WO2021161864A1 - ポリアリーレンサルファイド樹脂組成物 - Google Patents

ポリアリーレンサルファイド樹脂組成物 Download PDF

Info

Publication number
WO2021161864A1
WO2021161864A1 PCT/JP2021/003887 JP2021003887W WO2021161864A1 WO 2021161864 A1 WO2021161864 A1 WO 2021161864A1 JP 2021003887 W JP2021003887 W JP 2021003887W WO 2021161864 A1 WO2021161864 A1 WO 2021161864A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
resin composition
polyarylene sulfide
inorganic filler
mass
Prior art date
Application number
PCT/JP2021/003887
Other languages
English (en)
French (fr)
Inventor
秀和 出井
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN202180014105.0A priority Critical patent/CN115135722B/zh
Priority to KR1020227028486A priority patent/KR102644628B1/ko
Publication of WO2021161864A1 publication Critical patent/WO2021161864A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • C08K7/20Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a polyarylene sulfide resin composition.
  • Polyphenylene sulfide resin (hereinafter sometimes referred to as "PAS resin") represented by polyphenylene sulfide resin (hereinafter sometimes referred to as “PPS resin”) has high heat resistance, mechanical properties, and chemical resistance. It has dimensional stability and flame retardancy. Therefore, it is widely used for electrical / electronic equipment parts materials, automobile equipment parts materials, chemical equipment parts materials, and the like.
  • PAS resin has a problem that the crystallization rate is slow, so that the cycle time at the time of molding is long, and that burrs are frequently generated at the time of molding.
  • Patent Document 3 a resin composition in which a specific PAS resin is mixed with a specific amount of a specific carbon nanotube and, if necessary, an inorganic filler has been proposed (see Patent Document 3).
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a polyarylene sulfide resin composition having insulating properties and less generation of burrs.
  • the length is more than 10,000 nm and less than 3,000,000 nm, and the aspect ratio is more than 2000 with respect to 100 parts by mass of the polyarylene sulfide resin having a melt viscosity of 5 to 500 Pa ⁇ s measured at a temperature of 310 ° C. and a shear rate of 1200 sec -1.
  • a polyarylene sulfide resin composition containing 0.05 to 0.5 parts by mass of carbon nanotubes of 500,000 or less and having insulating properties.
  • the polyarylene sulfide resin composition of the present embodiment (hereinafter, also referred to as “PAS resin composition”) is a polyarylene sulfide resin having a melt viscosity of 5 to 500 Pa ⁇ s measured at a temperature of 310 ° C. and a shear rate of 1200 sec -1. It contains 0.05 to 0.5 parts by mass of carbon nanotubes (CNT) having a length of more than 10,000 nm and less than 3,000,000 nm and an aspect ratio of more than 2,000 and not more than 500,000 with respect to 100 parts by mass, and has insulating properties. It is characterized by that.
  • “insulating property” means that the volume resistivity at room temperature (23 ° C.), which is measured in accordance with IEC60093, is 10 14 ⁇ . It refers to the property of cm or more.
  • the PAS resin composition of the present embodiment suppresses the generation of burrs by containing carbon nanotubes (hereinafter, also referred to as “CNT”) having a predetermined length and a predetermined aspect ratio. Insulation is ensured by minimizing the content of the CNTs.
  • the CNT according to the present embodiment can suppress the occurrence of burrs even if the content is so small that it does not exhibit conductivity. It is presumed that the mechanism by which burrs are suppressed by the addition of CNT contributes to the increase in melt viscosity in the low shear rate region and the improvement in crystallization rate (improvement in solidification rate due to the nuclear agent effect). Further, the mold release resistance can be reduced by increasing the melt viscosity in the low shear rate region, and the molding cycle can be shortened by improving the crystallization rate.
  • each component of the PAS resin composition of the present embodiment will be described.
  • the PAS resin is characterized by being excellent in mechanical properties, electrical properties, heat resistance and other physical and chemical properties, and also having good processability.
  • the PAS resin is a polymer compound mainly composed of-(Ar-S)-(where Ar is an arylene group) as a repeating unit, and in this embodiment, a PAS resin having a molecular structure generally known is used. Can be used.
  • arylene group examples include a p-phenylene group, an m-phenylene group, an o-phenylene group, a substituted phenylene group, a p, p'-diphenylene sulphon group, a p, p'-biphenylene group, p, p'-.
  • Examples thereof include a diphenylene ether group, a p, p'-diphenylene carbonyl group and a naphthalene group.
  • the PAS resin may be a homopolymer composed of only the above-mentioned repeating units, or a copolymer containing the following different kinds of repeating units may be preferable from the viewpoint of processability and the like.
  • a polyphenylene sulfide resin using a p-phenylene group as an arylene group and having a p-phenylene sulfide group as a repeating unit is preferably used.
  • the copolymer two or more different combinations can be used among the allylene sulfide groups composed of the allylene groups, and among them, the combination containing the p-phenylene sulfide group and the m-phenylene sulfide group is particularly preferably used. Be done.
  • those containing 70 mol% or more, preferably 80 mol% or more of the p-phenylene sulfide group are suitable from the viewpoint of physical properties such as heat resistance, moldability and mechanical properties.
  • a high molecular weight polymer having a substantially linear structure obtained by polycondensation from a monomer mainly composed of a bifunctional halogen aromatic compound can be particularly preferably used.
  • the PAS resin used in this embodiment may be a mixture of two or more different molecular weight PAS resins.
  • a small amount of a monomer such as a polyhaloaromatic compound having three or more halogen substituents is used at the time of polycondensation to partially form a branched structure or a crosslinked structure.
  • Condensation polymer can be mentioned.
  • the melt viscosity (310 ° C., shear rate 1200 sec -1 ) of the PAS resin as the substrate resin used in this embodiment is 5 to 500 Pa from the viewpoint of the balance between mechanical physical properties and fluidity, including the case of the above mixed system. -Use the one of s.
  • the melt viscosity of the PAS resin is preferably 7 to 300 Pa ⁇ s, more preferably 10 to 250 Pa ⁇ s, and particularly preferably 13 to 200 Pa ⁇ s.
  • the PAS resin composition of the present embodiment may contain other resin components in addition to the PAS resin as a resin component as long as the effect is not impaired.
  • the other resin components are not particularly limited, and are, for example, polyethylene resin, polypropylene resin, polyamide resin, polyacetal resin, modified polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polyimide resin, and polyamideimide.
  • Resins polyetherimide resins, polysulfone resins, polyether sulfone resins, polyether ketone resins, polyether ether ketone resins, liquid crystal resins, fluororesins, cyclic olefin resins (cyclic olefin polymers, cyclic olefin copolymers, etc.), thermoplastics Examples thereof include elastomers, silicone-based polymers, and various biodegradable resins. Further, two or more kinds of resin components may be used in combination. Among them, polyamide resins, modified polyphenylene ether resins, liquid crystal resins and the like are preferably used from the viewpoints of mechanical properties, electrical properties, physical / chemical properties, processability and the like.
  • [carbon nanotube] In this embodiment, CNTs having a length of more than 10,000 nm and not more than 3,000,000 nm and an aspect ratio of more than 2000 and not more than 500,000 are used. By using the CNT, it is possible to suppress the generation of burrs even if a relatively small amount is added, and it is possible to suppress the generation of burrs and impart insulating properties at the same time.
  • the CNT used in this embodiment may be either a single-walled carbon nanotube or a multi-walled carbon nanotube.
  • the aspect ratio of the CNT is a numerical value obtained by dividing the length of the CNT by the diameter of the CNT, and a manufacturer value (a numerical value published by the manufacturer in a catalog or the like) can be adopted.
  • the length is more than 10,000 nm and 3,000,000 nm or less, and the aspect ratio is more than 2000 and 500,000 or less, so that the occurrence of burrs can be suppressed.
  • the length of the CNT is preferably 11,000 to 1500,000 nm, more preferably 12,000 to 500,000 nm.
  • the aspect ratio of CNT is preferably 2010 to 250,000, more preferably 2030 to 100,000.
  • the diameter of the CNT is preferably 5 to 100 nm, more preferably 7 to 50 nm.
  • 0.05 to 0.5 parts by mass of CNT is contained with respect to 100 parts by mass of PAS resin. If the CNT is less than 0.05 parts by mass, the generation of burrs cannot be suppressed. Further, if the CNT exceeds 0.5 parts by mass, the insulating property cannot be ensured.
  • the content of CNT is preferably 0.1 to 0.5 parts by mass, more preferably 0.2 to 0.5 parts by mass.
  • Examples of the CNTs on the market according to the present embodiment include LG Chem, CP1002M, High Pressure Gas Industry Co., Ltd., NTF series, and the like.
  • Non-conductive inorganic filler in the present embodiment, it is preferable to include a non-conductive inorganic filler in the PAS resin composition from the viewpoint of improving the mechanical properties while ensuring the insulating property.
  • the non-conductive inorganic filler include a fibrous inorganic filler, a plate-like inorganic filler, and a powder-granular inorganic filler. One of these may be used alone, or two or more thereof may be used in combination. You may.
  • the term "inorganic filler” means a non-conductive inorganic filler unless it is clearly stated that it is a conductive filler.
  • fibrous inorganic filler examples include glass fibers, whiskers, wollastonite, zinc oxide fibers, titanium oxide fibers, silica fibers, silica-alumina fibers, boron nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, etc.
  • metal fibrous substances such as mineral fibers and titanium fibers of the above, and one or more of these can be used. Of these, glass fiber is preferable.
  • Examples of commercially available glass fibers include chopped glass fibers (ECS03T-790DE, average fiber diameter: 6 ⁇ m) manufactured by Nippon Denki Glass Co., Ltd., Owens Corning Japan LLC, chopped glass fibers (CS03DE 416A, average fibers).
  • the fibrous inorganic filler may be surface-treated with various surface treatment agents such as generally known epoxy compounds, isocyanate compounds, silane compounds, titanate compounds, and fatty acids. By the surface treatment, the adhesion with the PAS resin can be improved.
  • the surface treatment agent may be applied to the fibrous inorganic filler in advance for surface treatment or convergence treatment before the material preparation, or may be added at the same time as the material preparation.
  • the fiber diameter of the fibrous inorganic filler is not particularly limited, but in the initial shape (shape before melt-kneading), it can be, for example, 5 ⁇ m or more and 30 ⁇ m or less.
  • the fiber diameter of the fibrous inorganic filler means the major axis of the fiber cross section of the fibrous inorganic filler.
  • powdery inorganic filler examples include talc (granular), silica, quartz powder, glass beads, glass powder, calcium silicate, aluminum silicate, silicate such as diatomaceous earth, iron oxide, zinc oxide, alumina (granular) and the like.
  • Non-conductive metal oxides metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, and other nitrides such as silicon carbide, silicon nitride, boron nitride and aluminum nitride, Examples include poorly soluble ion crystal particles such as calcium silicate and barium fluoride; fillers using semiconductor materials (elemental semiconductors such as Si, Ge, Se, and Te; compound semiconductors such as oxide semiconductors, etc.). One type or two or more types can be used. Of these, glass beads and calcium carbonate are preferable.
  • Examples of the marketed products of calcium carbonate include Whiten P-30 (average particle size (50% d): 5 ⁇ m) manufactured by Toyo Fine Chemicals Co., Ltd.
  • Examples of commercially available glass beads include Potters Barotini Co., Ltd., EGB731A (average particle size (50% d): 20 ⁇ m), Potters Barotini Co., Ltd., EMB-10 (average particle size). Diameter (50% d): 5 ⁇ m) and the like can be mentioned.
  • the powdery granular inorganic filler may be surface-treated in the same manner as the fibrous inorganic filler.
  • the plate-shaped inorganic filler examples include glass flakes, talc (plate-shaped), mica, kaolin, clay, alumina (plate-shaped), and the like, and one or more of these can be used. Of these, glass flakes and talc are preferable. Examples of products on the market of glass flakes are Nippon Sheet Glass Co., Ltd., REFG-108 (average particle size (50% d): 623 ⁇ m), (Nippon Sheet Glass Co., Ltd., fine crack (average particle size (50%)).
  • talc products on the market include Crown Talc PP manufactured by Matsumura Sangyo Co., Ltd. and talcan powder PKNN manufactured by Hayashi Kasei Co., Ltd.
  • the plate-shaped inorganic filler may be surface-treated in the same manner as the fibrous inorganic filler.
  • the inorganic filler preferably contains 15 to 200 parts by mass, more preferably 25 to 150 parts by mass, and 30 to 110 parts by mass with respect to 100 parts by mass of the PAS resin. It is more preferable to include it.
  • the PAS resin composition of the present embodiment preferably contains a non-conductive inorganic filler, but even the conductive inorganic filler is contained within a range that does not interfere with the effects of the present embodiment. May be good.
  • the content of the conductive inorganic filler is preferably used in an amount that allows the molded product to exhibit electrical insulation. Specifically, it is an amount that can maintain the volume resistivity of a molded product measured in accordance with IEC60093 at room temperature (23 ° C.) at 1 ⁇ 10 14 ⁇ ⁇ cm or more.
  • conductive inorganic filler is well known to those skilled in the art, carbon-based fillers (carbon black, carbon fibers, graphite, etc.) and metal-based fillers (SUS fibers, etc.) have conductivity. It means a conductive inorganic filler such as a metal fiber having a metal fiber, a conductive metal or a metal oxide powder, etc.), a metal surface coating filler, and the like.
  • the content of these conductive inorganic fillers is, for example, 10% by mass or less, preferably 6% by mass or less, and further preferably 4% by mass or less of the total PAS resin composition of the present embodiment. ..
  • the content at which the conductive inorganic filler can exhibit conductivity may differ depending on the type, shape, and conductivity of the conductive inorganic filler, and therefore may be higher than the above content. be.
  • thermoplastic resins and thermosetting resins in addition to the above-mentioned components, known additions generally added to thermoplastic resins and thermosetting resins in order to impart desired properties according to the purpose thereof, as long as the effects are not impaired.
  • Agents that is, elastomers, mold release agents, lubricants, plasticizers, flame retardants, colorants such as dyes and pigments, crystallization accelerators, crystal nucleating agents, various antioxidants, heat stabilizers, weather resistance stabilizers, A corrosion inhibitor or the like may be blended.
  • a burr inhibitor such as an alkoxysilane compound may be used in combination if necessary.
  • the method for producing a molded product using the PAS resin composition of the present embodiment is not particularly limited, and a known method can be adopted.
  • the PAS resin composition of the present embodiment may be put into an extruder, melt-kneaded and pelletized, and the pellets may be put into an injection molding machine equipped with a predetermined mold and injection-molded to produce the pellet. can.
  • Examples of the molded product obtained by molding the PAS resin composition of the present embodiment include electrical / electronic equipment parts materials, automobile equipment parts materials, chemical equipment parts materials, water-related parts materials, and the like. Specifically, various cooling system parts of automobiles, ignition related parts, distributor parts, various sensor parts, various actuator parts, throttle parts, power module parts, ECU parts, various connector parts, piping joints (pipe fittings), joints. And so on. Other uses include, for example, LEDs, sensors, sockets, terminal blocks, printed boards, motor parts, electrical and electronic parts such as ECU cases, lighting parts, TV parts, rice cooker parts, microwave oven parts, iron parts, etc. It can be used for household and office electrical product parts such as copier-related parts, printer-related parts, facsimile-related parts, heaters, and air conditioner-related parts.
  • Examples 1 to 6 Comparative Examples 1 to 6
  • Tables 1 and 2 After dry-blending each of the raw material components shown in Tables 1 and 2, they are put into a twin-screw extruder having a cylinder temperature of 320 ° C. (glass fibers are separately added from the side feed portion of the extruder). ), Melt-kneaded and pelletized.
  • Tables 1 and 2 the numerical values of each component indicate parts by mass. The details of each raw material component used are shown below.
  • PAS resin ⁇ PPS resin Kureha Corporation, Fortron KPS (melt viscosity: 30 Pa ⁇ s (shear velocity: 1200 sec -1 , 310 ° C))
  • melt viscosity of PPS resin was measured as follows. Using a capillary graph manufactured by Toyo Seiki Seisakusho Co., Ltd., a flat die of 1 mm ⁇ ⁇ 20 mmL was used as a capillary, and the melt viscosity was measured at a barrel temperature of 310 ° C. and a shear rate of 1200 sec -1.
  • Carbon nanotube (CNT) CNT1 Made by LG Chem, CP1002M (average diameter: 9 nm, average length: 19000 nm, aspect ratio: 2111) -CNT2: NC7000 manufactured by NANOCYL (average diameter: 9.5 nm, average length: 1500 nm, aspect ratio: 158) CNT3: BT1003M manufactured by LG Chem (average diameter: 13.1 nm, average length: 12000 nm, aspect ratio: 916)
  • Non-conductive inorganic filler-Glass fiber Owens Corning Japan GK, chopped strand, fiber diameter: 10.5 ⁇ m, length 3 mm
  • test piece (flat plate) having a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C. having a length of 100 mm, a width of 100 mm and a thickness of 3 mm was produced by an injection molding machine (SE100D manufactured by Sumitomo Heavy Industries, Ltd.). , IEC60093, the volume eigenresistance was measured at an applied voltage of 500 V and 23 ° C. When the volume resistivity was 10 14 ⁇ ⁇ cm or more, it was evaluated as ⁇ , and when it was less than 10 14 ⁇ ⁇ cm, it was evaluated as ⁇ . The evaluation results are shown in Tables 1 and 2.
  • Example 1 in which the amount of CNT added is the same and Comparative Examples 1 and 2, in Example 1, the burr length is remarkably suppressed as compared with Comparative Examples 1 and 2.
  • Examples 3 to 5 in which the same CNTs as in Example 1 are used and the amount of the CNTs added is larger than that in Example 1, the burr length is suppressed as compared with Example 1.
  • the larger the amount of CNT added the more the burr length is suppressed.
  • the melt viscosity of the resin composition does not change significantly regardless of the amount of CNT added.
  • Example 2 when Examples 2 and 6 are compared, the burr length of Example 6 having a large amount of CNT added is suppressed as compared with that of Example 2, and the melt viscosities of the resin compositions are almost the same. From these, it can be seen that by adding the predetermined CNT according to the present embodiment, the burr length can be suppressed without significantly changing the melt viscosity of the resin composition.
  • Comparative Example 3 in which the same CNTs as in Example 1 were used and the amount of the CNTs added was further increased, the burr length was suppressed as compared with Examples 1 to 6 and Comparative Examples 4 to 5, but insulation was achieved. Has no sex. From the above, it can be seen that by including CNTs having a predetermined length and a predetermined aspect ratio, insulation can be ensured while suppressing the occurrence of burrs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

温度310℃及びせん断速度1200sec-1で測定した溶融粘度が5~500Pa・sのポリアリーレンサルファイド樹脂100質量部に対して、長さが10000nm超500000nm以下であり、アスペクト比が2000超3000000以下のカーボンナノチューブを0.05~0.5質量部を含み、かつ、絶縁性を有する、ポリアリーレンサルファイド樹脂組成物である。

Description

ポリアリーレンサルファイド樹脂組成物
 本発明は、ポリアリーレンサルファイド樹脂組成物に関する。
 ポリフェニレンサルファイド樹脂(以下「PPS樹脂」と呼ぶ場合がある)に代表されるポリアリーレンサルファイド樹脂(以下「PAS樹脂」と呼ぶ場合がある)は、高い耐熱性、機械的物性、耐化学薬品性、寸法安定性、難燃性を有している。そのため、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料等に広く使用されている。しかしながら、PAS樹脂は、結晶化速度が遅いため成形時のサイクル時間が長い、また成形時にバリの発生が多いという問題があった。
 バリの発生を低減する方法としては、各種アルコキシシラン化合物を添加することが知られている(特許文献1~2参照)。各種アルコキシシラン化合物はPAS樹脂との反応性が高く、機械的物性の改良、バリ発生を抑制する効果等が認められている。しかし、バリ発生の抑制効果には限界があり、市場の要求を充分満足させるには至っておらず、また結晶化速度を速くする効果を併せ持っていない。
 上記問題の解決を図るため、特定のPAS樹脂に特定のカーボンナノチューブ及び必要に応じて無機充填剤の各々特定量を配合した樹脂組成物が提案されている(特許文献3参照)。
特公平6-21169号公報 特開平1-146955号公報 特開2006-143827号公報
 しかしながら、特許文献3に記載の樹脂組成物は、バリの発生を十分に抑えるには、カーボンナノチューブを比較的多量に添加する必要がある。そうすると、カーボンナノチューブの導電性により、樹脂組成物が導電性を有することとなる。そして、そのような樹脂組成物は、絶縁性が要求される成形品に用いることができなかった。
 本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、絶縁性を有し、かつ、バリの発生が少ないポリアリーレンサルファイド樹脂組成物を提供することにある。
 前記課題を解決する本発明の一態様は以下の通りである。
(1)温度310℃及びせん断速度1200sec-1で測定した溶融粘度が5~500Pa・sのポリアリーレンサルファイド樹脂100質量部に対して、長さが10000nm超3000000nm以下であり、アスペクト比が2000超500000以下のカーボンナノチューブを0.05~0.5質量部を含み、かつ、絶縁性を有する、ポリアリーレンサルファイド樹脂組成物。
(2)前記ポリアリーレンサルファイド樹脂100質量部に対して、非導電性無機充填剤5~250質量部を更に含む、前記(1)に記載のポリアリーレンサルファイド樹脂組成物。
(3)前記非導電性無機充填剤が、ガラス繊維、ガラスビーズ、ガラスフレーク、炭酸カルシウム及びタルクからなる群より選ばれる1種又は2種以上である、前記(2)に記載のポリアリーレンサルファイド樹脂組成物。
 本発明によれば、絶縁性を有し、かつ、バリの発生が少ないポリアリーレンサルファイド樹脂組成物を提供することができる。
 本実施形態のポリアリーレンサルファイド樹脂組成物(以下、「PAS樹脂組成物」とも呼ぶ。)は、温度310℃及びせん断速度1200sec-1で測定した溶融粘度が5~500Pa・sのポリアリーレンサルファイド樹脂100質量部に対して、長さが10000nm超3000000nm以下であり、アスペクト比が2000超500000以下であるカーボンナノチューブ(CNT)を0.05~0.5質量部を含み、かつ、絶縁性を有することを特徴としている。
 尚、本実施形態において、「絶縁性」とは、PAS樹脂組成物を用いて作製した成形品について、IEC60093に準拠して測定される、常温(23℃)における体積固有抵抗が1014Ω・cm以上の性質をいう。
 本実施形態のPAS樹脂組成物は、所定の長さで所定のアスペクト比を有するカーボンナノチューブ(以下、「CNT」とも呼ぶ。)を含むことにより、バリの発生を抑えている。また、当該CNTの含有量を必要最小限に抑えることで絶縁性を確保している。換言すると、本実施形態に係るCNTは、導電性を発現しないほど少ない含有量であってもバリの発生を抑えることができる。CNTの添加によりバリが抑制されるメカニズムは、低せん断速度領域における溶融粘度の増加や、結晶化速度の向上(核剤効果による固化速度向上)が寄与していると推定される。また、低せん断速度領域における溶融粘度の増加により、離型抵抗の低減を図ることができ、結晶化速度の向上により、成形サイクルの短縮化を図ることができる。
 以下に、本実施形態のPAS樹脂組成物の各成分について説明する。
[ポリアリーレンサルファイド樹脂]
 PAS樹脂は、機械的性質、電気的性質、耐熱性その他物理的・化学的特性に優れ、且つ加工性が良好であるという特徴を有する。
 PAS樹脂は、主として、繰返し単位として-(Ar-S)-(但しArはアリーレン基)で構成された高分子化合物であり、本実施形態では一般的に知られている分子構造のPAS樹脂を使用することができる。
 上記アリーレン基としては、例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基等が挙げられる。PAS樹脂は、上記繰返し単位のみからなるホモポリマーでもよいし、下記の異種繰返し単位を含んだコポリマーが加工性等の点から好ましい場合もある。
 ホモポリマーとしては、アリーレン基としてp-フェニレン基を用いた、p-フェニレンサルファイド基を繰返し単位とするポリフェニレンサルファイド樹脂が好ましく用いられる。また、コポリマーとしては、前記のアリーレン基からなるアリーレンサルファイド基の中で、相異なる2種以上の組み合わせが使用できるが、中でもp-フェニレンサルファイド基とm-フェニレンサルファイド基を含む組み合わせが特に好ましく用いられる。
 この中で、p-フェニレンサルファイド基を70モル%以上、好ましくは80モル%以上含むものが、耐熱性、成形性、機械的特性等の物性上の点から適当である。また、これらのPAS樹脂の中で、2官能性ハロゲン芳香族化合物を主体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポリマーが、特に好ましく使用できる。尚、本実施形態に用いるPAS樹脂は、異なる2種類以上の分子量のPAS樹脂を混合して用いてもよい。
 尚、直鎖状構造のPAS樹脂以外にも、縮重合させるときに、3個以上のハロゲン置換基を有するポリハロ芳香族化合物等のモノマーを少量用いて、部分的に分岐構造又は架橋構造を形成させたポリマーが挙げられる。また、低分子量の直鎖状構造ポリマーを酸素等の存在下、高温で加熱して酸化架橋又は熱架橋により溶融粘度を上昇させ、成形加工性を改良したポリマーも挙げられる。
 本実施形態に使用する基体樹脂としてのPAS樹脂の溶融粘度(310℃・せん断速度1200sec-1)は、上記混合系の場合も含め、機械的物性と流動性のバランスの観点から、5~500Pa・sのものを用いる。PAS樹脂の溶融粘度は、7~300Pa・sが好ましく、10~250Pa・sがより好ましく、13~200Pa・sが特に好ましい。
 尚、本実施形態のPAS樹脂組成物は、その効果を損なわない範囲で、樹脂成分として、PAS樹脂に加えて、その他の樹脂成分を含有してもよい。その他の樹脂成分としては、特に限定はなく、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹脂、変性ポリフェニレンエーテル樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂、弗素樹脂、環状オレフィン系樹脂(環状オレフィンポリマー、環状オレフィンコポリマー等)、熱可塑性エラストマー、シリコーン系ポリマー、各種の生分解性樹脂等が挙げられる。また、2種類以上の樹脂成分を併用してもよい。その中でも、機械的性質、電気的性質、物理的・化学的特性、加工性等の観点から、ポリアミド樹脂、変性ポリフェニレンエーテル樹脂、液晶樹脂等が好ましく用いられる。
[カーボンナノチューブ]
 本実施形態においては、長さが10000nm超3000000nm以下であり、アスペクト比が2000超500000以下のCNTを用いる。当該CNTを用いることで、比較的少量の添加であってもバリの発生を抑えることができ、ひいてはバリの発生の抑制と、絶縁性の付与とを両立することができる。尚、本実施形態で使用するCNTは、単層カーボンナノチューブ及び多層カーボンナノチューブのいずれでもよい。
 ここで、CNTのアスペクト比は、CNTの長さをCNTの直径で除した数値であり、メーカー値(メーカーがカタログ等において公表している数値)を採用することができる。
 本実施形態に係るCNTにおいては、長さが10000nm超3000000nm以下であることと、アスペクト比が2000超500000以下であることとが相まってバリの発生を抑制することができる。CNTの長さは、11000~1500000nmが好ましく、12000~500000nmがより好ましい。また、CNTのアスペクト比は、2010~250000が好ましく、2030~100000がより好ましい。また、CNTの直径は、5~100nmが好ましく、7~50nmがより好ましい。
 本実施形態においては、PAS樹脂100質量部に対して、CNTを0.05~0.5質量部含む。CNTが0.05質量部未満であると、バリの発生を抑制することができない。また、CNTが0.5質量部を超えると、絶縁性を確保することができない。CNTの含有量は0.1~0.5質量部が好ましく、0.2~0.5質量部がより好ましい。
 本実施形態に係るCNTは、上市品としては、LG化学社製、CP1002M、高圧ガス工業(株)製、NTFシリーズ等が挙げられる。
[非導電性無機充填剤]
 本実施形態においては、絶縁性を確保しつつ、機械的物性の向上を図る観点から、PAS樹脂組成物中に非導電性無機充填剤を含むことが好ましい。非導電性無機充填剤としては、繊維状無機充填剤、板状無機充填剤、粉粒状無機充填剤が挙げられ、これらのうち1種を単独で用いてもよいし、2種以上を併用してもよい。尚、本明細書において、「無機充填剤」と記載した場合、導電性充填剤であることを明記していない限り、非導電性無機充填剤を意味する。
 繊維状無機充填剤としては、ガラス繊維、ウィスカー、ウォラストナイト、酸化亜鉛繊維、酸化チタン繊維、シリカ繊維、シリカ-アルミナ繊維、窒化硼素繊維、窒化ケイ素繊維、硼素繊維、チタン酸カリ繊維、等の鉱物繊維、チタン繊維等の金属繊維状物質が挙げられ、これらを1種又は2種以上用いることができる。中でも、ガラス繊維が好ましい。
 ガラス繊維の上市品の例としては、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-790DE、平均繊維径:6μm)、オーウェンス コーニング ジャパン合同会社製、チョップドガラス繊維(CS03DE 416A、平均繊維径:6μm)、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-747H、平均繊維径:10.5μm)、日本電気硝子(株)製、チョップドガラス繊維(ECS03T-747、平均繊維径:13μm)、日東紡績(株)製、異形断面チョップドストランド CSG 3PA-830(長径28μm、短径7μm)、日東紡績(株)製、異形断面チョップドストランド CSG 3PL-962(長径20μm、短径10μm)等が挙げられる。
 繊維状無機充填剤は、一般的に知られているエポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物、脂肪酸等の各種表面処理剤により表面処理されていてもよい。表面処理により、PAS樹脂との密着性を向上させることができる。表面処理剤は、材料調製の前に予め繊維状無機充填剤に適用して表面処理又は収束処理を施しておくか、又は材料調製の際に同時に添加してもよい。
 繊維状無機充填剤の繊維径は、特に限定されないが、初期形状(溶融混練前の形状)において、例えば5μm以上30μm以下とすることができる。ここで、繊維状無機充填剤の繊維径とは、繊維状無機充填剤の繊維断面の長径をいう。
 粉粒状無機充填剤としては、タルク(粒状)、シリカ、石英粉末、ガラスビーズ、ガラス粉、ケイ酸カルシウム、ケイ酸アルミニウム、珪藻土等のケイ酸塩、酸化鉄、酸化亜鉛、アルミナ(粒状)等の導電性を有しない金属酸化物、炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩、硫酸カルシウム、硫酸バリウム等の金属硫酸塩、その他炭化ケイ素、窒化ケイ素、窒化ホウ素、窒化アルミニウム等の窒化物、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;半導体材料(Si、Ge、Se、Te等の元素半導体;酸化物半導体等の化合物半導体等)を用いた充填剤等が挙げられ、これらを1種又は2種以上用いることができる。中でも、ガラスビーズ、炭酸カルシウムが好ましい。
 炭酸カルシウムの上市品の例としては、東洋ファインケミカル(株)製、ホワイトンP-30(平均粒子径(50%d):5μm)等が挙げられる。また、ガラスビーズの上市品の例としては、ポッターズ・バロティーニ(株)製、EGB731A(平均粒子径(50%d):20μm)、ポッターズ・バロティーニ(株)製、EMB-10(平均粒子径(50%d):5μm)等が挙げられる。
 粉粒状無機充填剤も、繊維状無機充填剤と同様に表面処理されていてもよい。
 板状無機充填剤としては、例えば、ガラスフレーク、タルク(板状)、マイカ、カオリン、クレイ、アルミナ(板状)等が挙げられ、これらを1種又は2種以上用いることができる。中でも、ガラスフレーク、タルクが好ましい。
 ガラスフレークの上市品の例としては、日本板硝子(株)製、REFG-108(平均粒子径(50%d):623μm)、(日本板硝子(株)製、ファインフレーク(平均粒子径(50%d):169μm)、日本板硝子(株)製、REFG-301(平均粒子径(50%d):155μm)、日本板硝子(株)製、REFG-401(平均粒子径(50%d):310μm)等が挙げられる。
 タルクの上市品の例としては、松村産業(株)製 クラウンタルクPP、林化成(株)製 タルカンパウダーPKNN等が挙げられる。
 板状無機充填剤も、繊維状無機充填剤と同様に表面処理されていてもよい。
 本実施形態においては、以上の無機充填剤の中でも、ガラス繊維、ガラスビーズ、ガラスフレーク、炭酸カルシウム及びタルクからなる群より選ばれる1種又は2種以上であることが好ましい。また、機械的物性の向上の観点から、無機充填剤は、PAS樹脂100質量部に対して15~200質量部含むことが好ましく、25~150質量部含むことがより好ましく、30~110質量部含むことが更に好ましい。
 以上のように、本実施形態のPAS樹脂組成物は非導電性無機充填剤を含むことが好ましいが、導電性無機充填剤であっても、本実施形態の効果を妨げない範囲で含んでいてもよい。本実施形態のPAS樹脂組成物が導電性無機充填剤を含む場合、導電性無機充填剤の含有量は、成形品が電気絶縁性を示し得る量で用いることが好ましい。具体的には、IEC60093に準拠して測定される成形品の常温(23℃)における体積固有抵抗を1×1014Ω・cm以上に保持し得る量である。尚、「導電性無機充填剤」の用語は当業者にはよく知られているが、カーボン系充填剤(カーボンブラック、炭素繊維、黒鉛等)、金属系充填剤(SUS繊維等の導電性を有する金属繊維、導電性を有する金属又は金属酸化物粉末等)、金属表面コート充填剤等の導電性を有する無機充填剤を意味する。一実施形態では、これらの導電性無機充填剤の含有量が、例えば、本実施形態のPAS樹脂組成物全体の10質量%以下であり、6質量%以下が好ましく、4質量%以下が更に好ましい。尚、導電性無機充填剤が導電性を発現し得る含有量は、導電性無機充填剤の種類・形状・導電性によっても異なる場合があるため、上記の含有量以上であっても良い場合もある。
[他の成分]
 本実施形態においては、その効果を害さない範囲で、上記各成分の他、その目的に応じた所望の特性を付与するために、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の添加剤、即ち、エラストマー、離型剤、潤滑剤、可塑剤、難燃剤、染料や顔料等の着色剤、結晶化促進剤、結晶核剤、各種酸化防止剤、熱安定剤、耐候性安定剤、腐食防止剤等を配合してもよい。尚、本実施形態のPAS樹脂組成物によりバリの発生を抑えることができるが、必要に応じてアルコキシシラン化合物等のバリ抑制剤を併用してもよい。
 本実施形態のPAS樹脂組成物を用いて成形品を作製する方法としては特に限定はなく、公知の方法を採用することができる。例えば、本実施形態のPAS樹脂組成物を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。
 本実施形態のPAS樹脂組成物を成形してなる成形品としては、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料、水廻り関連部品材料等が挙げられる。具体的には、自動車の各種冷却系部品、イグニッション関連部品、ディストリビューター部品、各種センサー部品、各種アクチュエーター部品、スロットル部品、パワーモジュール部品、ECU部品、各種コネクター部品、配管継手(管継手)、ジョイント等が挙げられる。
 また、その他の用途として、例えば、LED、センサー、ソケット、端子台、プリント基板、モーター部品、ECUケース等の電気・電子部品、照明部品、テレビ部品、炊飯器部品、電子レンジ部品、アイロン部品、複写機関連部品、プリンター関連部品、ファクシミリ関連部品、ヒーター、エアコン用部品等の家庭・事務電気製品部品に用いることができる。
 以下に、実施例により本実施形態を更に具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。尚、特に断りがない限り、原料は市販品を用いた。
[実施例1~6、比較例1~6] ~非導電性無機充填剤含有~
 各実施例・比較例において、表1及び表2に示す各原料成分をドライブレンドした後、シリンダー温度320℃の二軸押出機に投入して(ガラス繊維は押出機のサイドフィード部より別添加)、溶融混練し、ペレット化した。尚、表1及び表2において、各成分の数値は質量部を示す。
 また、使用した各原料成分の詳細を以下に示す。
(1)PAS樹脂
 ・PPS樹脂:(株)クレハ製、フォートロンKPS(溶融粘度:30Pa・s(せん断速度:1200sec-1、310℃))
(PPS樹脂の溶融粘度の測定)
 上記PPS樹脂の溶融粘度は以下のようにして測定した。
 (株)東洋精機製作所製キャピログラフを用い、キャピラリーとして1mmφ×20mmLのフラットダイを使用し、バレル温度310℃、せん断速度1200sec-1での溶融粘度を測定した。
(2)カーボンナノチューブ(CNT)
 ・CNT1:LG化学社製、CP1002M(平均径:9nm、平均長さ:19000nm、アスペクト比:2111)
 ・CNT2:NANOCYL社製、NC7000(平均径:9.5nm、平均長さ:1500nm、アスペクト比:158)
 ・CNT3:LG化学社製、BT1003M(平均径:13.1nm、平均長さ:12000nm、アスペクト比:916)
(3)非導電性無機充填剤
 ・ガラス繊維:オーウェンス コーニング  ジャパン合同会社製、チョップドストランド、繊維径:10.5μm、長さ3mm
[評価]
 得られた各実施例・比較例のペレットを用いて以下の評価を行った。
(1)バリ長
 一部に20μmの金型間隙を有するバリ測定部が外周に設けられている円盤状キャビティーの金型を用いて、シリンダー温度320℃、金型温度150℃で、キャビティーが完全に充填するのに必要な最小圧力で射出成形した。そして、その部分に発生するバリ長さを写像投影機にて拡大して測定した。測定結果を表1及び表2に示す。
(2)樹脂組成物の溶融粘度
 (株)東洋精機製作所製キャピログラフを用い、キャピラリーとして1mmφ×20mmLのフラットダイを使用し、バレル温度310℃、せん断速度1000sec-1での溶融粘度(MV)を測定した。測定結果を表1及び表2に示す。溶融粘度が500Pa・s以下の場合に流動性が優れていると言える。
(3)絶縁性
 射出成形機(住友重機械工業(株)製、SE100D)により、シリンダー温度320℃、金型温度150℃で縦100mm、横100mm、厚み3mmの試験片(平板)を作製し、IEC60093に準拠して、印加電圧500V、23℃で体積固有抵抗を測定した。体積固有抵抗が1014Ω・cm以上の場合を〇とし、1014Ω・cm未満の場合を×として評価した。評価結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1より、CNTの添加量が等しい実施例1と、比較例1~2とを比較すると、実施例1においては、比較例1及び2と比較してバリ長が顕著に抑えられていることが分かる。
 また、実施例1と同じCNTを使用し、当該CNTの添加量を実施例1よりも多くした実施例3~5は、実施例1よりもバリ長が抑えられている。しかも、CNTの添加量が多くなるほどバリ長がより抑えられている。その上、CNTの添加量にかかわらず、樹脂組成物の溶融粘度に大きな変化は生じていない。同様に、実施例2及び6を比較すると、CNTの添加量が多い実施例6の方が実施例2よりもバリ長が抑えられ、樹脂組成物の溶融粘度はほぼ同等である。これらから、本実施形態に係る所定のCNTを添加することで、樹脂組成物の溶融粘度に大きな変化を伴うことなくバリ長を抑えることができることが分かる。
 尚、実施例1と同じCNTを使用し、当該CNTの添加量を更に多くした比較例3は、実施例1~6及び比較例4~5と比較してバリ長は抑えられているが絶縁性を有しない。
 以上より、所定の長さで所定のアスペクト比を有するCNTを含むことにより、バリの発生を抑えつつ、絶縁性を確保できることが分かる。

Claims (3)

  1.  温度310℃及びせん断速度1200sec-1で測定した溶融粘度が5~500Pa・sのポリアリーレンサルファイド樹脂100質量部に対して、長さが10000nm超3000000nm以下であり、アスペクト比が2000超500000以下のカーボンナノチューブを0.05~0.5質量部を含み、かつ、絶縁性を有する、ポリアリーレンサルファイド樹脂組成物。
  2.  前記ポリアリーレンサルファイド樹脂100質量部に対して、非導電性無機充填剤5~250質量部を更に含む、請求項1に記載のポリアリーレンサルファイド樹脂組成物。
  3.  前記非導電性無機充填剤が、ガラス繊維、ガラスビーズ、ガラスフレーク、炭酸カルシウム及びタルクからなる群より選ばれる1種又は2種以上である、請求項2に記載のポリアリーレンサルファイド樹脂組成物。
PCT/JP2021/003887 2020-02-14 2021-02-03 ポリアリーレンサルファイド樹脂組成物 WO2021161864A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180014105.0A CN115135722B (zh) 2020-02-14 2021-02-03 聚芳硫醚树脂组合物
KR1020227028486A KR102644628B1 (ko) 2020-02-14 2021-02-03 폴리아릴렌설파이드 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020023401A JP6976366B2 (ja) 2020-02-14 2020-02-14 ポリアリーレンサルファイド樹脂組成物
JP2020-023401 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021161864A1 true WO2021161864A1 (ja) 2021-08-19

Family

ID=77293058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003887 WO2021161864A1 (ja) 2020-02-14 2021-02-03 ポリアリーレンサルファイド樹脂組成物

Country Status (4)

Country Link
JP (1) JP6976366B2 (ja)
KR (1) KR102644628B1 (ja)
CN (1) CN115135722B (ja)
WO (1) WO2021161864A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117715984A (zh) * 2021-07-30 2024-03-15 宝理塑料株式会社 聚芳硫醚树脂组合物以及嵌入成型品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346143A (ja) * 2003-05-21 2004-12-09 Mitsui Chemicals Inc 導電性プラスチックフィルム
JP2007039567A (ja) * 2005-08-03 2007-02-15 Kri Inc 高周波電子部品用複合成形体及び高周波電子部品用複合成形体製造用組成物
JP2009167369A (ja) * 2008-01-21 2009-07-30 Tokyo Metropolitan Industrial Technology Research Institute カーボンナノチューブ含有樹脂組成物、硬化物、成形体及びカーボンナノチューブ含有樹脂組成物の製造方法
WO2009125556A1 (ja) * 2008-04-09 2009-10-15 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物及び有機溶剤に接するポリアリーレンサルファイド樹脂成形品
JP2011195756A (ja) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 樹脂組成物およびその製造方法
JP2017503045A (ja) * 2013-12-18 2017-01-26 ティコナ・エルエルシー 管状用途において用いるための伝導性熱可塑性組成物
JP2018512717A (ja) * 2015-02-03 2018-05-17 ジェネラル ナノ、エルエルシーGeneral Nano,LLC 導電性加熱素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146955A (ja) 1987-12-03 1989-06-08 Kureha Chem Ind Co Ltd ポリフェニレンスルフィド樹脂組成物
JPH0621169A (ja) 1992-07-03 1994-01-28 Seiko Epson Corp ウェハのプローバ装置とそのプロービング方法及びicパッケージのプローバ装置とそのプロービング方法
JP5276247B2 (ja) * 2004-02-18 2013-08-28 東レ株式会社 ポリアリーレンスルフィド樹脂組成物の製造方法
JP4684629B2 (ja) 2004-11-18 2011-05-18 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物
EP2562221A4 (en) * 2010-04-23 2013-10-30 Polyplastics Co POLYARYLENE SULFIDE RESIN COMPOSITION
JP5273321B1 (ja) * 2011-09-30 2013-08-28 東レ株式会社 ポリフェニレンスルフィド樹脂組成物、その製造方法、およびその成形体
CN109912973A (zh) * 2019-01-25 2019-06-21 深圳市高科塑化有限公司 一种玻璃纤维增强pps-cnt导电复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346143A (ja) * 2003-05-21 2004-12-09 Mitsui Chemicals Inc 導電性プラスチックフィルム
JP2007039567A (ja) * 2005-08-03 2007-02-15 Kri Inc 高周波電子部品用複合成形体及び高周波電子部品用複合成形体製造用組成物
JP2009167369A (ja) * 2008-01-21 2009-07-30 Tokyo Metropolitan Industrial Technology Research Institute カーボンナノチューブ含有樹脂組成物、硬化物、成形体及びカーボンナノチューブ含有樹脂組成物の製造方法
WO2009125556A1 (ja) * 2008-04-09 2009-10-15 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物及び有機溶剤に接するポリアリーレンサルファイド樹脂成形品
JP2011195756A (ja) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc 樹脂組成物およびその製造方法
JP2017503045A (ja) * 2013-12-18 2017-01-26 ティコナ・エルエルシー 管状用途において用いるための伝導性熱可塑性組成物
JP2018512717A (ja) * 2015-02-03 2018-05-17 ジェネラル ナノ、エルエルシーGeneral Nano,LLC 導電性加熱素子

Also Published As

Publication number Publication date
CN115135722B (zh) 2023-05-05
KR102644628B1 (ko) 2024-03-08
JP6976366B2 (ja) 2021-12-08
CN115135722A (zh) 2022-09-30
JP2021127403A (ja) 2021-09-02
KR20220141301A (ko) 2022-10-19

Similar Documents

Publication Publication Date Title
KR101457016B1 (ko) 내습성 및 열전도성이 우수한 열가소성 수지 조성물 및 성형품
EP2209845B1 (en) Thermally conductive plastic resin composition
US20090152491A1 (en) Thermally conductive resin compositions
JP2008260830A (ja) 伝熱性樹脂組成物
JP4744911B2 (ja) 高熱伝導性樹脂組成物
JP5618039B2 (ja) 熱伝導性樹脂組成物およびそれからなる成形体
JP6976366B2 (ja) ポリアリーレンサルファイド樹脂組成物
KR101355026B1 (ko) 성형성 및 열전도성이 우수한 열가소성 수지 조성물
JP4777080B2 (ja) 箱形形状を有する成形品用ポリアリーレンサルファイド樹脂組成物及び箱形形状を有する成形品
JP7122491B2 (ja) ポリアリーレンサルファイド樹脂組成物のバリ抑制方法
JP2021105112A (ja) インサート成形品用ポリアリーレンサルファイド樹脂組成物及びインサート成形品
CN114644830A (zh) 聚芳硫醚树脂组合物
JP2007106854A (ja) 熱伝導性樹脂組成物
JP2878921B2 (ja) ポリアリーレンサルファイド樹脂組成物
WO2013161844A1 (ja) 高熱伝導性樹脂組成物
JP4813196B2 (ja) 円筒形状部位保有成形品用ポリアリーレンサルファイド樹脂組成物及び円筒形状部位保有成形品
JP2022003107A (ja) ポリアリーレンサルファイド樹脂組成物
JP7382541B2 (ja) ポリアリーレンサルファイド樹脂組成物及びインサート成形品
WO2021161996A1 (ja) ポリアリーレンサルファイド樹脂組成物の製造方法
JP7309790B2 (ja) ポリアリーレンサルファイド樹脂組成物の製造方法
KR101405264B1 (ko) 열전도성 및 휨 특성이 우수한 전기 전도성 열가소성 수지 조성물
WO2021161995A1 (ja) ポリアリーレンサルファイド樹脂組成物の製造方法
JP4381544B2 (ja) ポリアリーレンサルファイド樹脂組成物
KR101405258B1 (ko) 열전도성 및 휨 특성이 우수한 전기 절연성 열가소성 수지 조성물
JP2023073601A (ja) ポリアリーレンスルフィド組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753197

Country of ref document: EP

Kind code of ref document: A1