CN110444412A - 一种等级蜂窝状Ni3S2薄膜电极的制备方法 - Google Patents

一种等级蜂窝状Ni3S2薄膜电极的制备方法 Download PDF

Info

Publication number
CN110444412A
CN110444412A CN201910745285.4A CN201910745285A CN110444412A CN 110444412 A CN110444412 A CN 110444412A CN 201910745285 A CN201910745285 A CN 201910745285A CN 110444412 A CN110444412 A CN 110444412A
Authority
CN
China
Prior art keywords
honeycomb
membrane electrode
grade
preparation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910745285.4A
Other languages
English (en)
Inventor
肖婷
谭新玉
向鹏
姜礼华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201910745285.4A priority Critical patent/CN110444412A/zh
Publication of CN110444412A publication Critical patent/CN110444412A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种等级蜂窝状Ni3S2薄膜电极及其制备方法,首先以泡沫镍为基底,硝酸镍为镍源,六次甲基四胺(HMTA)为成核剂,采用水热法,得到由纳米片构成的Ni(OH)2蜂窝状薄膜;再以Ni(OH)2为基底,乙二醇作为溶剂,硫脲作为成核剂和硫化剂,一方面对Ni(OH)2进行硫化,使其转化成Ni3S2蜂窝,同时在Ni3S2上生成二次纳米片结构,即可得到等级蜂窝状Ni3S2薄膜电极。一方面,Ni3S2的导电性比Ni(OH)2更高,能加速电化学过程中电子传输;同时本发明制备的Ni3S2薄膜呈等级蜂窝结构,即组成蜂窝结构的纳米片表面又布满小纳米片团簇,该结构比单一蜂窝结构具有更大的比表面积,能提供更多的电化学反应活性位点,同时有利于电解液浸润和电解液离子传输,从而具有优异的电化学性能。

Description

一种等级蜂窝状Ni3S2薄膜电极的制备方法
技术领域
本发明超级电容器领域,具体涉及一种等级蜂窝状Ni3S2薄膜电极及其制备方法。
背景技术
采用具有高理论容量的赝电容材料作为电极材料,是提高超级电容器能量密度的有效途径之一。Ni(OH)2作为一种典型的赝电容材料,具有理论容量高、原料丰富、制备方法简单、成本低廉等优势,已成功应用于商用超级电容器。然而,目前商用超级电容器中Ni(OH)2受微观形貌和结构的限制,比容量通常远低于理论容量。研究表明,将Ni(OH)2制备成纳米结构,能增加比表面积,从而获得更高的容量,但目前研究中报道的Ni(OH)2仍然低于其理论容量。同时,由于导电性较差,Ni(OH)2作为超级电容器电极材料时倍率性能和循环稳定性能通常不够理想。相比于金属氢氧化物,金属硫化物的电导率普遍较高,特别是Ni2S3,甚至可归为导体一类,作为超级电容器电极材料时,显示出更优异的倍率特性和循环稳定性。
尽管目前文献中报道了多种制备方法,得到了不同微观结构的Ni2S3,但未见具有等级蜂窝状结构的Ni2S3
发明内容
本发明的目的是针对Ni(OH)2电极材料比容量低,倍率性能和循环稳定性不佳的问题,对其微观结构和导电性进行双重优化的研究,通过简单的硫化处理即对Ni(OH)2薄膜电极进行硫化,获得导电性能更好的Ni3S2,同时在其表面构造二次纳米片团簇结构,增加电化学活性位点,从而得到具有优异电化学性能的等级蜂窝状Ni3S2薄膜。本方法具有简单易操作、性能优异、无污染等特点,适合制备各种金属硫化物材料。
本发明的技术方案:以泡沫镍为基底,利用两步水热方法,通过第一步获得蜂窝状Ni(OH)2薄膜,紧接着对Ni(OH)2薄膜进行硫化,获得等级蜂窝状Ni3S2薄膜,既提高了导电性,同时也增加了电化学活性位点。
本发明的技术方法包括以下步骤:
(1)将硝酸镍加入去离子水中,搅拌至充分溶解后加入六次甲基四胺(HMTA),再次搅拌,然后将所配溶液倒入反应釜内,将干净的泡沫镍放入反应釜中,在70-100℃,恒温反应8-12h,用去离子水冲洗干净并自然凉干;
(2)将硫脲加入乙二醇中,搅拌至充分溶解,然后将所配溶液倒入反应釜内,将上一步所制得的样品放入反应釜中,在一定温度下恒温加热一定时间后取出,先用去离子水冲洗,再用无水乙醇冲洗干净并自然凉干。其中硫脲的浓度为5~40mM,优选为20mM,加热温度为90-200℃,优选为150℃,加热时间为1-10h,优选为5h。
采用本发明的技术方案得到的材料呈等级蜂窝结构,均匀生长在泡沫镍基底表面,蜂窝孔洞大小为3-5μm,组成蜂窝的纳米片厚度约为100nm,纳米片表面又均匀生长了大小为100~200nm的纳米片团簇。
附图说明
图1为实施例1中等级蜂窝状结构的Ni3S2的扫描电镜照片。
图2为实施例1中等级蜂窝状的Ni3S2的XRD图。
图3为实施例1中等级蜂窝状的Ni3S2的循环伏安曲线。
图4为实施例1中等级蜂窝状的Ni3S2的比容量与电流密度关系图。
具体实施方式:
实施例1
称取1mmol硝酸镍溶解于40mL去离子水中,在超声作用下获得透明溶液,然后在磁力搅拌下,慢慢加入5mmol HMTA,待完全溶解后,将溶液倒入50mL反应釜内胆中,并放入一块3cm×5cm的泡沫镍,用不锈钢外套密封,放入80℃的恒温干燥箱内,保温10h,待反应釜降至室温后,取出泡沫镍,用去离子水反复冲洗泡沫镍表面,在自然条件下晾干即可得到Ni(OH)2薄膜。
称取1mmol硫脲溶解于50 mL乙二醇,磁力搅拌下充分溶解。将溶液倒入50mL反应釜内胆中,放入上述制得的Ni(OH)2薄膜,并用不锈钢外套密封,放入150℃的恒温干燥箱内,保温5h,待反应釜降至室温后,取出泡沫镍,先用去离子水反复冲洗镍网表面,再用无水乙醇反复冲洗泡沫镍,在自然条件下晾干,即可得到Ni3S2薄膜电极。
对所得的Ni3S2薄膜进行SEM和XRD分析,如图1所示:
图1中a,b为较低倍数下的SEM图,表明所得Ni3S2薄膜为蜂窝结构,均匀生长在泡沫镍基底上,蜂窝孔洞大小为3~5µm,构成蜂窝的纳米片厚度约为100nm,同时纳米片表面上均匀分布了大量白点。进一步放大得到c,d图,可以看出,纳米片表面的白点实际上是由更小的纳米片组成的团簇,大小约为100~200nm。正是由于这些均匀分布的纳米片团簇,增加了电极材料的比表面积和表面的活性位点,从而可以获得更高的容量。
图2为所得样品的XRD图,可以看出除了来自泡沫镍基底的峰,其余的峰都来自Ni3S2(JCPDS卡片号:44-1418),表明该方案最终得到的材料为Ni3S2
图3为所得样品的循环伏安曲线,每条曲线上成对的氧化还原峰表明具有很好的电化学可逆性,图4为不同电流密度下的比电容,当电流密度为2mA/cm2时,最大比电容可达到1800F/g,表明样品具有很好的储能性能。

Claims (3)

1.一种等级蜂窝状Ni3S2薄膜电极的制备方法,其特征在于,包括以下步骤:
(1)将硝酸镍水溶液中加入六次甲基四胺,搅拌均匀后倒入反应釜内胆,放入干净的泡沫镍,不锈钢外套密封后,恒温加热一定时间后取出,反应完成后用去离子水冲洗干净并自然凉干,得到Ni(OH)2薄膜;
(2)将步骤(1)所制得的Ni(OH)2薄膜放入内胆中,加入硫脲的乙二醇溶液,恒温加热一定时间后取出,依次用去离子水、无水乙醇冲洗,凉干,即可得到等级蜂窝状Ni3S2薄膜电极。
2.根据权利要求1所述的等级蜂窝状 Ni3S2薄膜电极的制备方法,其特征在于,步骤(1)中硝酸镍与六次甲基四胺的摩尔比为1:3-6,恒温反应温度为70-100℃,反应时间为8-12h。
3.根据权利要求1所述的等级蜂窝状 Ni3S2薄膜电极的制备方法,其特征在于,步骤(2)中硫脲的浓度为5~40mM,恒温反应温度为140-200℃,反应时间为1-10h。
CN201910745285.4A 2019-08-13 2019-08-13 一种等级蜂窝状Ni3S2薄膜电极的制备方法 Pending CN110444412A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910745285.4A CN110444412A (zh) 2019-08-13 2019-08-13 一种等级蜂窝状Ni3S2薄膜电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910745285.4A CN110444412A (zh) 2019-08-13 2019-08-13 一种等级蜂窝状Ni3S2薄膜电极的制备方法

Publications (1)

Publication Number Publication Date
CN110444412A true CN110444412A (zh) 2019-11-12

Family

ID=68435033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910745285.4A Pending CN110444412A (zh) 2019-08-13 2019-08-13 一种等级蜂窝状Ni3S2薄膜电极的制备方法

Country Status (1)

Country Link
CN (1) CN110444412A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111282582A (zh) * 2020-03-19 2020-06-16 苏州楚捷新材料科技有限公司 一种泡沫镍基电解水制氢催化剂的制备方法
WO2020230530A1 (ja) * 2019-05-13 2020-11-19 国立大学法人新潟大学 触媒、電極、水電解方法および触媒の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261490A (zh) * 2014-09-22 2015-01-07 江苏师范大学 两步法制备硫化镍的新方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261490A (zh) * 2014-09-22 2015-01-07 江苏师范大学 两步法制备硫化镍的新方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUOQIANG LIU等: "Vapor-phase hydrothermal transformation of a nanosheet array structure Ni(OH)2 into ultrathin Ni3S2 nanosheets on nickel foam for high-efficiency overall water splitting", 《J. MATER. CHEM. A》 *
JUN SONG CHEN等: "Rational Design of Self-Supported Ni3S2 Nanosheets Array for Advanced Asymmetric Supercapacitor with a Superior Energy Density", 《ACS APPL. MATER. INTERFACES》 *
TING XIAO等: ""Sulfidation of NiFe-layered double hydroxides as novel negative electrodes for supercapacitors with enhanced performance", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
XIAO LI等: "Tuning crystal phase of NiSx through electro-oxidized nickel foam: A novel route for preparing efficient electrocatalysts for oxygen evolution reaction", 《APPLIED SURFACE SCIENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230530A1 (ja) * 2019-05-13 2020-11-19 国立大学法人新潟大学 触媒、電極、水電解方法および触媒の製造方法
CN111282582A (zh) * 2020-03-19 2020-06-16 苏州楚捷新材料科技有限公司 一种泡沫镍基电解水制氢催化剂的制备方法

Similar Documents

Publication Publication Date Title
CN106504906B (zh) 碳量子点/氢氧化镍电化学储能材料、合成方法及应用
CN107731566A (zh) 一种三维花瓣状镍钴硫化物电极材料的制备方法和应用
CN104157832B (zh) 一种四氧化三铁/碳复合锂离子电池电极材料的制备方法
CN106207171B (zh) 一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN109767924B (zh) 一种ldh基超级电容器复合电极材料及制备方法与用途
CN105470000A (zh) 一种超级电容器用整体式复合电极及其制备方法
CN112259379B (zh) 基于ZIF-67衍生的Co2P@Ni2P/CC蜂窝状纳米片复合材料及其应用
CN106384675A (zh) 氮化碳/硫化钴超级电容器电极材料及其制备方法和用途
CN107188230A (zh) 一种二硫化钼‑碳复合花球及其制备方法和应用
CN107555424A (zh) 一种多孔类石墨烯活性碳材料的制备方法及其产品和应用
CN105336940A (zh) 一种钛酸钠纳米线/石墨烯复合负极材料及其制备方法
CN108892138A (zh) 一种基于生物质衍生氮/氧共掺杂多级孔结构碳材料及其制备方法
CN104692468A (zh) 一种三维多壁空心球NiO纳米材料的制备方法
CN107244664A (zh) 类石墨烯结构碳电极材料的制备方法及应用
CN110371970A (zh) 一种高比表面积富氮分级多孔碳材料的制备方法
CN110828193A (zh) 一种纳米花状Ni-MOF材料及其制备方法和应用
CN106356201A (zh) 一种碳纤维基氢氧化镍复合材料的制备方法及其应用
CN110379646A (zh) 一种基于二硒化钼/木炭的非对称超级电容器的制备方法
CN110444412A (zh) 一种等级蜂窝状Ni3S2薄膜电极的制备方法
CN109950062A (zh) 泡沫镍原位负载α-Co(OH)2/α-Ni(OH)2异质结纳米棒及制备方法与应用
CN109457269A (zh) 一种MoS2/石墨烯-泡沫镍阴极的制备方法及其在微生物电解池中的应用
CN113517143A (zh) 一种复合电极材料及其制备方法与用途
CN104167298A (zh) 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
CN110767465B (zh) 一种基于二维碳化铌纳米复合材料超级电容器的制备方法
CN103943374A (zh) 一种NiO纳米片/超细纳米线超级电容器材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191112