WO2021256145A1 - 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板 - Google Patents

耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板 Download PDF

Info

Publication number
WO2021256145A1
WO2021256145A1 PCT/JP2021/018738 JP2021018738W WO2021256145A1 WO 2021256145 A1 WO2021256145 A1 WO 2021256145A1 JP 2021018738 W JP2021018738 W JP 2021018738W WO 2021256145 A1 WO2021256145 A1 WO 2021256145A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
present
precipitation
mgo
Prior art date
Application number
PCT/JP2021/018738
Other languages
English (en)
French (fr)
Inventor
俊 斎藤
成雄 福元
修久 蛭濱
輝 田中
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to EP21825581.8A priority Critical patent/EP4166680A4/en
Priority to JP2022532399A priority patent/JP7223210B2/ja
Priority to CN202180037478.XA priority patent/CN115667563B/zh
Priority to KR1020227043448A priority patent/KR20230010244A/ko
Publication of WO2021256145A1 publication Critical patent/WO2021256145A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a precipitation hardening martensitic stainless steel sheet having excellent fatigue resistance.
  • Precipitation hardening martensitic stainless steel sheets have low hardness before aging, so they have excellent punching and forming workability, and after aging, they exhibit high strength and high welding softening resistance. Has.
  • precipitation hardening martensitic stainless steel sheets are often used as structural materials such as steel belts that require welding and various spring materials, taking advantage of the characteristics that change before and after aging treatment. Further, these materials are also required to have excellent fatigue resistance.
  • the precipitation hardening type martensite-based stainless steel plate tends to generate oxide-based non-metal inclusions and non-metal inclusions of a composite oxynitride of TiN and oxide as deoxidizing products, and thus is resistant to fatigue. In order to improve the properties, it is desirable to reduce the size of all these non-metallic inclusions.
  • Si contained in the steel has an effect of increasing the activity of Ti, there is also a problem that it is difficult to suppress the formation and growth of TiN or a composite oxynitride of TiN and an oxide.
  • Patent Document 1 As a means for refining TiN inclusions in steel, for example, in Patent Document 1, fine Zr oxide is generated by adding Zr to molten steel, and TiN inclusions are made fine with this as a core.
  • the maraging steel described in Patent Document 1 is premised on being manufactured by the vacuum arc remelting method, and it is necessary to reduce the N content to 0.0020% by mass or less.
  • Such a low N content is a general purpose such that the usual manufacturing processes are performed in the order of melting (electric furnace), primary refining (converter), secondary refining (AOD or VOD) and continuous casting. It is difficult to achieve precipitation-hardened maraging steel-based steel by a conventional mass-production method due to cost constraints.
  • the addition of Zr in molten steel is carried out during continuous casting. There is also a problem that the immersion nozzle is easily blocked.
  • the martensitic steel described in Patent Document 1 does not contain Si that enhances the activity of Ti, it is relatively difficult to suppress the formation of TiN as compared with the martensitic steel containing Si. It can be said that it is easy.
  • Patent Document 2 discloses a cold-rolled steel strip of maraging steel in which the size of oxide-based non-metal inclusions remaining in the steel strip is reduced by adding a small amount of Mg.
  • the cold rolled steel strip of maraging steel described in Patent Document 2 is also premised on being manufactured by using a vacuum arc remelting (VAR) method or a vacuum induction melting (VIM) method.
  • VAR vacuum arc remelting
  • VIM vacuum induction melting
  • N content needs to be reduced to 0.0030% by mass or less, and such low N content produces precipitation hardening martensitic steel by the above-mentioned manufacturing method having a normal manufacturing process. In that case, there is a problem that it is difficult to achieve due to cost constraints.
  • the martensite-based steel described in Patent Document 2 achieves the reduction of the sizes of the nitride-based non-metal inclusions and the oxide-based non-metal inclusions by different methods, and varies. It is not disclosed that the size of the non-metal inclusions in the above is reduced (miniaturized) as a whole.
  • it does not contain Si that increases the activity of Ti it can be said that it is relatively easy to suppress the formation
  • An object of the present invention is to contain Si in steel and without excessively limiting the N content, for example, melting (electric furnace), primary refining (converter), secondary refining (AOD or VOD) and continuous refining.
  • N content for example, melting (electric furnace), primary refining (converter), secondary refining (AOD or VOD) and continuous refining.
  • nitrides for example, TiN
  • oxides for example, Al 2 O 3, Mg O and Ti 2 O 3
  • the number density of large-sized non-metal inclusions present in the matrix can be limited by reducing (miniaturizing) the size of non-metal inclusions having different compositions as a whole.
  • the present invention is to provide a precipitation hardening type martensite-based stainless steel sheet having excellent fatigue resistance.
  • the present inventor has made a non-metal inclusion having a corresponding circular diameter of 10 ⁇ m or more among the non-metal inclusions present in the matrix.
  • the number density of the specified non-metal inclusions is 0.100 even if there are no inclusions (hereinafter, this may be referred to as "specific non-metal inclusions") or even if the specific non-metal inclusions are present. It has been found that the number of pieces / mm 2 or less is extremely effective, and the present invention has been completed based on such findings.
  • the gist structure of the present invention is as follows.
  • the steel contains Si and the N content is not excessively limited, for example, melting (electric furnace), primary refining (converter), secondary refining (AOD or VOD) and continuous refining.
  • Nitrides eg, TiN
  • oxides eg, Al 2 O 3, MgO and Ti 2 O 3
  • the size of non-metal inclusions having different compositions as a whole there is no large-sized specific non-metal inclusions in the matrix, or specific non-metal inclusions are present.
  • FIG. 1 is a ternary phase diagram of Al 2 O 3- MgO-Ti 2 O 3 constituting a non-metal inclusions present in the matrix of a precipitation hardening martensitic stainless steel sheet according to the present invention. ..
  • the horizontal axis is the number density (pieces / mm 2 ) of the specific non-metal inclusions present in the matrix, and the vertical axis is the fatigue limit stress (MPa).
  • MPa fatigue limit stress
  • FIG. 4 is a backscattered electron composition image of a specific non-metal inclusion having a size of 10 ⁇ m or more present in the stainless steel plate of sample No. 23, which is a comparative example.
  • FIG. 5 is a backscattered electron composition image of a specific non-metal inclusion having a size of 10 ⁇ m or more present in the stainless steel plate of Sample No. 11 which is an example of the present invention.
  • the precipitation-hardened martensite-based stainless steel plate according to the present invention has a mass% of C: 0.080% or less, Si: 0.70 to 3.00%, Mn: 3.00% or less, Ni: 6.00 to.
  • non-metal inclusions present in the matrix the specific non-metal inclusions having a composition of 0.0070% or less, the balance of Fe and unavoidable impurities, and having a corresponding circular diameter of 10 ⁇ m or more are present.
  • Precipitation with excellent fatigue resistance characterized in that the number density of the specific non-metal inclusions is 0.100 pieces / mm 2 or less even if the specific non-metal inclusions are not present or are present.
  • Hardened martensite-based stainless steel plate characterized in that the number density of the specific non-metal inclusions is 0.100 pieces / mm 2 or less even if the specific non-metal inclusions are not present or are present.
  • the alloy composition of the precipitation hardening martensitic stainless steel sheet of the present invention and its action are shown below.
  • the precipitation-curable martensite-based stainless steel plate of the present invention has a mass% of C: 0.080% or less, Si: 0.70 to 3.00%, Mn: 3.00% or less, Ni: 6.00 to 10.00%, Cr: 10.00% to 17.00%, P: 0.05% or less, S: 0.003% or less, Cu: 0.50 to 2.00%, Mo: 0.50 to 3.00%, Ti: 0.15 to 0.45%, Al: 0.070% or less, Ca: 0.0020% or less, Mg: 0.0020% or less, N: 0.015% or less and O: It contains 0.0070% or less and has a composition in which the balance consists of Fe and unavoidable impurities. In the following description of each component of the alloy composition, "mass%" is simply shown as "%".
  • C carbon
  • C (carbon) is an effective element for improving the strength of steel and suppressing the ⁇ ferrite phase generated at high temperature.
  • C content exceeds 0.080%, the hardness of the martensite phase produced by quenching increases, and the cold working deformability decreases. As a result, the molding processability becomes insufficient, and it becomes difficult to obtain a martensite single-phase structure by cooling after the solution treatment.
  • the C content exceeds 0.080%, the formation of TiC is promoted in the annealed state and the toughness is lowered. Therefore, the C content was set to 0.080% or less.
  • Si silicon
  • Si is an element that has a large solid solution strengthening ability and has an action of strengthening a matrix.
  • fine matching precipitation of intermetallic compounds composed of elements such as Si, Ti and Ni occurs during the aging treatment, and the strength of the steel is improved.
  • the Si content is 0.70% or more.
  • the Si content exceeds 3.00%, the formation of a ⁇ ferrite phase is promoted, and the strength and toughness are lowered. Therefore, the Si content was set in the range of 0.70 to 3.00%.
  • Mn manganese
  • Mn is an element having an action of suppressing the formation of a ⁇ ferrite phase in a high temperature region.
  • Mn content exceeds 3.00%, it tends to cause a decrease in toughness of the welded portion and a decrease in welding workability. Therefore, the Mn content was set to 3.00% or less.
  • Ni nickel
  • the precipitation hardening martensitic stainless steel sheet of the present invention needs to contain 6.00% or more of Ni in order to maintain high strength and high toughness without deteriorating the age hardening ability.
  • the Ni content exceeds 10.00%, the amount of the retained austenite phase after quenching increases, so that the required strength cannot be obtained. Therefore, the Ni content was set in the range of 6.00 to 10.00%.
  • Cr chromium
  • the Cr content was set in the range of 10.00 to 17.00%.
  • P phosphorus
  • impurity which is an element that promotes hot workability and solidification cracking during manufacturing, and also hardens to reduce ductility.
  • the upper limit is set to 0.050%.
  • ⁇ S 0.003% or less> S (sulfur) exists in steel as a non-metal inclusion such as MnS, and adversely affects fatigue strength, toughness, corrosion resistance, and the like.
  • Cu copper
  • Cu is an element effective for ensuring corrosion resistance in a sulfurous acid gas-based corrosive environment, and when the Cu content is 0.50% or more, the improvement in corrosion resistance becomes remarkable.
  • the Cu content exceeds 2.00%, the hot workability deteriorates, defects such as cracks may occur on the surface of the processed material, and the toughness decreases when the strength is increased. There is a tendency to do. Therefore, the Cu content was set in the range of 0.50 to 2.00%.
  • Mo mobdenum
  • Mo mobdenum
  • the Mo content needs to be 0.50% or more.
  • the Mo content exceeds 3.00%, not only the effect of improving the strength and toughness corresponding to the increase in Mo content cannot be obtained, but also the formation of the ⁇ ferrite phase is promoted, and the strength of the welded portion is increased. It tends to decrease. Therefore, the Mo content was set in the range of 0.50 to 3.00%.
  • Ti titanium
  • Ti titanium
  • the Ti content was set in the range of 0.15 to 0.45%.
  • Al acts as a deoxidizing agent to form MgO ⁇ Al 2 O 3 (spinel) -based inclusions.
  • the Al content is 0.070%. It is necessary to set it to the following, preferably 0.040% or less, and more preferably 0.020 to 0.025%.
  • Ca (calcium) is an element which contributes to the hot workability improvement, when the content exceeds 0.0020%, the CaO-SiO 2 -Al 2 O 3 inclusions large tends to generate, according The presence of inclusions in the steel can adversely affect the fatigue resistance and is also likely to cause surface defects. Therefore, the Ca content was set to 0.0020% or less.
  • Mg manganesium
  • MgO Oxides are likely to be formed. MgO oxides generated are not preferred for promoting the formation and growth of TiN similarly to MgO ⁇ Al 2 O 3 (spinel) inclusions. Therefore, the Mg content was set to 0.0020% or less.
  • N nitrogen
  • N nitrogen
  • the Ti component that acts as a precipitation hardening element is consumed by the formation of TiN, and the TiN inclusions become large as the N content increases. This causes a decrease in fatigue strength and toughness. Therefore, the lower the N content is, the more preferable it is, but excessive reduction leads to high cost. Therefore, in the present invention, for example, it is a case of manufacturing in a general-purpose mass production method in which melting (electric furnace), primary refining (converter), secondary refining (AOD or VOD) and continuous casting are performed in this order.
  • the range of N content, which is easy to achieve that is, 0.015% or less.
  • O oxygen
  • Oxgen is a constituent element of oxide-based non-metal inclusions, and when large oxide-based non-metal inclusions are formed, it deteriorates the cleanliness of steel and causes surface defects. Therefore, the lower the O content is, the more preferable it is, and specifically, it is set to 0.0070% or less.
  • Fe and unavoidable impurities The rest other than the components mentioned above are Fe (iron) and unavoidable impurities.
  • the unavoidable impurities referred to here mean impurities at a content level that can be unavoidably contained in the manufacturing process. Examples of the components listed as unavoidable impurities include B, V, Nb, Zr, Hf, W, Sn, Co, Sb, Ta, Ga, Bi, REM and the like.
  • the content of these unavoidable impurities may be 0.5% or less for each component, and the total amount of the unavoidable impurities components may be 2.0% or less.
  • the precipitation-curable martensite-based stainless steel plate of the present invention is a specific non-metal having a corresponding circular diameter of 10 ⁇ m or more among the non-metal inclusions present in the matrix. It is necessary that the number density of the specific non-metal inclusions is 0.100 pieces / mm 2 or less even if the inclusions are not present or the specific non-metal inclusions are present.
  • the present inventor has found that among the non-metal inclusions present in the matrix, a large size non-metal inclusion is present. It has been found that the presence of a large amount of metal inclusions adversely affects fatigue properties. Then, even if there is no specific non-metal inclusion having a corresponding circle diameter of 10 ⁇ m or more in the matrix phase, or even if the specific non-metal inclusion is present, the number density of the specific non-metal inclusion is set to 0. It has been found that the fatigue resistance characteristics are remarkably improved by controlling the number to 100 pieces / mm 2 or less.
  • the "equivalent circle diameter” here means a value converted into the diameter of a circle having an area equal to the projected area of the particles of the non-metal inclusions appearing on the observation surface.
  • the coarse non-metal inclusions that adversely affect the fatigue strength are oxidized with TiN, which grows coarsely as a result of the oxide becoming a nucleus and the formation of TiN being promoted.
  • it is oxynitride consisting of object, and found that oxide having a nucleus, consistent with TiN is good, and MgO oxides, a composite oxide of MgO ⁇ Al 2 O 3 (spinel) rice field.
  • the coarse oxynitride thus produced becomes very hard when the amount of TiN is larger than the amount of oxide in terms of mass ratio (see FIG. 4), so that it is hot-rolled. Even during cold rolling, it is hardly crushed and remains coarse (for example, the equivalent circle diameter exceeds 20 ⁇ m) in the matrix phase, which may adversely affect the fatigue characteristics. found.
  • the specific non-metal inclusions present in the matrix have a corresponding circular diameter of 20 ⁇ m or less.
  • the total mass of Al 2 O 3, Mg O and Ti 2 O 3 obtained by analyzing the average composition component of the compound contained in the specific non-metal inclusions in the matrix is set to 100% by mass.
  • Ti 2 O 3 and Al 2 O 3 which are oxides that are difficult to become nuclei of coarse specific non-metal inclusions
  • TiN and MgO contained in the non-metal inclusions are contained.
  • the mass ratio (%) of Al 2 O 3, MgO and Ti 2 O 3 is represented by the following formula (1).
  • the generated coarse specific non-metal inclusions are easily crushed during hot rolling and cold rolling, so that they are coarse (coarse) in the matrix phase of the precipitation hardening martensitic stainless steel sheet as the final product.
  • the specific non-metal inclusions having a corresponding circular diameter of more than 20 ⁇ m are less likely to remain, and as a result, the fatigue resistance characteristics can be significantly improved.
  • FIG. 1 shows a ternary phase diagram of Al 2 O 3- MgO-Ti 2 O 3 constituting the non-metal inclusions present in the matrix of the precipitation hardening martensitic stainless steel sheet of the present invention.
  • the range (I) and the range (II) are shown by hatching in different directions.
  • the fatigue resistance property can be improved by satisfying at least one of the above range (I) and the above range (II), and the above range (I) and the range (I) and the range (II). By satisfying both ranges of II), the fatigue resistance can be further improved.
  • a precipitation hardening martensitic stainless steel sheet satisfying at least one of the above range (I) and range (II), for example, Al, Ti, O in molten steel, preferably in the molten steel in the secondary refining step.
  • the slag composition may be controlled.
  • the precipitation-hardening type martensite-based stainless steel plate of the present invention has a fatigue limit when the stress at which the number of repetitions reaches 10 million times without breaking is used as the fatigue limit stress in the Schenck-type bending and torsional fatigue test.
  • the stress is preferably 550 MPa or more, more preferably 600 MPa or more.
  • FIG. 2 the data of the examples of the present invention and the comparative examples are plotted with the number density (pieces / mm 2 ) of the specific non-metal inclusions present in the matrix as the horizontal axis and the fatigue limit stress (MPa) as the vertical axis. It was done. From FIG.
  • FIG. 3 shows a case where the range (I) is satisfied, a case where the range (II) is satisfied, a case where both the range (I) and the range (II) are satisfied, and a case other than the range (I) and the range (II). It is a figure when the case of a range is taken on the horizontal axis, and the fatigue limit stress (MPa) is plotted on the vertical axis. From FIG.
  • the precipitation hardening martensitic stainless steel sheet of the present invention can be manufactured by using a general stainless steel melting facility.
  • the method for producing a precipitation-curable martensite-based stainless steel plate of the present invention is typically a melting step (electric furnace), a primary refining step (converter), a secondary refining step (AOD (Argon Oxygen Decarburization)) or VOD (VOD). VacuumOxygenDecarburization)) and the casting process (continuous casting or ingot casting) may be performed in this order.
  • a melting step electric furnace
  • primary refining step converter
  • AOD Arx Oxygen Decarburization
  • VOD VOD
  • VacuumOxygenDecarburization VacuumOxygenDecarburization
  • the casting process continuous casting or ingot casting
  • scraps and alloys used as raw materials for stainless steel are melted in an electric furnace to generate stainless steel hot metal, and the generated stainless steel hot metal is poured into a converter, which is a smelting furnace.
  • VOD vacuum degassing device
  • a vacuum degassing device which is a vacuum refining furnace
  • finish decarburization is performed.
  • the stainless molten steel is finished and decarburized to produce pure stainless molten steel.
  • decarburization and denitrification are performed to a predetermined concentration by oxygen blowing. Since a large amount of oxygen blown into the molten steel at this time is dissolved, the raw materials are adjusted so that the concentration of easily oxidizing elements such as Al, Ti, and Si becomes a predetermined concentration after deoxidation.
  • the oxide composition in the inclusions is determined by the concentrations of Al, Ti, Si, Mg, Ca and O in the molten steel and the slag composition.
  • the Al, Ti, O, and slag compositions are used. Need to be controlled.
  • the Al concentration in the molten steel increases, the O concentration in the molten steel decreases.
  • the increase in the Al concentration in the molten steel promotes the reduction of MgO in the refractory, so that the Mg concentration in the molten steel also increases.
  • the O concentration is controlled by adjusting the amount of CaO charged according to the Al concentration in the molten steel.
  • CaO and Al 2 O 3 are present in the slag, but the lower the ratio of CaO to Al 2 O 3 in the slag (CaO / Al 2 O 3 ), the higher the activity of Al 2 O 3 and the molten steel.
  • the O concentration inside becomes high.
  • continuous casting may be performed by a conventional method.
  • the molten steel pot is taken out from the vacuum degassing device (VOD) and set in the continuous casting device (CC), and the stainless molten steel in the molten steel pot is poured into the continuous casting device, and further by the mold provided in the continuous casting device, for example, a slab.
  • VOD vacuum degassing device
  • CC continuous casting device
  • the mold provided in the continuous casting device
  • the obtained slab-shaped stainless steel pieces are subjected to hot working including hot rolling to obtain a hot-rolled steel sheet.
  • the heating temperature for hot rolling may be 1100 to 1250 ° C., and the plate thickness of the hot-rolled steel sheet may be, for example, 3.0 to 7.0 mm.
  • the hot-rolled steel sheet is subjected to baking pickling, cold rolling, and aging treatment to obtain a precipitation hardening martensitic stainless steel sheet having excellent fatigue resistance.
  • the cold rolling step may be performed a plurality of times including the intermediate annealing step. After each heat treatment step, a pickling treatment is performed as necessary.
  • the heat treatment temperature can be, for example, 900 to 1100 ° C., 30 to 150 seconds, and the aging treatment can be, for example, 400 to 600 ° C., 10 to 80 minutes.
  • the raw material for stainless steel was melted in an electric furnace (melting step).
  • the melting process scraps and alloys used as raw materials for stainless steel are melted in an electric furnace to generate stainless steel hot metal, and the generated stainless steel hot metal is poured into a converter, which is a refining furnace, for primary refining (primary refining).
  • Primary refining process rough decarburization treatment is performed to remove carbon contained in the stainless steel hot metal in the converter by blowing oxygen, thereby using the stainless molten steel and slag containing carbon oxides and impurities. Is generated.
  • the stainless molten steel from which the slag has been removed is subjected to secondary refining by performing a finish decarburization treatment by a vacuum degassing device (VOD) (secondary refining step).
  • VOD vacuum degassing device
  • decarburization and denitrification are performed to a predetermined concentration by oxygen blowing. Since a large amount of oxygen blown into the molten steel at this time is dissolved, the raw materials are adjusted so that the concentration of easily oxidizing elements such as Al, Ti, and Si becomes a predetermined concentration after deoxidation.
  • slab-shaped stainless steel pieces were obtained by continuously casting molten steel whose composition was adjusted to the chemical composition shown in Table 1.
  • the obtained stainless steel pieces were hot-rolled at a temperature of 1100 to 1250 ° C., then annealed at 900 to 1100 ° C. for 30 to 150 seconds, and then pickled and cold-rolled. Then, by subjecting to an aging treatment at 400 to 600 ° C. for 10 to 80 minutes, a precipitation-hardened martensitic stainless steel plate (test plate) having a plate thickness of 1.0 to 3.5 mm was produced.
  • the observation target was a specific non-metal inclusion having a corresponding circle diameter of 10 ⁇ m or more, and the entire observed inclusion was analyzed by EDX. Inclusions are considered to be one if they are integrated, and if they are not integrated but are close to each other, they are the same if the shortest distance between adjacent inclusions is shorter than the smaller equivalent circle diameter of the adjacent inclusions. It was defined as an inclusion of, or another inclusion if it was long.
  • the analytical values were corrected by the ZAF method.
  • the number density of specific non-metal inclusions was calculated by the number of specific non-metal inclusions with respect to the visual field area (1000 mm 2).
  • the composition of the specific non-metal inclusions the following calculation was performed to determine the mass ratio (mass%) when the total mass of Al 2 O 3 , Mg O and Ti 2 O 3 was 100% by mass.
  • the amount of TiN in the specific non-metal inclusions was determined from the N concentration of the EDX analysis by the theoretical stoichiometric ratio. Specifically, the Ti concentration present (consumed) as TiN was calculated as Ti * by "N concentration (analytical value) x Ti atomic weight / N atomic weight”. Next, the value of Ti * was subtracted from the Ti concentration (analytical value), and the Ti concentration existing as the Ti oxide was calculated as the Ti OX concentration.
  • the fatigue resistance characteristics are marked with " ⁇ " when the fatigue limit stress is over 600 MPa, and " ⁇ ” when the fatigue limit stress is 550 MPa or more and 600 MPa or less, and are marked as " ⁇ ".
  • Table 2 shows the evaluation results.
  • FIG. 3 shows a plot of fatigue limit stresses of Nos. 1 to 24.
  • the samples Nos. 1 to 19 of the present invention have a fatigue limit because the chemical composition and the number density of the specified non-metal inclusions are all within the appropriate range.
  • the stress is 550 MPa or more and the fatigue resistance property is good or more.
  • sample No. 15 has no specific non-metal inclusions, and samples No. 9 to 14 are contained in the specific non-metal inclusions. Since the mass ratios of Al 2 O 3 , Mg O and Ti 2 O 3 satisfy both the ranges (I) and (II), the fatigue limit stress was over 600 MPa and the fatigue resistance was excellent.
  • Samples Nos. 20 to 24, which are comparative examples the fatigue limit stress was less than 550 MPa and the fatigue resistance characteristics were inferior because the number densities of the specified non-metal inclusions were out of the appropriate range.
  • samples Nos. 1 to 19 as examples of the present invention and samples Nos. 20 to 24 as comparative examples are plotted on the ternary phase diagram of Al 2 O 3- MgO-Ti 2 O 3 in FIG. did.
  • FIG. 4 is a backscattered electron composition image of non-metal inclusions having a size of 10 ⁇ m or more existing in the stainless steel plate of sample No. 23, which is a comparative example, and the black portion in FIG. 4 is MgO or MgO.
  • the portion of the oxide composition A of the Al 2 O 3 (spinel) system, and the portion that looks gray is TiN.
  • FIG. 5 is an image of the backscattered electron composition of non-metal inclusions having a size of 10 ⁇ m or more existing in the stainless steel plate of Sample No. 11 which is an example of the present invention, and the portion appearing black in FIG. 5 is a portion of the oxide composition B of Ti 2 O 3 and Al 2 O 3, the portion visible gray is TiN.
  • Comparative Example shown in FIG. 4 case (sample No.23), TiN around the MgO and MgO ⁇ Al 2 O 3 (spinel) based oxide composition A (black portion in FIG. 4) (gray portion in FIG. 4) Is growing, producing coarse non-metallic inclusions.
  • Example No. 11 TiN generated around the oxide composition B (black portion in FIG. 5 ) of Ti 2 O 3 and Al 2 O 3 (FIG. 5). It can be seen that the amount of (gray part) is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、質量%で、C:0.080%以下、Si:0.70~3.00%、Mn:3.00%以下、Ni:6.00~10.00%、Cr:10.00%~17.00%、P:0.050%以下、S:0.003%以下、Cu:0.50~2.00%、Mo:0.50~3.00%、Ti:0.15~0.45%、Al:0.070%以下、Ca:0.0020%以下、Mg:0.0020%以下、N:0.015%以下およびO:0.0070%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、母相中に存在する非金属介在物のうち、相当円直径が10μm以上である非金属介在物が存在しないか、または、前記相当円直径が10μm以上である非金属介在物が存在しても、その個数密度が0.100個/mm以下であり、耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板である。

Description

耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板
 本発明は、耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板に関する。
 析出硬化型マルテンサイト系ステンレス鋼板は、時効処理前の硬さが低いため、優れた打ち抜き加工性や成形加工性を有し、また、時効処理後は高強度を発現するとともに、高い溶接軟化抵抗を有する。
 このため、析出硬化型マルテンサイト系ステンレス鋼板は、時効処理前後で変化する特性を活用し、溶接が必要なスチールベルト等の構造用材料や各種バネ材料として多用されている。さらに、これらの材料には、耐疲労特性に優れていることも合わせて要求される。
 耐疲労特性を向上させるための手段としては、母相中に存在する介在物を微細にすることが有効であるが、析出硬化型マルテンサイト系ステンレス鋼板は、通常、Si、Cu、Tiを析出硬化元素として含むため、鋼中に不可避的に混入するNがTiと反応して、粗大で角張ったTiNの非金属介在物が生成しやすい傾向にある。
 また、析出硬化型マルテンサイト系ステンレス鋼板は、脱酸生成物として、酸化物系の非金属介在物や、TiNと酸化物の複合酸窒化物の非金属介在物が生成しやすいため、耐疲労特性を向上するためには、これら全ての非金属介在物のサイズを小さくすることが望ましい。
 さらに、鋼中に含有するSiは、Tiの活量を高める作用を有するため、TiNや、TiNと酸化物の複合酸窒化物の生成および成長を抑制することが難しいという問題もある。
 鋼中のTiN介在物を微細化するための手段としては、例えば特許文献1に、溶鋼中にZrを添加することで微細なZr酸化物が生成し、これを核としてTiN介在物が微細に晶出し、さらにZrNとしてNを固定することでTiNの形成を抑制した、マルテンサイト組織を呈する疲労特性に優れたマルエージング鋼が開示されている。
 しかしながら、特許文献1に記載のマルエージング鋼は、真空アーク再溶解法を用いて製造することを前提としたものであって、N含有量を0.0020質量%以下にまで低減することが必要であり、このような低N含有量は、通常の製造工程である、溶解(電気炉)、一次精錬(転炉)、二次精錬(AODまたはVOD)および連続鋳造の順に行われるような汎用的な大量生産方式の製造方法で析出硬化型マルテンサイト系鋼を製造する場合には、コスト制約上の点から、達成することが難しく、加えて、溶鋼中のZrの添加は、連続鋳造時に浸漬ノズルが閉塞しやすくなるという問題もある。また、特許文献1に記載のマルテンサイト系鋼は、Tiの活量を高めるSiを含有していないため、Siを含有するマルテンサイト系鋼に比べると、TiNの生成を抑制することは比較的容易であると言える。
 また、特許文献2には、微量のMgを添加することにより、鋼帯中に残留する酸化物系非金属介在物のサイズを小さくしたマルエージング鋼の冷間圧延鋼帯が開示されている。
 しかしながら、特許文献2に記載のマルエージング鋼の冷間圧延鋼帯もまた、真空アーク再溶解(VAR)法や真空誘導溶解(VIM)法を用いて製造することを前提としたものであって、N含有量を0.0030質量%以下にまで低減することが必要であり、このような低N含有量は、上述した通常の製造工程を有する製造方法で析出硬化型マルテンサイト系鋼を製造する場合には、コスト制約上の点から、達成することが難しいという問題がある。また、特許文献2に記載のマルテンサイト系鋼は、窒化物系非金属介在物と酸化物系非金属介在物の大きさを小さくするのを、別々の手法で達成するものであって、種々の非金属介在物の大きさを、全体として小さく(微細化)する点については開示されていない。加えて、Tiの活量を高めるSiを含有していないため、TiNの生成を抑制することは比較的容易であると言える。
特開2019-11515号公報 特許第4110518号公報
 本発明の目的は、鋼中にSiを含有しかつN含有量を過度に制限することなく、例えば、溶解(電気炉)、一次精錬(転炉)、二次精錬(AODまたはVOD)および連続鋳造の順に行われる汎用的な大量生産方式において製造した場合であっても、鋼中に含まれる窒化物(例えば、TiN)や、酸化物(例えば、Al3、MgOおよびTi)のように組成の異なる非金属介在物の大きさを、全体として小さく(微細化)することによって、母相中に存在する大きなサイズの非金属介在物の個数密度を制限することができる結果として、耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板を提供することにある。
 本発明者が、析出硬化型マルテンサイト系ステンレス鋼板における耐疲労特性の改善について鋭意検討を行った結果、母相中に存在する非金属介在物のうち、相当円直径が10μm以上である非金属介在物(以下、これを「特定非金属介在物」という場合がある。)が存在しないか、または、特定非金属介在物が存在しても、特定非金属介在物の個数密度が0.100個/mm以下であることが極めて有効であることを見出し、かかる知見に基づき本発明を完成させるに至った。
 すなわち、本発明の要旨構成は、以下のとおりである。
(i)質量%で、C:0.080%以下、Si:0.70~3.00%、Mn:3.00%以下、Ni:6.00~10.00%、Cr:10.00%~17.00%、P:0.050%以下、S:0.003%以下、Cu:0.50~2.00%、Mo:0.50~3.00%、Ti:0.15~0.45%、Al:0.070%以下、Ca:0.0020%以下、Mg:0.0020%以下、N:0.015%以下およびO:0.0070%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、母相中に存在する非金属介在物のうち、相当円直径が10μm以上である非金属介在物が存在しないか、または、前記相当円直径が10μm以上である非金属介在物が存在しても、その個数密度が0.100個/mm以下であることを特徴とする耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板。
(ii)前記相当円直径が10μm以上である非金属介在物に含まれる化合物の平均組成成分を分析して得られたAl3、MgOおよびTiの合計質量を100質量%とするとき、Al3、MgOおよびTiの質量割合(%)は、下記に示す、式(1)~(3)から求められる範囲(I)および式(4)~(6)から求められる範囲(II)のうちの少なくとも一方の範囲を満たす、上記(i)に記載の析出硬化型マルテンサイト系ステンレス鋼板。
<範囲(I)>
[Al]+[MgO]+[Ti]=100 ・・(1)
[Ti]≧40 ・・・・・・・・・・・・・・・・・(2)
[Al]+[MgO]≦60 ・・・・・・・・・・・(3)
<範囲(II)>
[Al]+[MgO]+[Ti]=100 ・・(4)
0≦[Ti]≦100 ・・・・・・・・・・・・・・(5)
[Al]/102≧[MgO]/40.3 ・・・・・(6)
 ただし、[Al]、[MgO]および[Ti]は、いずれも質量割合(%)を意味する。
(iii)前記母相中に存在する、前記相当円直径が10μm以上である非金属介在物は、相当円直径が20μm以下である、上記(i)または(ii)に記載の析出硬化型マルテンサイト系ステンレス鋼板。
(iv)シェンク式曲げねじり疲労試験において、破断せずに繰返し数が1000万回に達する応力を疲労限界応力とした場合の疲労限界応力が550MPa以上である、上記(i)、(ii)または(iii)に記載の析出硬化型マルテンサイト系ステンレス鋼板。
 本発明によれば、鋼中にSiを含有しかつN含有量を過度に制限することなく、例えば、溶解(電気炉)、一次精錬(転炉)、二次精錬(AODまたはVOD)および連続鋳造の順に行われる汎用的な大量生産方式において製造した場合であっても、鋼中に含まれる窒化物(例えば、TiN)や、酸化物(例えば、Al3、MgOおよびTi)のように組成の異なる非金属介在物の大きさを、全体として小さく(微細化)することによって、母相中に大きなサイズの特定非金属介在物が存在しないか、または、特定非金属介在物の個数密度を制限することができる結果として、耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板を提供することが可能になった。
図1は、本発明に係る析出硬化型マルテンサイト系ステンレス鋼板の母相中に存在する非金属介在物を構成する、Al-MgO-Tiの3元系状態図である。 図2は、表1に示すサンプルNo.1~24について、母相中に存在する特定非金属介在物の個数密度(個/mm)を横軸とし、疲労限界応力(MPa)を縦軸としてプロットしたときの図である。 図3は、表1に示すサンプルNo.1~24を横軸とし、疲労限界応力(MPa)を縦軸としてプロットしたときの図である。 図4は、比較例であるサンプルNo.23のステンレス鋼板中に存在する10μm以上のサイズの特定非金属介在物の反射電子組成像である。 図5は、本発明例であるサンプルNo.11のステンレス鋼板中に存在する10μm以上のサイズの特定非金属介在物の反射電子組成像である。
 以下、本発明の析出硬化型マルテンサイト系ステンレス鋼板の好ましい実施形態について、詳細に説明する。本発明に従う析出硬化型マルテンサイト系ステンレス鋼板は、質量%で、C:0.080%以下、Si:0.70~3.00%、Mn:3.00%以下、Ni:6.00~10.00%、Cr:10.00%~17.00%、P:0.050%以下、S:0.003%以下、Cu:0.50~2.00%、Mo:0.50~3.00%、Ti:0.15~0.45%、Al:0.070%以下、Ca:0.0020%以下、Mg:0.0020%以下、N:0.015%以下およびO:0.0070%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、母相中に存在する非金属介在物のうち、相当円直径が10μm以上である特定非金属介在物が存在しないか、または、前記特定非金属介在物が存在しても、前記特定非金属介在物の個数密度が0.100個/mm以下であることを特徴とする耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板である。
(1)合金組成
 本発明の析出硬化型マルテンサイト系ステンレス鋼板の合金組成とその作用について示す。
 本発明の析出硬化型マルテンサイト系ステンレス鋼板は、質量%で、C:0.080%以下、Si:0.70~3.00%、Mn:3.00%以下、Ni:6.00~10.00%、Cr:10.00%~17.00%、P:0.05%以下、S:0.003%以下、Cu:0.50~2.00%、Mo:0.50~3.00%、Ti:0.15~0.45%、Al:0.070%以下、Ca:0.0020%以下、Mg:0.0020%以下、N:0.015%以下およびO:0.0070%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有する。なお、以下の合金組成の各成分の説明では、「質量%」を単に「%」として示す。
<C:0.080%以下>
 C(炭素)は、鋼の強度を向上させ、且つ高温で生成するδフェライト相を抑制する上で有効な元素である。しかし、C含有量が0.080%を超えると、焼入れにより生成したマルテンサイト相の硬度が上昇し、冷間加工変形能が低下する。その結果、成形加工性が不十分になると共に、溶体化処理後の冷却でマルテンサイト単相組織を得ることが困難になる。更に、C含有量が0.080%を超えると、焼鈍状態でTiCの生成を促進させ、靭性を低下させる。したがって、C含有量は0.080%以下とした。
<Si:0.70~3.00%>
 Si(珪素)は、固溶強化能が大きく、マトリックスを強化する作用を有する元素である。また、Ti及びNiとともに複合添加することによって、時効処理時にSi,Ti,Ni等の元素からなる金属間化合物の微細整合析出が生じ、鋼の強度を向上させる。このような作用は、Si含有量が0.70%以上で顕著に現れる。しかしながら、Si含有量が3.00%を超えると、δフェライト相の生成が助長され、強度及び靭性が低下する。したがって、Si含有量は0.70~3.00%の範囲とした。
<Mn:3.00%以下>
 Mn(マンガン)は、高温域でδフェライト相が生成することを抑制する作用を有する元素である。しかしながら、Mn含有量が3.00%を超えると、溶接部の靭性低下や溶接作業性の低下を引き起こし易い。したがって、Mn含有量は3.00%以下とした。
<Ni:6.00~10.00%>
 Ni(ニッケル)は、析出硬化に寄与し、δフェライト相の生成を抑制する元素である。本発明の析出硬化型マルテンサイト系ステンレス鋼板においては、時効硬化能を低下させず、高強度で且つ高靭性を維持するために、6.00%以上のNiを含有させることが必要である。しかしながら、Ni含有量が10.00%を超えると、焼入れ後の残留オーステナイト相の量が増加するため、必要とする強度が得られない。したがって、Ni含有量は6.00~10.00%の範囲とした。
<Cr:10.00%~17.00%>
 Cr(クロム)は、ステンレス鋼としての耐食性を得るため、10.00%以上含有させることが必要である。しかしながら、Cr含有量が17.00%を超えると、δフェライト相及び残留オーステナイト相が生成し、溶接部の強度を低下させる原因となる。したがって、Cr含有量は10.00~17.00%の範囲とした。
<P:0.050%以下>
 P(リン)は、不純物であり、製造時の熱間加工性や凝固割れを助長する元素である他、硬質化して延性を低下させる。この点で、P含有量は、低いほど好ましいことから、その上限を0.050%とした。
<S:0.003%以下>
 S(硫黄)は、MnS等の非金属介在物として鋼中に存在し、疲労強度,靭性,耐食性等に悪影響を与える。この点で、S含有量は、低いほど好ましいことから、その上限を0.003%とした。
<Cu:0.50~2.00%>
 Cu(銅)は、亜硫酸ガス系の腐食環境下における耐食性を確保するのに有効な元素であり、Cu含有量が0.50%以上になると、耐食性の向上が顕著になる。しかしながら、Cu含有量が2.00%を超えると、熱間加工性が劣化し、加工された素材表面にひび割れ等の欠陥が発生することがあり、また、高強度化した場合に靭性が低下する傾向がみられる。したがって、Cu含有量は0.50~2.00%の範囲とした。
<Mo:0.50~3.00%>
 Mo(モリブデン)は、強度及び靭性を向上させる作用を有する元素である。かかる作用を発現するため、Mo含有量は0.50%以上とすることが必要である。しかしながら、Mo含有量が3.00%を超えると、Mo含有量の増加に見合った強度及び靭性の向上効果が得られないだけではなく、δフェライト相の生成が助長され、溶接部の強度が低下し易くなる。したがって、Mo含有量は0.50~3.00%の範囲とした。
<Ti:0.15~0.45%>
 Ti(チタン)は、析出硬化に寄与する元素であり、高強度を得るために0.15%以上のTiを含有させることが必要である。しかしながら、0.45%を超えるTiを含有させると、過度の析出硬化反応によって靭性の低下が生じる。したがって、Ti含有量は0.15~0.45%の範囲とした。
<Al:0.070%以下>
 Al(アルミニウム)は、脱酸剤として作用し、MgO・Al(スピネル)系介在物を生成する。鋼中に存在する非金属介在物の組成範囲を、後述する図1に示す範囲(I)および範囲(II)のうちの少なくとも一方の範囲内とするには、Al含有量を0.070%以下とすることが必要であり、0.040%以下とすることが好ましく、より好ましくは、0.020~0.025%の範囲である。
<Ca:0.0020%以下>
 Ca(カルシウム)は、熱間加工性改善に寄与する元素であるが、0.0020%を超えて含有すると、大型のCaO-SiO-Al系介在物が生成しやすくなり、かかる介在物が鋼中に存在すると、耐疲労特性に悪影響を及ぼす可能性があるとともに、表面疵の発生原因にもなりやすい。したがって、Ca含有量は、0.0020%以下とした。
<Mg:0.0020%以下>
Mg(マグネシウム)脱酸元素として添加する場合がある他、スラブの組織を微細化させ、熱間加工性、成型性向上に寄与する元素であるが、0.0020%を超えて含有すると、MgO酸化物が生成しやすくなる。生成したMgO酸化物は、MgO・Al(スピネル)系介在物と同様にTiNの生成および成長を促進するため好ましくない。したがって、Mg含有量は、0.0020%以下とした。
<N:0.015%以下>
 N(窒素)は、Tiとの親和力が大きく、析出硬化元素として働くTi成分の一部を、TiNの生成によって消費することになり、また、N含有量の増加に応じてTiN介在物が大きくなり、疲労強度や靭性を低下させる原因となる。したがって、N含有量は、低いほど好ましいが、過度に低減することはコスト高につながる。このため、本発明では、例えば、溶解(電気炉)、一次精錬(転炉)、二次精錬(AODまたはVOD)および連続鋳造の順に行われる汎用的な大量生産方式において製造した場合であっても達成が容易であるN含有量の範囲、すなわち、0.015%以下とした。
<O:0.0070%以下>
 O(酸素)は、酸化物系非金属介在物の構成元素であって、大きな酸化物系非金属介在物が生成すると、鋼の清浄度を悪化させるとともに、表面疵の発生原因となる。このため、O含有量は、低いほど好ましく、具体的には0.0070%以下とした。
<残部:Feおよび不可避不純物>
 上述した成分以外の残部は、Fe(鉄)および不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物として挙げられる成分としては、例えば、B、V、Nb、Zr、Hf、W、Sn、Co、Sb、Ta、Ga、Bi、REM等が挙げられる。なお、これら不可避不純物の成分含有量は、成分ごとに0.5%以下、不可避不純物の成分の総量で2.0%以下とすればよい。
(2)母相中に存在する非金属介在物
 本発明の析出硬化型マルテンサイト系ステンレス鋼板は、母相中に存在する非金属介在物のうち、相当円直径が10μm以上である特定非金属介在物が存在しないか、または、前記特定非金属介在物が存在しても、前記特定非金属介在物の個数密度が0.100個/mm以下であることが必要である。
 本発明者が、上記組成を有する析出硬化型マルテンサイト系ステンレス鋼板について、耐疲労特性を向上させるための検討を行った結果、母相中に存在する非金属介在物のうち、大きなサイズの非金属介在物が多く存在すると、疲労特性に悪影響を及ぼすことが判明した。そして母相中に、相当円直径が10μm以上である特定非金属介在物が存在しないか、または、前記特定非金属介在物が存在しても、前記特定非金属介在物の個数密度を0.100個/mm以下になるように制御することによって、耐疲労特性が格段に向上することを見出した。なお、ここでいう「相当円直径」とは、観察面に現れている非金属介在物の粒子の投影面積と等しい面積を有する円の直径に換算した値を意味する。
 また、本発明者がさらに詳細に検討した結果、疲労強度に悪影響をおよぼす粗大な非金属介在物は、酸化物が核となり、TiNの生成が促進される結果として粗大に成長した、TiNと酸化物からなる酸窒化物であること、および、核となる酸化物が、TiNとの整合性が良い、MgO酸化物や、MgO・Al(スピネル)の複合酸化物であることを見出した。
 さらに、このようにして生成した粗大な酸窒化物は、質量割合でTiNの量の方が酸化物の量よりも多い場合(図4参照)には、非常に硬質になるため、熱間圧延や冷間圧延の際にもほとんど破砕されず粗大(例えば、相当円直径が20μm超えの大きさ)なままで母相中に残存することになり、その結果、疲労特性に悪影響を及ぼすことが判明した。
 これに対し、生成した粗大な非金属介在物(酸窒化物)は、質量割合で酸化物の量の方がTiNの量よりも多い場合(図5参照)には、熱間圧延や冷間圧延の際に破砕されやすくなって、母相中に粗大な非金属介在物は残存しにくくなり、その結果、耐疲労特性を格段に向上させることができることも判明した。このため、本発明では、母相中に存在する特定非金属介在物は、相当円直径が20μm以下であることが好ましい。このように特定非金属介在物のサイズ(相当円直径)を制御することによって、耐疲労特性をより一層向上させることができる。
 また、本発明では、母相中の特定非金属介在物に含まれる化合物の平均組成成分を分析して得られたAl3、MgOおよびTiの合計質量を100質量%とするとき、粗大な特定非金属介在物の核になりにくい酸化物であるTiやAlの存在割合を高めるように制御することで、非金属介在物に含まれる、TiN、MgOおよびMgO・Al(スピネル)の存在割合を制限すること、より具体的には、Al3、MgOおよびTiの質量割合(%)は、下記に示す、式(1)~(3)から求められる範囲(I)、および式(4)~(6)から求められる範囲(II)のうちの少なくとも一方の範囲を満たすことが好ましい。これによって、生成した粗大な特定非金属介在物は、熱間圧延や冷間圧延の際に破砕されやすくなるため、最終製品としての析出硬化型マルテンサイト系ステンレス鋼板の母相中に、粗大(例えば相当円直径が20μm超えの大きさ)な特定非金属介在物は残存しにくくなり、その結果、耐疲労特性を格段に向上させることができる。
<範囲(I)>
[Al]+[MgO]+[Ti]=100 ・・(1)
[Ti]≧40 ・・・・・・・・・・・・・・・・・(2)
[Al]+[MgO]≦60 ・・・・・・・・・・・(3)
<範囲(II)>
[Al]+[MgO]+[Ti]=100 ・・(4)
0≦[Ti]≦100 ・・・・・・・・・・・・・・(5)
[Al]/102≧[MgO]/40.3 ・・・・・(6)
 ただし、[Al]、[MgO]および[Ti]は、いずれも質量割合(%)を意味する。
 図1は、本発明の析出硬化型マルテンサイト系ステンレス鋼板の母相中に存在する非金属介在物を構成する、Al-MgO-Tiの3元系状態図を示したものであって、範囲(I)および範囲(II)について、それぞれ異なる向きにハッチングして示す。
 このように、本発明では、上記範囲(I)および範囲(II)のうちの少なくとも一方の範囲を満たすことによって、耐疲労特性を向上させることができ、また、上記範囲(I)および範囲(II)の双方の範囲を満たすことによって、さらに耐疲労特性を向上させることができる。
 上記範囲(I)および範囲(II)の少なくとも一方を満たす析出硬化型マルテンサイト系ステンレス鋼板を製造するには、例えば、溶鋼中、好適には二次精錬工程における溶鋼中のAl、Ti、O、およびスラグ組成を制御すればよい。
(3)耐疲労特性
 本発明の析出硬化型マルテンサイト系ステンレス鋼板は、シェンク式曲げねじり疲労試験において、破断せずに繰返し数が1000万回に達する応力を疲労限界応力とした場合の疲労限界応力が550MPa以上であることが好ましく、より好ましくは600MPa超えである。図2は、母相中に存在する特定非金属介在物の個数密度(個/mm)を横軸とし、疲労限界応力(MPa)を縦軸として、本発明例と比較例のデータをプロットしたものである。図2から、特定非金属介在物の個数密度が0.100個/mm以下であることにより、疲労限界応力が550MPa以上と高くなり、良好な耐疲労特性が得られていることがわかる。また、図3は、範囲(I)を満たす場合、範囲(II)を満たす場合、範囲(I)及び範囲(II)の双方を満たす場合、そして、範囲(I)、範囲(II)以外の範囲の場合を横軸にとり、疲労限界応力(MPa)を縦軸としてプロットしたときの図である。図3から、範囲(I)を満たす場合と範囲(II)を満たす場合は、疲労限界応力が550~600MPaの範囲であるが、範囲(I)及び範囲(II)の双方を満たす場合は、疲労限界応力が600MPa超えとなって、優れた耐疲労特性が得られていることがわかる。なお、析出硬化型マルテンサイト系ステンレス鋼板の疲労限界応力は、下記のようにして定義される。まず、板厚2.7~3.2mmのステンレス鋼板から切り出した試験片に対し、シェンク式曲げねじり疲労試験機(容量39N・m)を用い、試験波形:正弦波形、試験速度:60Hz、試験環境:室温、大気中、応力比:R=-1(両振り)の条件にてサイクル疲労試験を実施し、1000万(10)回でサンプルが破断しない最大の応力を測定し、この測定した応力を疲労限界応力(MPa)と定義する。
(4)本発明の一実施例による析出硬化型マルテンサイト系ステンレス鋼板の製造方法
 次に、本発明の析出硬化型マルテンサイト系ステンレス鋼板の好ましい製造方法を以下で説明する。
 本発明の析出硬化型マルテンサイト系ステンレス鋼板は、一般的なステンレス鋼の溶製設備を利用して製造することができる。本発明の析出硬化型マルテンサイト系ステンレス鋼板の製造方法は、代表的には、溶解工程(電気炉)、一次精錬工程(転炉)、二次精錬工程(AOD(Argon Oxygen Decarburization)またはVOD(Vacuum Oxygen Decarburization))および鋳造工程(連続鋳造またはインゴット鋳造(Ingot Casting))の順に行う場合が挙げられる。以下、ステンレス製鋼用原料を、電気炉で溶解した後に転炉で一次精錬し、次いで、VOD法によって二次精錬を行った後に連続鋳造を行う場合について説明する。
 溶解工程では、ステンレス製鋼用の原料となるスクラップや合金を電気炉で溶解してステンレス鋼溶銑を生成し、生成したステンレス鋼溶銑が精錬炉である転炉に注銑される。
 一次精錬工程では、転炉内のステンレス鋼溶銑に酸素を吹精することによって含有されている炭素を除去する粗脱炭処理が行われ、それによりステンレス溶鋼と炭素酸化物及び不純物を含むスラグとが生成する。一次精錬工程で生成したステンレス溶鋼は、溶鋼鍋に出鋼されて二次精錬工程に移され、その際にスラグが除去される。
 二次精錬工程では、ステンレス溶鋼が溶鋼鍋と共に真空精錬炉である真空脱ガス装置(VOD)に入れられ、仕上げ脱炭処理が行われる。そして、ステンレス溶鋼が仕上げ脱炭処理されることによって、純粋なステンレス溶鋼が生成する。特に、真空脱ガス装置(VOD)では、酸素吹錬により脱炭、脱窒を所定濃度まで行う。この時点の溶鋼は、吹き込んだ酸素が多量に溶存しているため、Al、Ti、Siなどの易酸化元素濃度は、脱酸を行った後に所定濃度となるよう原料を調整し投入する。介在物中の酸化物組成は、溶鋼中のAl、Ti、Si、Mg、Ca、Oの濃度とスラグ組成とにより決定する。
 この際、Mgは、耐火物から不可避的に混入するため、Mg濃度を0とすることは現実的には困難である。そこで、非金属介在物中に含まれる酸化物の組成を、上記範囲(I)及び(II)の少なくとも一方の範囲を満足するように制御するためには、Al、Ti、O、およびスラグ組成を制御する必要がある。一般的に、溶鋼中のAl濃度の上昇に伴って、溶鋼中のO濃度は低下する。また、溶鋼中のAl濃度の上昇は、耐火物中のMgOの還元を促進するため、溶鋼中のMg濃度も高くなる。
 このように溶鋼中のAlおよびMg濃度が高く、O濃度が低いと、上記範囲(I)及び(II)の少なくとも一方の範囲を満足するように制御することが困難となる。そこで、溶鋼中のAl濃度に応じて、CaOの投入量を調整することで、O濃度を制御する。スラグ中にはCaOやAlが存在するが、スラグ中におけるCaOのAlに対する比(CaO/Al)が低いほど、Alの活量が高くなり、溶鋼中のO濃度は高くなる。種々の検討を行った結果、溶鋼中のAl濃度が0.020~0.040質量%である場合には、CaO/Al比を1.0~2.0の範囲になるように制御し、また、溶鋼中のAl濃度が0.040質量%超え0.070質量%以下である場合には、溶鋼中のAl濃度が0.020~0.040質量%と低い場合に比べて、CaO/Al比を、より狭い範囲、好適には1.0~1.5の範囲になるように制御することが効果的であることがわかった。
 鋳造工程は、連続鋳造を常法によって行えばよい。例えば、真空脱ガス装置(VOD)から溶鋼鍋を取り出して連続鋳造装置(CC)にセットし、溶鋼鍋のステンレス溶鋼は、連続鋳造装置に注ぎ込まれ、さらに連続鋳造装置が備える鋳型によって、例えばスラブ状のステンレス鋼片を製造(鋳造)することができる。ただし、N濃度の上昇を抑制するため、溶鋼と大気の接触を極力避けるようにすることが望ましい。具体的にはArガスやパウダーを用いて、タンディッシュ(TD)内の溶鋼をシールし、N濃度の上昇を抑制することが好ましい。
 その後は、得られたスラブ状のステンレス鋼片に対し、熱間圧延を含む熱間加工を施し、熱延鋼板を得る。熱間圧延の加熱温度は1100~1250℃、熱延鋼板の板厚は、例えば3.0~7.0mmとすればよい。次いで、この熱延鋼板に焼鈍酸洗、冷間圧延、時効処理を施すことにより、耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板を得ることができる。冷間圧延の工程は中間焼鈍工程を含めて複数回行ってもよい。各熱処理の工程後には、必要に応じて酸洗処理が施される。熱処理温度は、例えば900~1100℃、30~150秒、時効処理は、例えば400~600℃、10~80分とすることができる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々の態様に改変することができる。
 次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。
<サンプルNo.1~19(本発明例)およびサンプルNo.20~24(比較例)>
 まず、ステンレス製鋼用原料を、電気炉で溶解した(溶解工程)。溶解工程では、ステンレス製鋼用の原料となるスクラップや合金を電気炉で溶解してステンレス鋼溶銑を生成し、生成したステンレス鋼溶銑が精錬炉である転炉に注銑され、一次精錬を行う(一次精錬工程)。一次精錬工程では、転炉内のステンレス鋼溶銑に酸素を吹精することによって含有されている炭素を除去する粗脱炭処理が行われ、それによりステンレス溶鋼と炭素酸化物及び不純物を含むスラグとが生成する。次いで、スラグを除去したステンレス溶鋼に、真空脱ガス装置(VOD)によって仕上げ脱炭処理を施す二次精錬を行う(二次精錬工程)。二次精錬工程において、VODでは、酸素吹錬により脱炭、脱窒を所定濃度まで行う。この時点の溶鋼は、吹き込んだ酸素が多量に溶存しているため、Al、Ti、Siなどの易酸化元素濃度は、脱酸を行った後に所定濃度となるよう原料を調整し投入する。次いで、表1に示す化学組成に成分調整した溶鋼を連続鋳造することによりスラブ状のステンレス鋼片を得た。その後、得られたステンレス鋼片に対し、1100~1250℃の温度で熱間圧延を施し、次いで、900~1100℃、30~150秒の焼鈍を施した後に、酸洗および冷間圧延を施し、その後、400~600℃、10~80分の時効処理を施すことにより、板厚が1.0~3.5mmの析出硬化型マルテンサイト系ステンレス鋼板(供試板)を作製した。
[評価方法]
 上記各供試板を用いて、下記に示す評価を行った。各評価の条件は下記の通りである。
[1]非金属介在物の評価
 得られた各供試板の板幅中央部から40mm角の観察用小片を採取し、採取した小片の表面を、#120~#1000番のエメリー研磨紙で研磨した後、ダイヤモンドペーストを用いてバフ研磨を行い鏡面仕上げとした。鏡面仕上げした小片の表面について、エネルギー分散型X線分析装置(EDX)を用い、倍率100倍で1000mmの視野面積を有する視野領域(約32mm×約32mmの正方形領域)にて、任意の400~500箇所を観察した。観察対象は、相当円直径が10μm以上である特定非金属介在物とし、観察された介在物の全体にわたってEDXで分析した。介在物は一体化しているものは1つと見なし、一体化していないが近接する場合は、近接する介在物間の最短距離が近接する介在物の相当円直径の小さい方と比べて短い場合は同一の介在物、長い場合は別の介在物と定義した。なお、分析値はZAF法による補正を行った。特定非金属介在物の個数密度(個/mm)は、視野面積(1000mm)に対する特定非金属介在物の個数にて算出した。特定非金属介在物の組成は、以下の計算を行い、Al、MgOおよびTiの合計質量を100質量%としたときの質量割合(質量%)を求めた。まず、EDX分析のN濃度より、特定非金属介在物中のTiN量を理論量論比により求めた。具体的には、「N濃度(分析値)×Ti原子量/N原子量」により、TiNとして存在(消費)するTi濃度をTiとして算出した。次に、Ti濃度(分析値)からTiの数値を減じて、Ti酸化物として存在するTi濃度をTiOX濃度として算出した。次に、EDX分析により求めたAl濃度およびMg濃度とTiOX濃度の数値から、Al、MgOおよびTiに換算した。最後に、Al、MgOおよびTiの合計質量を100質量%としたときの質量割合(質量%)を求めた。表2に、特定非金属介在物の個数密度(個/mm)、相当円直径が20μm超えである特定非金属介在物の有無、特定非金属介在物中のAl、MgOおよびTiの質量割合、および図1に示す範囲について示す。また、図1のAl-MgO-Tiの3元系状態図に、サンプルNo.1~24における特定非金属介在物中のAl、MgOおよびTiの質量割合をプロットした。
[2]耐疲労特性の評価
 各供試板から圧延方向を長手方向とする所定寸法の疲労試験片を切り出し、表面および端面を、#600番のエメリー研磨紙にて乾式研磨を施した。続いて、480℃、1時間の熱処理を施し、その後、常温まで空冷した。疲労試験は、シェンク式曲げねじり疲労試験機にて実施した。試験終了は、破断するか、または繰り返し数が1000万回に達したときとし、破断せずに繰り返し数が1000万回に到達したときの応力を疲労限界応力(MPa)とした。なお、試験環境は、室温、大気中とした。耐疲労特性は、疲労限界応力が600MPa超えである場合を優れているとして「◎」とし、疲労限界応力が550MPa以上600MPa以下である場合を良好であるとして「○」とし、そして、疲労限界応力が550MPa未満である場合を劣っているとして「×」として評価した。表2に評価結果を示す。また、No.1~24について、母相中に存在する特定非金属介在物の個数密度に対する疲労限界応力をプロットしたものを図2に示す。さらに、No.1~24の疲労限界応力をプロットしたものを図3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2ならびに図1~3に示す結果から、本発明例であるサンプルNo.1~19は、いずれも化学組成および特定非金属介在物の個数密度が適正範囲であるため、疲労限界応力が550MPa以上であり、耐疲労特性が良好以上であり、特に、サンプルNo.15は、特定非金属介在物が存在せず、また、サンプルNo.9~14は、特定非金属介在物中のAl、MgOおよびTiの質量割合が範囲(I)および(II)の双方を満足するため、いずれも疲労限界応力が600MPa超えであり、耐疲労特性が優れていた。一方、比較例であるサンプルNo.20~24は、いずれも特定非金属介在物の個数密度が適正範囲外であるため、疲労限界応力が550MPa未満であり、耐疲労特性が劣っていた。
 参考のため、本発明例であるサンプルNo.1~19および比較例であるサンプルNo.20~24について、図1のAl-MgO-Tiの3元系状態図にプロットした。
 図4は、比較例であるサンプルNo.23のステンレス鋼板中に存在する10μm以上のサイズの非金属介在物の反射電子組成像であって、図4中の黒色に見える部分が、MgOやMgO・Al(スピネル)系の酸化物組成Aの部分であり、グレーに見える部分がTiNである。また、図5は、本発明例であるサンプルNo.11のステンレス鋼板中に存在する10μm以上のサイズの非金属介在物の反射電子組成像であって、図5中の黒色に見える部分が、TiやAlの酸化物組成Bの部分であり、グレーに見える部分がTiNである。
 図4に示す比較例(サンプルNo.23)の場合、MgOやMgO・Al(スピネル)系の酸化物組成A(図4の黒色部分)の周りにTiN(図4の灰色部分)が成長していて、粗大な非金属介在物が生成している。一方、図5に示す本発明例(サンプルNo.11)の場合、TiやAlの酸化物組成B(図5の黒色部分)の周りに生成しているTiN(図5の灰色部分)の量は少ないことがわかる。

Claims (4)

  1.  質量%で、C:0.080%以下、Si:0.70~3.00%、Mn:3.00%以下、Ni:6.00~10.00%、Cr:10.00%~17.00%、P:0.050%以下、S:0.003%以下、Cu:0.50~2.00%、Mo:0.50~3.00%、Ti:0.15~0.45%、Al:0.070%以下、Ca:0.0020%以下、Mg:0.0020%以下、N:0.015%以下およびO:0.0070%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、
     母相中に存在する非金属介在物のうち、相当円直径が10μm以上である非金属介在物が存在しないか、または、前記相当円直径が10μm以上である非金属介在物が存在しても、その個数密度が0.100個/mm以下であることを特徴とする耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板。
  2.  前記相当円直径が10μm以上である非金属介在物に含まれる化合物の平均組成成分を分析して得られたAl3、MgOおよびTiの合計質量を100質量%とするとき、Al3、MgOおよびTiの質量割合(%)は、下記に示す、式(1)~(3)から求められる範囲(I)および式(4)~(6)から求められる範囲(II)のうちの少なくとも一方の範囲を満たす、請求項1に記載の析出硬化型マルテンサイト系ステンレス鋼板。
    <範囲(I)>
    [Al]+[MgO]+[Ti]=100 ・・(1)
    [Ti]≧40 ・・・・・・・・・・・・・・・・・(2)
    [Al]+[MgO]≦60 ・・・・・・・・・・・(3)
    <範囲(II)>
    [Al]+[MgO]+[Ti]=100 ・・(4)
    0≦[Ti]≦100 ・・・・・・・・・・・・・・(5)
    [Al]/102≧[MgO]/40.3 ・・・・・(6)
     ただし、[Al]、[MgO]および[Ti]は、いずれも質量割合(%)を意味する。
  3.  前記母相中に存在する、前記相当円直径が10μm以上である非金属介在物は、相当円直径が20μm以下である、請求項1または2に記載の析出硬化型マルテンサイト系ステンレス鋼板。
  4.  シェンク式曲げねじり疲労試験において、破断せずに繰返し数が1000万回に達する応力を疲労限界応力とした場合の疲労限界応力が550MPa以上である、請求項1、2または3に記載の析出硬化型マルテンサイト系ステンレス鋼板。
PCT/JP2021/018738 2020-06-15 2021-05-18 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板 WO2021256145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21825581.8A EP4166680A4 (en) 2020-06-15 2021-05-18 PRECIPITATION-HARDENING TYPE MARTENSITIC STAINLESS STEEL SHEET HAVING EXCELLENT FATIGUE RESISTANCE
JP2022532399A JP7223210B2 (ja) 2020-06-15 2021-05-18 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板
CN202180037478.XA CN115667563B (zh) 2020-06-15 2021-05-18 耐疲劳特性优异的析出硬化型马氏体系不锈钢板
KR1020227043448A KR20230010244A (ko) 2020-06-15 2021-05-18 내피로 특성이 뛰어난 석출 경화형 마르텐사이트계 스테인리스 강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020102839 2020-06-15
JP2020-102839 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021256145A1 true WO2021256145A1 (ja) 2021-12-23

Family

ID=79267799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018738 WO2021256145A1 (ja) 2020-06-15 2021-05-18 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板

Country Status (6)

Country Link
EP (1) EP4166680A4 (ja)
JP (1) JP7223210B2 (ja)
KR (1) KR20230010244A (ja)
CN (1) CN115667563B (ja)
TW (1) TWI768941B (ja)
WO (1) WO2021256145A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138194A1 (ja) * 2020-12-24 2022-06-30 日鉄ステンレス株式会社 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073783A (ja) * 2001-09-03 2003-03-12 Nisshin Steel Co Ltd フラッパーバルブ用析出硬化型マルテンサイト系ステンレス鋼板及びその製造方法
JP2006070314A (ja) * 2004-09-01 2006-03-16 Nisshin Steel Co Ltd 耐遅れ破壊性に優れる高強度ステンレス鋼帯及びその製造方法
JP4110518B2 (ja) 2002-08-23 2008-07-02 日立金属株式会社 高清浄Mg含有マルエージング鋼の冷間圧延鋼帯
JP2017155317A (ja) * 2016-03-04 2017-09-07 日新製鋼株式会社 スチールベルト用析出硬化型マルテンサイト系ステンレス鋼板および製造方法
WO2018181404A1 (ja) * 2017-03-28 2018-10-04 新日鐵住金株式会社 マルテンサイトステンレス鋼材
JP2019011515A (ja) 2013-08-23 2019-01-24 大同特殊鋼株式会社 疲労特性に優れたマルエージング鋼

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641686A (ja) * 1992-03-13 1994-02-15 Nkk Corp Idブレード用ステンレス鋼薄板およびその製造方法
JP2003073793A (ja) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd 耐剥離性に優れた遮熱被覆膜、その原料粉の製造方法、並びにそれを用いた耐熱部材
JP5705345B1 (ja) * 2014-03-06 2015-04-22 日本高周波鋼業株式会社 高鏡面プラスチック金型用鋼
JP6095619B2 (ja) * 2014-08-19 2017-03-15 日新製鋼株式会社 オーステナイト系ステンレス鋼板およびメタルガスケット
JP6005234B1 (ja) * 2015-09-29 2016-10-12 日新製鋼株式会社 疲労特性に優れた高強度ステンレス鋼板およびその製造方法
JP7049142B2 (ja) * 2018-03-15 2022-04-06 日鉄ステンレス株式会社 マルテンサイト系ステンレス鋼板およびその製造方法並びにばね部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073783A (ja) * 2001-09-03 2003-03-12 Nisshin Steel Co Ltd フラッパーバルブ用析出硬化型マルテンサイト系ステンレス鋼板及びその製造方法
JP4110518B2 (ja) 2002-08-23 2008-07-02 日立金属株式会社 高清浄Mg含有マルエージング鋼の冷間圧延鋼帯
JP2006070314A (ja) * 2004-09-01 2006-03-16 Nisshin Steel Co Ltd 耐遅れ破壊性に優れる高強度ステンレス鋼帯及びその製造方法
JP2019011515A (ja) 2013-08-23 2019-01-24 大同特殊鋼株式会社 疲労特性に優れたマルエージング鋼
JP2017155317A (ja) * 2016-03-04 2017-09-07 日新製鋼株式会社 スチールベルト用析出硬化型マルテンサイト系ステンレス鋼板および製造方法
WO2018181404A1 (ja) * 2017-03-28 2018-10-04 新日鐵住金株式会社 マルテンサイトステンレス鋼材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138194A1 (ja) * 2020-12-24 2022-06-30 日鉄ステンレス株式会社 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼
JP7530447B2 (ja) 2020-12-24 2024-08-07 日鉄ステンレス株式会社 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼

Also Published As

Publication number Publication date
JP7223210B2 (ja) 2023-02-15
KR20230010244A (ko) 2023-01-18
CN115667563B (zh) 2023-12-19
TW202204647A (zh) 2022-02-01
EP4166680A4 (en) 2023-07-26
EP4166680A1 (en) 2023-04-19
TWI768941B (zh) 2022-06-21
JPWO2021256145A1 (ja) 2021-12-23
CN115667563A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
JP6115691B1 (ja) 鋼板およびほうろう製品
JP6990337B1 (ja) 表面性状に優れたNi基合金およびその製造方法
JP6842257B2 (ja) Fe−Ni−Cr−Mo合金とその製造方法
WO2022210651A1 (ja) 二相ステンレス鋼線材および二相ステンレス鋼線
WO2021256145A1 (ja) 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板
WO2022025078A1 (ja) 高耐食オーステナイト系ステンレス鋼とその製造方法
JP2024054519A (ja) ステンレス鋼材およびその製造方法
JP6776469B1 (ja) 二相ステンレス鋼とその製造方法
KR101940427B1 (ko) 페라이트계 스테인리스 강판
CN116997670A (zh) 双相不锈钢
CN116529396A (zh) 耐焊接高温开裂性优异的高Ni合金
WO2022138194A1 (ja) 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼
WO2022145063A1 (ja) 鋼材
WO2022145066A1 (ja) 鋼材
JP7009666B1 (ja) 加工性、耐食性に優れる溶接管用Ni-Cr-Mo系合金
TWI761253B (zh) 高強度麻時效鋼板材及其製造方法
JP7413600B1 (ja) Fe-Ni系合金板及びその製造方法
JP7261345B1 (ja) 耐酸化性に優れたオーステナイト系Ni-Cr-Fe合金とその製造方法
JP6941003B2 (ja) Fe−Ni−Cr−Mo合金およびその製造方法
JP2022144759A (ja) マルテンサイト系ステンレス鋼板および刃物
CN118541502A (zh) 奥氏体类不锈钢及奥氏体类不锈钢的制造方法
JP2024103154A (ja) ステンレス鋼
JPH07197195A (ja) 耐時効性に優れた鋼材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532399

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217057237

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20227043448

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021825581

Country of ref document: EP

Effective date: 20230116