WO2021182266A1 - フェライト系ステンレス鋼およびその製造方法 - Google Patents

フェライト系ステンレス鋼およびその製造方法 Download PDF

Info

Publication number
WO2021182266A1
WO2021182266A1 PCT/JP2021/008317 JP2021008317W WO2021182266A1 WO 2021182266 A1 WO2021182266 A1 WO 2021182266A1 JP 2021008317 W JP2021008317 W JP 2021008317W WO 2021182266 A1 WO2021182266 A1 WO 2021182266A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
stainless steel
present
ferritic stainless
Prior art date
Application number
PCT/JP2021/008317
Other languages
English (en)
French (fr)
Inventor
藤村 佳幸
尊仁 濱田
太一朗 溝口
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to JP2022505989A priority Critical patent/JP7342241B2/ja
Priority to CA3168212A priority patent/CA3168212A1/en
Priority to US17/802,613 priority patent/US20230105051A1/en
Priority to MX2022011262A priority patent/MX2022011262A/es
Priority to CN202180015889.9A priority patent/CN115135807B/zh
Priority to EP21766374.9A priority patent/EP4119697A4/en
Priority to KR1020227031041A priority patent/KR20220139948A/ko
Publication of WO2021182266A1 publication Critical patent/WO2021182266A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to ferritic stainless steel. More specifically, the present invention relates to a ferritic stainless steel having excellent red scale resistance and high temperature strength under a high temperature steam atmosphere and a method for producing the same.
  • Patent Document 1 and Patent Document 2 describe that the addition of Si promotes the diffusion of Cr, improves the amount of Cr-based oxide produced, and strengthens the oxide film. As a result, the inventions described in Patent Document 1 and Patent Document 2 have improved water vapor oxidation resistance and red scale resistance.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2003-160844
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2003-160842
  • the above-mentioned conventional technique focuses on Cr and Si in steel and optimizes the content of Cr and Si in steel.
  • the present inventors have noted that the concentrations of Cr oxides and hydroxides, and Si oxides in the passivation film are important for improving red scale resistance and high temperature strength.
  • no knowledge was obtained regarding the concentrations of Cr-based oxides and Si-based oxides in the passivation film.
  • One aspect of the present invention is to realize a ferritic stainless steel having excellent high temperature strength and red scale resistance.
  • the ferrite-based stainless steel according to one aspect of the present invention has C of 0.025% by mass or less, Si of 0.05% by mass or more and 3.0% by mass or less, 0.05% by mass. % Or more and 2.0% by mass or less Mn, 0.04% by mass or less P, 0.03% by mass or less S, 0.5% by mass or less Ni, 10.5% by mass or more and 25.0% by mass or less Cr, N of 0.025% by mass or less, Nb of 0.05% by mass or more and 1.0% by mass or less, Mo of 3.0% by mass or less, Cu of 1.8% by mass or less, 0.2% by mass It contains the following Al and 0.5% by mass or less of Ti, contains iron and unavoidable impurities in the balance, and is analyzed by XPS on the surface and at a depth of 6 nm from the surface every 0.5 nm from the surface.
  • the method for producing ferritic stainless steel according to one aspect of the present invention includes C of 0.025% by mass or less, Si of 0.05% by mass or more and 3.0% by mass or less, and 0.05% by mass or more and 2.0% by mass. % Or less Mn, 0.04% by mass or less P, 0.003% by mass or less S, 0.5% by mass or less Ni, 10.5% by mass or more and 25.0% by mass or less Cr, 0.025 N of mass% or less, Nb of 0.05 mass% or more and 1.0 mass% or less, Mo of 3.0 mass% or less, Cu of 1.8 mass% or less, Al of 0.2 mass% or less, 0.
  • a method for producing ferritic stainless steel containing 5% by mass or less of Ti and containing iron and unavoidable impurities in the balance is prepared using a nitrate solution of 80 to 120 g / L. It is characterized by including a surface activation treatment step of immersing the liquid at a liquid temperature of 50 ° C. or higher and 70 ° C. or lower for a time of 60 seconds or longer and 120 seconds or shorter.
  • it is a graph which shows the relationship between the treatment time by the nitric acid liquid (80-120 g / L) of 60 ⁇ 10 degreeC, and Cr (O) + Si (O).
  • it is a graph which shows the relationship between the treatment time with the nitric acid solution (80-120 g / L) of 60 ⁇ 10 degreeC, and the increase in the amount of oxidation.
  • stainless steel means a stainless steel material whose specific shape is not limited. Examples of this stainless steel material include steel plates, steel pipes, strips, and the like.
  • the composition of the components contained in the ferritic stainless steel in one embodiment of the present invention is as follows.
  • the ferrite-based stainless steel is composed of iron (Fe) or a small amount of impurities (unavoidable impurities) that are unavoidably mixed, except for each component shown below.
  • (Chromium: Cr) Cr is an essential element for forming a passivation film and ensuring corrosion resistance. It is also effective for ensuring red scale resistance. However, if Cr is excessively contained, the material cost increases and the toughness decreases. Therefore, in the ferritic stainless steel according to one aspect of the present invention, the Cr content is 10.5 to 25% by mass, preferably 12.5 to 23% by mass.
  • Si is an element effective for improving red scale resistance. However, if Si is excessively contained, it causes a decrease in toughness and workability. Therefore, in the ferritic stainless steel according to one aspect of the present invention, the Si content is 0.05 to 3.0% by mass, preferably 0.1 to 2.6% by mass.
  • Cu Copper: Cu
  • Cu is an element added to ensure high temperature strength. However, if Cu is excessively contained, the ferrite phase becomes unstable and the material cost increases. Therefore, in the ferritic stainless steel according to one aspect of the present invention, the Cu content is 0 to 1.8% by mass.
  • Mo Mo
  • Mo Mo
  • Mo Mo
  • the Mo content is 0 to 3.0% by mass.
  • Nb Niobium: Nb
  • Nb is an element added to ensure high temperature strength.
  • excessive Nb content can degrade workability and toughness. Therefore, in the ferritic stainless steel according to one aspect of the present invention, the Nb content is 0.05 to 1.0% by mass, preferably 0.05 to 0.7% by mass.
  • Ti is an element that can form a ferritic stainless steel into a ferrite single layer at 900 to 1000 ° C. by reacting with C and / or N, and improves red scale resistance and workability.
  • excessive content of Ti can degrade workability and surface quality. Therefore, in the ferritic stainless steel according to one aspect of the present invention, the Ti content is 0 to 0.5% by mass.
  • Mn is an element that improves scale adhesion in ferritic stainless steel. However, if Mn is excessively contained, the ferrite phase becomes unstable and the generation of MnS, which is the starting point of corrosion, is promoted. Therefore, in the ferritic stainless steel according to one aspect of the present invention, the Mn content is 0.05 to 2.0% by mass, preferably 010 to 1.20% by mass.
  • the C content is 0 to 0.025% by mass, preferably 0 to 0.020% by mass.
  • the P content is 0 to 0.04% by mass.
  • the S content is 0 to 0.03% by mass.
  • Ni Ni is an element that improves the corrosion resistance of ferritic stainless steel. However, if Ni is excessively contained, the ferrite phase becomes unstable and the material cost increases. Therefore, in the ferritic stainless steel according to one aspect of the present invention, the Ni content is 0 to 0.5% by mass.
  • N (Nitrogen: N) When N is excessively contained, it forms a nitride with other elements and causes hardening. Therefore, in the ferritic stainless steel according to one aspect of the present invention, the N content is 0 to 0.025% by mass.
  • Al is an element that improves the corrosion resistance of ferritic stainless steel. Al is an effective element as a deoxidizer during steelmaking. However, if Al is excessively contained, the surface quality may deteriorate. Therefore, in the ferritic stainless steel according to one aspect of the present invention, the Al content is 0 to 0.2% by mass, preferably 0. ⁇ 0.1% by mass.
  • the ferrite-based stainless steel according to the embodiment of the present invention has 0 to 2.5% by mass of W, 0 to 0.1% by mass of La, 0 to 0.05% by mass of Ce, and 0.01% by mass or less.
  • B Ca of 0.0002% by mass or more and 0.0030% by mass or less, Hf of 0.001% by mass or more and 0.5% by mass or less, Zr of 0.01% by mass or more and 0.40% by mass or less, 0.
  • (Tungsten: W) W is an element added to ensure high temperature strength.
  • excessive W content increases material costs. Therefore, in the ferrite-based stainless steel according to one aspect of the present invention, 0 to 2.5% by mass of W may be added as needed. Considering the cost, the W content is preferably 0.01 to 1.5% by mass.
  • La is an element added to improve red scale resistance and scale peel resistance.
  • excessive La content increases material costs. Therefore, in the ferrite-based stainless steel according to one aspect of the present invention, 0 to 0.1% by mass of La may be added as needed. Considering the cost, the content of La is preferably 0 to 0.05% by mass.
  • Ce Ce
  • Ce Ce is an element added to improve red scale resistance and scale peel resistance.
  • excessive content of Ce increases material costs. Therefore, in the ferrite-based stainless steel according to one aspect of the present invention, 0 to 0.05% by mass of Ce may be added as needed.
  • B B is an element that improves the secondary workability of a molded product manufactured using ferrite-based stainless steel.
  • B is an element that improves the secondary workability of a molded product manufactured using ferrite-based stainless steel.
  • compounds such as Cr 2 B are likely to be formed, which may deteriorate the red scale resistance. Therefore, in the ferritic stainless steel according to one aspect of the present invention, 0.01% by mass or less of B may be added as needed, and preferably 0.0002% by mass or more and 0.003% by mass or less of B is added. It may be added.
  • Ca is an element that promotes high temperature oxidation resistance.
  • 0.0002% by mass or more of Ca may be added as needed.
  • the upper limit of the addition amount is preferably 0.0030% by mass.
  • Zrconium: Zr Zirconium: Zr
  • Zr zirconium
  • 0.01% by mass or more of Zr may be added if necessary.
  • the upper limit of the addition amount is preferably 0.40% by mass.
  • Hf is an element that improves corrosion resistance, high temperature strength and oxidation resistance.
  • 0.001% by mass or more of Hf may be added as needed.
  • the upper limit of the addition amount is preferably 0.5% by mass.
  • Tin Sn
  • Sn is an element that improves corrosion resistance and high temperature strength.
  • 0.002% by mass or more of Sn may be added if necessary.
  • the upper limit of the addition amount is preferably 1.0% by mass.
  • Mg Magnetic: Mg
  • Mg is an element that refines the structure of the slab and improves moldability.
  • 0.0003% by mass or more of Mg may be added as needed.
  • the upper limit of the addition amount is preferably 0.0030% by mass.
  • Co is an element that improves high temperature strength.
  • 0.01% by mass or more of Co may be added as needed.
  • the upper limit of the addition amount is preferably 0.30% by mass.
  • Sb is an element that improves high temperature strength.
  • 0.005% by mass or more of Sb may be added as needed.
  • the upper limit of the addition amount is preferably 0.50% by mass.
  • Ta tantalum
  • Ta tantalum
  • the upper limit of the addition amount is preferably 1.0% by mass.
  • Ga is an element that improves corrosion resistance and hydrogen embrittlement resistance.
  • 0.0002% by mass or more of Ga may be added as needed.
  • the upper limit of the addition amount is preferably 0.30% by mass.
  • REM is a general term for scandium (Sc), yttrium (Y), and 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu).
  • REM may be added as a single element or as a mixture of multiple elements.
  • REM is an element that improves the cleanliness of stainless steel and also improves high-temperature oxidation resistance.
  • 0.001% by mass or more of REM may be added if necessary.
  • the upper limit of the addition amount is preferably 0.20% by mass.
  • the ferritic stainless steel according to one aspect of the present invention has excellent high-temperature strength and resistance to high temperatures when Cr (O) and Si (O) in the passivation coating defined below satisfy the following formula (1). It has red scale properties. More specifically, Cr (O) and Si (O) have excellent high-temperature strength and red scale resistance in an environment of 300 to 900 ° C. containing water vapor by satisfying the following formula (1). Ferritic stainless steels may be provided.
  • the oxide of Si in the passivation film includes an oxide of Si contained in the passivation film and an oxide of Si existing on the surface (for example, silicon monoxide).
  • FIG. 5 is an example of a spectrum obtained by measuring a ferritic stainless steel according to an embodiment of the present invention with an XPS (X-ray Photoelectron Spectroscopy) analyzer, and is a graph showing a change in the Cr 2p spectrum in the depth direction.
  • FIG. 6 is an example of the spectrum of the ferritic stainless steel according to the embodiment of the present invention measured by XPS, and the result of peak separation of the Cr 2p spectrum into the metal Cr, the oxide of Cr, and the hydroxide of Cr. It is a graph which shows.
  • the narrow spectra of Fe, Cr, Ti, Nb, Mo and Si (6 kinds of metals) are used on the surface and every 0.5 nm from the surface to a depth of 6 nm from the surface by an XPS analyzer.
  • a narrow spectrum of Cr is shown as an example.
  • the spectrum of Cr has a peak of Cr oxide and Cr hydroxide and a peak of metal Cr.
  • the narrow spectrum is peak-separated into peaks of simple substances consisting of metal atoms, oxides, and hydroxides.
  • FIG. 6 shows, as an example, the result of peak separation of the narrow spectrum of Cr.
  • the proportions of the metal Cr (elemental substance), the oxide of Cr, and the Cr present as the hydroxide of Cr are calculated.
  • the proportion of atoms present as elemental substances, oxides, and hydroxides is calculated.
  • Cr (O) is an integrated value of the atomic% concentrations of Cr oxides and hydroxides. That is, the spectra are measured by XPS analysis at the surface and at a depth of 6 nm from the surface every 0.5 nm from the surface, and each spectrum is used to exist as a simple substance, an oxide or a hydroxide, Fe. , Cr, Ti, Nb, Mo and Si, the ratio of the total number of atoms of Cr existing as an oxide or hydroxide to the total number of atoms of Cr, Ti, Nb, Mo and Si was calculated at each measurement depth at atomic% concentration, and all the calculated atoms. It is a value obtained by integrating% concentration.
  • Si (O) is an integrated value of the atomic% concentration of the oxide of Si. That is, the spectra are measured in the same manner, and using each spectrum, Si existing as an oxide with respect to the total number of atoms of Fe, Cr, Ti, Nb, Mo and Si existing as a simple substance, an oxide or a hydroxide. It is a value obtained by calculating the ratio of the number of atoms in each measurement depth at the atomic% concentration and integrating all the calculated atomic% concentrations.
  • the oxide of Cr is of chromium (III) oxide (Cr 2 O 3 ), chromium (IV) oxide (CrO 2 ), and chromium oxide VI (CrO 3 ).
  • the hydroxide of Cr is one or more of chromium (II) hydroxide (Cr (OH) 2 ) and chromium (III) hydroxide (Cr (OH) 3).
  • the oxide of Si includes one or two kinds of silicon dioxide (SiO2) and silicon monoxide (SiO).
  • the XPS device and measurement conditions used in the above-mentioned XPS measurement are as follows.
  • a method for improving red scale resistance a method of promoting Cr diffusion in steel by surface polishing as a finishing process to promote the formation of Cr oxide, or a hot-dip plating layer is formed on the surface layer. The method of doing is used.
  • the present inventors have found that, for example, a ferritic stainless steel satisfying the above formula (1) and having excellent red scale resistance and high temperature strength can be obtained by the following production method.
  • FIG. 1 is a flowchart showing an example of a method for manufacturing a ferritic stainless steel according to the present embodiment.
  • the method for manufacturing a ferrite-based stainless steel strip in the present embodiment includes a pretreatment step S1, a hot rolling step S2, a quenching step S3, a first pickling step S4, a cold rolling step S5, and a final step.
  • the baking step S6, the second pickling step S7, and the surface activation treatment step S8 are included.
  • Pretreatment process In the pretreatment step S1, first, a melting furnace having a vacuum or an argon atmosphere is used to melt a steel whose composition has been adjusted so as to be within the range of the present invention, and this steel is cast to produce a slab. Then, a slab piece for hot rolling is cut out from the slab. Then, the slab piece is heated to a temperature range of 1100 ° C. to 1300 ° C. in the air atmosphere. The time for heating and holding the slab piece is not limited. When the pretreatment step is performed industrially, the casting may be continuous casting.
  • the hot rolling step S2 is a step of manufacturing a hot rolled steel strip having a predetermined thickness by hot rolling the slab (steel ingot) obtained in the pretreatment step S1.
  • the annealing step S3 is a step of softening the steel strip by heating the hot-rolled steel strip obtained in the hot rolling step S2.
  • This annealing step S3 is a step that is carried out as needed, and may not be carried out.
  • the first pickling step S4 is a step of washing off the scale adhering to the surface of the steel strip with a pickling solution such as hydrochloric acid or a mixed solution of nitric acid and hydrofluoric acid.
  • the cold rolling step S5 is a step of rolling the steel strip from which the scale has been removed in the first pickling step S4 even thinner.
  • the final annealing step S6 is a step of removing strain by heating the thinly rolled steel strip in the cold rolling step S5 to soften the steel strip.
  • the annealing in the final annealing step S6 is performed at a temperature of about 900 to 1100 ° C., for example, depending on the alloy component.
  • the second pickling step S7 is a step of washing off the scale adhering to the surface of the steel strip obtained in the final annealing step S6 with a pickling solution such as nitric acid solution or a mixed solution of nitric acid and hydrofluoric acid. be.
  • the second pickling step S7 is not particularly limited as long as it is a treatment capable of removing scale on the surface of the steel strip.
  • electrolysis is performed for 1 to 2 minutes under the condition of 0.2 to 0.3 A / cm 2 in a state of being immersed in a nitric acid solution (nitric acid concentration 150 g / L) at 50 to 70 ° C. Electrolytic treatment may be carried out.
  • a nitric acid solution nitric acid concentration 100 g / L
  • hydrofluoric acid 15 to 25 g / L
  • the steel strip after the second pickling step S7 is used with a nitric acid solution of 80 to 120 g / L, and the liquid temperature is 50 ° C. or higher and 70 ° C. or lower, and 60 seconds or more and 120 seconds or less.
  • a nitric acid solution 80 to 120 g / L
  • the liquid temperature is 50 ° C. or higher and 70 ° C. or lower, and 60 seconds or more and 120 seconds or less.
  • the treatment performed under the above conditions is referred to as a surface activation treatment.
  • a ferritic stainless steel strip satisfying the above formula (1) can be obtained.
  • the surface activation treatment step S8 can be carried out using the same or the same apparatus as the second pickling step S7.
  • the ferrite-based stainless steel of the present invention has excellent high-temperature strength and red scale resistance because Cr (O) and Si (O) in the passivation film satisfy the above formula (1).
  • the present inventors have found that a ferritic stainless steel satisfying the above formula (1) can be obtained by carrying out both the above-mentioned second pickling step S7 and the surface activation treatment step S8. ..
  • a ferritic stainless steel satisfying the above formula (1) cannot be obtained. That is, the present invention in which Cr and Si in the passivation film are concentrated by subjecting the steel strip from which scale has been removed in the second pickling step S7 to the surface activation treatment, satisfying the above formula (1).
  • Ferritic stainless steel can be obtained.
  • the concentration of the nitric acid solution is less than 80 g / L
  • the surface activation effect of nitric acid becomes weak and the formation of red scale cannot be suppressed.
  • the concentration of the nitric acid solution exceeds 120 g / L
  • the surface activating effect peaks out due to the excessive reaction with nitric acid, and the formation of red scale cannot be suppressed.
  • the liquid temperature is less than 50 ° C., the surface activation effect of nitric acid is weakened, and the formation of red scale cannot be suppressed.
  • the surface activation effect peaks out due to the excessive reaction with nitric acid, and the formation of red scale cannot be suppressed.
  • the immersion time is less than 60 seconds, the surface activation effect of nitric acid becomes insufficient, and the formation of red scale cannot be suppressed.
  • it exceeds 120 seconds the surface activating effect peaks out due to the excessive reaction with nitric acid, and the formation of red scale cannot be suppressed.
  • a nitric acid solution of 80 to 120 g / L is used, and the solution temperature is 50 ° C. or higher and 70 ° C. or lower for 60 seconds or longer and 120.
  • a surface activation treatment is performed by immersing for a time of 2 seconds or less.
  • nitric acid nitric acid concentration 100 g / L
  • hydrofluoric acid 15 to 25 g / L
  • each stainless steel shown in Table 1 is shown in% by weight.
  • the balance other than each component shown in Table 1 is Fe or a small amount of impurities unavoidably mixed.
  • the underline in Table 1 indicates that the range of each component contained in each stainless steel according to the comparative example of the present invention is outside the range of the present invention.
  • the ferrite-based stainless steels produced within the scope of the present invention were designated as the invention example steel types A1 to A13. Further, the ferritic stainless steels produced under conditions outside the scope of the present invention were designated as Comparative Example Steel Types B1 to B4.
  • Table 2 is a table showing the results of tests for evaluating red scale resistance and high temperature strength of invention example steel grades A1 to A13 and comparative example steel grades B1 to B4.
  • Examples 1 to 51 are examples in which the steel grades A1 to A13 of the invention examples are subjected to a surface activation treatment of the present invention or a pickling treatment outside the scope of the surface activation treatment of the present invention.
  • Invention Example No. For 1, 5, 12, 16, 20, 24, 20, 24, 28, 32, 36, 40, 44, and 48, the immersion time in a nitric acid solution (80 to 120 g / L) at 60 ⁇ 10 ° C. is 40. Since it is seconds, a pickling treatment outside the range of the surface activation treatment of the present invention is performed.
  • Other invention examples are subjected to the surface activation treatment of the present invention.
  • Comparative example No. 1 to 34 are examples in which the steel grades A1 to A8 of the invention examples and the steel grades B1 to B4 of the comparative examples were pickled outside the range of the surface activation treatment of the present invention. Specifically, it is common that a nitric acid solution (80 to 120 g / L) at 60 ⁇ 10 ° C. is used, but the condition of the immersion time is outside the range of the surface activation treatment of the present invention. Comparative Example No. Reference numeral 22 denotes an example in which the surface activating treatment of the present invention is applied to the invention steel type A7 without performing the second pickling step S7. In addition, Comparative Example No. Reference numeral 34 denotes an example in which the surface activation treatment of the present invention was applied to the comparative example steel type B4.
  • Invention Examples A1 to A13 of Invention Examples A1 to A13 were subjected to the surface activation treatment of the present invention (No. 1, 5, 12, 16, 20 of No. 1 to 51, 24, 20, 24, 28, 32, 36, 40, 44, and 48) all satisfied the above formula (1).
  • FIG. 2 is a graph showing the relationship between the treatment time with a nitric acid solution (80 to 120 g / L) at 60 ⁇ 10 ° C. and Cr (O) + Si (O) for all the examples.
  • the treatment time is 60 to 120 seconds, that is, when the surface activation treatment within the range of the present invention is performed, Cr (O) + Si (O) ⁇ It was demonstrated to be 240.
  • the evaluation test of red scale resistance was based on JIS Z 2281 (high temperature continuous oxidation test method for metal materials), and was evaluated using an increase in oxidation amount.
  • the permissible range was an increase in oxidation of 0.3 mg / cm 2 or less.
  • a 20 mm ⁇ 25 mm test piece was cut out as a test piece from the steel sheet manufactured by the above manufacturing method.
  • the test piece was continuously heated at 600 ° C. for 100 hours in an air environment having a water vapor concentration of 10 vol%.
  • the increase in oxidation was calculated from the weight change before and after the test.
  • Invention Examples A1 to A13 of Invention Examples A1 to A13 were subjected to the surface activation treatment of the present invention (No. 1, 5, 12, 16, 20 of No. 1 to 51, 24, 20, 24, 28, 32, 36, 40, 44, and 48) all met the above criteria.
  • FIG. 3 is a graph showing the relationship between the treatment time with a nitric acid solution (80 to 120 g / L) at 60 ⁇ 10 ° C. and the increase in the amount of oxidation for all the examples.
  • the treatment time is 60 to 120 seconds, that is, when the surface activation treatment within the range of the present invention is performed, the oxidation increase is 0.3 mg / cm 2 in all cases. It has been demonstrated that the following are met:
  • FIG. 4 is a graph showing the relationship between Cr (O) + Si (O) and the amount of oxidation increase for all the examples. As can be seen from the graph of FIG. 4, it was demonstrated that when Cr (O) + Si (O) ⁇ 240 was satisfied, the oxidation increase was 0.3 mg / cm 2 or less.
  • the high-temperature strength evaluation test was carried out by using a test piece compliant with JIS Z 2241 (tensile test method for steel materials) and a tensile method compliant with JIS G 0567 (high-temperature tensile test method for steel materials and heat-resistant alloys).
  • the plate thickness of the test piece was 2 mm, the plate width was 12.5 mm, and the distance between the gauge points was 50 mm.
  • the strain rate up to the proof stress was 0.3% / min and the tensile strength was 3 mm / min with respect to the distance between the reference points, and the evaluation was made with a 0.2% proof stress value.
  • a 0.2% proof stress of 20 MPa or more was set as an allowable range.
  • the ferrite-based stainless steel according to one aspect of the present invention includes C of 0.025% by mass or less, Si of 0.05% by mass or more and 3.0% by mass or less, and 0.05% by mass or more and 2.0% by mass or less.
  • Mn Mn, P of 0.04% by mass or less, S of 0.03% by mass or less, Ni of 0.5% by mass or less, Cr of 10.5% by mass or more and 25.0% by mass or less, 0.025% by mass or less N, Nb of 0.05% by mass or more and 1.0% by mass or less, Mo of 3.0% by mass or less, Cu of 1.8% by mass or less, Al of 0.2% by mass or less, 0.5% by mass
  • Ti is contained, the balance contains iron and unavoidable impurities, and the spectrum is measured by XPS analysis at the surface and at a depth of 6 nm from the surface every 0.5 nm from the surface.
  • the ferrite-based stainless steel according to one aspect of the present invention has W of 2.5% by mass or less, La of 0.1% by mass or less, Ce of 0.05% by mass or less, and B of 0.01% by mass or less. , 0.0002% by mass or more and 0.0030% by mass or less Ca, 0.001% by mass or more and 0.5% by mass or less Hf, 0.01% by mass or more and 0.40% by mass or less Zr, 0.005% by mass % Or more and 0.50% by mass or less Sb, 0.01% by mass or more and 0.30% by mass or less Co, 0.001% by mass or more and 1.0% by mass or less Ta, 0.002% by mass or more and 1.0 Sn of mass% or less, Ga of 0.0002 mass% or more and 0.30 mass% or less, rare earth elements of 0.001 mass% or more and 0.20 mass% or less, and 0.0003 mass% or more and 0.0030 mass% or less
  • Mg may be further contained.
  • red scale resistance and scale peeling resistance can be further improved.
  • the method for producing ferritic stainless steel according to one aspect of the present invention includes C of 0.025% by mass or less, Si of 0.05% by mass or more and 3.0% by mass or less, and 0.05% by mass or more of 2. Mn of 0% by mass or less, P of 0.04% by mass or less, S of 0.003% by mass or less, Ni of 0.5% by mass or less, Cr of 10.5% by mass or more and 25.0% by mass or less, 0 .025% by mass or less of N, 0.05% by mass or more and 1.0% by mass or less of Nb, 3.0% by mass or less of Mo, 1.8% by mass or less of Cu, 0.2% by mass or less of Al,
  • a method for producing ferritic stainless steel containing 0.5% by mass or less of Ti and containing iron and unavoidable impurities in the balance It is characterized by including a surface activation treatment step of immersing the liquid at a liquid temperature of 50 ° C. or higher and 70 ° C. or lower for a time of 60 seconds or longer
  • the ferritic stainless steel contains W of 2.5% by mass or less, La of 0.1% by mass or less, and 0.05% by mass or less. Ce may be further contained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

優れた高温強度および耐赤スケール性を有するフェライト系ステンレス鋼を実現する。フェライト系ステンレス鋼は、0.025質量%以下のC、0.05~3.0質量%のSi、0.05~2.0質量%のMn、0.04質量%以下のP、0.003質量%以下のS、0.5質量%以下のNi、10.5~25.0質量%のCr、0.025質量%以下のN、0.05~1.0質量%のNb、3.0質量%以下のMo、1.8質量%以下のCu、0.2質量%以下のAl、0.5質量%以下のTiを含有する。また、表面から深さ6nmまでにおける、酸化物または水酸化物として存在するCrおよびSiの濃度の和を所定の値以上とする。

Description

フェライト系ステンレス鋼およびその製造方法
 本発明はフェライト系ステンレス鋼に関する。より具体的には、高温水蒸気雰囲気下において、耐赤スケール性および高温強度に優れるフェライト系ステンレス鋼およびその製造方法に関する。
 ステンレス鋼を、排ガス経路部材、ストーブ燃焼機材、燃料電池用部材、またはプラント関連材などの用途に用いる場合、通常300~900℃の高温まで加熱される。また上記の用途では、水蒸気が含まれる環境下で当該ステンレス鋼が用いられるため、赤スケール(Fe系酸化物)が生成することがある。
 そのため、高温水蒸気雰囲気下において、耐赤スケール性および高温強度を有するフェライト系ステンレス鋼が所望される。従来、耐赤スケール性および高温強度を向上させるために様々な方法が知られている。
 特許文献1および特許文献2には、Siを添加することにより、Crの拡散を促進させてCr系酸化物の生成量を向上させ、酸化被膜を強化することが記載されている。これにより、特許文献1および特許文献2に記載の発明は耐水蒸気酸化性および耐赤スケールを向上させている。
日本国公開特許公報「特開2003-160844号」 日本国公開特許公報「特開2003-160842号」
 上述のような従来技術は、鋼中のCrおよびSiに着目し、鋼中のCrおよびSiの含有量を適正化するものである。本発明者らは、耐赤スケール性および高温強度の向上には、不動態被膜中のCrの酸化物および水酸化物、ならびにSiの酸化物の濃度が重要であることに着目した。しかしながら、従来技術において不動態被膜中のCr系酸化物およびSi系酸化物の濃度に関する知見は得られなかった。
 本発明の一態様は、優れた高温強度および耐赤スケール性を有するフェライト系ステンレス鋼を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係るフェライト系ステンレス鋼は、0.025質量%以下のC、0.05質量%以上3.0質量%以下のSi、0.05質量%以上2.0質量%以下のMn、0.04質量%以下のP、0.03質量%以下のS、0.5質量%以下のNi、10.5質量%以上25.0質量%以下のCr、0.025質量%以下のN、0.05質量%以上1.0質量%以下のNb、3.0質量%以下のMo、1.8質量%以下のCu、0.2質量%以下のAl、0.5質量%以下のTiを含有し、残部に鉄および不可避的不純物を含み、表面、および、表面から0.5nmごとに表面からの深さ6nmの位置までにおいてXPS分析によりスペクトルを測定し、
 (i)各スペクトルを用いて、単体、酸化物または水酸化物として存在する、Fe、Cr、Ti、Nb、MoおよびSiの総原子数に対する、酸化物または水酸化物として存在するCrの総原子数の割合を原子%濃度で各測定深さにおいて算出し、算出したすべての原子%濃度を積算した値をCr(O)とし、
 (ii)各スペクトルを用いて、単体、酸化物または水酸化物として存在する、Fe、Cr、Ti、Nb、MoおよびSiの総原子数に対する、酸化物として存在するSiの原子数の割合を原子%濃度で各測定深さにおいて算出し、算出したすべての原子%濃度を積算した値をSi(O)としたときに、
 下記式(1)を満足することを特徴とする。
 Cr(O)+Si(O)≧240・・・(1)
 本発明の一態様に係るフェライト系ステンレス鋼の製造方法は、0.025質量%以下のC、0.05質量%以上3.0質量%以下のSi、0.05質量%以上2.0質量%以下のMn、0.04質量%以下のP、0.003質量%以下のS、0.5質量%以下のNi、10.5質量%以上25.0質量%以下のCr、0.025質量%以下のN、0.05質量%以上1.0質量%以下のNb、3.0質量%以下のMo、1.8質量%以下のCu、0.2質量%以下のAl、0.5質量%以下のTiを含有し、残部に鉄および不可避的不純物を含むフェライト系ステンレス鋼の製造方法であって、脱スケール処理後の鋼帯を、80~120g/Lの硝酸液を用いて、液温度を50℃以上70℃以下で、60秒以上120秒以下の時間浸漬する、表面活性化処理工程を含むことを特徴とする。
 本発明の一態様によれば、優れた高温強度および耐赤スケール性を有するフェライト系ステンレス鋼を実現することができる。
本発明の実施形態に係るフェライト系ステンレス鋼の製造方法の一例を示すフローチャートである。 各実施例について、60±10℃の硝酸液(80~120g/L)による処理時間と、Cr(O)+Si(O)との関係を示すグラフである。 各実施例について、60±10℃の硝酸液(80~120g/L)による処理時間と、酸化増量との関係を示すグラフである。 各実施例について、Cr(O)+Si(O)と、酸化増量との関係を示すグラフである。 本発明の実施形態に係るフェライト系ステンレス鋼をXPSにより測定したスペクトルの一例であり、Cr 2pスペクトルの深さ方向の変化を示すグラフである。 本発明の実施形態に係るフェライト系ステンレス鋼をXPSにより測定したスペクトルの一例であり、Cr 2pスペクトルを、金属Cr、Crの酸化物、およびCrの水酸化物にピーク分離した結果を示すグラフである。
 以下、本発明の実施の形態について説明する。なお、以下の記載は、発明の趣旨をより良く理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。また、本出願において、「A~B」は、A以上B以下であることを示している。
 また、本明細書において、「ステンレス鋼」との用語は、具体的な形状が限定されないステンレス鋼材を意味する。このステンレス鋼材としては、例えば、鋼板、鋼管、条鋼、などが挙げられる。
 <フェライト系ステンレス鋼の成分組成>
 本発明の一実施形態におけるフェライト系ステンレス鋼が含有する成分の組成は、以下のとおりである。なお、当該フェライト系ステンレス鋼は、以下に示す各成分以外は、鉄(Fe)、または不可避的に混入する少量の不純物(不可避的不純物)からなる。
 (クロム:Cr)
 Crは、不動態被膜を形成し、耐食性を確保するために必須の元素である。また、耐赤スケール性を確保するためにも有効である。しかしながら、Crを過度に含有すると、材料コストが上昇するとともに、靭性低下の要因となる。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Crの含有量は、10.5~25質量%であり、好ましくは、12.5~23質量%である。
 (ケイ素:Si)
 Siは、耐赤スケール性の改善に有効な元素である。しかしながら、Siを過度に含有すると、靭性や加工性が低下する要因となる。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Siの含有量は、0.05~3.0質量%であり、好ましくは、0.1~2.6質量%である。
 (銅:Cu)
 Cuは、高温強度確保のために添加する元素である。しかしながら、Cuを過度に含有すると、フェライト相が不安定化するとともに、材料コストが上昇する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Cuの含有量は0~1.8質量%である。
 (モリブデン:Mo)
 Moは、高温強度確保のために添加する元素である。しかしながら、Moを過度に含有すると硬質化し、加工性が低下するとともに材料コストが上昇する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Moの含有量は、0~3.0質量%である。
 (ニオブ:Nb)
 Nbは、高温強度確保のために添加する元素である。しかしながら、Nbを過度に含有すると、加工性および靭性が劣化する可能性がある。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Nbの含有量は、0.05~1.0質量%であり、好ましくは、0.05~0.7質量%である。
 (チタン:Ti)
 Tiは、Cおよび/またはNと反応することにより、フェライト系ステンレス鋼を900~1000℃においてフェライト系単層にすることができ、耐赤スケール性および加工性を向上させる元素である。しかしながら、Tiを過度に含有すると、加工性および表面品質が劣化する可能性がある。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Tiの含有量は、0~0.5質量%である。
 (マンガン:Mn)
 Mnは、フェライト系ステンレス鋼において、スケールの密着性を向上させる元素である。しかしながら、Mnを過度に含有すると、フェライト相が不安定化するとともに腐食起点となるMnSの発生を促進する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Mnの含有量は、0.05~2.0質量%であり、好ましくは、010~1.20質量%である。
 (炭素:C)
 Cは、過度に含有すると、炭化物量が増加し、耐食性が低下する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Cの含有量は0~0.025質量%であり、好ましくは0~0.020質量%である。
 (リン:P)
 Pは、過度に含有すると、加工性が低下する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Pの含有量は0~0.04質量%である。
 (硫黄:S)
 Sは、過度に含有するとフェライト系ステンレス鋼において腐食起点の発生を促進する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Sの含有量は0~0.03質量%である。
 (ニッケル:Ni)
 Niは、フェライト系ステンレス鋼の耐食性を向上させる元素である。しかしながら、Niを過度に含有すると、フェライト相が不安定化するとともに、材料コストが上昇する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Niの含有量は0~0.5質量%である。
 (窒素:N)
 Nは、過度に含有すると他の元素と窒化物を形成して硬質化を招く。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、Nの含有量は0~0.025質量%である。
 (アルミニウム:Al)
 Alは、フェライト系ステンレス鋼の耐食性を向上させる元素である。また、Alは製鋼時の脱酸剤として有効な元素である。しかしながら、Alを過度に含有すると、表面品質が劣化する可能性があるため、本発明の一態様におけるフェライト系ステンレス鋼では、Alの含有量は0~0.2質量%であり、好ましくは0~0.1質量%である。
 <その他の成分>
 本発明の一実施形態に係るフェライト系ステンレス鋼は、0~2.5質量%のW、0~0.1質量%のLa、0~0.05質量%のCe、0.01質量%以下のB、0.0002質量%以上0.0030質量%以下のCa、0.001質量%以上0.5質量%以下のHf、0.01質量%以上0.40質量%以下のZr、0.005質量%以上0.50質量%以下のSb、0.01質量%以上0.30質量%以下のCo、0.001質量%以上1.0質量%以下のTa、0.002質量%以上1.0質量%以下のSn、0.0002質量%以上0.30質量%以下のGa、0.001質量%以上0.20質量%以下の希土類元素および0.0003質量%以上0.0030質量%以下のMgのうち1種以上を含有していてもよい。
 (タングステン:W)
 Wは、高温強度確保のために添加する元素である。しかしながら、Wを過度に含有すると、材料コストが上昇する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、必要に応じて0~2.5質量%のWを添加してもよい。コストを考慮すると、Wの含有量は、0.01~1.5質量%であることが好ましい。
 (ランタン:La)
 Laは、耐赤スケール性および耐スケール剥離性を向上するために添加する元素である。しかしながら、Laを過度に含有すると、材料コストが上昇する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、必要に応じて0~0.1質量%のLaを添加してもよい。コストを考慮すると、Laの含有量は、0~0.05質量%であることが好ましい。
 (セリウム:Ce)
 Ceは、耐赤スケール性および耐スケール剥離性を向上するために添加する元素である。しかしながら、Ceを過度に含有すると、材料コストが上昇する。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、必要に応じて0~0.05質量%のCeを添加してもよい。
 (ホウ素:B)
 Bは、フェライト系ステンレス鋼を使用して製造された成形品の二次加工性を向上させる元素である。しかしながら、Bを過度に含有すると、CrB等の化合物が形成されやすくなり、耐赤スケール性を劣化させる可能性がある。そのため、本発明の一態様におけるフェライト系ステンレス鋼では、必要に応じて0.01質量%以下のBを添加してもよく、好ましくは0.0002質量%以上0.003質量%以下のBを添加してもよい。
 (カルシウム:Ca)
 Caは、耐高温酸化性を促進する元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.0002質量%以上のCaを添加してもよい。しかしながら、過度な添加は耐食性の低下を招くため、添加量の上限は0.0030質量%であることが好ましい。
 (ジルコニウム:Zr)
 Zrは、高温強度、耐食性および耐高温酸化性を向上させる元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.01質量%以上のZrを添加してもよい。しかしながら、過度な添加は加工性、製造性の低下を招くため、添加量の上限は0.40質量%であることが好ましい。
 (ハフニウム:Hf)
 Hfは、耐食性、高温強度および耐酸化性を向上させる元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.001質量%以上のHfを添加してもよい。しかしながら、過度な添加は加工性および製造性の低下を招く可能性があるため、添加量の上限は0.5質量%であることが好ましい。
 (スズ:Sn)
 Snは、耐食性および高温強度を向上させる元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.002質量%以上のSnを添加してもよい。しかしながら、過度の添加は靭性および製造性の低下を招く可能性があるため、添加量の上限は1.0質量%であることが好ましい。
 (マグネシウム:Mg)
 Mgは、脱酸元素であることに加え、スラブの組織を微細化させ、成型性を向上させる元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.0003質量%以上のMgを添加してもよい。しかし、過度な添加は耐食性、溶接性、表面品質の低下を招くため、添加量の上限は0.0030質量%であることが好ましい。
 (コバルト:Co)
 Coは、高温強度を向上させる元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.01質量%以上のCoを添加してもよい。しかしながら、過度に添加すると靭性が低下し、製造性の低下を招くため、添加量の上限は0.30質量%であることが好ましい。
 (アンチモン:Sb)
 Sbは、高温強度を向上させる元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.005質量%以上のSbを添加してもよい。しかしながら、過度な添加は溶接性、靭性を低下させるため、添加量の上限は0.50質量%であることが好ましい。
 (タンタル:Ta)
 Taは、高温強度を向上させる元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.001質量%以上のTaを添加してもよい。しかしながら、過度な添加は溶接性、靭性を低下させるため、添加量の上限は1.0質量%であることが好ましい。
 (ガリウム:Ga)
 Gaは、耐食性および耐水素脆化特性を向上させる元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.0002質量%以上のGaを添加してもよい。しかし、過度な添加は溶接性、靭性を低下させるため、添加量の上限は0.30質量%であることが好ましい。
 (希土類元素:REM)
 REMは、スカンジウム(Sc)と、イットリウム(Y)と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)との総称を指す。REMは、単独の元素として添加されてもよく、または複数の元素の混合物として添加されてもよい。REMは、ステンレス鋼の清浄度を向上させるとともに、耐高温酸化性も改善する元素である。本発明の一実施形態に係るフェライト系ステンレス鋼では、必要に応じて0.001質量%以上のREMを添加してもよい。しかし、過度な添加は合金コストを上昇させ、製造性を低下させるため、添加量の上限は0.20質量%であることが好ましい。
 <不動態被膜中のCr(O)およびSi(O)について>
 本発明の一態様におけるフェライト系ステンレス鋼に含まれる各元素について、元素ごとの含有量の意義について説明した。本発明の一態様に係るフェライト系ステンレス鋼は、下記で定義する不動態被膜中のCr(O)およびSi(O)が、下記式(1)を満足することにより、優れた高温強度および耐赤スケール性を有している。より具体的には、Cr(O)およびSi(O)が、下記式(1)を満たすことにより、水蒸気が含まれる300~900℃の環境下で優れた高温強度および耐赤スケール性を有するフェライト系ステンレス鋼が提供され得る。なお、不動態被膜中のSiの酸化物は、不動態被膜中に含まれるSiの酸化物および表面に存在するSiの酸化物(例えば一酸化ケイ素)を含む。
 Cr(O)+Si(O)≧240・・・(1)
 以下では、図5および図6を用いて、Cr(O)およびSi(O)について説明する。図5は、本発明の実施形態に係るフェライト系ステンレス鋼をXPS(X-ray Photoelectron Spectroscopy)分析装置により測定したスペクトルの一例であり、Cr 2pスペクトルの深さ方向の変化を示すグラフである。図6は、本発明の実施形態に係るフェライト系ステンレス鋼をXPSにより測定したスペクトルの一例であり、Cr 2pスペクトルを、金属Cr、Crの酸化物、およびCrの水酸化物にピーク分離した結果を示すグラフである。
 まず、表面、および、表面から0.5nmごとに表面からの深さ6nmの位置までにおいてXPS分析装置により、Fe、Cr、Ti、Nb、MoおよびSi(6種の金属)のそれぞれのナロースペクトルを測定する。図5では、例として、Crのナロースペクトルが示されている。図5に示されるように、CrのスペクトルはCr酸化物およびCr水酸化物のピークと、金属Crのピークとを有している。
 次に、得られた上記6種の金属各々について、ナロースペクトルを、金属原子からなる単体、酸化物、および水酸化物のピークにピーク分離する。図6では、例として、Crのナロースペクトルをピーク分離した結果を示している。次に、各ピークの面積から、金属Cr(単体)、Crの酸化物およびCrの水酸化物として存在するCrの割合をそれぞれ算出する。同様に他の全ての金属原子についてそれぞれの単体、酸化物、および水酸化物として存在する原子の割合を算出する。
 そして、Fe、Cr、Ti、Nb、MoおよびSi(6種の金属)の割合と、各元素における各物質状態の割合とを用いて、各測定深さにおける、単体、酸化物または水酸化物として存在する上記6種の金属原子の総原子数を100原子%としたときの各金属の物質状態(単体、酸化物、または水酸化物)ごとの原子%濃度を求めることができる。
 ここで、Cr(O)は、Crの酸化物および水酸化物の原子%濃度の積算値である。つまり、表面、および、表面から0.5nmごとに表面からの深さ6nmの位置までにおいてXPS分析によりスペクトルを測定し、各スペクトルを用いて、単体、酸化物または水酸化物として存在する、Fe、Cr、Ti、Nb、MoおよびSiの総原子数に対する、酸化物または水酸化物として存在するCrの総原子数の割合を原子%濃度で各測定深さにおいて算出し、算出したすべての原子%濃度を積算した値である。
 Si(O)は、Siの酸化物の原子%濃度の積算値である。つまり、同様にスペクトルを測定し、各スペクトルを用いて、単体、酸化物または水酸化物として存在する、Fe、Cr、Ti、Nb、MoおよびSiの総原子数に対する、酸化物として存在するSiの原子数の割合を原子%濃度で各測定深さにおいて算出し、算出したすべての原子%濃度を積算した値である。
 本実施形態において、Crの酸化物(酸化物として存在するCr)は、酸化クロム(III)(Cr)、酸化クロム(IV)(CrO)、および酸化クロムVI(CrO)の1種または2種以上を含む。Crの水酸化物(水酸化物として存在するCr)は、水酸化クロム(II)(Cr(OH))および水酸化クロム(III)(Cr(OH))の1種または2種以上を含む。Siの酸化物(酸化物として存在するSi)とは、二酸化ケイ素(SiO2)および一酸化ケイ素(SiO)の1種または2種を含む。
 なお、上述のXPS測定において用いたXPS装置および測定条件は下記のとおりである。
 装置:アルバック・ファイ社製 Quantera SXM
 X線源:mono-AlKα線(hv=1486.6eV)
 検出深さ:数nm(取り出し角度45°)
 X線径:200μmφ
 中和銃:1.0V、20μA
 スパッタ条件:Ar、加速電圧:1kV、ラスター:2×2mm
 スパッタ速度:1.3nm/min(SiO換算値)
 本発明者らは、不動態被膜中のCrおよびSiに着目し、不動態被膜中のCr(O)およびSi(O)の和が、上記式(1)を満たすことにより、優れた耐赤スケール性および高温強度を有するフェライト系ステンレス鋼を実現することができるという知見を得るに至った。
 従来、耐赤スケール性を向上させるための手法として、仕上げ加工として表面研磨をすることで鋼中のCr拡散を促進し、Crの酸化物の生成を促す手法、または溶融めっき層を表層に形成する手法などが用いられている。
 本発明者らは、例えば、以下の製造方法により、上記式(1)を満たす、優れた耐赤スケール性および高温強度を有するフェライト系ステンレス鋼を得ることができることを見出した。
 <製造方法>
 本発明の一実施形態におけるフェライト系ステンレス鋼は、例えば、フェライト系ステンレス鋼帯として得られる。図1は、本実施形態のフェライト系ステンレス鋼の製造方法の一例を示すフローチャートである。図1に示すように、本実施形態におけるフェライト系ステンレス鋼帯の製造方法は、前処理工程S1、熱間圧延工程S2、焼鈍工程S3、第1酸洗工程S4、冷間圧延工程S5、最終焼鈍工程S6、第2酸洗工程S7、および表面活性化処理工程S8を含む。
 (前処理工程)
 前処理工程S1では、まず、真空またはアルゴン雰囲気の溶解炉を用いて、本発明の範囲内となるように組成を調整した鋼を溶製し、この鋼を鋳造して、スラブを製造する。その後、該スラブから熱間圧延用のスラブ片を切り出す。そして、当該スラブ片を大気雰囲気中で1100℃~1300℃の温度域に加熱する。該スラブ片を加熱して保持する時間は、限定されない。なお、工業的に前処理工程を行う場合、前記鋳造は連続鋳造であってよい。
 熱間圧延工程S2は、前処理工程S1において得られるスラブ(鋼塊)を熱間圧延することにより、所定の厚みの熱延鋼帯を製造する工程である。
 焼鈍工程S3は、熱間圧延工程S2で得られた熱延鋼帯を加熱することによって、鋼帯の軟質化を図る工程である。この焼鈍工程S3は、必要に応じて実施される工程であり、実施されなくてもよい。
 第1酸洗工程S4は、鋼帯表面に付着したスケールを、塩酸または硝酸とフッ化水素酸との混合液などの酸洗液を用いて洗い落とす工程である。
 冷間圧延工程S5は、第1酸洗工程S4においてスケール除去された鋼帯を、さらに薄く圧延する工程である。
 最終焼鈍工程S6は、冷間圧延工程S5において薄く圧延された鋼帯を加熱することによってひずみを除去し、鋼帯の軟質化を図る工程である。最終焼鈍工程S6における焼鈍は、例えば、合金成分に応じて900~1100℃程度の温度で行われる。
 第2酸洗工程S7は、最終焼鈍工程S6で得られた鋼帯の表面に付着したスケールを、硝酸液または硝酸とフッ化水素酸との混合液などの酸洗液を用いて洗い落とす工程である。第2酸洗工程S7は、鋼帯表面のスケールを除去し得る処理であれば特に限定されない。例えば、第2酸洗工程S7として、50~70℃の硝酸液(硝酸濃度150g/L)に浸漬させた状態で、0.2~0.3A/cmの条件で1~2分間電解する電解処理を実施してもよい。あるいは、第2酸洗工程S7として、50~70℃の、硝酸液(硝酸濃度100g/L)とフッ化水素酸(15~25g/L)との混合液中に1~2分浸漬する処理を実施してもよい。
 表面活性化処理工程S8は、第2酸洗工程S7後の鋼帯を、80~120g/Lの硝酸液を用いて、液温度を50℃以上70℃以下で、60秒以上120秒以下の時間浸漬することにより、不動態被膜中のCrおよびSiを濃化させる工程である。本明細書において、上記の条件で行う処理を、表面活性化処理と呼ぶ。当該表面活性化処理を行うことにより、上記式(1)を満足するフェライト系ステンレス鋼帯を得ることができる。なお、この表面活性化処理工程S8は、第2酸洗工程S7と同じかまたは同様の装置を用いて実施することができる。
 なお、本願発明のフェライト系ステンレス鋼は、不動態被膜中のCr(O)およびSi(O)が上記式(1)を満足することにより、優れた高温強度および耐赤スケール性を有している。本発明者らは、上記式(1)を満足するフェライト系ステンレス鋼は、上述の第2酸洗工程S7と、表面活性化処理工程S8とを両方実施することによって得ることができることを見出した。例えば、第2酸洗工程S7または表面活性化処理工程S8のいずれかの工程を省略した場合には、上記式(1)を満たすフェライト系ステンレス鋼を得ることができない。すなわち、第2酸洗工程S7においてスケールを除去した鋼帯に対し、上記表面活性化処理を施すことによって、不動態被膜中のCrおよびSiが濃化され、上記式(1)を満たす本願発明のフェライト系ステンレス鋼を得ることができる。
 当該表面活性化処理工程に用いる条件について、硝酸液の濃度が80g/L未満である場合、硝酸による表面活性化効果が弱くなり、赤スケールの生成を抑制できない。また、硝酸液の濃度が120g/Lを超えると、硝酸との過剰反応により表面活性化効果がピークアウトし、赤スケールの生成を抑制できない。液温度が50℃未満である場合、硝酸による表面活性化効果が弱くなり、赤スケールの生成を抑制できない。また、液温度が70℃を超えると、硝酸との過剰反応により表面活性化効果がピークアウトし赤スケールの生成を抑制できない。さらに、浸漬時間が60秒未満である場合、硝酸による表面活性化効果が不十分となり、赤スケールの生成を抑制できない。また、120秒を超えると、硝酸との過剰反応により表面活性化効果がピークアウトし、赤スケールの生成を抑制できない。
 上述したように、従来技術として、高温強度および耐赤スケール性を向上させるための仕上げ工程として、研磨仕上げまたはめっき層の形成などの工程が追加されている。しかしながら、このような仕上げ工程は、当該仕上げ工程のために新たな装置を導入する必要があり、製造コストが高くなるという問題がある。このような観点から、製造コストを上げずに、耐赤スケール性および高温強度に優れたフェライト系ステンレス鋼を製造する製造方法を提供することも本発明の課題の1つである。
 本発明の一態様に係る製造方法は、脱スケール処理(第2酸洗工程)後に、80~120g/Lの硝酸液を用いて、液温度を50℃以上70℃以下で、60秒以上120秒以下の時間浸漬する、表面活性化処理を行う。これにより、製造コストを上げずに、優れた高温強度および耐赤スケール性を有するフェライト系ステンレス鋼を実現することができる。
 <実施例>
 まず、下記の表1に示す成分を原料とし、上述の製造方法の第2酸洗工程S7までを施して、フェライト系ステンレス鋼を製造した。なお、表1に示す鋼材を製造するにあたり、用いた条件は以下のとおりである。第2酸洗工程S7として、下記に示すいずれの処理を施したかについては、後述する表2に示している。
 ・前処理工程S1におけるスラブ片の加熱温度 1230℃
 ・前処理工程S1におけるスラブ片の加熱時間 2時間
 ・熱間圧延工程S2後の板厚 4mm
 ・第1酸洗工程S4で用いた酸洗液 60℃の硝弗酸液(3%弗酸、10%硝酸を含む水溶液)
 ・冷間圧延工程S5後の板厚 1.5mm
 ・第2酸洗工程S7における酸洗条件 50~70℃の硝酸液(硝酸濃度150g/L)に浸漬させた状態で、0.2~0.3A/cmの条件で1~2分間電解する電解処理(硝酸電解)。または、硝酸(硝酸濃度100g/L)とフッ化水素酸(15~25g/L)の50~70℃の混合液中に1~2分浸漬する処理(フッ硝酸浸漬)。
Figure JPOXMLDOC01-appb-T000001
 本発明の実施例について、以下に説明する。本実施例では、表1に示される各ステンレス鋼の組成は、重量%で示されている。また、表1に示す各成分以外の残部は、Feまたは不可避的に混入する少量の不純物である。また、表1中の下線は、本発明の比較例に係る各ステンレス鋼に含まれる各成分の範囲が、本発明の範囲外であることを示している。
 表1に示すように、本発明の範囲において作製したフェライト系ステンレス鋼を、発明例鋼種A1~A13とした。また、本発明の範囲外の条件で作製したフェライト系ステンレス鋼を、比較例鋼種B1~B4とした。
 表2は、発明例鋼種A1~A13および比較例鋼種B1~B4について、耐赤スケール性および高温強度を評価するための試験を実施した結果を示す表である。
Figure JPOXMLDOC01-appb-T000002
 表2に記載の発明例No.1~51は、発明例鋼種A1~A13に対して、本発明の表面活性化処理または本発明の表面活性化処理の範囲外の酸洗処理を施した例である。具体的には発明例No.1、5、12、16、20、24、20、24、28、32、36、40、44、および48は、60±10℃の硝酸液(80~120g/L)への浸漬時間が40秒であるため、本発明の表面活性化処理の範囲外の酸洗処理が施されている。その他の発明例については、本発明の表面活性化処理が施されている。
 比較例No.1~34は、発明例鋼種A1~A8および比較例鋼種B1~B4に対して、本発明の表面活性化処理の範囲外の酸洗処理を施した例である。具体的には、60±10℃の硝酸液(80~120g/L)を用いる点は共通であるが、浸漬時間の条件が本発明の表面活性化処理の範囲外である。比較例No.22は、発明鋼種A7に対して、第2酸洗工程S7を施さずに、本発明の表面活性化処理を施した例である。また、比較例No.34は、比較例鋼種B4に対して、本発明の表面活性化処理を施した例である。
 まず、発明例No.1~51および比較例No.1~34について、不動態被膜中のCr(O)およびSi(O)を、以下に詳述するように測定および算出した。
 <不動態被膜中のCr(O)およびSi(O)の測定>
 不動態被膜におけるCrおよびSiの濃化度を評価するために、上記製造方法によって製造された鋼板の、Cr(O)およびSi(O)を上述のように算出し、Cr(O)+Si(O)の値を求めた。その結果を、表2の不動態被膜中(6nm)のCr+Siの積分濃度の欄に示している。Cr(O)およびSi(O)が、上記式(1)を満たす場合、本発明の範囲内である。
 表2に示すように、発明例鋼種A1~A13に対して、本発明の表面活性化処理を施した発明例(No.1~51のうち、No.1、5、12、16、20、24、20、24、28、32、36、40、44、および48を除くもの)は、全て上記式(1)を満たした。
 図2は、全ての実施例についての、60±10℃の硝酸液(80~120g/L)による処理時間と、Cr(O)+Si(O)との関係を示すグラフである。図2のグラフからわかるように、処理時間が60~120秒である場合、すなわち本発明の範囲内である表面活性化処理が施されている場合には、Cr(O)+Si(O)≧240となることが実証された。
 <耐赤スケール性評価試験>
 表2に示した発明例No.1~51および比較例No.1~34に対して耐赤スケール性評価試験を実施した。試験の結果を表2に示している。
 耐赤スケール性の評価試験は、JIS Z 2281(金属材料の高温連続酸化試験方法)に準拠し、酸化増量を用いて評価した。評価の判断基準として、酸化増量が0.3mg/cm以下を許容範囲とした。
 まず、上記製造方法によって製造された鋼板から、試験片として、20mm×25mmの試験片を切り出した。水蒸気濃度10vol%の大気環境中で、当該試験片を600℃で100時間連続加熱した。酸化増量は、試験前後の重量変化より算出した。
 表2に示すように、発明例鋼種A1~A13に対して、本発明の表面活性化処理を施した発明例(No.1~51のうち、No.1、5、12、16、20、24、20、24、28、32、36、40、44、および48を除くもの)は、全て上記基準を満たした。
 図3は、全ての実施例について、60±10℃の硝酸液(80~120g/L)による処理時間と、酸化増量との関係を示すグラフである。図3のグラフからわかるように、処理時間が60~120秒である場合、すなわち本発明の範囲内である表面活性化処理が施されている場合には、全て酸化増量0.3mg/cm以下を満たすことが実証された。
 図4は、全ての実施例について、Cr(O)+Si(O)と、酸化増量との関係を示すグラフである。図4のグラフからわかるように、Cr(O)+Si(O)≧240を満たす場合には、全て酸化増量0.3mg/cm以下を満たすことが実証された。
 <高温強度評価試験>
 表2に示した発明例No.1~51および比較例No.1~34に対して高温強度評価試験を実施した。試験の結果を表2に示している。
 高温強度評価試験は、JIS Z 2241(鉄鋼材引張試験方法)に準拠した試験片を用い、JIS G 0567(鉄鋼材料及び耐熱合金の高温引張試験方法)に準拠した引張方法により実施した。
 試験片の板厚は2mm、板幅は12.5mmであり、標点間距離を50mmとした。標点間に対し、耐力までのひずみ速度を0.3%/min、引張強さを3mm/minとし、0.2%耐力値で評価した。評価の判断基準として、0.2%耐力が20MPa以上を許容範囲とした。
 表2に示すように、発明例No.1~51は、全て上記基準を満たした。一方、比較例No.30~34は、上記基準を満たさなかった。
 以上の試験結果から、総合評価として、耐赤スケール性評価試験および高温強度評価試験について、両方の基準を満たした場合を合格(〇)、片方または両方の基準を満たさなかった場合を不合格(×)とし、結果を表2に示した。
 表2の総合評価から、以下のことが実証された。
・発明例鋼種A1~A13について、上記式(1)を満たす例は、全て総合評価として合格であった。
・発明例鋼種A1~A13であっても、上記式(1)を満たさない場合(比較例No.1~23)、総合評価は不合格であった。
・発明例鋼種A1~A7に対して本発明の表面活性化処理を施した場合、全て上記式(1)を満たし、かつ総合評価は合格であった。
・比較例鋼種B4に対して本発明の表面活性化処理を施した場合(比較例No.34)、上記式(1)を満たしたが、総合評価は不合格であった。
・発明例鋼種A1~A13に対して上述の硝酸電解またはフッ硝酸浸漬による第2酸洗工程S7を施した後、表面活性化処理工程S8を施した例は、全て上記式(1)を満たし、総合評価として合格であった。
・発明例鋼種A1~A13であっても、第2酸洗工程S7のみを実施し、表面活性化処理工程S8を実施しない場合(比較例No.5および10)、上記式(1)を満たさず、総合評価も不合格であった。
・発明例鋼種A1~A13であっても第2酸洗工程S7のみを実施せず、表面活性化処理工程S8のみを実施した場合(比較例No.22)、上記式(1)を満たさず、総合評価も不合格であった。
 〔まとめ〕
 本発明の一態様に係るフェライト系ステンレス鋼は、0.025質量%以下のC、0.05質量%以上3.0質量%以下のSi、0.05質量%以上2.0質量%以下のMn、0.04質量%以下のP、0.03質量%以下のS、0.5質量%以下のNi、10.5質量%以上25.0質量%以下のCr、0.025質量%以下のN、0.05質量%以上1.0質量%以下のNb、3.0質量%以下のMo、1.8質量%以下のCu、0.2質量%以下のAl、0.5質量%以下のTiを含有し、残部に鉄および不可避的不純物を含み、表面、および、表面から0.5nmごとに表面からの深さ6nmの位置までにおいてXPS分析によりスペクトルを測定し、
 (i)各スペクトルを用いて、単体、酸化物または水酸化物として存在する、Fe、Cr、Ti、Nb、MoおよびSiの総原子数に対する、酸化物または水酸化物として存在するCrの総原子数の割合を原子%濃度で各測定深さにおいて算出し、算出したすべての原子%濃度を積算した値をCr(O)とし、
 (ii)各スペクトルを用いて、単体、酸化物または水酸化物として存在する、Fe、Cr、Ti、Nb、MoおよびSiの総原子数に対する、酸化物として存在するSiの原子数の割合を原子%濃度で各測定深さにおいて算出し、算出したすべての原子%濃度を積算した値をSi(O)としたときに、
 下記式(1)を満足することを特徴とする。
 Cr(O)+Si(O)≧240・・・(1)
 上記構成によれば、優れた高温強度および耐赤スケール性を有するフェライト系ステンレス鋼を実現することができる。
 また、本発明の一態様に係るフェライト系ステンレス鋼は、2.5質量%以下のW、0.1質量%以下のLa、0.05質量%以下のCe、0.01質量%以下のB、0.0002質量%以上0.0030質量%以下のCa、0.001質量%以上0.5質量%以下のHf、0.01質量%以上0.40質量%以下のZr、0.005質量%以上0.50質量%以下のSb、0.01質量%以上0.30質量%以下のCo、0.001質量%以上1.0質量%以下のTa、0.002質量%以上1.0質量%以下のSn、0.0002質量%以上0.30質量%以下のGa、0.001質量%以上0.20質量%以下の希土類元素および0.0003質量%以上0.0030質量%以下のMgのうち1種以上をさらに含有してもよい。
 上記構成によれば、耐赤スケール性および耐スケール剥離性をさらに向上させることができる。
 また、本発明の一態様に係るフェライト系ステンレス鋼の製造方法は、0.025質量%以下のC、0.05質量%以上3.0質量%以下のSi、0.05質量%以上2.0質量%以下のMn、0.04質量%以下のP、0.003質量%以下のS、0.5質量%以下のNi、10.5質量%以上25.0質量%以下のCr、0.025質量%以下のN、0.05質量%以上1.0質量%以下のNb、3.0質量%以下のMo、1.8質量%以下のCu、0.2質量%以下のAl、0.5質量%以下のTiを含有し、残部に鉄および不可避的不純物を含むフェライト系ステンレス鋼の製造方法であって、脱スケール処理後の鋼帯を、80~120g/Lの硝酸液を用いて、液温度を50℃以上70℃以下で、60秒以上120秒以下の時間浸漬する、表面活性化処理工程を含むことを特徴とする。
 上記構成によれば、製造コストを上げることなく、優れた高温強度および耐赤スケール性を有するフェライト系ステンレス鋼を製造することができる。
 また、本発明の一態様に係るフェライト系ステンレス鋼の製造方法は、フェライト系ステンレス鋼が、2.5質量%以下のW、0.1質量%以下のLa、および0.05質量%以下のCeをさらに含有していてもよい。
 上記構成によれば、製造コストを上げることなく、耐赤スケール性および耐スケール剥離性をさらに向上させた、優れた高温強度および耐赤スケール性を有するフェライト系ステンレス鋼を製造することができる。
 (付記事項)
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。

Claims (4)

  1.  0.025質量%以下のC、0.05質量%以上3.0質量%以下のSi、0.05質量%以上2.0質量%以下のMn、0.04質量%以下のP、0.03質量%以下のS、0.5質量%以下のNi、10.5質量%以上25.0質量%以下のCr、0.025質量%以下のN、0.05質量%以上1.0質量%以下のNb、3.0質量%以下のMo、1.8質量%以下のCu、0.2質量%以下のAl、0.5質量%以下のTiを含有し、残部に鉄および不可避的不純物を含み、
     表面、および、表面から0.5nmごとに表面からの深さ6nmの位置までにおいてXPS分析によりスペクトルを測定し、
     (i)各スペクトルを用いて、単体、酸化物または水酸化物として存在する、Fe、Cr、Ti、Nb、MoおよびSiの総原子数に対する、酸化物または水酸化物として存在するCrの総原子数の割合を原子%濃度で各測定深さにおいて算出し、算出したすべての原子%濃度を積算した値をCr(O)とし、
     (ii)各スペクトルを用いて、単体、酸化物または水酸化物として存在する、Fe、Cr、Ti、Nb、MoおよびSiの総原子数に対する、酸化物として存在するSiの原子数の割合を原子%濃度で各測定深さにおいて算出し、算出したすべての原子%濃度を積算した値をSi(O)としたときに、
     下記式(1)を満足することを特徴とする、フェライト系ステンレス鋼。
     Cr(O)+Si(O)≧240・・・(1)
  2.  2.5質量%以下のW、0.1質量%以下のLa、0.05質量%以下のCe、0.01質量%以下のB、0.0002質量%以上0.0030質量%以下のCa、0.001質量%以上0.5質量%以下のHf、0.01質量%以上0.40質量%以下のZr、0.005質量%以上0.50質量%以下のSb、0.01質量%以上0.30質量%以下のCo、0.001質量%以上1.0質量%以下のTa、0.002質量%以上1.0質量%以下のSn、0.0002質量%以上0.30質量%以下のGa、0.001質量%以上0.20質量%以下の希土類元素および0.0003質量%以上0.0030質量%以下のMgのうち1種以上をさらに含有する、請求項1に記載のフェライト系ステンレス鋼。
  3.  0.025質量%以下のC、0.05質量%以上3.0質量%以下のSi、0.05質量%以上2.0質量%以下のMn、0.04質量%以下のP、0.003質量%以下のS、0.5質量%以下のNi、10.5質量%以上25.0質量%以下のCr、0.025質量%以下のN、0.05質量%以上1.0質量%以下のNb、3.0質量%以下のMo、1.8質量%以下のCu、0.2質量%以下のAl、0.5質量%以下のTiを含有し、残部に鉄および不可避的不純物を含むフェライト系ステンレス鋼の製造方法であって、
     脱スケール処理後の鋼帯を、80~120g/Lの硝酸液を用いて、液温度を50℃以上70℃以下で、60秒以上120秒以下の時間浸漬する、表面活性化処理工程を含むことを特徴とする、フェライト系ステンレス鋼の製造方法。
  4.  前記フェライト系ステンレス鋼が、2.5質量%以下のW、0.1質量%以下のLa、0.05質量%以下のCe、0.01質量%以下のB、0.0002質量%以上0.0030質量%以下のCa、0.001質量%以上0.5質量%以下のHf、0.01質量%以上0.40質量%以下のZr、0.005質量%以上0.50質量%以下のSb、0.01質量%以上0.30質量%以下のCo、0.001質量%以上1.0質量%以下のTa、0.002質量%以上1.0質量%以下のSn、0.0002質量%以上0.30質量%以下のGa、0.001質量%以上0.20質量%以下の希土類元素および0.0003質量%以上0.0030質量%以下のMgのうち1種以上をさらに含有する、請求項3に記載のフェライト系ステンレス鋼の製造方法。
PCT/JP2021/008317 2020-03-12 2021-03-04 フェライト系ステンレス鋼およびその製造方法 WO2021182266A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022505989A JP7342241B2 (ja) 2020-03-12 2021-03-04 フェライト系ステンレス鋼
CA3168212A CA3168212A1 (en) 2020-03-12 2021-03-04 Ferritic stainless steel and method for manufacturing same
US17/802,613 US20230105051A1 (en) 2020-03-12 2021-03-04 Ferritic stainless steel and method for manufacturing same
MX2022011262A MX2022011262A (es) 2020-03-12 2021-03-04 Acero inoxidable ferritico y metodo para fabricar el mismo.
CN202180015889.9A CN115135807B (zh) 2020-03-12 2021-03-04 铁素体系不锈钢及其制造方法
EP21766374.9A EP4119697A4 (en) 2020-03-12 2021-03-04 FERRITIC STAINLESS STEEL AND ITS MANUFACTURING METHOD
KR1020227031041A KR20220139948A (ko) 2020-03-12 2021-03-04 페라이트계 스테인리스강 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020043212 2020-03-12
JP2020-043212 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021182266A1 true WO2021182266A1 (ja) 2021-09-16

Family

ID=77672265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008317 WO2021182266A1 (ja) 2020-03-12 2021-03-04 フェライト系ステンレス鋼およびその製造方法

Country Status (8)

Country Link
US (1) US20230105051A1 (ja)
EP (1) EP4119697A4 (ja)
JP (1) JP7342241B2 (ja)
KR (1) KR20220139948A (ja)
CN (1) CN115135807B (ja)
CA (1) CA3168212A1 (ja)
MX (1) MX2022011262A (ja)
WO (1) WO2021182266A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574759A (zh) * 2022-02-21 2022-06-03 山东产研先进材料研究院有限公司 用于燃料电池双极板的铁素体不锈钢、表面粗糙度的调控方法、形成钝化膜的方法和用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3165412A1 (en) * 2022-02-21 2023-08-21 Shandong Industrial Research Institute Of Advanced Materials Co., Ltd Ferritic stainless steel used for bipolar plates of fuel cells, controlling method of surface roughness, method of forming passivation films, and use
CN117488310B (zh) * 2023-10-18 2024-08-09 青山钢管有限公司 一种制盐设备用不锈钢无缝管的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150202A (ja) * 1997-07-29 1999-02-23 Sumitomo Metal Ind Ltd 耐銹性に優れたフェライト系ステンレス鋼光輝焼鈍材およびその製造方法
JP2002256472A (ja) * 2001-03-01 2002-09-11 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼板及びその製造法
JP2003160842A (ja) 2001-11-22 2003-06-06 Nisshin Steel Co Ltd 炭化水素系燃料改質器用フェライト系ステンレス鋼
JP2003160844A (ja) 2001-11-22 2003-06-06 Nisshin Steel Co Ltd アルコール系燃料改質器用フェライト系ステンレス鋼
JP2012112025A (ja) * 2010-11-26 2012-06-14 Nippon Steel & Sumikin Stainless Steel Corp 尿素scrシステム部品用フェライト系ステンレス鋼板およびその製造方法
WO2018147087A1 (ja) * 2017-02-09 2018-08-16 Jfeスチール株式会社 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法
JP2019073783A (ja) * 2017-10-19 2019-05-16 日新製鋼株式会社 耐食性に優れるNb含有フェライト系ステンレス鋼材および製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185780A (ja) * 1982-04-24 1983-10-29 Kawasaki Steel Corp ステンレス鋼帯の連続酸洗方法
JPH0254789A (ja) * 1988-08-18 1990-02-23 Kawasaki Steel Corp ソルトワイパーロール
JP3739887B2 (ja) * 1997-03-21 2006-01-25 新日鐵住金ステンレス株式会社 汚れ除去性に優れた研磨仕上げステンレス鋼板およびその製造方法
JP4221984B2 (ja) * 2002-09-20 2009-02-12 Jfeスチール株式会社 極めて良好な表面光沢度を有するマルテンサイト系ステンレス鋼冷間圧延‐焼鈍‐酸洗鋼帯
JP5218612B2 (ja) * 2011-07-29 2013-06-26 Jfeスチール株式会社 燃料電池セパレータ用ステンレス鋼
JP6037882B2 (ja) * 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
JP6196453B2 (ja) * 2012-03-22 2017-09-13 新日鐵住金ステンレス株式会社 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
FI125855B (fi) * 2012-06-26 2016-03-15 Outokumpu Oy Ferriittinen ruostumaton teräs
JP2016128591A (ja) * 2013-03-26 2016-07-14 新日鐵住金ステンレス株式会社 溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼およびその製造方法
WO2014157578A1 (ja) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 研磨後の表面耐食性に優れるフェライト系ステンレス鋼及びその製造方法
US11085120B2 (en) * 2017-04-25 2021-08-10 Jfe Steel Corporation Stainless steel sheet for fuel cell separators and production method therefor
JP7076258B2 (ja) * 2018-03-27 2022-05-27 日鉄ステンレス株式会社 フェライト系ステンレス鋼板およびその製造方法、ならびに燃料電池用部材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150202A (ja) * 1997-07-29 1999-02-23 Sumitomo Metal Ind Ltd 耐銹性に優れたフェライト系ステンレス鋼光輝焼鈍材およびその製造方法
JP2002256472A (ja) * 2001-03-01 2002-09-11 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼板及びその製造法
JP2003160842A (ja) 2001-11-22 2003-06-06 Nisshin Steel Co Ltd 炭化水素系燃料改質器用フェライト系ステンレス鋼
JP2003160844A (ja) 2001-11-22 2003-06-06 Nisshin Steel Co Ltd アルコール系燃料改質器用フェライト系ステンレス鋼
JP2012112025A (ja) * 2010-11-26 2012-06-14 Nippon Steel & Sumikin Stainless Steel Corp 尿素scrシステム部品用フェライト系ステンレス鋼板およびその製造方法
WO2018147087A1 (ja) * 2017-02-09 2018-08-16 Jfeスチール株式会社 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法
JP2019073783A (ja) * 2017-10-19 2019-05-16 日新製鋼株式会社 耐食性に優れるNb含有フェライト系ステンレス鋼材および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119697A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574759A (zh) * 2022-02-21 2022-06-03 山东产研先进材料研究院有限公司 用于燃料电池双极板的铁素体不锈钢、表面粗糙度的调控方法、形成钝化膜的方法和用途

Also Published As

Publication number Publication date
CN115135807B (zh) 2023-09-19
US20230105051A1 (en) 2023-04-06
CN115135807A (zh) 2022-09-30
JP7342241B2 (ja) 2023-09-11
KR20220139948A (ko) 2022-10-17
JPWO2021182266A1 (ja) 2021-09-16
EP4119697A1 (en) 2023-01-18
CA3168212A1 (en) 2021-09-16
MX2022011262A (es) 2022-10-03
EP4119697A4 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
WO2021182266A1 (ja) フェライト系ステンレス鋼およびその製造方法
JPWO2021182266A5 (ja)
JP7329984B2 (ja) ステンレス鋼
WO2003106722A1 (ja) 耐熱性フェライト系ステンレス鋼およびその製造方法
KR101789958B1 (ko) 합금화 용융 아연 도금 강판 및 그 제조 방법
US11286547B2 (en) Ferritic stainless steel having excellent salt corrosion resistance
JP2004263271A (ja) 高張力溶融亜鉛めっき鋼板の製造方法
JP2020066794A (ja) フェライト系ステンレス鋼及びその製造方法、並びに燃料電池用部材
WO2022085788A1 (ja) フェライト系ステンレス鋼及び排ガス用部品
JP7296710B2 (ja) ステンレス鋼
CN112996937B (zh) 锆系化成处理用冷轧钢板及其制造方法以及锆系化成处理钢板及其制造方法
JP7341016B2 (ja) フェライト系ステンレス冷延鋼板
WO2021256145A1 (ja) 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板
CN114761596B (zh) 钢板及其制造方法
WO2020241861A1 (ja) ホットスタンプ用めっき鋼板
JP4458610B2 (ja) 耐高温酸化性に優れた溶融アルミニウムめっき鋼板
US20240018617A1 (en) Thin steel sheet
JP2022135177A (ja) フェライト系ステンレス鋼およびフェライト系ステンレス鋼の製造方法
JP6708314B1 (ja) 表面Cr濃化鋼板およびその製造方法
WO2024053663A1 (ja) めっき鋼板
WO2024122119A1 (ja) ホットスタンプ成形体
JP2023128977A (ja) ステンレス鋼材及びその製造方法
JPH0649604A (ja) 加工性および耐孔食性に優れたFe−Cr合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505989

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3168212

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227031041

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021766374

Country of ref document: EP

Effective date: 20221012