WO2021156913A1 - コーヒー飲料製造装置及びコーヒー飲料製造プログラム - Google Patents

コーヒー飲料製造装置及びコーヒー飲料製造プログラム Download PDF

Info

Publication number
WO2021156913A1
WO2021156913A1 PCT/JP2020/003924 JP2020003924W WO2021156913A1 WO 2021156913 A1 WO2021156913 A1 WO 2021156913A1 JP 2020003924 W JP2020003924 W JP 2020003924W WO 2021156913 A1 WO2021156913 A1 WO 2021156913A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
hot water
temperature
extraction
coffee beverage
Prior art date
Application number
PCT/JP2020/003924
Other languages
English (en)
French (fr)
Inventor
純也 浦
剛平 太田
隆文 高荷
Original Assignee
バルミューダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バルミューダ株式会社 filed Critical バルミューダ株式会社
Priority to CN202080095144.3A priority Critical patent/CN115038369B/zh
Priority to PCT/JP2020/003924 priority patent/WO2021156913A1/ja
Priority to US17/796,735 priority patent/US20230063928A1/en
Priority to KR1020227030338A priority patent/KR20220134631A/ko
Priority to JP2021575108A priority patent/JP7292758B2/ja
Priority to TW109143339A priority patent/TWI855196B/zh
Publication of WO2021156913A1 publication Critical patent/WO2021156913A1/ja
Priority to JP2023089431A priority patent/JP7455438B2/ja
Priority to JP2024034216A priority patent/JP2024053030A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/52Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus
    • A47J31/525Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus the electronic control being based on monitoring of specific process parameters
    • A47J31/5253Alarm-clock-controlled mechanisms for coffee- or tea-making apparatus ; Timers for coffee- or tea-making apparatus; Electronic control devices for coffee- or tea-making apparatus the electronic control being based on monitoring of specific process parameters of temperature
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/54Water boiling vessels in beverage making machines
    • A47J31/56Water boiling vessels in beverage making machines having water-level controls; having temperature controls
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/02Coffee-making machines with removable extraction cups, to be placed on top of drinking-vessels i.e. coffee-makers with removable brewing vessels, to be placed on top of beverage containers, into which hot water is poured, e.g. cafe filter
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/4403Constructional details
    • A47J31/4475Hot water outlets for drip coffee makers

Definitions

  • the present invention relates to a coffee beverage production apparatus and a coffee beverage production program, and more particularly to a drip type coffee beverage production apparatus and a coffee beverage production program for extracting a coffee beverage by a drip type.
  • a drip-type coffee beverage manufacturing apparatus for example, Patent Documents 1 and 2).
  • the drip type extracts coffee beverages from the coffee raw material by discharging hot water to the extraction unit (dripper) in which a filter (paper filter or flannel filter) containing coffee raw material such as coffee powder is set. It is a method.
  • the user simply fills the water tank of the coffee beverage brewing device with water, sets the filter containing the coffee raw material in the dripper, and presses the start switch to start the processing. Coffee beverages can be extracted.
  • the coffee beverage manufacturing apparatus disclosed in Patent Documents 1 and 2 has a bypass pipe for directly discharging hot water to a coffee storage unit (server) that stores the extracted coffee beverage without using a dripper. Have. By discharging hot water to the server via the bypass pipe, the concentration of coffee beverages can be adjusted.
  • the conventional coffee beverage manufacturing apparatus is often controlled to extract the coffee beverage at a constant extraction temperature.
  • Coffee beverage enthusiasts have a wide variety of taste preferences, and some prefer clearer coffee beverages with less astringency and harshness.
  • An object of the present invention is to provide a coffee beverage production apparatus capable of extracting a coffee beverage having a clearer taste with less astringency and harshness, and a production program thereof.
  • the hot water is set to the target temperature based on the heating unit that heats the water pumped by the pump to make hot water, the temperature detection unit that detects the temperature of the hot water, and the detection temperature of the temperature detection unit.
  • the coffee beverage manufacturing apparatus is characterized in that the target temperature in the rear period, which is the period of the extraction step following the front period, is lower than the target temperature in the period.
  • the time average value of the target temperature in the posterior period is lower than the time average value of the target temperature in the posterior period.
  • the front side period may be the first half period of the extraction step, and the rear side period may be the second half period of the extraction step.
  • a flow path selection unit for selecting the flow path through which the hot water flows is further provided, and before or after the extraction step executed when the flow path selection unit selects the first flow path.
  • the flow path selection unit selects the second flow path to execute the hot water addition step in which the hot water is discharged to the coffee storage unit.
  • the selection also includes the meaning of selecting as the main distribution destination of hot water.
  • the target temperature in the hot water step is higher than the target temperature in the rear period.
  • the target temperature in the hot water step is higher than the target temperature in the front period.
  • the flow path selection unit selects the first flow path, and the temperature control unit controls the heating unit so that the water becomes steam, and the steam controls the heating unit. It is advisable to carry out the first flow path preheating step of preheating the first flow path.
  • the flow path selection unit selects the second flow path, and the temperature control unit controls the heating unit so that the water becomes steam, and the steam controls the heating unit. It is advisable to carry out the second flow path preheating step of preheating the second flow path.
  • the hot water is generated based on the temperature detection unit that detects the temperature of the hot water obtained by heating the water pumped by the pump by the heating unit and the detection temperature of the temperature detection unit. It functions as a temperature control unit that controls the heating unit so as to reach the target temperature, and the hot water supplied by the pump is discharged to the extraction unit in which the coffee raw material is set to extract the coffee beverage.
  • a coffee beverage production program characterized in that the target temperature in the posterior period, which is the period of the extraction step following the anterior period, is lower than the target temperature in the anterior period of the extraction step. be.
  • a coffee beverage production apparatus capable of extracting a coffee beverage having a clearer taste with less astringency and harshness, and a production program thereof.
  • FIG. 1 is a functional block diagram of the coffee beverage manufacturing apparatus 10 according to the present embodiment.
  • the coffee beverage manufacturing apparatus 10 is a drip-type apparatus for extracting coffee beverages.
  • the actual extraction operation is the coffee beverage stored in the device so that the user can move the device by performing only the minimum operations such as the operation mode and the number of cups. It is done automatically according to the manufacturing program.
  • the coffee beverage manufacturing apparatus 10 may be a relatively small one installed in a home or a workplace, or may be a relatively large one installed in a coffee shop or the like.
  • the water tank 12 is a tank for storing water, for example, made of resin or the like.
  • the water tank 12 can also be made removable from the device body. Water supplied by the user is stored in the water tank 12.
  • the pump 14 is, for example, an electric pump such as a rotary pump that pumps water by rotating a motor or a vibration pump that is driven by electromagnetic force.
  • a rotary pump is used as the pump 14.
  • the pump 14 as the pumping unit is controlled by the pump control unit 40, which will be described later, and pumps the water stored in the water tank 12.
  • the pump 14 pumps water from the water tank 12 to the upstream flow path 16.
  • the upstream side flow path 16 is a water (or hot water) flow path extending from the pump 14 to the solenoid valve 20 described later.
  • the heater 18 as a heating unit is provided in the middle of the upstream flow path 16 and heats the water pumped by the pump 14 to make hot water or steam.
  • the water before heating by the heater 18 is described as water, and the water heated by the heater 18 is described as hot water.
  • the heater 18 operates under the control of the temperature control unit 42, which will be described later.
  • the solenoid valve 20 includes, for example, a solenoid portion having a coil and a valve portion. By driving the valve portion by flowing an electric current through the coil, the flow path after the solenoid valve 20 of the hot water flowing through the upstream side flow path 16 is switched.
  • the solenoid valve 20 operates under the control of the flow path selection unit 44, which will be described later.
  • the solenoid valve 20 allows the inflow of hot water from the upstream side flow path 16 to the main flow path 22, and prohibits the inflow of hot water from the upstream side flow path 16 into the bypass flow path 24.
  • the solenoid valve 20 may take a state of selecting both flow paths that allows the inflow of hot water from the upstream side flow path 16 into both the main flow path 22 and the bypass flow path 24. It may be possible. In such a state of selecting both flow paths, it is desirable that the amount of hot water flowing to the main flow path 22 and the amount of hot water flowing through the bypass flow path 24 can be adjusted. Further, the solenoid valve 20 may be capable of taking a flow path non-selection state in which the inflow of hot water from the upstream side flow path 16 to both the main flow path 22 and the bypass flow path 24 is prohibited.
  • the main flow path 22 as the first flow path is a flow path through which hot water flows, which extends from the solenoid valve 20 to the dripper 26 as the extraction unit.
  • the opening of the main flow path 22 on the dripper 26 side is located above the dripper 26. As a result, the hot water flowing through the upstream side flow path 16 and the main flow path 22 is discharged to the dripper 26 from the opening.
  • the bypass flow path 24 as the second flow path is a flow path through which hot water flows, which extends from the solenoid valve 20 to the server 28 as the coffee storage unit.
  • the opening on the server 28 side of the bypass flow path 24 is located above the server 28 mounted on the server stand 30.
  • the hot water flowing through the upstream side flow path 16 and the bypass flow path 24 is discharged to the server 28 from the opening. That is, the hot water from the bypass flow path 24 is discharged to the server 28 without passing through the dripper 26.
  • the dripper 26 has a funnel-shaped shape with a large opening at the top and a small opening at the bottom.
  • a filter such as a paper filter or a flannel filter is set in the dripper 26 by the user.
  • the upper part of the filter is open according to the shape of the dripper 26.
  • a coffee raw material such as coffee powder is set by the user from the opening at the top of the filter.
  • the server 28 stores the coffee beverage extracted by the dripper 26.
  • the server 28 is detachably mounted on the server stand 30.
  • the server stand 30 is located below the dripper 26. Therefore, when the server 28 is placed on the server stand 30, the coffee beverage extracted by the dripper 26 and dropped from the dripper 26 is stored inside the server 28 from the introduction port provided on the upper side of the server 28. ..
  • the server base 30 is also located below the opening on the server 28 side of the bypass flow path 24. That is, by mounting the server 28 on the server stand 30, the server stand is arranged at a position where the hot water discharged from the opening on the server 28 side of the bypass flow path 24 is also stored inside the server 28. ing.
  • the storage unit 32 includes, for example, a ROM and a RAM.
  • the storage unit 32 stores a coffee beverage manufacturing program for operating the controller 38 described later.
  • the manufacturing program may be made updatable via a communication medium or a storage medium.
  • the input unit 34 includes, for example, a button and a touch panel.
  • the input unit 34 is used to input the user's instruction to the coffee beverage manufacturing apparatus 10.
  • the input unit 34 may be operably provided on the surface of the coffee beverage manufacturing apparatus 10, or may be operated remotely by a remote controller or the like.
  • the user uses the input unit 34 to instruct the operation mode of the coffee beverage production apparatus 10, the number of cups, and the start of the coffee production process.
  • the temperature sensor 36 as a temperature detection unit includes, for example, a thermistor.
  • the temperature sensor 36 is provided to directly or indirectly detect the temperature of hot water.
  • the temperature sensor 36 detects the temperature of the hot water flowing through the upstream flow path 16.
  • the temperature sensor 36 detects the temperature of the hot water immediately after being heated by the heater 18.
  • the controller 38 includes, for example, a microcomputer and the like. As shown in FIG. 1, the controller 38 functions as a pump control unit 40, a temperature control unit 42, a flow path selection unit 44, and an operation mode selection unit 46 according to the coffee beverage production program stored in the storage unit 32.
  • the pump control unit 40 controls the rotation speed of the motor of the pump 14 to control the pumping of water from the water tank 12 to the upstream flow path 16. As the rotation speed of the motor of the pump 14 increases, a larger amount of water is pumped from the water tank 12 to the upstream flow path 16.
  • the temperature control unit 42 controls the heater 18 to control the temperature of the hot water. Specifically, the temperature control unit 42 controls the heater 18 so that the temperature of the hot water becomes an individual target temperature set by the coffee beverage production program based on the temperature detected by the temperature sensor 36. In the present embodiment, the operation of the temperature control unit 42 will be described assuming that the heater 18 can take only one of the states of ON (heating water) and OFF (not heating water). The temperature control unit 42 controls the temperature of the hot water to be the individual target temperature by adjusting the time when the heater 18 is ON (the time when the heater 18 is OFF).
  • control method of the heater 18 of the temperature control unit 42 in the present embodiment is an example, and various temperature control methods are adopted depending on the type of the heater 18 and the like as long as the temperature of the hot water is controlled to be the target temperature. be able to.
  • the temperature of the hot water flowing through the upstream flow path 16 is detected, and the detected temperature does not exactly match the temperature inside the dripper 26. Therefore, individual target temperatures are set in consideration of a predetermined external environment (temperature, atmospheric pressure, etc.) so that the dripper 26 reaches the target temperature.
  • the flow path selection unit 44 selects the flow path through which hot water from the upstream side flow path 16 flows from the main flow path 22 and the bypass flow path 24.
  • the flow path selection unit 44 switches the state of the solenoid valve 20 between the main flow path selection state and the bypass flow path selection state, so that the main flow path 22 and the bypass flow path 24 are the flow paths through which hot water flows. Select one of.
  • the selection of the main flow path 22 and the bypass flow path 24 is an electromagnetic valve.
  • the flow path selection unit 44 can select both the main flow path 22 and the bypass flow path 24 as the flow path through which the hot water flows. In this case, it is desirable that the flow path selection unit 44 can adjust the amount of hot water flowing to the main flow path 22 and the amount of hot water flowing through the bypass flow path 24. Further, the flow path selection unit 44 can select both flow path non-selection states in which neither the main flow path 22 nor the bypass flow path 24 is selected as the flow path through which the hot water flows.
  • the operation mode selection unit 46 selects the operation mode of the coffee beverage production apparatus 10 from a plurality of operation modes predetermined by the coffee beverage production program.
  • the type of coffee beverage to be extracted is changed according to the operation mode.
  • three modes are prepared in advance: a normal mode for extracting a coffee beverage having a normal concentration, an American mode for extracting a coffee beverage thinner than the normal mode, and an ice coffee mode for extracting a coffee beverage for iced coffee.
  • the operation mode selection unit 46 selects an operation mode from these according to an instruction from the user prior to the coffee production process.
  • the operation mode is not limited to this, and other operation modes may be prepared.
  • the outline of the configuration of the coffee beverage manufacturing apparatus 10 is as described above. Subsequently, with reference to FIG. 2, the flow of the coffee production process in the coffee beverage production apparatus 10 and the details of the processing of each part of the coffee beverage production apparatus 10 will be described.
  • FIG. 2 shows, taking the case of two cups extraction in the normal mode as an example, the target temperature, the hot water temperature which is the detection temperature of the temperature sensor 36, and the temperature control unit 42 in each process included in the coffee manufacturing process are transmitted to the heater 18.
  • the horizontal axis of each graph included in FIG. 2 represents time, and the vertical axis represents each value.
  • the control timing and control amount of each control unit are stored in the storage unit 32 as parameters in advance so that the optimum control is performed according to the operation mode and the number of cups to be extracted, and the operation mode and the number of cups are stored by the coffee beverage production program. It is set as appropriate according to the above.
  • the target temperature at each timing in each process shown in FIG. 2 is preset in the coffee production processing program.
  • the heater control signal output by the temperature control unit 42 is determined based on the detection temperature (that is, the hot water temperature) of the temperature sensor 36 and the target temperature. Therefore, even if the target temperature is the same, the graph of the heater control signal can change according to the hot water temperature that can fluctuate depending on the outside air temperature and the like. Further, the pump control signal and the selected flow path in each process shown in FIG. 2 are also preset in the coffee production processing program.
  • the coffee production process includes a heater preheating step, a main flow path preheating step, a steaming step, an extraction step, a bypass flow path preheating step, and a hot water heating step.
  • each process is sequentially executed in the above order according to the operation of the coffee production processing program.
  • the user fills the water tank 12 with water, sets the filter and coffee raw material in the dripper 26, mounts the server 28 on the server stand 30, inputs the extraction conditions such as the operation mode from the input unit 34, and inputs the extraction conditions such as the operation mode.
  • the coffee making process needs to be started.
  • the coffee beverage manufacturing apparatus 10 automatically (that is, does not require user operation) and sequentially executes each of the above-mentioned steps from the heater preheating step.
  • the heater preheating step is a step of preheating the heater 18.
  • the temperature control unit 42 controls the heater 18 to maintain the “ON” state for a predetermined time.
  • the pump control unit 40 controls the rotation amount of the pump 14 to “0”. It is conceivable that the heater 18 is preheated so that the water remaining in the upstream flow path 16 becomes hot water and moves to the downstream side.
  • the flow path selection unit 44 controls the solenoid valve 20.
  • the flow path selection unit 44 controls the solenoid valve 20 to take the bypass flow path selection state. As a result, the water (hot water) remaining in the upstream flow path 16 is discharged to the server 28. If it is not desired to discharge the water (hot water) remaining in the upstream flow path 16 to the server 28, the flow path selection unit 44 controls the solenoid valve 20 so as to take the flow path non-selection state. It may be.
  • the main flow path preheating step as the first flow path preheating step is a step of preheating the main flow path 22 prior to the subsequent steaming step or extraction step.
  • a very small amount of water pumped by the pump 14 is converted into steam by the heater 18, and the steam is circulated through the main flow path 22 to preheat the main flow path 22. It is possible to preheat the main flow path 22 by flowing hot water into the main flow path 22, but if this is done, the hot water is discharged to the dripper 26 and unnecessary hot water is discharged to the dripper 26 in the main flow path preheating step. obtain.
  • by preheating the main flow path 22 with steam it is possible to prevent unnecessary hot water from being discharged to the dripper 26.
  • the temperature control unit 42 controls the heater 18 so that the water pumped by the pump 14 becomes steam. As shown in the graph showing the hot water temperature in FIG. 2, in the main flow path preheating step, the hot water temperature exceeds "100 ° C.”, that is, it becomes steam. In the present embodiment, since it is possible for the heater 18 to apply enough heat to turn water into steam by preheating in the heater preheating step, the heater 18 is once controlled in the main flow path preheating step. Is "OFF". If the heating amount of the heater 18 for converting water into steam is insufficient after the heater preheating step, the temperature control unit 42 maintains the "ON" state of the heater 18 even in the main flow path preheating step. Will be done.
  • the flow path selection unit 44 selects the main flow path 22 in order to allow water vapor to flow into the main flow path 22.
  • the flow path selection unit 44 controls the solenoid valve 20 to take the main flow path selection state.
  • the flow path selection unit 44 may be controlled to select both the main flow path 22 and the bypass flow path 24 at this time.
  • the pump 14 in order to allow water vapor to flow into the main flow path 22, the pump 14 is controlled to rotate at a lower rotation speed than other subsequent steps, and the main flow path 22 is controlled. Water is pumped to the upstream flow path 16 to obtain a sufficient amount of water vapor to preheat the water vapor.
  • the steaming step is a step of pouring a predetermined amount of hot water into the coffee raw material set in the dripper 26 and taking a certain waiting time before moving to the extraction step.
  • the temperature control unit 42 controls the heater 18 so that the temperature of the hot water becomes a temperature suitable for steaming.
  • the target temperature of the temperature control unit 42 in the steaming step is slightly lower than the target temperature (target temperature TTa in FIG. 2) in the pre-extraction period, which is the front period of the subsequent extraction step.
  • the target temperature in the steaming step is set to the temperature in the first half of 90 ° C.
  • the pump control unit 40 selects the main flow path 22 by the flow path selection unit 44, and then discharges a predetermined amount of hot water required for steaming from the main flow path 22 to the dripper 26 in a predetermined time.
  • the rotation speed of the pump 14 is controlled.
  • the pump control unit 40 sets the amount of rotation of the pump 14 to "0" and stops the discharge of hot water from the pump 14.
  • the coffee raw material is steamed after waiting for several tens of seconds (for example, 20 to 60 seconds). During that time, the temperature of the hot water in the upstream flow path 16 is maintained by the residual heat.
  • the extraction step in the present embodiment is a step of extracting a coffee beverage by discharging hot water to the coffee raw material for a predetermined time.
  • hot water is intermittently discharged to the coffee raw material in the extraction step.
  • the extraction step is divided into a plurality of periods.
  • the extraction step is divided into three periods: an early extraction period, which is a front period, and a middle period and a late extraction period, which are posterior periods following the anterior period.
  • the extraction step may be composed of two periods or four or more periods as described later.
  • the target temperature of the temperature control unit 42 becomes lower as time passes from the start of extraction. That is, the temperature control unit 42 controls the heater 18 so that the temperature of the hot water becomes lower as time passes from the start of extraction. Therefore, ON / OFF control of the heater 18 is performed even in the process of lowering the temperature.
  • the target temperature TTb in the middle stage of extraction and the target temperature TTc in the latter stage of extraction are lower than the target temperature TTa in the first stage of extraction. Further, the target temperature TTc in the latter stage of extraction is lower than the target temperature TTb in the middle stage of extraction.
  • the target temperature TTa in the first half of extraction is about 95 ° C
  • the target temperature TTb in the middle of extraction is about 90 ° C
  • the target temperature TTc in the second half of extraction is about 80 ° C. It has become.
  • the target temperature in the middle stage of extraction is lower than the target temperature in the first stage of extraction. Does not have to be low. That is, the target temperature may be set so that the temperature of the hot water in the middle stage of extraction is substantially lower than the temperature of the hot water in the middle stage of extraction. For example, when the target temperature in the first half of extraction is TTa, even if the target temperature is higher than TTa in a short period during the middle extraction period, the target temperature is lower than TTa in other periods during the middle extraction period, which is substantially the same.
  • the target temperature TTb in the middle stage of extraction is lower than the target temperature TTa in the first stage of extraction. This also applies to the relationship between other periods (or the hot water step described later).
  • the target temperature of each period may be defined as the target temperature within the period or in the hot water process, or the time average value of the hot water temperature reflecting this.
  • the time average value of the target temperature or the hot water temperature in the middle period of extraction is compared with the time average value of the target temperature or the hot water temperature in the middle period of extraction.
  • Another definition can be seen from the viewpoint of the amount of extraction in the first half of extraction and the amount of extraction in the middle of extraction.
  • the time average value of each target temperature or hot water temperature in the extraction amount in the first stage of extraction will be compared with the time average value of individual target temperature or hot water temperature in the extraction amount in the middle stage of extraction.
  • the extraction process is divided into three periods as described above, but the extraction process may be divided into two periods to control the target temperature.
  • a graph showing the case where the extraction process is divided into two periods is shown in FIG.
  • the first half of the extraction corresponds to the anterior period
  • the second half of the extraction corresponds to the posterior period.
  • the first half of the extraction step is the period of the front half of the extraction step
  • the second half of the extraction is the period of the rear half of the extraction step.
  • the time average value of the target temperature in the second half of the extraction period is compared with the time average value of the target temperature in the first half of the extraction period.
  • the temperature control unit 42 controls the heater 18 so that the temperature becomes low.
  • the flow path selection unit 44 selects the main flow path 22, and then the pump control unit 40 rotates the pump 14, so that hot water is discharged to the dripper 26.
  • the pump control unit 40 in order to finely control the temperature and the amount of hot water, the pump control unit 40 intermittently rotates the pump 14 (that is, the pump 14 is repeatedly rotated and stopped), and the dripper 26 is intermittently hot water. Is discharged.
  • the flow path selection unit 44 selects the main flow path 22 while the pump 14 is rotating, and the bypass flow path while the pump 14 is not rotating. Although 24 is selected, it is also possible to adopt a simple control method in which the flow path selection unit 44 controls to select the main flow path 22 throughout the extraction process.
  • hot water is intermittently discharged to the dripper 26 in a plurality of times.
  • control timing and control amount of each control unit are stored in advance so that the optimum control is performed according to the operation mode and the number of cups. It is stored in 32 and is appropriately set according to the operation mode and the number of cups by the coffee beverage production program. As a result, for example, when the hot water is intermittently discharged to the dripper 26 in a plurality of times, it is possible to control the discharge amount of the hot water in each time to be different between the normal mode and the American mode.
  • the target temperature in the pre-extraction period by raising the target temperature in the pre-extraction period (early extraction period) and raising the temperature of the hot water discharged to the dripper 26, more components containing sweetness and acidity can be extracted, and moreover, the components containing sweetness and acidity can be extracted.
  • the target temperature and lowering the temperature of the hot water discharged to the dripper 26 in the posterior period (middle extraction period and late extraction period) following the anterior period astringency and harshness are compared with the control of constant temperature. Extract clearer coffee beverages with less.
  • the first period of extraction which is the front period
  • the front period is not necessarily the beginning period of the extraction process.
  • the anterior period may be (in time) before the posterior period.
  • the front period is located on the front side in the extraction step.
  • the bypass flow path preheating step as the second flow path preheating step is a step of preheating the bypass flow path 24 prior to the subsequent hot water addition step.
  • the target temperature lowered for extraction is raised to a temperature suitable for preheating, and then the flow path is moved from the main flow path 22 to the bypass flow path 24.
  • the flow path selection unit 44 controls the switching to.
  • the temperature control unit 42 controls the heater 18 so that the water remaining in the upstream side flow path 16 becomes steam after being pumped by the pump 14 in the extraction step.
  • the temperature control unit 42 turns the heater 18 into the “ON” state and heats the water remaining in the upstream flow path 16 until it becomes steam.
  • the flow path selection unit 44 selects the bypass flow path 24 in order to allow water vapor to flow into the bypass flow path 24.
  • the flow path selection unit 44 controls the solenoid valve 20 to take the bypass flow path selection state.
  • the flow path selection unit 44 may select both the main flow path 22 and the bypass flow path 24 at this time.
  • the water remaining in the upstream side flow path 16 is converted into steam and flows into the bypass flow path 24 by the extraction step. Therefore, in the bypass flow path preheating step, pump control is performed.
  • the unit 40 does not rotate the pump 14.
  • the pump 14 is controlled to rotate slightly, and water for obtaining a sufficient amount of water vapor to preheat the bypass flow path 24 is supplied to the upstream side flow path. It may be pumped to 16.
  • the hot water addition process is a process of discharging hot water from the bypass flow path 24 to the server 28.
  • the target temperature TTd of the temperature control unit 42 in the hot water step is higher than the target temperature in the subsequent period of the extraction step.
  • the target temperature TTd in the hot water step is at least higher than the target temperature TTc in the latter stage of extraction, which is the last period of the extraction step.
  • the target temperature TTd in the hot water step is higher than the target temperature TTb in the middle extraction period, which is the first period in the subsequent period of the extraction step.
  • the target temperature TTd in the hot water step is preferably higher than the target temperature TTa in the first period of extraction, which is the first period of the extraction step, which is the case in the present embodiment.
  • the target temperature TTd in the hot water step is 100 ° C.
  • the flow path selection unit 44 selects the bypass flow path 24, and then the pump control unit 40 controls the pump 14 so that hot water is discharged from the bypass flow path 24 to the server 28. If the temperature of the discharged hot water drops when a large amount of hot water is discharged to the server 28 at one time in the hot water step, the pump control unit 40 pumps the water to the pump 14 with a short break. Is desirable.
  • the temperature control unit 42 lowers the temperature of the hot water discharged to the dripper 26 in the middle stage and the late stage of extraction. ing.
  • the temperature of the coffee beverage stored in the server may be lower than the optimum temperature.
  • the target temperature in the hot water step is set higher than at least in the latter stage of extraction, that is, at least in comparison with the latter stage of extraction, instead of providing a heating means on the server stand to maintain the temperature at an appropriate temperature.
  • the temperature of the coffee beverage stored in the server 28 is raised so as to approach an appropriate temperature. This has the effect that the user can taste the coffee beverage at an appropriate temperature.
  • the coffee manufacturing process in the coffee beverage manufacturing apparatus 10 is completed by a series of steps from the heater preheating step to the hot water heating step described above.
  • the hot water step is executed after the extraction step, but the hot water step may be executed before the extraction step. Needless to say, even in that case, since the bypass flow path preheating step is executed before the hot water step, the bypass flow path preheating step is executed before the extraction step. Further, the hot water step may be executed before and after the extraction step.
  • the hot water step may be omitted.
  • the coffee beverage manufacturing apparatus 10 has the operation modes of the normal mode, the American mode, and the iced coffee mode, and the operation mode determines whether or not the hot water step is executed. It has become so. Specifically, when the operation mode selection unit 46 selects the normal mode or the American mode which is the first operation mode, the hot water step is executed, and the operation mode selection unit 46 is the iced coffee which is the second operation mode. When the mode is selected, the hot water step is not executed. When the hot water addition step is not executed, at least it is not necessary for the flow path selection unit 44 to control the flow path from the main flow path 22 to the bypass flow path 24. Further, the concentration may be adjusted by increasing the amount of hot water discharged by the hot water step in the American mode as compared with the normal mode.
  • the main flow path preheating step and the steaming step can be omitted, and it is possible to further provide an operation mode in which the time required for the coffee production process is shortened. Whether or not the main flow path preheating step and the steaming step are executed may also be determined according to the operation mode of the coffee beverage manufacturing apparatus 10.
  • the switching of the hot water flow path is executed by the solenoid valve 20, but the hot water flow path may be switched by other means.
  • both the main flow path 22 and the bypass flow path 24 may be directly connected to the water tank 12.
  • a set of a pump 14, a heater 18, and a temperature sensor 36 is provided for the main flow path 22 and the bypass flow path 24, respectively.
  • the pump control unit 40 when the flow path selection unit 44 selects the main flow path 22, the pump control unit 40 operates the pump 14 of the main flow path 22 to pump water from the water tank 12 to the main flow path 22, and the flow path selection unit 44 When the bypass flow path 24 is selected, the pump control unit 40 operates the pump 14 of the bypass flow path 24 to pump the water in the water tank 12 to the bypass flow path 24.
  • the temperature control unit 42 controls the heater 18 of the main flow path 22 based on the temperature sensor 36 of the main flow path 22 and the target temperature, executes the main flow path preheating step, the steaming step, and the extraction step, and executes the main flow path preheating step, the steaming step, and the extraction step.
  • the heater 18 of the bypass flow path 24 is controlled based on the temperature sensor 36 and the target temperature, and the bypass flow path preheating step and the hot water addition step are executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Apparatus For Making Beverages (AREA)

Abstract

ポンプ(14)により圧送された水はヒータ(18)により加熱されて湯にされる。湯は、主流路(22)を流通し、コーヒー原料がセットされたドリッパ(26)に吐出される。温度制御部(42)は、湯の温度を検出する温度センサ(36)の検出温度に基づいて、湯の温度がコーヒー飲料製造プログラムにより予め設定された目標温度となるようにヒータ(18)を制御する。コーヒー飲料を抽出する抽出工程の抽出前期の目標温度TTaに比して、抽出中期の目標温度TTb及び抽出後期の目標温度TTcが低い温度となっている。

Description

コーヒー飲料製造装置及びコーヒー飲料製造プログラム
 本発明は、コーヒー飲料製造装置及びコーヒー飲料製造プログラムに関し、特に、ドリップ式のコーヒー飲料製造装置、及び、ドリップ式でコーヒー飲料を抽出するためのコーヒー飲料製造プログラムに関する。
 従来、ドリップ式のコーヒー飲料製造装置が知られている(例えば特許文献1及び2)。ドリップ式とは、コーヒー粉末などのコーヒー原料が入ったフィルタ(ペーパーフィルタやネルフィルタ)がセットされた抽出部(ドリッパ)に対して湯を吐出することで、当該コーヒー原料からコーヒー飲料を抽出する方式である。このようなコーヒー飲料製造装置によれば、ユーザは、コーヒー飲料製造装置の水タンクに水を入れ、コーヒー原料が入ったフィルタをドリッパにセットし、処理開始のためのスタートスイッチを押すだけで、コーヒー飲料を抽出することができる。
 なお、特許文献1及び2に開示されたコーヒー飲料製造装置は、ドリッパを介さずに、抽出されたコーヒー飲料を貯留するコーヒー貯留部(サーバ)に対して直接湯を吐出するためのバイパス管を有している。バイパス管を介して湯をサーバに吐出することで、コーヒー飲料の濃度調節が実現されている。
実開昭59-85126号公報 特開平8-185569号公報
 ドリップ式においては、一般に、コーヒー飲料の抽出を開始した直後である抽出初期において、甘みや酸味を含む成分がより多く抽出され、抽出開始から時間が経つ程、抽出初期に比べ渋みやえぐみを含む成分がより多く抽出されるようになる。
 また、従来のコーヒー飲料製造装置は、抽出温度一定でコーヒー飲料を抽出するように制御されることが多い。コーヒー飲料の愛好家による味の志向は多種多様であり、渋み、えぐみが少ないよりクリアなコーヒー飲料を好む人もいる。
 本発明の目的は、渋み、えぐみが少ないよりクリアな味わいとなるコーヒー飲料を抽出可能なコーヒー飲料製造装置及びその製造プログラムを提供することにある。
 本発明は、ポンプにより圧送された水を加熱して湯にする加熱部と、前記湯の温度を検出する温度検出部と、前記温度検出部の検出温度に基づいて、前記湯が目標温度となるように前記加熱部を制御する温度制御部と、を備え、コーヒー原料がセットされた抽出部に対して前記ポンプにより供給される前記湯が吐出されてコーヒー飲料が抽出される抽出工程の前側期間における前記目標温度に比して、前記前側期間に後続する前記抽出工程の期間である後側期間における前記目標温度が低い温度である、ことを特徴とするコーヒー飲料製造装置である。
 前記前側期間における前記目標温度の時間平均値に比して、前記後側期間における前記目標温度の時間平均値が低い温度であるとよい。
 前記前側期間は、前記抽出工程の前半の期間であり、前記後側期間は、前記抽出工程の後半の期間であるとよい。
 前記湯が流通し、前記抽出部まで延びる第1流路と、前記湯が流通し、前記コーヒー飲料を貯留するコーヒー貯留部まで延びる第2流路と、前記第1流路及び前記第2流路のうち、前記湯が流通する流路を選択する流路選択部と、をさらに備え、前記流路選択部が前記第1流路を選択したときに実行される前記抽出工程の前又は後において、前記流路選択部が前記第2流路を選択することで、前記湯が前記コーヒー貯留部に吐出される加湯工程を実行するとよい。なお、選択とは、流路を完全に切り替える意味に加え、湯の主たる配分先として選ぶ意味をも含む。
 前記後側期間における前記目標温度に比して、前記加湯工程における前記目標温度が高いとよい。
 前記前側期間における前記目標温度に比して、前記加湯工程における前記目標温度が高いとよい。
 前記抽出工程に先立って、前記流路選択部が前記第1流路を選択しつつ、前記温度制御部が、前記水が水蒸気になるまで加熱するよう前記加熱部を制御し、前記水蒸気により前記第1流路の予熱を行う第1流路予熱工程を実行するとよい。
 前記加湯工程に先立って、前記流路選択部が前記第2流路を選択しつつ、前記温度制御部が、前記水が水蒸気になるまで加熱するよう前記加熱部を制御し、前記水蒸気により前記第2流路の予熱を行う第2流路予熱工程を実行するとよい。
 前記加湯工程を実行する第1動作モードと、前記加湯工程を実行しない第2動作モードを含む複数の動作モードを有するとよい。
 前記抽出部に前記湯を供給後、前記流路選択部が次の供給タイミングまで前記第2流路を選択するように制御するとよい。
 また、本発明は、コンピュータを、ポンプにより圧送された水が加熱部により加熱されて得られた湯の温度を検出する温度検出部と、前記温度検出部の検出温度に基づいて、前記湯が目標温度となるように前記加熱部を制御する温度制御部と、として機能させ、コーヒー原料がセットされた抽出部に対して前記ポンプにより供給される前記湯が吐出されてコーヒー飲料が抽出される抽出工程の前側期間における前記目標温度に比して、前記前側期間に後続する前記抽出工程の期間である後側期間における前記目標温度が低い温度である、ことを特徴とするコーヒー飲料製造プログラムである。
 本発明によれば、渋み、えぐみが少ないよりクリアな味わいとなるコーヒー飲料を抽出可能なコーヒー飲料製造装置及びその製造プログラムを提供することができる。
本実施形態に係るコーヒー飲料製造装置の機能ブロック図である。 コーヒー製造処理に含まれる各工程における、目標温度、湯温、ヒータ制御信号、ポンプ制御信号、及び、選択流路の時間変化を示すグラフである。 抽出工程を抽出前半期と抽出後半期の2つの期間に分けた場合における、抽出前半期と抽出後半期を示すグラフである。
 図1は、本実施形態に係るコーヒー飲料製造装置10の機能ブロック図である。コーヒー飲料製造装置10は、ドリップ式でコーヒー飲料を抽出する装置である。本実施形態の装置においては、使用者は、動作モード、杯数等の最小限の操作のみを行うことで装置を動かすことができるように、実際の抽出動作は装置内に記憶されたコーヒー飲料製造プログラムに従って、自動で行われる。また、コーヒー飲料製造装置10は、家庭や職場などに設置される比較的小型のものであってもよいし、喫茶店などに設置される比較的大型のものであってもよい。
 水タンク12は、例えば樹脂などで形成された、水を貯留するタンクである。水タンク12は装置本体に対して脱着可能とすることもできる。水タンク12には、ユーザによって供給された水が貯留される。
 ポンプ14は、例えばモータの回転により水を圧送するロータリーポンプ、あるいは、電磁力により駆動するバイブレーションポンプなどの電動ポンプである。本実施形態では、ポンプ14としてロータリーポンプを使用している。圧送部としてのポンプ14は、後述するポンプ制御部40により制御され、水タンク12に貯留された水を圧送する。本実施形態では、ポンプ14は、水タンク12から上流側流路16に水を圧送する。
 上流側流路16は、ポンプ14から後述の電磁弁20まで延びる、水(又は湯)の流路である。
 加熱部としてのヒータ18は、上流側流路16の途中に設けられ、ポンプ14により圧送された水を加熱して湯又は水蒸気にするものである。本明細書においては、その温度に関わらず、ヒータ18による加熱前のものを水と記載し、ヒータ18によって加熱された水を湯と記載する。ヒータ18は、後述する温度制御部42の制御により動作する。
 電磁弁20は、例えば、コイルを有するソレノイド部と、弁部とを含んで構成される。コイルに電流が流れることで弁部が駆動することにより、上流側流路16を流れてきた湯の電磁弁20以降の流路が切り替えられる。電磁弁20は、後述の流路選択部44の制御により動作する。
 本実施形態においては、電磁弁20は、上流側流路16から主流路22への湯の流入を許容し、且つ、上流側流路16からバイパス流路24への湯の流入を禁止した主流路選択状態と、上流側流路16から主流路22への湯の流入を禁止し、且つ、上流側流路16からバイパス流路24への湯の流入を許容したバイパス流路選択状態と、のいずれかの状態を取ることができる。言うまでもないが、電磁弁20が主流路選択状態である場合、上流側流路16からの湯は主流路22に流入しバイパス流路24には流入しない。電磁弁20がバイパス流路選択状態である場合、上流側流路16からの湯は主流路22には流入せずにバイパス流路24に流入する。
 なお、電磁弁20は、上記の状態をとることに加え、上流側流路16から主流路22及びバイパス流路24の両方への湯の流入を許容可能な両流路選択状態を取ることが可能となっていてもよい。このような両流路選択状態においては、主流路22へ流れる湯の量とバイパス流路24を流れる湯の量とが調節できるようにすることが望ましい。さらに、電磁弁20は、上流側流路16から主流路22及びバイパス流路24の両方への湯の流入を禁止する流路非選択状態を取ることが可能となっていてもよい。
 第1流路としての主流路22は、電磁弁20から抽出部としてのドリッパ26まで延びる、湯が流通する流路である。主流路22のドリッパ26側の開口部は、ドリッパ26の上側に位置している。これにより、上流側流路16及び主流路22を流通してきた湯が当該開口部からドリッパ26に吐出される。
 第2流路としてのバイパス流路24は、電磁弁20からコーヒー貯留部としてのサーバ28まで延びる、湯が流通する流路である。後述するように、バイパス流路24のサーバ28側の開口部は、サーバ台30に載置されたサーバ28の上側に位置している。これにより、上流側流路16及びバイパス流路24を流通してきた湯が当該開口部からサーバ28に吐出される。すなわち、バイパス流路24からの湯は、ドリッパ26を通らずにサーバ28に吐出される。
 ドリッパ26は、上部が大きく開口し下部が小さく開口した漏斗状の形状を有している。ドリッパ26には、ペーパーフィルタやネルフィルタのようなフィルタがユーザによりセットされる。当該フィルタは、ドリッパ26の形状に即して上部が開口している。さらに、当該フィルタの上部の開口よりコーヒー粉末などのコーヒー原料がユーザによりセットされる。ドリッパ26にフィルタ及びコーヒー原料がセットされた状態で主流路22から湯が吐出されると、湯がコーヒー原料に注がれてコーヒー飲料が抽出される。抽出されたコーヒー飲料は、図示しないドリッパ26の下部開口から滴下する。
 サーバ28は、ドリッパ26により抽出されたコーヒー飲料を貯留する。サーバ28はサーバ台30に脱着可能に載置される。サーバ台30はドリッパ26の下側に位置している。したがって、サーバ台30にサーバ28が載置されることで、ドリッパ26にて抽出されドリッパ26から滴下されるコーヒー飲料がサーバ28の上側に設けられた導入口よりサーバ28の内部に貯留される。また、サーバ台30は、バイパス流路24のサーバ28側の開口部の下側にも位置している。すなわち、サーバ台30にサーバ28が載置されることで、バイパス流路24のサーバ28側の開口部から吐出された湯もサーバ28の内部に貯留されるような位置にサーバ台は配置されている。
 記憶部32は、例えばROMやRAMを含んで構成される。記憶部32には、後述のコントローラ38を動作させるためのコーヒー飲料製造プログラムが記憶される。なお、この製造プログラムは通信媒体、又は、記憶媒体を介して更新可能とするようにしてもよい。
 入力部34は、例えばボタンやタッチパネルなどを含んで構成される。入力部34は、ユーザの指示をコーヒー飲料製造装置10に入力するために用いられる。入力部34はコーヒー飲料製造装置10表面に操作可能に設けてもよいし、リモコンなどによる遠隔操作によるものであってもよい。特に、ユーザは、入力部34を用いて、コーヒー飲料製造装置10の動作モード、杯数、及び、コーヒー製造処理の開始を指示する。
 温度検出部としての温度センサ36は、例えばサーミスタなどを含んで構成される。温度センサ36は、直接的に又は間接的に、湯の温度を検出するために設けられている。本実施形態では、温度センサ36は、上流側流路16を流れる湯の温度を検出する。具体的には、温度センサ36は、ヒータ18により加熱された直後の湯の温度を検出する。
 コントローラ38は、例えばマイクロコンピュータなどを含んで構成される。コントローラ38は、記憶部32に記憶されたコーヒー飲料製造プログラムによって、図1に示すように、ポンプ制御部40、温度制御部42、流路選択部44、及び動作モード選択部46として機能する。
 ポンプ制御部40は、ポンプ14のモータの回転数を制御して、水タンク12から上流側流路16への水の圧送を制御する。ポンプ14のモータの回転数が多い程、多くの量の水が水タンク12から上流側流路16に圧送される。
 温度制御部42は、ヒータ18を制御して湯の温度を制御する。具体的には、温度制御部42は、温度センサ36の検出温度に基づいて、湯の温度が、コーヒー飲料製造プログラムによって設定される個々の目標温度となるようにヒータ18を制御する。本実施形態では、ヒータ18はON(水を加熱)又はOFF(水を加熱しない)のいずれかの状態のみを取ることができるものとして温度制御部42の動作を説明する。温度制御部42は、ヒータ18がONである時間(OFFである時間)を調整することで、湯の温度が個々の目標温度となるように制御する。もちろん、本実施形態における温度制御部42のヒータ18の制御方法は一例であり、湯の温度が目標温度となるように制御する限りにおいて、ヒータ18の種類などによって種々の温度制御方法を採用することができる。なお、本実施の形態では上流側流路16を流れる湯の温度を検出するようにしており、この検出温度は厳密にはドリッパ26内の温度とは一致しない。よって、ドリッパ26が目標とする温度になるように、所定の外部環境(温度、気圧など)を考慮して、個々の目標温度は設定される。
 流路選択部44は、主流路22とバイパス流路24のうち、上流側流路16からの湯が流通する流路を選択する。本実施形態では、流路選択部44は、電磁弁20の状態を主流路選択状態とバイパス流路選択状態との間で切り替えることで、湯が流れる流路として主流路22とバイパス流路24のいずれかを選択する。なお、前述の2つの選択状態に加え、電磁弁20が両流路選択状態を取ることが可能となっている場合、あるいは、後述するように主流路22とバイパス流路24の選択が電磁弁20によらずに選択可能な場合などにおいては、流路選択部44は、湯が流れる流路として主流路22とバイパス流路24の両方が選択可能となる。この場合、流路選択部44は、主流路22へ流れる湯の量とバイパス流路24を流れる湯の量とが調節可能であることが望ましい。さらに、流路選択部44は、湯が流れる流路として主流路22とバイパス流路24のいずれも選択しない両流路非選択状態を選択可能とすることもできる。
 動作モード選択部46は、コーヒー飲料製造プログラムにより予め定められている複数の動作モードの中から、コーヒー飲料製造装置10の動作モードを選択する。動作モードに応じて、抽出されるコーヒー飲料の種類が変更される。本実施形態では、通常濃度のコーヒー飲料を抽出する通常モード、通常モードよりも薄いコーヒー飲料を抽出するアメリカンモード、及び、アイスコーヒー用のコーヒー飲料を抽出するアイスコーヒーモードの3モードが予め用意されており、動作モード選択部46は、コーヒー製造処理に先立って、ユーザからの指示に従ってこれらの中から動作モードを選択する。もちろん、動作モードはこれに限られるものではなく、その他の動作モードが用意されていてもよい。
 コーヒー飲料製造装置10の構成概要は以上の通りである。続いて、図2を参照しながら、コーヒー飲料製造装置10におけるコーヒー製造処理の流れと共に、コーヒー飲料製造装置10の各部の処理の詳細について説明する。
 図2は、通常モードの2杯抽出の場合を例にとり、コーヒー製造処理に含まれる各工程における、目標温度、温度センサ36の検出温度である湯温、温度制御部42からヒータ18に送信されるヒータ制御信号、ポンプ制御部40からポンプ14に送信されるポンプ制御信号、及び、流路選択部44により選択された選択流路の時間変化を示すグラフである。図2に含まれる各グラフの横軸は時間を表しており、縦軸はそれぞれの値を示している。なお、動作モード、抽出杯数に応じ最適な制御となるように、各制御部の制御タイミング、制御量は、予めパラメータとして記憶部32に記憶され、コーヒー飲料製造プログラムにより、動作モード、杯数に応じて、適宜設定されるようになっている。
 図2に示す各工程における個々のタイミングにおける目標温度は、コーヒー製造処理プログラムにおいて予め設定されている。温度制御部42により出力されるヒータ制御信号は、温度センサ36の検出温度(すなわち湯温)と目標温度に基づいて決定される。したがって、目標温度が同じであっても、外気温などによって変動し得る湯温に応じて、ヒータ制御信号のグラフは変化し得る。また、図2に示す各工程におけるポンプ制御信号及び選択流路もコーヒー製造処理プログラムにおいて予め設定されている。
 図2に示されるように、コーヒー製造処理は、ヒータ予熱工程、主流路予熱工程、蒸らし工程、抽出工程、バイパス流路予熱工程、及び、加湯工程を含んでいる。本実施形態では、各工程はコーヒー製造処理プログラムの動作に伴い、上記の順番で順次実行される。実行にあたって、ユーザは、水タンク12に水を入れ、ドリッパ26にフィルタ及びコーヒー原料をセットし、サーバ台30にサーバ28を載置し、入力部34から動作モード等の抽出条件を入力し、コーヒー製造処理を開始する必要がある。これにより、コーヒー飲料製造装置10は、ヒータ予熱工程から上述の各工程を自動的に(すなわちユーザの操作を必要とすることなく)、順次、実行する。
 ヒータ予熱工程は、ヒータ18の予熱を行う工程である。ヒータ予熱工程においては、温度制御部42は、ヒータ18が所定時間「ON」状態を維持するように制御する。これにより、ヒータ18が予熱される。ヒータ予熱工程においては、水を圧送する必要はないため、ポンプ制御部40は、ポンプ14の回転量を「0」に制御する。ヒータ18が予熱されることで、上流側流路16に残留した水が湯となって下流側に移動する場合が考えられる。当該湯が主流路22からドリッパ26に吐出されて、ドリッパ26にセットされたコーヒー原料に不要な湯が掛かってしまうことを防止するため、流路選択部44は、電磁弁20を制御して主流路22への湯の流入を禁止する。本実施形態では、流路選択部44は、電磁弁20がバイパス流路選択状態を取るように制御する。これにより、上流側流路16に残留した水(湯)は、サーバ28に吐出される。なお、上流側流路16に残留した水(湯)をサーバ28にも吐出させたくない場合には、流路選択部44は、電磁弁20を流路非選択状態を取るように制御するようにしてもよい。
 第1流路予熱工程としての主流路予熱工程は、後続の蒸らし工程又は抽出工程に先立って、主流路22の予熱を行う工程である。本実施形態では、主流路予熱工程においては、ポンプ14により圧送されたごく少量の水をヒータ18により水蒸気とし、当該水蒸気を主流路22に流通させることで、主流路22の予熱を行う。湯を主流路22に流入させることで主流路22を予熱することも可能ではあるが、そのようにすると、主流路予熱工程において、湯がドリッパ26に吐出されドリッパ26に不要な湯が吐出され得る。本実施形態では、水蒸気により主流路22の予熱を行うことで、ドリッパ26に不要な湯が吐出されることが抑制される。
 主流路予熱工程においては、温度制御部42は、ポンプ14により圧送された水が水蒸気となるようにヒータ18の制御を行う。図2の湯温を示すグラフが示す通り、主流路予熱工程においては、湯温が「100℃」を超え、すなわち水蒸気となっている。本実施形態では、ヒータ予熱工程による予熱により、ヒータ18が水を水蒸気とすることが十分にできる程度の熱を加えることが可能となっているため、主流路予熱工程においては一旦ヒータ18の制御は「OFF」となっている。仮に、ヒータ予熱工程後において、水を水蒸気とするためのヒータ18の加熱量が不足している場合には、温度制御部42は、主流路予熱工程においてもヒータ18の「ON」状態が維持される。
 主流路予熱工程においては、水蒸気を主流路22に流入させるため、流路選択部44は、主流路22を選択する。本実施形態では、流路選択部44は、電磁弁20が主流路選択状態を取るように制御する。これにより、上流側流路16からの水蒸気は主流路22に流入しバイパス流路24には流入しない。なお、別の実施形態として流路選択部44は、このとき、主流路22及びバイパス流路24の両方を選択するように制御してもよい。また、図2に示すように、主流路予熱工程においては、水蒸気を主流路22に流入させるべく、ポンプ14を後続する他の工程に比べて低回転で回転させるように制御し、主流路22を予熱するのに十分な量の水蒸気を得るための水を上流側流路16に圧送する。
 蒸らし工程は、ドリッパ26にセットされたコーヒー原料に所定量の湯を注ぎ、抽出工程に移る前に一定の待機時間をとる工程である。
 蒸らし工程においては、温度制御部42は、湯の温度が蒸らしに適した温度となるようにヒータ18を制御する。本実施形態では、蒸らし工程における温度制御部42の目標温度は、後続する抽出工程の前側期間である抽出前期における目標温度(図2の目標温度TTa)よりも少し低くなっている。具体的には、本実施形態では、蒸らし工程における目標温度は90℃前半の温度としている。
 蒸らし工程においては、流路選択部44が主流路22を選択した上で、蒸らしに必要な所定量の湯が所定時間で主流路22からドリッパ26に吐出されるように、ポンプ制御部40がポンプ14の回転数を制御する。その後、ポンプ制御部40はポンプ14の回転量を「0」としてポンプ14からの湯の吐出を停止させる。この状態で数十秒(例えば20~60秒)待機してコーヒー原料の蒸らしを実行する。その間も上流側流路16の湯温は余熱により温度を維持している。
 次に抽出工程について説明する。本実施形態における抽出工程は、コーヒー原料に所定時間に亘って湯を吐出することで、コーヒー飲料を抽出する工程である。本実施形態では、抽出工程においてはコーヒー原料に断続的に湯が吐出される。コーヒー飲料製造装置10においては、抽出工程は複数の期間に区分されている。本実施形態では、抽出工程は、前側期間である抽出前期、並びに、前側期間に後続する後側期間である抽出中期及び抽出後期の3つの期間に区分されている。なお、抽出工程は、後述するように2つの期間から構成されてもよく、また、4つ以上の期間から構成されてもよい。
 本実施形態では、抽出工程において、温度制御部42の目標温度は、抽出開始から時間が経つ程低い温度となっている。すなわち、温度制御部42は、抽出開始から時間が経つ程、湯の温度が低くなるようにヒータ18を制御する。よって、温度低下の過程においてもヒータ18のON・OFFの制御は行われる。図2よりわかるように、抽出前期の目標温度TTaに比して、抽出中期の目標温度TTb及び抽出後期の目標温度TTcが低い温度となっている。さらに、抽出中期の目標温度TTbに比して、抽出後期の目標温度TTcが低い温度となっている。具体的には、本実施形態では、抽出前期の目標温度TTaは95℃程度となっており、抽出中期の目標温度TTbは90℃程度となっており、抽出後期の目標温度TTcは80℃程度となっている。
 なお、抽出工程の各期間内において目標温度が変動し得るところ、抽出前期の目標温度よりも抽出中期の目標温度が低いとは、必ずしも抽出中期の全時刻における目標温度が抽出前期の目標温度よりも低くなくてもよい。すなわち、抽出前期における湯の温度に比して、抽出中期における湯の温度が実質的に低くなるように目標温度が設定されればよい。例えば、抽出前期の目標温度がTTaである場合、抽出中期内の短い一時期において目標温度がTTaを上回っていたとしても、抽出中期内のその他の時期において目標温度がTTaを下回っており、実質的に、抽出前期における湯の温度に比して抽出中期における湯の温度が低くなるのであれば、それは、抽出前期の目標温度TTaよりも抽出中期の目標温度TTbが低いといえる。これは、他の期間(又は後述する加湯工程)間の関係においても同様である。
 また、各期間(又は加湯工程)の目標温度を、期間内又は加湯工程内の目標温度、又は、これを反映している湯温の時間平均値と定義してもよい。その場合、例えば、抽出前期内の目標温度又は湯温の時間平均値に比して、抽出中期内の目標温度又は湯温の時間平均値とを比較することになる。他の定義としては、抽出前期の抽出量と抽出中期の抽出量との観点でみることができる。抽出前期の抽出量における個々の目標温度又は湯温の時間平均値と、抽出中期の抽出量における個々の目標温度又は湯温の時間平均値とを比較することになる。
 本実施形態では、上述のように抽出工程が3つの期間に分けられていたが、抽出工程を2つの期間に分けて、目標温度を制御するようにしてもよい。抽出工程を2つの期間に分けた場合のグラフが図3に示されている。図3の例では、抽出前半期が前側期間に相当し、抽出後半期が後側期間に相当する。これに限るものではないが、図3の例では、抽出前半期は抽出工程の前側半分の期間であり、抽出後半期は抽出工程の後側半分の期間である。
 図3に示すように、抽出工程を抽出前半期と抽出後半期に分けた場合は、抽出前半期内の目標温度の時間平均値に比して、抽出後半期内の目標温度の時間平均値が低い温度となるように、温度制御部42がヒータ18を制御する。
 図2に戻り、抽出工程においては、流路選択部44が主流路22を選択した上で、ポンプ制御部40がポンプ14を回転させることで、ドリッパ26に湯が吐出される。本実施形態では、細かく温度、湯量の制御をするために、ポンプ制御部40が断続的にポンプ14を回転させて(つまりポンプ14の回転と停止を繰り返して)、ドリッパ26に断続的に湯が吐出される。なお、図2の例では、流路選択部44は、抽出工程中は、ポンプ14が回転している間については主流路22を選択し、ポンプ14が回転していない間は、バイパス流路24を選択するようにしているが、流路選択部44が、抽出工程の間はずっと主流路22を選択するように制御する簡易な制御方法を採用することも可能である。
 上述のように、抽出工程においては、複数回に分けて断続的にドリッパ26に湯が吐出される。
 なお、抽出における基本動作は図2と同じなので、詳細な説明は割愛するが、動作モード、杯数に応じ最適な制御となるように、各制御部の制御タイミング、制御量は、予め記憶部32に記憶され、コーヒー飲料製造プログラムにより、動作モード、杯数に応じて、適宜設定されるようになっている。この結果、例えば、複数回に分けて断続的に湯がドリッパ26に吐出される際に、通常モードと、アメリカンモードとで、各回の湯の吐出量を異ならせるような制御が可能となる。
 上述の通り、コーヒー飲料の抽出を開始した直後においては、甘みや酸味を含む成分がより多く抽出され、抽出開始から時間が経つ程、渋みやえぐみを含む成分がより多く抽出されるようになる。また、湯の温度が高い程、抽出されたコーヒー飲料の濃度が濃くなり(つまりコーヒー原料から成分がより多く抽出され)、湯の温度が低い程、抽出されたコーヒー飲料の濃度が薄くなる(つまりコーヒー原料から成分がより少なく抽出される)。
 したがって、本実施形態では、抽出工程の前側期間(抽出前期)において目標温度を高くしてドリッパ26に吐出する湯の温度を高くすることで、甘みや酸味を含む成分をより多く抽出し、且つ、前側期間に後続する後側期間(抽出中期及び抽出後期)において目標温度を低くしてドリッパ26に吐出する湯の温度を低くすることで、温度一定の制御に比較して、渋み、えぐみが少ないよりクリアなコーヒー飲料の抽出を行う。
 また、本実施形態では、前側期間である抽出前期は、抽出工程の先頭期間となっているが、必ずしも前側期間は抽出工程の先頭期間であることはない。抽出工程の中において、前側期間が後側期間の(時間的に)前にあればよい。尤も、甘みや酸味を含む成分は、抽出工程のより前の期間でより多く抽出されるから、前側期間は抽出工程内の前側に位置しているのが望ましい。
 第2流路予熱工程としてのバイパス流路予熱工程は、後続の加湯工程に先立って、バイパス流路24の予熱を行う工程である。本実施形態では、主流路予熱工程同様、バイパス流路予熱工程においては、抽出のために下げてきた目標温度を予熱に適した温度に上げ、その後、流路を主流路22からバイパス流路24に切り替える制御を流路選択部44により行う。
 バイパス流路予熱工程においては、温度制御部42は、抽出工程にてポンプ14により圧送され、上流側流路16に残留した水が水蒸気となるようにヒータ18の制御を行う。温度制御部42は、ヒータ18を「ON」状態にし、上流側流路16に残留した水が水蒸気となるまで加熱する。
 バイパス流路予熱工程においては、水蒸気をバイパス流路24に流入させるため、流路選択部44は、バイパス流路24を選択する。本実施形態では、流路選択部44は、電磁弁20がバイパス流路選択状態を取るように制御する。これにより、上流側流路16からの水蒸気はバイパス流路24に流入し主流路22には流入しない。当該水蒸気をバイパス流路24に流通させることで、バイパス流路24の予熱を行う。なお、他の実施の形態としては、流路選択部44が、このとき、主流路22及びバイパス流路24の両方を選択するようにしてもよい。また、本実施形態では、バイパス流路予熱工程においては、抽出工程によって上流側流路16に残留した水を水蒸気にしてバイパス流路24に流入させているため、バイパス流路予熱工程ではポンプ制御部40はポンプ14を回転させていない。しかしながら、主流路予熱工程同様、バイパス流路予熱工程においてもポンプ14を少し回転させるように制御し、バイパス流路24を予熱するのに十分な量の水蒸気を得るための水を上流側流路16に圧送するようにしてもよい。
 加湯工程は、バイパス流路24からの湯をサーバ28に吐出する工程である。
 本実施形態では、加湯工程における温度制御部42の目標温度TTdは、抽出工程の後続期間における目標温度よりも高くなっている。具体的には、加湯工程における目標温度TTdは、少なくとも、抽出工程の最後尾の期間である抽出後期の目標温度TTcよりも高くなっている。好適には、加湯工程における目標温度TTdは、抽出工程の後続期間の中の最初の期間である抽出中期の目標温度TTbよりも高くなっている。さらに好適には、加湯工程における目標温度TTdは、抽出工程の先頭期間である抽出前期の目標温度TTaよりも高くなっているのがよく、本実施形態ではそのようになっている。具体的には、本実施形態では、加湯工程における目標温度TTdは100℃となっている。
 加湯工程においては、流路選択部44がバイパス流路24を選択した上で、バイパス流路24からサーバ28に湯が吐出されるように、ポンプ制御部40がポンプ14を制御する。なお、加湯工程において一度に多量の湯をサーバ28に吐出すると、吐出される湯の温度が下がってしまう場合には、ポンプ制御部40は小休止を挟みながらポンプ14に水を圧送させることが望ましい。
 上述のように、抽出工程においては、渋み、えぐみが少ないよりクリアなコーヒー飲料を抽出するために、温度制御部42が、抽出中期及び抽出後期においてドリッパ26に吐出する湯の温度を低下させている。一方で、このような制御をとることで、サーバに貯留されるコーヒー飲料の温度が適温に対して低くなってしまう場合がある。本実施形態では、サーバ台に加熱手段を設けで温度を適温に維持する構成をとるのではなく、少なくとも抽出後期に比して加湯工程における目標温度を高くし、すなわち少なくとも抽出後期に比して加湯工程における湯の温度を高くすることで、サーバ28に貯留されたコーヒー飲料の温度を適温に近づくように上昇させている。これにより使用者は適温のコーヒー飲料を味わうことができる効果が得られる。
 また、湯を足すだけなので、抽出工程で抽出したコーヒー飲料のクリアな味わいを維持できる。
 以上説明したヒータ予熱工程から加湯工程までの一連の工程によってコーヒー飲料製造装置10におけるコーヒー製造処理が完了する。
 本実施形態においては、加湯工程を抽出工程の後に実行するようにしているが、加湯工程は抽出工程の前に実行されてもよい。言うまでもないが、その場合もバイパス流路予熱工程は加湯工程の前に実行されるから、バイパス流路予熱工程が抽出工程の前に実行されることとなる。また、加湯工程を抽出工程の前後で実行するようにしてもよい。
 さらに、抽出工程と加湯工程を同時に実行することも考えられ、実際にコーヒー飲料製造装置10においてもそのような実施形態を採用し得る。しかしながら、上述のように、抽出工程と加湯工程との間で目標温度(湯の温度)が異なっているために、抽出工程と加湯工程を同時に実行するならば、少なくとも2つのヒータ18(及び温度センサ36)が必要となってしまう。例えば、主流路22とバイパス流路24とにそれぞれヒータ18を設ける必要がある。これによりコーヒー飲料製造装置10の構造が複雑化し、コーヒー飲料製造装置10が高コスト化あるいは大型化してしまう。したがって、抽出工程の前又は後に加湯工程を実行する方が、抽出工程と加湯工程を同時に実行する場合に比して、コーヒー飲料製造装置10の低コスト化あるいは小型化の面からは有利である。
 また、加湯工程は省略可能であってもよい。本実施形態では、上述のように、コーヒー飲料製造装置10は、通常モード、アメリカンモード、及びアイスコーヒーモードの動作モードを有しているところ、動作モードによって加湯工程の実行の有無が決定されるようになっている。具体的には、動作モード選択部46が、第1動作モードである通常モード又はアメリカンモードを選択した場合は加湯工程が実行され、動作モード選択部46が、第2動作モードであるアイスコーヒーモードを選択した場合は加湯工程が実行されない。加湯工程を実行しない場合、少なくとも、流路を主流路22からバイパス流路24に切り替える制御を流路選択部44により行う必要はなくなる。また、通常モードに比して、アメリカンモードの方が加湯工程により吐出される湯の量を多くするようにして濃度を調整するようにしてもよい。
 さらに、加湯工程及びバイパス流路予熱工程の他、主流路予熱工程及び蒸らし工程も省略可能とし、コーヒー製造処理の所要時間が短縮された動作モードをさらに設けることも可能である。主流路予熱工程及び蒸らし工程の実行の有無も、コーヒー飲料製造装置10の動作モードに応じて決定されてよい。
 また、本実施形態では、湯の流路の切り替えは電磁弁20により実行されていたが、その他の手段により湯の流路を切り替えるようにしてもよい。例えば、主流路22及びバイパス流路24はいずれも水タンク12に直接接続されていてもよい。この場合、主流路22とバイパス流路24に対して、ポンプ14、ヒータ18、温度センサ36のセットがそれぞれ設けられる。この場合、流路選択部44が主流路22を選択すると、ポンプ制御部40は、主流路22のポンプ14を動作させて水タンク12の水を主流路22に圧送し、流路選択部44がバイパス流路24を選択すると、ポンプ制御部40は、バイパス流路24のポンプ14を動作させて水タンク12の水をバイパス流路24に圧送する。温度制御部42は、主流路22の温度センサ36と目標温度とに基づいて主流路22のヒータ18を制御し、主流路予熱工程、蒸らし工程、及び抽出工程を実行し、バイパス流路24の温度センサ36と目標温度とに基づいてバイパス流路24のヒータ18を制御し、バイパス流路予熱工程及び加湯工程を実行する。
 以上、本発明に係る実施形態を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
 10 コーヒー飲料製造装置、12 水タンク、14 ポンプ、16 上流側流路、18 ヒータ、20 電磁弁、22 主流路、24 バイパス流路、26 ドリッパ、28 サーバ、30 サーバ台、32 記憶部、34 入力部、36 温度センサ、38 コントローラ、40 ポンプ制御部、42 温度制御部、44 流路選択部。

Claims (11)

  1.  ポンプにより圧送された水を加熱して湯にする加熱部と、
     前記湯の温度を検出する温度検出部と、
     前記温度検出部の検出温度に基づいて、前記湯が目標温度となるように前記加熱部を制御する温度制御部と、
     を備え、
     コーヒー原料がセットされた抽出部に対して前記ポンプにより供給される前記湯が吐出されてコーヒー飲料が抽出される抽出工程の前側期間における前記目標温度に比して、前記前側期間に後続する前記抽出工程の期間である後側期間における前記目標温度が低い温度である、
     ことを特徴とするコーヒー飲料製造装置。
  2.  前記前側期間における前記目標温度の時間平均値に比して、前記後側期間における前記目標温度の時間平均値が低い温度である、
     ことを特徴とする請求項1に記載のコーヒー飲料製造装置。
  3.  前記前側期間は、前記抽出工程の前半の期間であり、
     前記後側期間は、前記抽出工程の後半の期間である、
     ことを特徴とする請求項2に記載のコーヒー飲料製造装置。
  4.  前記湯が流通し、前記抽出部まで延びる第1流路と、
     前記湯が流通し、前記コーヒー飲料を貯留するコーヒー貯留部まで延びる第2流路と、
     前記第1流路及び前記第2流路のうち、前記湯が流通する流路を選択する流路選択部と、
     をさらに備え、
     前記流路選択部が前記第1流路を選択したときに実行される前記抽出工程の前又は後において、前記流路選択部が前記第2流路を選択することで、前記湯が前記コーヒー貯留部に吐出される加湯工程を実行する、
     ことを特徴とする請求項1から3のいずれか1項に記載のコーヒー飲料製造装置。
  5.  前記後側期間における前記目標温度に比して、前記加湯工程における前記目標温度が高い、
     ことを特徴とする請求項4に記載のコーヒー飲料製造装置。
  6.  前記前側期間における前記目標温度に比して、前記加湯工程における前記目標温度が高い、
     ことを特徴とする請求項5に記載のコーヒー飲料製造装置。
  7.  前記抽出工程に先立って、前記流路選択部が前記第1流路を選択しつつ、前記温度制御部が、前記水が水蒸気になるまで加熱するよう前記加熱部を制御し、前記水蒸気により前記第1流路の予熱を行う第1流路予熱工程を実行する、
     ことを特徴とする請求項4に記載のコーヒー飲料製造装置。
  8.  前記加湯工程に先立って、前記流路選択部が前記第2流路を選択しつつ、前記温度制御部が、前記水が水蒸気になるまで加熱するよう前記加熱部を制御し、前記水蒸気により前記第2流路の予熱を行う第2流路予熱工程を実行する、
     ことを特徴とする請求項4から7のいずれか1項に記載のコーヒー飲料製造装置。
  9.  前記加湯工程を実行する第1動作モードと、前記加湯工程を実行しない第2動作モードを含む複数の動作モードを有する、
     ことを特徴とする請求項4に記載のコーヒー飲料製造装置。
  10.  前記抽出部に前記湯を供給後、前記流路選択部が次の供給タイミングまで前記第2流路を選択するように制御する、
     ことを特徴とする請求項4に記載のコーヒー飲料製造装置。
  11.  コンピュータを、
     ポンプにより圧送された水が加熱部により加熱されて得られた湯の温度を検出する温度検出部と、
     前記温度検出部の検出温度に基づいて、前記湯が目標温度となるように前記加熱部を制御する温度制御部と、
     として機能させ、
     コーヒー原料がセットされた抽出部に対して前記ポンプにより供給される前記湯が吐出されてコーヒー飲料が抽出される抽出工程の前側期間における前記目標温度に比して、前記前側期間に後続する前記抽出工程の期間である後側期間における前記目標温度が低い温度である、
     ことを特徴とするコーヒー飲料製造プログラム。
     
PCT/JP2020/003924 2020-02-03 2020-02-03 コーヒー飲料製造装置及びコーヒー飲料製造プログラム WO2021156913A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202080095144.3A CN115038369B (zh) 2020-02-03 2020-02-03 咖啡饮料制作装置和咖啡饮料制作程序
PCT/JP2020/003924 WO2021156913A1 (ja) 2020-02-03 2020-02-03 コーヒー飲料製造装置及びコーヒー飲料製造プログラム
US17/796,735 US20230063928A1 (en) 2020-02-03 2020-02-03 Coffee beverage manufacturing device, and coffee beverage manufacturing program
KR1020227030338A KR20220134631A (ko) 2020-02-03 2020-02-03 커피 음료 제조 장치 및 커피 음료 제조 프로그램을 저장한 기록 매체
JP2021575108A JP7292758B2 (ja) 2020-02-03 2020-02-03 コーヒー飲料製造装置及びコーヒー飲料製造プログラム
TW109143339A TWI855196B (zh) 2020-02-03 2020-12-09 咖啡飲料製造裝置及咖啡飲料製造程式
JP2023089431A JP7455438B2 (ja) 2020-02-03 2023-05-31 コーヒー飲料製造装置及びコーヒー飲料製造プログラム
JP2024034216A JP2024053030A (ja) 2020-02-03 2024-03-06 コーヒー飲料製造装置及びコーヒー飲料製造プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003924 WO2021156913A1 (ja) 2020-02-03 2020-02-03 コーヒー飲料製造装置及びコーヒー飲料製造プログラム

Publications (1)

Publication Number Publication Date
WO2021156913A1 true WO2021156913A1 (ja) 2021-08-12

Family

ID=77199868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003924 WO2021156913A1 (ja) 2020-02-03 2020-02-03 コーヒー飲料製造装置及びコーヒー飲料製造プログラム

Country Status (5)

Country Link
US (1) US20230063928A1 (ja)
JP (3) JP7292758B2 (ja)
KR (1) KR20220134631A (ja)
CN (1) CN115038369B (ja)
WO (1) WO2021156913A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508739B2 (ja) 2022-04-12 2024-07-02 清助 竹下 電気コーヒーメーカー

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635480B1 (ja) * 2018-11-13 2020-01-29 株式会社Tree Field 抽出装置、抽出装置における表示方法、並びにシステム
WO2023068807A1 (ko) 2021-10-19 2023-04-27 주식회사 엘지에너지솔루션 리튬 이차전지
KR102517580B1 (ko) * 2022-11-29 2023-04-05 주식회사 비엔씨알 젖은 커피 분말이 부풀려진 형태를 의미하는 머핀의 크기를 바탕으로 급수를 수행하는 커피 드립 장치
WO2024117432A1 (ko) * 2022-11-29 2024-06-06 주식회사 비엔씨알 젖은 커피 분말이 부풀려진 형태를 의미하는 머핀의 크기를 바탕으로 급수를 수행하는 커피 드립 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261413A (ja) * 1989-01-30 1990-10-24 Illycaffe Spa コーヒー装置
JPH08185569A (ja) * 1994-12-28 1996-07-16 Fuji Electric Co Ltd カップ式自動販売機
JPH09218980A (ja) * 1995-12-19 1997-08-19 Sanyo Electric Co Ltd 飲料貯蔵装置およびそれを備えた飲料自動販売機
JP2003024703A (ja) * 2001-07-13 2003-01-28 Fuji Electric Co Ltd 飲料抽出装置
JP2008504812A (ja) * 2004-06-29 2008-02-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 飲料作成方法、飲料作成装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985126A (ja) 1982-11-05 1984-05-17 Matsushita Electric Ind Co Ltd 単安定マルチバイブレ−タ回路
US20040226452A1 (en) * 2003-05-13 2004-11-18 Lyall Lucian H. Brewing apparatus with volumetric compensation for temperature changes
DE202006018217U1 (de) * 2006-11-30 2008-04-10 Wik Far East Ltd. Einrichtung zum Erwärmen von Wasser
CN101677716A (zh) * 2009-07-14 2010-03-24 吉诺工业有限公司 可调温饮品冲煮装置
US20110252976A1 (en) * 2010-04-16 2011-10-20 Tsung-Hsi Liu Beverage preparing apparatus
JP5899416B2 (ja) * 2011-12-20 2016-04-06 パナソニックIpマネジメント株式会社 コーヒー抽出装置
WO2015073732A1 (en) * 2013-11-13 2015-05-21 Blossom Coffee, Inc. Apparatus for brewing a beverage
DE102014104907A1 (de) * 2014-04-07 2015-10-08 Melitta Professional Coffee Solutions GmbH & Co. KG Kaffeevollautomat und Verfahren zur Herstellung eines koffeinhaltigen Heißgetränkes
DE102014108415B3 (de) * 2014-06-16 2015-11-19 Eugster/Frismag Ag Getränkezubereitungsvorrichtung sowie Betriebsverfahren
US10849453B2 (en) * 2017-01-10 2020-12-01 Nuwave, Llc Automatic beverage maker
TWI715791B (zh) * 2017-01-11 2021-01-11 日商巴慕达股份有限公司 飯鍋
EP3403548A1 (de) * 2017-05-18 2018-11-21 Jura Elektroapparate AG Brühvorrichtung zum zubereiten eines heissgetränks und zugehöriges verfahren
EP3443877B1 (en) * 2017-08-17 2021-03-10 Eversys Holding SA A beverage machine and a method for producing coffee-based beverages
JP6635480B1 (ja) 2018-11-13 2020-01-29 株式会社Tree Field 抽出装置、抽出装置における表示方法、並びにシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261413A (ja) * 1989-01-30 1990-10-24 Illycaffe Spa コーヒー装置
JPH08185569A (ja) * 1994-12-28 1996-07-16 Fuji Electric Co Ltd カップ式自動販売機
JPH09218980A (ja) * 1995-12-19 1997-08-19 Sanyo Electric Co Ltd 飲料貯蔵装置およびそれを備えた飲料自動販売機
JP2003024703A (ja) * 2001-07-13 2003-01-28 Fuji Electric Co Ltd 飲料抽出装置
JP2008504812A (ja) * 2004-06-29 2008-02-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 飲料作成方法、飲料作成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508739B2 (ja) 2022-04-12 2024-07-02 清助 竹下 電気コーヒーメーカー

Also Published As

Publication number Publication date
CN115038369A (zh) 2022-09-09
JP2024053030A (ja) 2024-04-12
CN115038369B (zh) 2024-08-13
JPWO2021156913A1 (ja) 2021-08-12
TW202130313A (zh) 2021-08-16
US20230063928A1 (en) 2023-03-02
JP7292758B2 (ja) 2023-06-19
JP2023101692A (ja) 2023-07-21
KR20220134631A (ko) 2022-10-05
JP7455438B2 (ja) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2021156913A1 (ja) コーヒー飲料製造装置及びコーヒー飲料製造プログラム
RU2531742C2 (ru) Способ и машина для приготовления кофе эспрессо
US8225708B2 (en) Multi-beverage brewer with on-demand variable brew water temperature and method
US5337652A (en) Espresso machine
JP4584996B2 (ja) 飲料作成方法、飲料作成装置
US20090317526A1 (en) Coffee brewing system
JP2016537071A (ja) 飲料を制御して供給するための装置およびプロセス
EP3107434A1 (en) Coffee machine and relative control method
CN109700320B (zh) 一种可改变压力的咖啡机冲泡系统
AU2015101973A4 (en) Espresso machine
EP1186268B1 (en) Coffee maker
JPH09192022A (ja) コーヒー液抽出装置
US3530276A (en) Automatic coffee brewing control
TWI855196B (zh) 咖啡飲料製造裝置及咖啡飲料製造程式
WO2022264306A1 (ja) コーヒー飲料製造装置
WO2022091374A1 (ja) コーヒー飲料製造装置
JP2006346062A (ja) コーヒー沸かし器
JP2013255621A (ja) 電気湯沸かし器
JPH08112204A (ja) 自動販売機の飲料抽出装置
JP6375261B2 (ja) コーヒーメーカ
JPH09265574A (ja) 自動販売機
CN118159174A (zh) 从饮料制作设备的冲泡室排放冲洗水
JPH0499541A (ja) コーヒー液抽出方法およびその装置
JP2002367022A (ja) コーヒー飲料抽出装置
JPH03242121A (ja) 給茶器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575108

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227030338

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917289

Country of ref document: EP

Kind code of ref document: A1