keep it warm for 48 hours, cool it naturally, and take it out
  • the foamed nickel-based 56h-Re x Ni 3-x S 2 ultra-thin nano-sheet composite material is obtained.
  • the catalytic performance test was carried out according to the method of Example 1.
  • the 56h-Re x Ni 3-x S 2 /NF prepared in Comparative Example 3 has an overpotential of 169 mV at 10 mA cm -2 and a Tafel slope of 149 mV decade -1 ,
  • the catalytic performance is worse than that of Re x Ni 3-x S 2 /NF prepared in Example 1. It shows that the use of longer reaction time actually reduces the catalytic performance of the composite material, which may be due to the Re-doped ultra-thin nanosheet structure will be destroyed under high temperature for too long.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公开了一种泡沫镍基电解水制氢催化剂的制备方法,包括如下步骤:将高铼酸铵、硫代乙酰胺、氟化铵、环六次甲基四胺溶于去离子水中,得到前驱体溶液,转移至水热釜内,加入泡沫镍,通过溶剂热一锅反应在泡沫镍上原位生长Re xNi 3-xS 2超薄纳米片超薄纳米片,反应完毕后,自然冷却,取出产物,冲洗,烘干,得到泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂。采用原位生长于泡沫镍的铼掺杂改性的过渡金属镍的硫化物超薄纳米片复合材料作为电解水制氢催化剂,相对于贵金属基催化剂而言,降低了催化剂的成本,相对于单一组分且未经掺杂改性的过渡金属硫化物纳米片催化剂而言,提高了电解水制氢催化剂的本征催化活性。

Description

一种泡沫镍基电解水制氢催化剂的制备方法 技术领域
本发明涉及一种泡沫镍基电解水制氢催化剂的制备方法,属于能源和催化材料领域。
技术背景
氢能被认为是21世纪最有应用前景的新能源之一。作为一种清洁高效的可再生能源,氢气可以通过热转换或者由电能和光能催化的水分解反应进行制备。其中,电催化分解水是一种高效、环保的制氢技术,具有广阔的应用前景,因此开发高效且廉价的电解水制氢催化剂至关重要。目前,贵金属铂等被认为是最高效的电解水制氢催化剂,但其价格高、储量低、稳定性差的缺点限制了贵金属催化剂的大规模应用。因此,开发廉价、稳定且高效电解水制氢催化剂是氢经济发展中亟待解决的重要问题。过渡金属价格相对低廉,其硫化物具有良好的电催化活性,受到广大研究者的关注。
目前,过渡金属化合物作为电催化析氢催化剂,通常需要使用粘接剂将其负载到其他导电基底上以方便应用,但催化剂与基底的这种结合方式并不牢固,严重时会阻碍电荷的传输,且限制了催化剂活性位点的充分暴露,降低催化剂活性与催化效率,造成材料和能源的浪费。
发明内容
本发明针对现有制氢电催化剂存在的问题,提供了一种高效的泡沫镍基电解水制氢催化剂的制备方法。其制备方法具有工艺流程简单,极易操作,有望大量生产等优点,制备得到的催化剂具有超薄纳米片结构,且原位负载于泡沫镍之上。大孔结构泡沫镍自生长超薄纳米片的稳定结构提高了电子转移速率,充分暴露了催化剂活性位点,有利于传质与氢气析出,铼掺杂不仅使Ni 3S 2生长为超薄纳米片,其拥有丰富的边缘,大大增加了电化学活性面积,更使其取向生长并暴露电催化HER活性最高的高指数晶面
Figure PCTCN2020097313-appb-000001
同时构建了Re-S键,调控了Ni 3S 2的电子结构,提高了其电催化分解水析氢的本征活性,最终形成了高效的泡沫镍基Re xNi 3-xS 2(0<x<3)超薄纳米片复合材料电解水制氢催化剂。
本发明的技术方案是:一种泡沫镍基电解水制氢催化剂的制备方法,包括如下步骤:将高铼酸铵、硫代乙酰胺、氟化铵、环六次甲基四胺溶于去离子水中,得到前驱体溶液,转移至水热釜内,加入泡沫镍,进行包含两个阶段的溶剂热一锅反应,其中,第一阶段的温度为 120℃,保温时间为4h,第二阶段温度为220℃,保温时间为24h;反应完毕后,自然冷却,取出产物,冲洗,烘干,得到泡沫镍基电解水制氢催化剂。
进一步地,制备前驱体溶液时,所使用的高铼酸铵、硫代乙酰胺、氟化铵、环六次甲基四胺和去离子水的质量比为3.3:6:5:6:10。
进一步地,所加入的泡沫镍的尺寸为0.5×4cm 2,前驱体溶液浸没所述泡沫镍。
本发明的有益效果是:
1.本发明采用原位生长于泡沫镍的铼掺杂改性的过渡金属镍的硫化物超薄纳米片作为电解水制氢催化剂,相对于贵金属氧化物催化剂而言,降低了催化剂的成本。
2.本发明采用原位生长于泡沫镍的铼掺杂改性的过渡金属镍的硫化物超薄纳米片作为电解水制氢催化剂,相对于单一组分且未经掺杂改性的过渡金属硫化物纳米片催化剂而言,提高了催化剂本征活性,增加了活性位点的暴露数量。
3.本发明通过溶剂热一锅反应中直接加入高铼酸盐作为铼源,在一定比例铼源的作用下,Ni 3S 2取向生长,暴露出电催化HER活性最高的高指数晶面
Figure PCTCN2020097313-appb-000002
同时铼掺杂构建了Re-S键,调控了Ni 3S 2的电子结构,提高了其电催化分解水析氢的本征活性;铼掺杂使Ni 3S 2生长为超薄纳米片,超薄纳米片拥有丰富的边缘,增大了材料的表面积,更提供了大量电催化活性位点,进一步提高了催化性能;最终获得结构稳定、成分均匀、性能改进的Re xNi 3-xS 2超薄纳米片,掺杂改性方法简单有效。
4.本发明催化剂的结构为大孔泡沫镍负载的铼掺杂改性的Ni 3S 2构成的Re xNi 3-xS 2超薄纳米片,与一般的粉状或块状催化剂相比,泡沫镍原位生长提高了电子转移速率,复杂纳米片的结构有利于传质和氢气析出,超薄纳米片则拥有大的比表面积和大量活性边缘,增加了催化活性面积。
总之,通过调节溶剂热一锅反应的时间、温度和药品用量,铼离子有效掺杂改性Ni 3S 2并使其取向生长为暴露高指数晶面
Figure PCTCN2020097313-appb-000003
的超薄铼掺杂Ni 3S 2纳米片,且其均匀地原位生长在泡沫镍上,得到结构稳定、成分均匀的泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂。
附图说明
图1为实施例1制备的泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂及对照 例1制备的泡沫镍基Ni 3S 2纳米片复合材料制氢电催化剂的X射线衍射图;
图2中,(a)为实施例1得到的泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂的整体扫描电镜图;(b)为实施例1得到的泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂在放大倍数较高下的扫描图片;
图3中,(a)为实施例1得到的泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂的高分辨透射电镜图;(b)为实施例1得到的泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂在放大倍数较高下的高分辨透射电镜图;
图4为实施例1制备的泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂的原子力显微镜表征图;
图5为实施例1得到的泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂的电化学性能图:线性扫描伏安法曲线(a)及塔菲尔斜率曲线(b)。
具体实施方式
以下通过实施例对本发明进行具体描述或作进一步说明,其目的在于更好的理解本发明的技术内涵,但是本发明的保护范围不限于以下的实施范围。
实施例1:
溶剂热一锅反应:6.6mg高铼酸铵、12mg硫代乙酰胺、10mg氟化铵、12mg环六次亚甲基四胺溶于20mL去离子水中,将其装入100mL的高温高压反应釜中,同时在釜中放入洗净的0.5×4cm 2泡沫镍,然后将高温高压反应釜放入120℃恒温烘箱中,保温4h,紧接着升温至220℃,保温24小时,自然冷却,取出冲洗,烘干,即得泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料,编号为Re xNi 3-xS 2/NF。
对照例1:
与实施例1的区别在于:溶剂热一锅反应中不加入高铼酸铵,其它均与实施例1相同,即得泡沫镍基Ni 3S 2复合材料,编号为Ni 3S 2/NF。
催化剂结构表征
图1为实施例1制备的催化剂Re xNi 3-xS 2/NF及对照例1制备的Ni 3S 2/NF的X射线衍射分析图。从图1中可以看出:实施例1及对照例1制备的催化剂均出现了Ni 3S 2与金属镍的特征峰,位于21.7°、31.1°、37.8°、38.2°、49.7°、55.2°处的衍射峰分别对应于Ni 3S 2(JCPDS No.44-1418)的(101)、(110)、(003)、(113)和(122)晶面,图中以实心圆形符号标记,44.5°、51.8°、 76.4°处的衍射峰则对应于基底泡沫镍中的单质Ni(JCPDS No.04-0850),图中以倒三角形符号标记。对照例1在组成上比实施例1明显的多出了Ni(OH) 2的特征峰,位于19.3°、33.1°、38.5°和59.0°处的衍射峰分别对应于Ni(OH) 2的(JCPDS No.14-0117)的(001)、(100)、(101)和(110)晶面,图中以空心圆形符号标记,说明铼掺杂可以抑制镍的氢氧化。此外,图中无其他杂峰出现,表现出较高的纯度。
图2为实施例1制备的催化剂Re xNi 3-xS 2/NF的扫描电镜图(a,b为不同放大倍数)。2a图中可观察到大孔泡沫镍骨架,且纳米片原位生长到大孔泡沫镍骨架上。2b中可观察到泡沫镍骨架表面均匀地垂直生长有Re xNi 3-xS 2纳米片,Re xNi 3-xS 2纳米片之间紧密簇拥,暴露出丰富的开放空隙和边缘,该结构为传质和析氢提供了开阔的空间。
图3为实施例1制备的催化剂Re xNi 3-xS 2/NF的高分辨透射电镜图(a,b为不同放大倍数)。3a中可观察到纳米片衬度均匀结构完整。3b中Ni 3S 2的(110)和(003)晶面条纹清晰可见,表明Ni 3S 2暴露的晶面为电催化HER活性最高的高指数晶面
Figure PCTCN2020097313-appb-000004
同时观察不到明确的ReS 2的晶格条纹,表明镍与铼并没有形成两种硫化物的复合物或含两种金属元素的多硫化物。
图4为实施例1制备的催化剂Re xNi 3-xS 2/NF的原子力显微镜表征图,每片Re xNi 3-xS 2纳米片的厚度约为1.5nm,表明其只有2-3个分子层厚,可证明该铼掺杂Ni 3S 2纳米片形成的Re xNi 3-xS 2为超薄纳米片。
图5为Re xNi 3-xS 2/NF复合材料的电解水性能曲线图,分别为线性扫描伏安法曲线(a)及塔菲尔斜率曲线(b)。
催化剂性能测试
将实施例1制备的催化剂Re xNi 3-xS 2/NF及对照例1制备的催化剂Ni 3S 2/NF做电解水制氢实验性能测试。测试采用三电极体系测试线性扫描伏安法曲线、塔菲尔斜率曲线、电化学阻抗谱尼奎斯特曲线及过电位直方图,三电极体系分为工作电极、参比电极和对电极。其中,参比电极为Ag/AgCl电极,对电极为碳棒,工作电极即为催化剂材料本身,使用铂片电极夹夹住催化剂后直接用作工作电极。
上述实验均在1.0M KOH溶液中进行,其中各项测试条件为:线性扫描扫速为1mV s -1,塔菲尔斜率曲线由线性扫描伏安测试曲线拟合。
图5为Re xNi 3-xS 2/NF复合材料的电解水性能曲线图,分别为线性扫描伏安法曲线(a)及 塔菲尔斜率曲线(b)。从图5(a)中明显可以看出:Re xNi 3-xS 2/NF在10mA cm -2时过电位低至62mV,相比Ni 3S 2/NF材料具有更低的过电位,表现出更高的催化性能;从图5(b)中明显可以看出:Re xNi 3-xS 2/NF复合材料的塔菲尔斜率为113mV decade -1,相比Ni 3S 2/NF材料具有更小的塔菲尔斜率。其原因在于泡沫镍原位生长的制备方法有利于提高电催化过程中的电子转移速率从而加快电催化析氢反应的速度;铼掺杂使Ni 3S 2取向生长,暴露出电催化HER活性最高的高指数晶面
Figure PCTCN2020097313-appb-000005
更构建了Re-S键,同时调控了Ni 3S 2的电子结构,提高了其电催化分解水析氢的本征活性;铼掺杂使Ni 3S 2生长为超薄纳米片,超薄纳米片拥有丰富的边缘,增大了材料的表面积,更提供了大量电催化活性位点,进一步提高了催化性能;三维大孔泡沫镍骨架负载超薄纳米片的多级结构比表面积大且稳定,有利于充分暴露电催化活性位点、传质和氢气析出。该溶剂热一锅反应制备泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料的制备方法,集合了多种改性手段共同作用,有效提高了该泡沫镍基Re xNi 3-xS 2超薄纳米片复合材料电解水制氢催化剂的本征催化活性和电解水制氢效率。
对照例2:
溶剂热一锅反应:6.6mg高铼酸铵、12mg硫代乙酰胺、10mg氟化铵、12mg环六次亚甲基四胺溶于20mL去离子水中,将其装入100mL的高温高压反应釜中,同时在釜中放入洗净的0.5×4cm 2泡沫镍,然后将高温高压反应釜放入120℃恒温烘箱中,保温2h,紧接着升温至220℃,保温6小时,自然冷却,取出冲洗,烘干,即得泡沫镍基8h-Re xNi 3-xS 2复合材料。
按照实施例1的手段进行催化性能测试,本对照例2制备得到的8h-Re xNi 3-xS 2/NF在10mA cm -2时过电位为150mV,塔菲尔斜率为131mV decade -1,催化性能差于实施例1制备的Re xNi 3-xS 2/NF。说明采用过短的反应时间不利于形成催化性能高的具有良好结晶度的Re掺杂超薄纳米片复合材料。
对照例3:
溶剂热一锅反应:6.6mg高铼酸铵、12mg硫代乙酰胺、10mg氟化铵、12mg环六次亚甲基四胺溶于20mL去离子水中,将其装入100mL的高温高压反应釜中,同时在釜中放入洗净的0.5×4cm 2泡沫镍,然后将高温高压反应釜放入120℃恒温烘箱中,保温8h,紧接着升温至220℃,保温48小时,自然冷却,取出冲洗,烘干,即得泡沫镍基56h-Re xNi 3-xS 2超薄纳米片复合材料。
按照实施例1的手段进行催化性能测试,本对照例3制备得到的56h-Re xNi 3-xS 2/NF在10mA cm -2时过电位为169mV,塔菲尔斜率为149mV decade -1,催化性能差于实施例1制备的Re xNi 3-xS 2/NF。说明采用更长的反应时间反而降低了复合材料的催化性能,这可能是由于Re掺杂超薄纳米片结构在过长时间的高温下会被破坏。

Claims (3)

  1. 一种泡沫镍基电解水制氢催化剂的制备方法,其特征在于,包括如下步骤:
    将高铼酸铵、硫代乙酰胺、氟化铵、环六次甲基四胺溶于去离子水中,得到前驱体溶液,转移至水热釜内,加入泡沫镍,进行包含两个阶段的溶剂热一锅反应,其中,第一阶段的温度为120℃,保温时间为4h,第二阶段温度为220℃,保温时间为24h;反应完毕后,自然冷却,取出产物,冲洗,烘干,得到泡沫镍基电解水制氢催化剂。
  2. 根据权利要求1所述的制备方法,其特征在于,制备前驱体溶液时,所使用的高铼酸铵、硫代乙酰胺、氟化铵、环六次甲基四胺和去离子水的质量比为3.3:6:5:6:10。
  3. 根据权利要求1所述的制备方法,其特征在于,所加入的泡沫镍的尺寸为0.5×4cm 2,前驱体溶液浸没所述泡沫镍。
PCT/CN2020/097313 2020-03-19 2020-06-22 一种泡沫镍基电解水制氢催化剂的制备方法 WO2021184563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010194049.0 2020-03-19
CN202010194049.0A CN111282582A (zh) 2020-03-19 2020-03-19 一种泡沫镍基电解水制氢催化剂的制备方法

Publications (1)

Publication Number Publication Date
WO2021184563A1 true WO2021184563A1 (zh) 2021-09-23

Family

ID=71017210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097313 WO2021184563A1 (zh) 2020-03-19 2020-06-22 一种泡沫镍基电解水制氢催化剂的制备方法

Country Status (2)

Country Link
CN (1) CN111282582A (zh)
WO (1) WO2021184563A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045500A (zh) * 2021-11-19 2022-02-15 北京科技大学 一种自支撑多级结构电极的制备方法
CN114045525A (zh) * 2021-12-03 2022-02-15 张黎丽 一种镍基自支撑电解水催化剂及其制备方法
CN114392757A (zh) * 2022-01-21 2022-04-26 海南大学 一种过渡金属化合物催化剂的制备方法及应用
CN114408886A (zh) * 2022-01-26 2022-04-29 青岛科技大学 一种贵金属掺杂的多孔磷化铁镍的制备
CN114540833A (zh) * 2022-02-22 2022-05-27 临沂大学 一种CeO2@Co3S4异质多层次纳米结构催化材料及其制备方法与应用
CN114774958A (zh) * 2022-04-20 2022-07-22 天津大学 一种耐腐蚀性的镍铁电极及其制备方法和应用
CN114990624A (zh) * 2022-06-14 2022-09-02 陕西科技大学 一种三维花状锌掺杂的Ni2P/Ni12P5异质结自支撑电催化剂材料的制备方法
CN115041200A (zh) * 2022-07-27 2022-09-13 重庆邮电大学 一种转化二氧化碳的光催化剂及其制备方法和应用
CN115125564A (zh) * 2022-06-07 2022-09-30 北京大学深圳研究生院 一种晶态-非晶态纳米片电催化剂及其制备方法
CN115321612A (zh) * 2022-09-06 2022-11-11 台州学院 一种单原子和空位共存的镍硫化合物的制备方法
CN115522215A (zh) * 2022-10-09 2022-12-27 蔡磊 一种以泡沫镍为基底的MIL-88@CoMg电解水析氢催化剂的制备及其应用
CN115786931A (zh) * 2022-11-09 2023-03-14 南通大学 一种有机硒分子修饰Co掺杂过渡金属硫化物的制备方法及应用
CN115874213A (zh) * 2022-11-11 2023-03-31 石河子大学 一种快速原位合成羟基氧化物电催化剂的制备方法
CN115928127A (zh) * 2022-11-28 2023-04-07 厦门大学 一种自支撑型催化剂及其制备方法和应用
CN115125564B (zh) * 2022-06-07 2024-06-04 北京大学深圳研究生院 一种晶态-非晶态纳米片电催化剂及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111282582A (zh) * 2020-03-19 2020-06-16 苏州楚捷新材料科技有限公司 一种泡沫镍基电解水制氢催化剂的制备方法
CN114807956B (zh) * 2022-04-11 2024-05-17 西南石油大学 应用于硫化氢制氢的原位生长纳米阵列催化剂的制备方法
CN115520938A (zh) * 2022-09-30 2022-12-27 常州工学院 等离子体改性铁掺杂硫化镍的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107321366A (zh) * 2017-06-15 2017-11-07 北京科技大学 一种高效分解水产氢产氧的电催化剂及其制备方法
CN107362812A (zh) * 2017-07-25 2017-11-21 苏州大学 一种硒硫化铼复合二维材料、制备方法及其应用
CN110508292A (zh) * 2019-07-15 2019-11-29 天津大学 用于电催化全解水的金属掺杂二硫化铼纳米片阵列的制备方法
WO2019241717A1 (en) * 2018-06-15 2019-12-19 University Of Houston System HIERARCHICAL METAL PHOSPHIDE-SANDWICHED Ni5P4-BASED MICROSHEET ARRAYS AS ROBUST PH-UNIVERSAL ELECTROCATALYSTS FOR EFFICIENT HYDROGEN GENERATION
CN111282582A (zh) * 2020-03-19 2020-06-16 苏州楚捷新材料科技有限公司 一种泡沫镍基电解水制氢催化剂的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107149940B (zh) * 2017-05-05 2020-07-28 燕山大学 一种氟、氮共掺杂的二硫化钼制备方法
CN108423642B (zh) * 2018-04-04 2021-07-13 南京邮电大学 一种小尺寸过渡金属硫族化合物二维纳米片的制备方法
CN108315761A (zh) * 2018-04-17 2018-07-24 成都新柯力化工科技有限公司 一种电解水制氢用二硫化三镍-镍电极材料的制备方法
CN110444412A (zh) * 2019-08-13 2019-11-12 三峡大学 一种等级蜂窝状Ni3S2薄膜电极的制备方法
CN110820011B (zh) * 2019-11-12 2022-05-17 青岛科技大学 一种电解水用Ni3S2电极材料及其制备方法
CN110697664A (zh) * 2019-11-27 2020-01-17 南京邮电大学 一种过渡金属硫族化合物纳米点及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107321366A (zh) * 2017-06-15 2017-11-07 北京科技大学 一种高效分解水产氢产氧的电催化剂及其制备方法
CN107362812A (zh) * 2017-07-25 2017-11-21 苏州大学 一种硒硫化铼复合二维材料、制备方法及其应用
WO2019241717A1 (en) * 2018-06-15 2019-12-19 University Of Houston System HIERARCHICAL METAL PHOSPHIDE-SANDWICHED Ni5P4-BASED MICROSHEET ARRAYS AS ROBUST PH-UNIVERSAL ELECTROCATALYSTS FOR EFFICIENT HYDROGEN GENERATION
CN110508292A (zh) * 2019-07-15 2019-11-29 天津大学 用于电催化全解水的金属掺杂二硫化铼纳米片阵列的制备方法
CN111282582A (zh) * 2020-03-19 2020-06-16 苏州楚捷新材料科技有限公司 一种泡沫镍基电解水制氢催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU KEKE: "Preparation of Transition Metal Phosphide Catalyst by Thermal Phosphating and Its Hydrogen Production Performance of Electrolytic Splitting Water", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY I, no. 8, 15 August 2019 (2019-08-15), CN, pages 1 - 120, XP009530681, ISSN: 1674-022X *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045500A (zh) * 2021-11-19 2022-02-15 北京科技大学 一种自支撑多级结构电极的制备方法
CN114045525A (zh) * 2021-12-03 2022-02-15 张黎丽 一种镍基自支撑电解水催化剂及其制备方法
CN114392757A (zh) * 2022-01-21 2022-04-26 海南大学 一种过渡金属化合物催化剂的制备方法及应用
CN114408886A (zh) * 2022-01-26 2022-04-29 青岛科技大学 一种贵金属掺杂的多孔磷化铁镍的制备
CN114408886B (zh) * 2022-01-26 2023-12-22 青岛科技大学 一种贵金属掺杂的多孔磷化铁镍的制备
CN114540833A (zh) * 2022-02-22 2022-05-27 临沂大学 一种CeO2@Co3S4异质多层次纳米结构催化材料及其制备方法与应用
CN114774958A (zh) * 2022-04-20 2022-07-22 天津大学 一种耐腐蚀性的镍铁电极及其制备方法和应用
CN114774958B (zh) * 2022-04-20 2023-07-07 天津大学 一种耐腐蚀性的镍铁电极及其制备方法和应用
CN115125564B (zh) * 2022-06-07 2024-06-04 北京大学深圳研究生院 一种晶态-非晶态纳米片电催化剂及其制备方法
CN115125564A (zh) * 2022-06-07 2022-09-30 北京大学深圳研究生院 一种晶态-非晶态纳米片电催化剂及其制备方法
CN114990624A (zh) * 2022-06-14 2022-09-02 陕西科技大学 一种三维花状锌掺杂的Ni2P/Ni12P5异质结自支撑电催化剂材料的制备方法
CN114990624B (zh) * 2022-06-14 2023-08-22 陕西科技大学 一种三维花状锌掺杂的Ni2P/Ni12P5异质结自支撑电催化剂材料的制备方法
CN115041200B (zh) * 2022-07-27 2023-06-27 重庆邮电大学 一种转化二氧化碳的光催化剂及其制备方法和应用
CN115041200A (zh) * 2022-07-27 2022-09-13 重庆邮电大学 一种转化二氧化碳的光催化剂及其制备方法和应用
CN115321612B (zh) * 2022-09-06 2023-06-20 台州学院 一种单原子和空位共存的镍硫化合物的制备方法
CN115321612A (zh) * 2022-09-06 2022-11-11 台州学院 一种单原子和空位共存的镍硫化合物的制备方法
CN115522215A (zh) * 2022-10-09 2022-12-27 蔡磊 一种以泡沫镍为基底的MIL-88@CoMg电解水析氢催化剂的制备及其应用
CN115786931A (zh) * 2022-11-09 2023-03-14 南通大学 一种有机硒分子修饰Co掺杂过渡金属硫化物的制备方法及应用
CN115786931B (zh) * 2022-11-09 2023-08-15 南通大学 一种有机硒分子修饰Co掺杂过渡金属硫化物的制备方法及应用
CN115874213A (zh) * 2022-11-11 2023-03-31 石河子大学 一种快速原位合成羟基氧化物电催化剂的制备方法
CN115928127A (zh) * 2022-11-28 2023-04-07 厦门大学 一种自支撑型催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN111282582A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2021184563A1 (zh) 一种泡沫镍基电解水制氢催化剂的制备方法
CN110021757B (zh) 一种生长于泡沫镍表面的硫硒化镍薄膜包裹的纳米棒材料的制备方法
Song et al. Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-efficiency overall water splitting
CN110055557B (zh) 一种三维镍掺杂铁基析氧催化剂及其制备方法和应用
CN109954503B (zh) 一种硒化镍和三元硒化镍铁复合电催化剂及制备方法和应用
CN109967100B (zh) 一种金属掺杂的CoP3、其制备方法及应用
CN110639534B (zh) 一种析氧电催化材料及其制备方法和应用
CN110479271B (zh) 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法
CN110124673B (zh) 一种硼诱导非晶层状双氢氧化物电催化剂及其制备与应用
CN111871427B (zh) 贵金属/钼镍类复合材料及其制备方法和应用
CN110538662A (zh) 用于电催化析氢的钴掺杂二硫化铼纳米片阵列的制备方法
CN111939947B (zh) 一种纳米片阵列电催化剂的制备方法
CN113832492A (zh) 一种镍钴硫材料及制备方法和在电催化oer中的应用
CN114875442A (zh) 一种钌修饰的钼镍纳米棒复合催化剂及其制备方法和应用
CN110565113A (zh) 一种用于碱性电催化析氢的复合电催化材料的制备方法
CN111974398B (zh) 热致全重构的纳米线阵列及其制备方法和应用
CN112490451A (zh) 一种由叶酸衍生的Cu-CoNCNs催化剂及制备和应用
CN114405521A (zh) 一种缺陷丰富的掺锌二硫化钼纳米片析氢电催化剂的制备方法
CN116219484A (zh) 一种高效的双金属氮化物/氢氧化物异质结构电催化剂、制备方法和应用
CN116200773A (zh) 富含孪晶结构的过渡族金属电催化剂及其制备方法和应用
CN112295581B (zh) 一种电催化剂材料及其应用
CN110129814B (zh) 一种碳化二钨反蛋白石复合微纳结构的电催化电极及其制备和析氢应用
CN111774071B (zh) 一种三元金属硫化物纳米片材料及其制备与电解水应用
CN114843529B (zh) 一种基于水系zif衍生的多孔碳球及其制备方法和应用
Sun et al. Interface engineered Co2P/CoMoP2 heterojunction with greatly improved electrocatalytic activity in water/seawater splitting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926251

Country of ref document: EP

Kind code of ref document: A1