CN109967100B - 一种金属掺杂的CoP3、其制备方法及应用 - Google Patents

一种金属掺杂的CoP3、其制备方法及应用 Download PDF

Info

Publication number
CN109967100B
CN109967100B CN201910368266.4A CN201910368266A CN109967100B CN 109967100 B CN109967100 B CN 109967100B CN 201910368266 A CN201910368266 A CN 201910368266A CN 109967100 B CN109967100 B CN 109967100B
Authority
CN
China
Prior art keywords
cobalt
carbon cloth
doped
reaction kettle
cop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910368266.4A
Other languages
English (en)
Other versions
CN109967100A (zh
Inventor
吴天利
谭付瑞
高跃岳
张伟风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201910368266.4A priority Critical patent/CN109967100B/zh
Publication of CN109967100A publication Critical patent/CN109967100A/zh
Application granted granted Critical
Publication of CN109967100B publication Critical patent/CN109967100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种金属掺杂的CoP3、其制备方法及应用。本发明将不同金属掺杂的钴基前驱物和红磷按照钴、磷的的原子比1:3~1:4进行混合,在于温度625~700℃、5×10‑5~5×10‑4Pa真空条件下反应3~5h,再取出浸没于纯CS2中处理去除多余的磷即得,本发明首次将金属元素掺杂进入三磷化钴中,并实现了其在碳布等柔性材料表面的原位生长,提高了三磷化钴的电催化本征活性,避免了粉体电催化剂需要使用萘酚等聚合物粘合剂固定的问题,适合于大规模电催化工业制氢的应用。

Description

一种金属掺杂的CoP3、其制备方法及应用
技术领域
本发明属于绿色可持续工业制氢领域,具体涉及一种金属掺杂的CoP3、其制备方法及应用。
背景技术
随着石油、煤炭等传统化石能源的逐渐枯竭和环境问题的日益恶化,以化石能源为基础的传统能源结构体系正面临着前所未有的危机与挑战 (Majumdar et al.,Nature, 2012, 488, 294)。氢气具有高的能量密度、优异的燃烧性能、清洁无污染等优点,是传统化石能源的最佳可替代绿色能源(Jaramillo et al., Science, 2017, 355,eaad4998)。然而,氢能的利用很大程度上取决于制氢技术工艺的发展,目前工业制氢工艺主要是石化催化裂化及天然气蒸汽重整制氢,该工艺从环境以及能量综合利用的角度来考虑并不符合“绿色可持续”的发展需求。近年来,随着新型发电技术(如太阳能发电、风力发电、核能发电、水力发电、地热发电等)的不断发展和电网系统的不断优化与升级,电催化分解水制氢技术的优势被不断放大,甚至被许多科学家与企业家们誉为“最理想的工业制氢方法”,而该技术的最核心问题是高效、稳定、廉价、清洁的制氢电催化剂电极的开发。
目前,电催化制氢工艺最有效的电催化剂是铂基催化剂,因为该类催化剂在电催化分解水制氢过程中具有最低的过电势和很高的稳定性。但是,铂的高昂的价格和低存储量严重制约了该类催化剂在电解水制氢中的广泛应用以及该制氢工艺的长足发展。因此,找寻廉价、可代替的高活性电催化制氢催化剂是发展制氢工艺的核心问题。过渡金属磷化物结构比较特殊,它是磷插入过渡金属骨架的间隙而形成的间隙式化合物。由于保持了过渡金属的骨架,过渡金属磷化物具有好的导电性和耐腐蚀性,是一种优秀的电催化析氢材料(Selomulya et al., Nano Today, 2017, 15, 26)。其中,钴基磷化物被认为是替代贵金属铂基电催化析氢的最好的材料而受到国内外科学家的广泛关注(Zhang et al.,Chem. Soc. Rev., 2016, 45, 1529; Sun et al.,J. Am. Chem. Soc. 2014, 136,7587)。但是几乎所有的研究都关注于一磷化钴。近几年的研究结果表明,过渡金属磷化物中的磷原子处于负点中心在电催化析氢反应中捕获带正电的质子充当析氢反应的催化活性位点而起到至关重要的作用。因此,在同一类过渡金属磷化物中随着磷元素增加,电催化析氢反应的活性位点就越多,电催化析氢能力就越强。发明人通过高温磷化首次通过氧化物磷化合成出三磷化钴(Wu et al., J. Mater. Chem. A, 2016, 4, 14539),尽管其性能有所提升,但其电催化析氢性能有待进一步提升,以满足非贵金属电催化剂工业制氢的要求。
发明内容
为了满足三磷化钴电催化剂工业制氢的要求,本发明旨在解决三磷化钴电催化析氢本征活性不高的问题,通过金属原子掺杂进一步提高其本征活性以满足非贵金属电催化剂工业制氢的要求。
为实现上述目的,本发明所采用的技术方案是:
一种金属掺杂的CoP3的制备方法,包括如下步骤:将不同金属掺杂的钴基前驱物和红磷按照钴、磷的的原子比1:3~1:4进行混合,在于温度625~700℃、5×10-5~5×10- 4Pa真空条件下反应3~5h,再取出浸没于纯CS2中处理处理去除多余的磷即得。
进一步地,具体包括如下步骤:
第一步:先将柔性碳布在稀硝酸中浸泡2~3小时,对其进行质子化,然后取出柔性碳布,用水、酒精依次洗涤,干燥备用;
第二步:将掺杂金属盐、六水硝酸钴、氟化铵和尿素等按照一定的比例依次溶解在水中,常温搅拌直至得到均匀溶液;
第三步:将均匀溶液转入聚四氟乙烯反应釜中,并将干燥备用柔性碳布竖直放入反应釜中水热反应,取出碳布,用水、酒精清洗表面,常温干燥备用;
第四步:将上步干燥好的碳布和红磷按比例真空密封在石英管中,然后625~700℃、5×10-5~5×10-4Pa真空条件下反应3~5h,再取出浸没于纯CS2中处理处理去除多余的磷即得,得到生长有金属掺杂三磷化钴纳米材料的碳布,可将其直接做电极用于电催化分解水析氢。
所述柔性碳布可以采用所有商用的碳布。
所述掺杂金属为铁、锰、镍、铜、钒、铬、钼、钨、锌、铝中的一种或几种金属,掺杂金属盐为对应掺杂金属的可溶性盐,如硝酸盐或者氯化盐等,掺杂金属占钴元素的摩尔百分比为1-11%,水热反应是指90~120℃反应6-12小时,在该温度和时间下合成的金属掺杂三磷化钴形貌好,电催化水分解制氢活性好。
优选地,所述掺杂金属为镍、钒或铬,掺杂金属占钴元素的摩尔百分比为9-11%。
磷化时间不能少于3小时,以防磷化不彻底。
具体地,所述钒掺杂钴基前驱物的具体制备过程如下:
(1)将1.309g六水硝酸钴、0.136g七水合硫酸钒和0.2g硝酸铵依次溶解在15mL水中,常温搅拌60分钟,再将5ml质量分数为25wt%的氨水加入上述溶液搅拌30min得到均匀溶液;
(2)将均匀溶液转入25mL聚四氟乙烯反应釜内胆中,并将干燥备用柔性碳布竖直放入反应釜内胆中,密封反应釜,在90℃水热反应14h,取出碳布,清洗,常温干燥,备用。
具体地,所述铬掺杂钴基前驱物的具体制备过程如下:
(1)将0.523g六水硝酸钴、0.078g硫酸铬、0.186g氟化铵和0.6g尿素依次溶解在40mL超纯水中,常温搅拌30分钟,得到均匀溶液;
(2)将均匀溶液转入50mL聚四氟乙烯反应釜内胆中,并将干燥备用柔性碳布竖直放入反应釜内胆中,密封好反应釜,在120℃水热反应6h,取出碳布,清洗,常温干燥,备用。
具体地,所述镍掺杂钴基前驱物的具体制备过程如下:
(1)将2.095g六水合硝酸钴、0.233g六水合硝酸镍、0.106g氟化铵和1.2g尿素依次溶解在40mL超纯水中,常温搅拌60分钟,得到均匀溶液;
(2)将均匀溶液转入50mL聚四氟乙烯反应釜内胆中,并将洗好的干燥备用柔性碳布竖直放入反应釜内胆中,密封好反应釜,在120℃水热反应22h,取出碳布,清洗,常温干燥,备用。
上述制备方法制得的金属掺杂的CoP3
上述金属掺杂的CoP3作为柔性电极在电催化析氢中的应用。
与现有技术相比,本发明通过真空封管磷化,克服低温低压下三磷化钴合成不能达到的化学势,实现了金属掺杂三磷化钴纳米材料的形貌可控制备,表现出优异的电催化析氢活性和稳定性,不仅在电催化析氢、锂离子电池、石油脱硫加氢等领域都有重要的应用前景。
附图说明
图1为实施例1中在柔性碳布上生长V-CoP3 NSPs/CC的扫描电镜图及碱性条件下V-CoP NSPs/CC、CoP3 NSPs/CC、CoP NSPs/CC和V-CoP NSPs/CC的电催化分解水析氢性能。
图2为实施例2中在柔性碳布上生长Cr-CoP3 NWs/CC的扫描电镜图及酸性条件下Cr-CoP NWs/CC、CoP3 NWs/CC、CoP3 NWs/CC和Cr-CoP3 NWs/CC的电催化分解水析氢性能。
图3为实施例3中在柔性碳布上生长Ni-CoP3 NSs/CC的扫描电镜图及中性条件下Ni-CoP NSs/CC、CoP3 NSs/CC、CoP3 NSs/CC和Ni-CoP3 NSs/CC的电催化分解水析氢性能。
具体实施方式
为了使本发明的技术目的、技术方案和有益效果更加清楚,下面结合附图、具体实施例和对比例对本发明的技术方案作出进一步的说明。
文中所使用柔性碳布全部购买于上海河森电器有限公司,型号为:HCP330N(亲水型)。
实施例1:
本实施例中在柔性碳布上自支撑生长钒掺杂三磷化钴纳米球电极及电催化析氢测试,包括以下步骤:
第一步:先将柔性碳布在质量分数为15%的稀硝酸中浸泡两个小时,对其进行质子化,然后取出柔性碳布用水、无水各洗涤三次,干燥备用。
第二步,将1.309g六水硝酸钴、0.136g七水合硫酸钒和0.2g硝酸铵依次溶解在15mL水中,常温搅拌60分钟,得到均匀溶液,再将5mL质量分数为25wt%的氨水加入上述溶液搅拌三十分钟得到均匀溶液。
第三步,将上一步的均匀溶液转入25mL聚四氟乙烯反应釜内胆中,并将干燥备用柔性碳布竖直放入反应釜内胆中,密封好反应釜,在90℃水热反应14h,取出碳布,用水、无水乙醇清洗表面,常温干燥得到在柔性碳布上生长的钒掺杂钴基前驱物纳米球,常温干燥备用。
第四步,将上一步干燥好的碳布和50毫克红磷在真空压为5×10-5Pa条件下密封在石英管中,然后650℃高温保形磷化3小时后取出,浸没于纯CS2中处理30min去除多余的磷,表面变成纯黑色即可得到在碳布上生长的钒掺杂三磷化钴纳米球(V-CoP3 NSPs/CC)电极,扫描电镜图如图1左图所示,由图1可知,每一个纳米球的直径约为200~500nm,这种自支撑的柔性电极,避免了粉体材料需要使用萘酚等粘合剂制作电极的繁琐。另外,通过电感耦合等离子体质谱仪(ICP-MS)测得V元素掺杂量占总金属元素的摩尔百分比为10%。
第五步,以上一步制得的V-CoP3 NSPs/CC、CoP3 NSPs/CC(即实施例1第二步不加入七水合硫酸钒)、CoP NSPs/CC(详见对比例1不加入七水合硫酸钒)、V-CoP NSPs/CC(详见对比例1)、Pt/C和CC(碳布)为工作电极,以1M KOH溶液作为电解液,饱和甘汞为参比电极,石墨棒为对电极,测试其电催化析氢活性,具体详见图1右图,结果表明不掺杂的CoP纳米球实现50mA cm-2的电催化析氢极化电流需要272mV的电压、V掺杂的CoP纳米球实现50mA cm-2的电催化析氢极化电流需要225mV的电压,不掺杂的CoP3纳米球做电极,实现50mA cm-2的电催化析氢极化电流需要208mV的电压,而V掺杂CoP3纳米球做电极,仅需要157mV就可以在1MKOH溶液中实现10mA cm-2的电催化析氢极化电流。比较发现,V掺杂CoP3做电极实现10mAcm-2的电催化析氢极化电流需要的电压比不掺杂的CoP3降低了24.5%,V掺杂CoP3纳米球在碱性条件下的电催化析氢活性得到很大的提高。
实施例2:
本实施例中在柔性碳布上自支撑生长铬掺杂三磷化钴纳米线阵列电极及电催化析氢测试包括以下步骤
第一步:先将柔性碳布在质量分数为15%的稀硝酸中浸泡两个小时,对其进行质子化,然后取出柔性碳布用水、酒精依次洗涤三次干燥备用。
第二步:将0.523g六水硝酸钴、0.078g硫酸铬、0.186g氟化铵和0.6g尿素依次溶解在40mL超纯水中,常温搅拌30分钟,得到均匀溶液。
第三步:将均匀溶液转入50mL聚四氟乙烯反应釜内胆中,并将干燥备用柔性碳布竖直放入反应釜内胆中,密封好反应釜,在120℃水热反应6h,取出碳布,用水、无水乙醇清洗表面,常温干燥得到在碳布上生长的铬掺杂钴基前驱物纳米线,备用。
第四步:将上一步干燥好的碳布和50毫克红磷在真空压为5×10-5Pa条件下密封在石英管中,然后650℃高温保形磷化3小时取出,浸没于纯CS2中处理30min去除多余的磷,表面变成纯黑色即可得到在柔性碳布上生长的铬掺杂三磷化钴纳米线阵列(Cr-CoP3 NWs/CC),合成的铬掺杂三磷化钴纳米线均匀地生长在碳布上,其扫描电镜图如图2左图所示,由图2可知,每一根纳米线约50nm粗,1μm长,该结构比表面积大,活性位点多。另外,通过电感耦合等离子体质谱仪(ICP-MS)测得Cr元素占总掺杂金属摩尔百分比为9%。
第五步:以上一步制得的Cr-CoP3 NWs/CC、CoP3 NWs/CC(实施例2第二步中不加入硫酸铬)、CoP NWs /CC(详见对比例2中不加入硫酸铬)、Cr-CoP NSPs/CC(详见对比例2)、Pt/C和CC为工作电极,以0.5M H2SO4溶液作为电解液,硫酸汞为参比电极,石墨棒为对电极,测试其电催化析氢活性,具体详见图2右图,结果表明不掺杂的CoP纳米线阵列做电极,实现70mA cm-2的电催化析氢极化电流需要181mV的电压,Cr掺杂的CoP3纳米线阵列做电极,实现70mA cm-2的电催化析氢极化电流需要157mV的电压,不掺杂的CoP3纳米线阵列做电极,实现70mA cm-2的电催化析氢极化电流需要130mV的电压,而Cr掺杂CoP3纳米线阵列做电极,仅需要104mV就可以在0.5M H2SO4溶液中实现70mA cm-2的电催化析氢极化电流。比较发现,Cr掺杂CoP3做电极实现70mA cm-2的电催化析氢极化电流需要的电压比不掺杂的CoP3纳米线阵列电极降低了20%,Cr掺杂CoP3纳米线针的电催化析氢活性得到很大的提高。
实施例3:
本实施例中在柔性碳布上自支撑生长镍掺杂三磷化钴纳米片阵列电极及电催化析氢测试,包括以下步骤
第一步:先将柔性碳布在质量分数为15%的稀硝酸中浸泡两个小时,对其进行质子化,然后取出柔性碳布用水、无水乙醇依次洗涤三次干燥备用。
第二步:将2.095g六水合硝酸钴、0.233g六水合硝酸镍、0.106g氟化铵和1.2g尿素依次溶解在40mL超纯水中,常温搅拌60分钟,得到均匀溶液。
第三步:将均匀溶液转入50mL聚四氟乙烯反应釜内胆中,并将洗好的干燥备用柔性碳布竖直放入反应釜内胆中,密封好反应釜,在120℃水热反应22h,取出碳布,用水、无水乙醇清洗表面,常温干燥,得到在碳布上生长的钴基前驱物纳米片,备用。
第四步:将上一步干燥好的碳布和50毫克红磷在真空压为5×10-5Pa条件下密封在石英管中,然后650℃高温保形磷化3小时取出,浸没于纯CS2中处理30min去除多余的磷,表面变成纯黑色即可得到在碳布上生长的镍掺杂三磷化钴纳米片阵列(Ni-CoP3 NSs/CC),其扫描电镜图如图3左图所示,由图3可知,合成的镍掺杂三磷化钴纳米片均匀地生长在碳布上,每一个纳米片厚约5nm,表面粗糙多孔,有利于催化材料与电解液充分接触。另外,通过电感耦合等离子体质谱仪(ICP-MS)测得Ni元素占总掺杂元素的摩尔百分比为11%。
第五步:以上一步制得的Ni-CoP3 NSs/CC、CoP3 NSs/CC(实施例3第二步中不加入六水合硝酸镍)、Ni-CoPNSs/CC(详见对比例3)、CoP NSs/CC(对比例3中不加入六水合硝酸镍)、Pt/C和CC为工作电极,以1M PBS标准溶液作为电解液,饱和甘汞为参比电极,石墨棒为对电极,测试其电催化析氢活性,具体结果详见图3右图,结果表明不掺杂的CoP纳米片阵列做电极,实现40mA cm-2的电催化析氢极化电流需要284mV的电压,Ni掺杂的CoP纳米片阵列做电极,实现40mA cm-2的电催化析氢极化电流需要242mV的电压。不掺杂的CoP3纳米片阵列做电极,实现40mA cm-2的电催化析氢极化电流需要220mV的电压,而Ni掺杂CoP3纳米片阵列做电极,仅需要179mV就可以实现40mA cm-2的电催化析氢极化电流。比较发现,Ni掺杂CoP3纳米片阵列做电极实现40mA cm-2的电催化析氢极化电流需要的电压比不掺杂的CoP3纳米片阵列电极降低了19%,V掺杂CoP3的电催化析氢活性得到很大的提高。
表1为实施例1~3的元素掺杂百分比。
Figure DEST_PATH_IMAGE002
对比例1
本对比例中在柔性碳布上自支撑生长钒掺杂一磷化钴纳米球电极的方法,是在实施例1中合成的钒掺杂钴基前驱物基础上不进行真空密封,直接在管式炉中磷化,按照常规文献中低磷化物的合成方法用1g次亚磷酸钠做磷源,其250℃分解生成磷化氢气体在350℃2h将钒掺杂的钴基前驱物磷化为钒掺杂一磷化钴纳米球电极,而V掺杂CoP 纳米球做电极,需要225mV可以实现50mA cm-2的电催化析氢极化电流,一磷化钴掺杂后的活性仅仅和纯的CoP3纳米球(208mV)电极的电催化活性相近,与V掺杂的CoP3纳米球(157mV)做电极相差很多。
对比例2
本对比例中在柔性碳布上自支撑生长铬掺杂一磷化钴纳米线阵列电极的方法,是在实施例2中合成的钒掺杂钴基前驱物基础上不进行真空密封,直接在管式炉中磷化,按照常规文献中低磷化物的合成方法用1g次亚磷酸钠做磷源,其250℃分解生成磷化氢气体在350℃2h将铬掺杂的钴基前驱物磷化为铬掺杂一磷化钴纳米线电极,而Cr掺杂CoP 纳米线做电极,需要156mV可以实现70mA cm-2的电催化析氢极化电流,一磷化钴掺杂后的活性比纯的CoP3纳米线(130mV)电极的电催化活性差,与V掺杂的CoP3纳米线(104mV)做电极相差更多。
对比例3
本对比例中在柔性碳布上自支撑生长镍掺杂一磷化钴纳米片阵列电极的方法,是在实施例3中合成的镍掺杂钴基前驱物基础上不进行真空密封,直接在管式炉中磷化,按照常规文献中低磷化物的合成方法用1g次亚磷酸钠做磷源,其250℃分解生成磷化氢气体再350℃反应2h将钒掺杂的钴基前驱物磷化为钒掺杂一磷化钴纳米片阵列电极,而V掺杂CoP纳米片阵列做电极,需要242mV可以实现40mA cm-2的电催化析氢极化电流,一磷化钴掺杂后的活性比纯的CoP3纳米片(220mV)阵列电极的电催化活性还差,与V掺杂的CoP3纳米片(183mV)阵列做电极相差很多。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种金属掺杂的CoP3,其特征在于,通过下述过程获得:
(1)先将柔性碳布在稀硝酸中浸泡2~3小时,然后取出柔性碳布,洗涤,干燥,备用;
(2)制备钒、铬或镍金属掺杂的钴基前驱物:所述钒掺杂钴基前驱物的具体制备过程如下:
将1.309g六水硝酸钴、0.136g七水合硫酸钒和0.2g硝酸铵依次溶解在15mL水中,常温搅拌60分钟,再将5ml质量分数为25wt%的氨水加入上述溶液搅拌30min得到均匀溶液;
将均匀溶液转入25mL聚四氟乙烯反应釜内胆中,并将干燥备用柔性碳布竖直放入反应釜内胆中,密封反应釜,在90℃水热反应14h,取出碳布,清洗,常温干燥,备用;
所述铬掺杂钴基前驱物的具体制备过程如下:
将0.523g六水硝酸钴、0.078g硫酸铬、0.186g氟化铵和0.6g尿素依次溶解在超纯水中,常温搅拌30分钟,得到均匀溶液;
将均匀溶液转入50mL聚四氟乙烯反应釜内胆中,并将干燥备用柔性碳布竖直放入反应釜内胆中,密封好反应釜,在120℃水热反应6h,取出碳布,清洗,常温干燥,备用;
所述镍掺杂钴基前驱物的具体制备过程如下:
将2.095g六水合硝酸钴、0.233g六水合硝酸镍、0.106g氟化铵和1.2g尿素依次溶解在超纯水中,常温搅拌60分钟,得到均匀溶液;
将均匀溶液转入50mL聚四氟乙烯反应釜内胆中,并将洗好的干燥备用柔性碳布竖直放入反应釜内胆中,密封好反应釜,在120℃水热反应22h,取出碳布,清洗,常温干燥,备用;
(3)将步骤(2)制得的沉积有钒、铬或镍金属掺杂的钴基前驱物的碳布和红磷按照钴、磷的原子比1:3~1:4真空密封在石英管中,然后625~700℃、5×10-5~5×10-4Pa真空条件下反应3~5h,再取出浸没于纯CS2中处理30min去除多余的磷即得。
2.权利要求1所述的金属掺杂的CoP3作为柔性电极在电催化析氢中的应用。
CN201910368266.4A 2019-05-05 2019-05-05 一种金属掺杂的CoP3、其制备方法及应用 Active CN109967100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910368266.4A CN109967100B (zh) 2019-05-05 2019-05-05 一种金属掺杂的CoP3、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910368266.4A CN109967100B (zh) 2019-05-05 2019-05-05 一种金属掺杂的CoP3、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN109967100A CN109967100A (zh) 2019-07-05
CN109967100B true CN109967100B (zh) 2021-05-07

Family

ID=67072789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910368266.4A Active CN109967100B (zh) 2019-05-05 2019-05-05 一种金属掺杂的CoP3、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN109967100B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404566B (zh) * 2019-08-30 2021-12-17 安徽理工大学 一种以碳布为基底的锌调控形貌CoFeP析氢电催化剂、制备方法及应用
CN110627031A (zh) * 2019-09-25 2019-12-31 常熟理工学院 一种钼掺杂磷化钴碳珊瑚片复合材料的制备方法
CN110767466B (zh) * 2019-10-08 2021-07-06 电子科技大学 一种超级电容器电极材料Ni掺杂CoP3/泡沫镍的制备方法
CN110745801B (zh) * 2019-11-08 2022-10-11 扬州大学 一种表面硫掺杂磷化钴纳米材料及其制备方法
CN111180213B (zh) * 2020-01-20 2021-04-23 河南大学 基于三磷化钴二元对电极在染料敏化太阳能电池中的应用
CN111185206B (zh) * 2020-01-21 2023-05-09 广东工业大学 一种过渡金属-磷化物催化剂及其制备方法与应用
CN111411370B (zh) * 2020-03-10 2022-10-25 江苏大学 一种用于高效电解水的自支撑电极及制备方法
CN111530483B (zh) * 2020-05-08 2023-04-07 桂林理工大学 一种自支撑Ni掺杂WP2纳米片阵列电催化剂及其制备方法
CN115440504A (zh) * 2021-06-02 2022-12-06 重庆三峡学院 Mo-CoP@Ni-Fe LDH核壳分级纳米片及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105839131A (zh) * 2016-06-13 2016-08-10 成都玖奇新材料科技有限公司 自支撑金属掺杂磷化钴纳米结构的水电解制氢催化电极
CN109174162A (zh) * 2018-10-26 2019-01-11 江苏大学 一种铁掺杂双金属磷化物电催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105839131A (zh) * 2016-06-13 2016-08-10 成都玖奇新材料科技有限公司 自支撑金属掺杂磷化钴纳米结构的水电解制氢催化电极
CN109174162A (zh) * 2018-10-26 2019-01-11 江苏大学 一种铁掺杂双金属磷化物电催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3D structured porous CoP3 nanoneedle ar...lution reaction of hydrogen and oxygen;tianli wu等;《J.Mater.Chem.A》;20160831(第4期);Electronic Supplementary Information,第1页第2段-第2页第1段,摘要 *

Also Published As

Publication number Publication date
CN109967100A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN109967100B (zh) 一种金属掺杂的CoP3、其制备方法及应用
Chinnadurai et al. Mn-Co bimetallic phosphate on electrodeposited PANI nanowires with composition modulated structural morphology for efficient electrocatalytic water splitting
Wang et al. Increased nucleation sites in nickel foam for the synthesis of MoP@ Ni3P/NF nanosheets for bifunctional water splitting
CN109954503B (zh) 一种硒化镍和三元硒化镍铁复合电催化剂及制备方法和应用
JP2018162515A (ja) 水電解式酸素発生用のセレン化コバルト/チタンメッシュ電極、その製造方法及びその応用
Guan et al. Facile synthesis of double-layered CoNiO2/CoO nanowire arrays as multifunction electrodes for hydrogen electrocatalysis and supercapacitors
CN110205636A (zh) 一种自支撑型三维多孔结构双功能催化电极的制备方法
CN110586116B (zh) 一种析氢电催化剂的MoO2-Ni/CC复合材料及制备方法
CN113856711B (zh) 高效镍钴磷化物异质结催化剂的设计合成和电解水析氢研究
CN110624573A (zh) 一种镍掺杂硒化钴电催化析氢催化剂及其制备方法
CN112708906A (zh) 一种氮掺杂多孔碳包裹的镍钴双金属磷化物纳米棒阵列电极的制备方法
Yan et al. Self-supported rectangular CoP nanosheet arrays grown on a carbon cloth as an efficient electrocatalyst for the hydrogen evolution reaction over a variety of pH values
Wang et al. Boosting catalytic activity of niobium/tantalum-nitrogen active-sites for triiodide reduction in photovoltaics
CN112058282A (zh) 一种基于钼、钨基层状材料pH广适催化剂的制备方法及其应用于电解水析氢反应
CN113637997A (zh) 一种Co2P/CuP2/NF析氢析氧电催化剂制备方法
Ma et al. In situ construction and post-electrolysis structural study of porous Ni 2 P@ C nanosheet arrays for efficient water splitting
Liu et al. Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
Zhang et al. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities
CN113789545B (zh) 一种电解水催化剂及其制备方法和应用
CN116219484A (zh) 一种高效的双金属氮化物/氢氧化物异质结构电催化剂、制备方法和应用
CN112295581B (zh) 一种电催化剂材料及其应用
CN114892206A (zh) 一种多元金属氮化物异质结纳米棒阵列复合电催化剂及其制备方法和应用
CN115125547A (zh) Mo/Nb双掺杂Co中空介孔碳纳米盒催化剂的制备及应用
CN114045509A (zh) 一种钠离子导通的电解海水装置及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant