WO2021142748A1 - 一种环氧树脂导电胶及其制备方法和应用 - Google Patents

一种环氧树脂导电胶及其制备方法和应用 Download PDF

Info

Publication number
WO2021142748A1
WO2021142748A1 PCT/CN2020/072632 CN2020072632W WO2021142748A1 WO 2021142748 A1 WO2021142748 A1 WO 2021142748A1 CN 2020072632 W CN2020072632 W CN 2020072632W WO 2021142748 A1 WO2021142748 A1 WO 2021142748A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
epoxy resin
silver
parts
conductive
Prior art date
Application number
PCT/CN2020/072632
Other languages
English (en)
French (fr)
Inventor
石文
孙丰振
李德林
Original Assignee
深圳市首骋新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市首骋新材料科技有限公司 filed Critical 深圳市首骋新材料科技有限公司
Priority to PCT/CN2020/072632 priority Critical patent/WO2021142748A1/zh
Publication of WO2021142748A1 publication Critical patent/WO2021142748A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Abstract

本发明公开了一种环氧树脂导电胶,按总质量份数为100份计,包括以下原料组分:导电颗粒30.0~90.0份、环氧树脂8.0~30.0份、丙烯酸酯树脂0.2~3份、反应型稀释剂1.0~15份、消泡剂0.2~5份、增韧剂0.2~15份、硅烷偶联剂0.2~5.0份、阳离子固化剂0.1~5.0份;其中,所述导电颗粒包括具有三维树枝状微观结构的导电颗粒。本发明导电胶具有导电性好、固化时间短、附着力高、可以在室温下长时间操作使用的特点。

Description

一种环氧树脂导电胶及其制备方法和应用 技术领域
本发明属于半导体用导电胶技术领域,具体涉及一种环氧树脂导电胶及其制备方法和应用。
背景技术
导电胶广泛用于电子设备、集成电路、半导体器件、无源元件、太阳能电池、太阳能组件和/或发光二极管的制造和组装中,因为导电胶在两个表面元器件之间提供机械结合和电导通路,所以导电胶必须具备良好的机械性能和低电阻电导通性能;通常,导电胶配方由导电颗粒和聚合物树脂以及助剂组成。树脂通常提供两种元器件之间的机械结合,而导电颗粒通常提供所需的电导通路。
此外,传统的导电胶导电颗粒的形貌大多是球状、类球状、和片状银颗粒,这就导致两个导电颗粒之间的接触如图1所示,即两个导电颗粒之间的接触是一个点接触,例如两个球状导电颗粒之间的接触是一个点接触,因此,为了提高导电胶的导电性能,通常采用通过增加导电颗粒数量或者用量的方法来提高导电胶的导电性能,但是这种方法在增加导电性能的同时不可避免的增加了导电胶的生产成本;传统的环氧树脂导电胶虽然具有附着力高的优点,但是比较脆,韧性差,弯曲时容易断裂,另外传统的环氧树脂导电胶还有固化时间较长点缺点。
发明内容
有鉴于此,本申请提供一种环氧树脂导电胶,解决了现有导电胶的导电性能较差,固化时间较长,以及比较脆、韧性差、弯曲时容易断裂的问题。
本发明的另一目的是提供上述环氧树脂导电胶在半导体元件中的应用。
为达到上述目的,本发明的技术方案是这样实现的:一种环氧树脂导电胶,按总质量份数为100份计,包括以下原料组分:导电颗粒30.0~90.0份、环氧树脂8.0~30.0份、丙烯酸酯树脂0.2~3份、反应型稀释剂1.0~15份、增韧剂0.2~15份、硅烷偶联剂0.2~5.0份、阳离子固化剂0.1~5.0份;
其中,所述导电颗粒包括具有三维树枝状微观结构的导电颗粒。
本发明导电胶为热固化导电胶,在使用时发现,该导电胶可以在80℃–170℃的温度下,1~500s内发生固化,且该导电胶还可以在22℃~25℃的室温条件下保存较长时间,说明本发明导电胶能够在室温条件下操作较长时间,进而说明本发明的导电足以在各种电子装配和太阳能光伏组件的生产操作条件下长期使用。本发明的导电胶还能够在两种基板或元器件与基板之间形成导电通路,可用于电子设备,集成电路,半导体器件,无源元件,太阳能光伏组件的制造和组装。
优选地,所述具有三维树枝状微观结构的导电颗粒的比表面积为0.2~3.5m 2/g。
优选地,所述具有三维树枝状微观结构的导电颗粒为具有三维树枝状微观结构的银颗粒或具有三维树枝状微观结构的银包铜颗粒。
此外,如果导电胶中仅仅含有三维树枝状的导电颗粒,可能会导致导电胶的粘度升高,甚至会影响导电胶的印刷型,所以本发明中,为了在保证导电胶的导电性不发生显著变化的基础上,降低导电胶的粘度,使导电胶具有较好的印刷性,本发明的导电颗粒还包括但是并不局限于球状导电颗粒、片状导电颗粒或类球状导电颗粒中的一种或几种。
优选地,所述导电颗粒为球状银颗粒与具有三维树枝状微观结构的银颗粒的混合物,其中,所述具有三维树枝状微观结构的银颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;说明本发明的导电胶中必须包含具有三维树枝状微观结构的银颗粒;且说明具有三维树枝状微观结构的银颗粒的重量,与导电颗粒的总重量的比值可以为0.05:1;也可以为0.95:1;也可以为0.7:1等;此外,所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1μm~50.0μm;
优选地,所述导电颗粒为球状银颗粒与具有三维树枝状微观结构的银包铜颗粒的混合物,其中,所述具有三维树枝状微观结构的银包铜颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;说明本发明的导电胶中必须包含具有三维树枝状微观结构的银包铜颗粒;且说明具有三维树枝状微观结构的银包铜颗粒的重量,与导电颗粒的总重量的比值可以为0.05:1;也可以为0.95:1;也可以为0.7:1等;此外,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50.0μm。
优选地,所述导电颗粒为片状银颗粒与具有三维树枝状微观结构的银颗粒 的混合物,其中,所述具有三维树枝状微观结构的银颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;说明本发明的导电胶中必须包含具有三维树枝状微观结构的银颗粒;且说明具有三维树枝状微观结构的银颗粒的重量,与导电颗粒的总重量的比值可以为0.05:1;也可以为0.95:1;也可以为0.7:1等;此外,所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述片状银颗粒的尺寸为0.1~50.0μm。
优选地,所述导电颗粒为片状银颗粒与具有三维树枝状微观结构的银包铜颗粒的混合物,其中,所述具有三维树枝状微观结构的银包铜颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;说明本发明的导电胶中必须包含具有三维树枝状微观结构的银包铜颗粒;且说明具有三维树枝状微观结构的银包铜颗粒的重量,与导电颗粒的总重量的比值可以为0.05:1;也可以为0.95:1;也可以为0.7:1等;此外,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述片状银颗粒的尺寸为0.1~50.0μm。
优选地,所述导电颗粒为片状银包铜颗粒与具有三维树枝状微观结构的银包铜颗粒的混合物,其中,所述具有三维树枝状微观结构的银包铜颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;说明本发明的导电胶中必须包含具有三维树枝状微观结构的银包铜颗粒;且说明具有三维树枝状微观结构的银包铜颗粒的重量,与导电颗粒的总重量的比值可以为0.05:1;也可以为0.95:1;也可以为0.7:1等;此外,所述具有三维树枝状微观结构的银包铜颗粒比表面积为0.2–3.5m 2/g,所述片状银包铜颗粒的尺寸为0.1μm–50.0μm。
优选地,所述导电颗粒为球状银颗粒、片状银颗粒以及具有三维树枝状微观结构的银颗粒的混合物,其中,所述片状银颗粒与球状银颗粒和片状银颗粒两者总的质量百分比为(0.3~0.7):1;说明本发明的导电胶中必须包含片状银颗粒和球状银颗粒,且说明片状银颗粒的重量,与球状银颗粒和片状银颗粒两者的总重量的比值可以为0.3:1,也可以为0.7:1,也可以为0.5:1等;所述具有三维树枝状微观结构的银颗粒导电颗粒总的质量百分比为(0.05~0.95):1;说明本发明的导电胶中必须包含具有三维树枝状微观结构的银颗粒;且说明具有三维树枝状微观结构的银颗粒的重量,与导电颗粒的总重量的比值可以为0.05:1;也可以为0.95:1;也可以为0.7:1等;此外,所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50.0μm。
优选地,所述导电颗粒为球状银颗粒、片状银颗粒以及具有三维树枝状微观结构的银包铜颗粒的混合物,其中,所述片状银颗粒与球状银颗粒和片状银颗粒两者总的质量百分比为(0.3~0.7):1;说明本发明的导电胶中必须包含片状银颗粒和球状银颗粒,且说明片状银颗粒的重量,与球状银颗粒和片状银颗粒两者的总重量的比值可以为0.3:1,也可以为0.7:1,也可以为0.5:1等;所述具有三维树枝状微观结构的银包铜颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;说明本发明的导电胶中必须包含具有三维树枝状微观结构的银包铜颗粒;且说明具有三维树枝状微观结构的银包铜颗粒的重量,与导电颗粒的总重量的比值可以为0.05:1;也可以为0.95:1;也可以为0.7:1等;此外,所述具有三维树枝状微观结构的银包铜颗粒比表面积为0.2~3.5m 2/g,所述球状 银颗粒的尺寸为0.1~50.0μm。
优选地,所述具有三维树枝状微观结构的银颗粒的颗粒尺寸为0.1~50um。
优选地,所述具有三维树枝状微观结构的银包铜颗粒的颗粒尺寸为0.1~50um。
通过选用上述两个数值范围,是为了满足导电胶在不同场景下的应用,通常具有三维树枝状微观结构的导电颗粒的的D50为0.1μm~50.0μm;在具体实施例中,具有三维树枝状微观结构的导电颗粒的比表面积为可以为0.2m 2/g,也可以为3.5m 2/g,也可以为2.0.0m 2/g等,这是因为比表面积可能影响导电胶的导电性,所以要求本发明的具有三维树枝状微观结构的导电颗粒的比表面积需要处于0.2~3.5m 2/g的范围内。
优选地,所述丙烯酸酯与所述的环氧树脂的重量比例为0.2:30~2:20,即说明丙烯酸酯与环氧树脂的重量比例可以为0.2:30,也可以为2:20,也可以为1:20等。
优选地,所述环氧树脂为双酚A型环氧树脂,双酚F型环氧树脂,萘型环氧树脂,聚氨酯改性环氧树脂脂环族环氧树脂,氢化双酚A环氧树脂中的至少一种;即说明在具体实施例中,环氧树脂可以是上述几种单体中的任意一种,也可以是上述单体中任意两种或两种以上的组合。
本发明所用的双酚A型及双酚F型环氧树脂为高纯度低氯含量的液体环氧树脂,粘度低,性能稳定;本发明所用的萘型环氧树脂为带有萘环结构的环氧树脂,萘环结构的引入可以改善树脂的耐热性、介电性能、降低吸水率,使树 脂具有耐高温高湿的性能,其中,萘型环氧树脂的典型结构式为:
Figure PCTCN2020072632-appb-000001
本发明所用的聚氨酯改性环氧树脂具有良好的柔韧性,可改善普通环氧树脂固化后脆性高、耐机械冲击性差、耐湿热性差、剥离强度低、耐低温性能差等缺点,本发明所述的聚氨酯改性环氧树脂,其韧性好,强度高、耐热性好。
优选地,所述丙烯酸酯是聚氨酯丙烯酸酯和脂肪族聚氨酯丙烯酸酯中的一种或者两种混合,即在具体实施例中,硅烷偶联剂可以根据实际需要在上述所列具的丙烯酸酯中任选一种或几种。
优选地,所述硅烷偶联剂为2-(3,4-环氧环己基)乙烷基三甲氧基硅烷、3-缩水甘油醚氧基丙基甲基二甲氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷、3-缩水甘油醚氧基丙基甲基二乙氧基硅烷、3-缩水甘油醚氧基丙基三乙氧基硅烷中的至少一种;即在具体实施例中,硅烷偶联剂可以根据实际需要在上述所列具的硅烷偶联剂中任选一种或几种,其目的是增强附着力的作用。
此外,本发明所用的硅烷偶联剂可以在导电胶和需要粘结的半导体元件如芯片的界面之间架起“分子桥”,把两种性质悬殊的材料连接在一起,并且增加粘接强度。
优选地,所述反应型稀释剂为脂肪族缩水甘油醚1,6己二醇二缩水甘油醚、C12-C14烷基缩水甘油醚、二丙二醇二缩水甘油醚、壬基酚缩水甘油醚、和邻甲酚缩水甘油醚、三羟甲基丙烷三缩水甘油醚、蓖麻油三缩水甘油醚、季戊四 醇四缩水甘油醚中的至少一种;即在具体实施例中,反应型稀释剂可以根据实际需要在上述所列具的反应型稀释剂中任选一种或几种。
优选地,所述增韧剂为核壳橡胶环氧树脂增韧剂、聚酯多元醇、气相二氧化硅中的至少一种,即在具体实施例中,增韧剂可以根据实际需要在上述所列具的增韧剂中任选一种或几种。
优选地,所述阳离子固化剂为双氰胺类环氧固化剂、取代脲促进剂、脂肪胺类环氧固化剂、聚酰胺类环氧固化剂、咪唑类环氧固化剂、和路易斯酸类环氧固化剂中的至少一种;即在具体实施例中,固化剂可以根据实际需要在上述所列具的固化剂中任选一种或几种,其目的是引发反应。
在具体实施例中,本发明的导电颗粒可以包括具有三维树枝状微观结构的银颗粒,以及球状银颗粒、片状银颗粒或类球状银颗粒中的一种或几种;
在具体实施例中,本发明的导电颗粒可以包括具有三维树枝状微观结构的银颗粒,以及球状银包铜颗粒、片状银包铜颗粒或类球状银包铜颗粒中的一种或几种;
在具体实施例中,本发明的导电颗粒可以包括具有三维树枝状微观结构的银包铜颗粒,以及球状银包铜颗粒、片状银包铜颗粒或类球状银包铜颗粒中的一种或几种;
在具体实施例中,本发明的导电颗粒可以包括具有三维树枝状微观结构的银包铜颗粒,以及球状银颗粒、片状银颗粒或类球状银颗粒中的一种或几种;
在具体实施例中,本发明的导电颗粒可以包括具有三维树枝状微观结构的 银包铜颗粒,具有三维树枝状微观结构的银颗粒,以及球状银包铜颗粒、片状银包铜颗粒、类球状银包铜颗粒、球状银颗粒、片状银颗粒或类球状银颗粒中的一种或几种。
本发明的另一个技术方案是这样实现的:一种环氧树脂导电胶的制备方法,该方法包括以下步骤:
步骤1、按照总质量份数为100份计,分别称取以下原料组分:导电颗粒30.0~90.0份、环氧树脂8.0~30.0份、丙烯酸酯树脂0.2~3份、反应型稀释剂1.0~15份、增韧剂0.2~15份、硅烷偶联剂0.2~5.0份、固化剂0.1~5.0份;
步骤2、将步骤1中所述环氧树脂、丙烯酸酯树脂、反应型稀释剂、增韧剂、硅烷偶联剂以及固化剂混合并搅拌均匀,再加入所述导电颗粒,继续搅拌至混合均匀,获得混合料;
步骤3、对所述混合料进行研磨,获得环氧树脂导电胶。
本发明的第三个技术方案是这样实现的:上述的一种环氧树脂导电胶在半导体元件中的应用。
在具体使用时,需要先将本发明的环氧树脂导电胶印刷在半导体元件的基材上,然后将印刷有上述丙烯酸导电胶的基材置于80℃~170℃(例如150℃)的环境下,固化5~300s(例如15s),得到包含本发明的环氧树脂导电胶的半导体元件。
与现有技术相比,1)本发明所涉及到的环氧树脂导电胶使用具有三维树枝状微观结构的导电颗粒,其两个导电颗粒之间的接触是多个点接触,因此其接 触电阻大大降低,导电性能大幅提高,进而降低导电颗粒的使用量,降低成本,提高性能;2)本发明所涉及到的改性环氧丙烯酸树脂导电胶使用改性环氧丙烯酸和用硅烷偶联剂作为附着力促进剂,使本发明的环氧树脂导电胶具有导电性好、固化时间短、附着力高、可以在室温下长时间操作使用的特点。
此外,本发明的制备方法操作简单,易于操作,所以便于工业化生产。
附图说明
图1现有的两个球状导电颗粒之间的接触示意图;其中001代表球状导电颗粒,0011a代表两个球状导电颗粒之间的接触点;
图2是具有三维树枝状微观结构银颗粒在一种视觉下的SEM图;
图3是具有三维树枝状微观结构银颗粒的另一种视觉下的SEM图;
图4是具有三维树枝状微观结构的导电颗粒与球状导电颗粒的接触示意图;其中,002代表具有三维树枝状微观结构的导电颗粒,001代表球状导电颗粒;0012a为接触点;
图5是具有三维树枝状微观结构的导电颗粒与具有三维树枝状微观结构的导电颗粒的接触示意图;其中,002a和002b均代表具有三维树枝状微观结构的导电颗粒,002ab代表接触点;
图6是粘接强度测试试验拉伸示意图。
图7是铝片粘接示意图;
图8是铝片粘接以弯曲半径5cm弯曲示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下实施例所使用的具有三维树枝状的银颗粒、具有三维树枝状的银包铜颗粒、球状银颗粒、片状银颗粒、类球状银颗粒、球状银包铜颗粒、片状银包铜颗粒和类球状银包铜颗粒均是通过购买得到;同时还对买到的具有三维树枝状微观结构的银颗粒进行了SEM扫描检测,检测结构如图2和图3所示。
实施例1
本实施例提供的一种环氧树脂导电胶,按总重量为100份计,包括如下原料组分:球状银颗粒8份、片状银颗粒12份、具有三维树枝状微观结构的银颗粒52份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂8份、聚氨酯丙烯酸酯1.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0份、硅烷偶联剂1.0份、阳离子固化剂1.2份(优选为,双氰胺和改性咪唑,共计1.2份)。
通过计算,以上组分中,具有三维树枝状微观结构的银颗粒的重量与导电颗粒总重量的比值为13:18;
其中,具有三维树枝状微观结构的银颗粒与片状银颗粒或球状银颗粒的接触如图4所示,从图4中可以看出,他们属于多点接触。
此外,本实施例中的片状银颗粒D50为1.5μm,比表面为0.36m 2/g;球状 银颗粒D50为1.5μm,比表面为0.35m 2/g;具有三维树枝状微观结构的银颗粒的D50为4.0μm,比表面积为0.69m 2/g;
本实施例提供的环氧树脂导电胶是通过如下方法制备得到的,该方法包括如下步骤:
S1、按总重量100份计,分别称取以下原料组分:球状银颗粒8份、片状银颗粒12份、具有三维树枝状微观结构的银颗粒52份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂8份、聚氨酯丙烯酸酯1.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0份、硅烷偶联剂1.0份、阳离子固化剂1.2份(优选为,双氰胺和改性咪唑,共计1.2份);
S2、将萘型环氧树脂、聚氨酯改性环氧树脂、双酚F环氧树脂、聚氨酯丙烯酸酯、邻甲酚缩水甘油醚、C12~C14烷基缩水甘油醚、硅烷偶联剂和阳离子固化剂混合并搅拌均匀,再加入球状银颗粒、片状银颗粒和具有三维树枝状微观结构的银颗粒,继续搅拌至均匀,获得混合料;
S3、对步骤S2获得的混合料进行研磨,得到200g丙烯酸导电胶。
实施例2
本实施例提供的一种环氧树脂导电胶,按总重量为100份计,包括如下原料组分:球状银颗粒8份、片状银颗粒12份、具有三维树枝状微观结构的银包铜颗粒52份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂8份、聚氨酯丙烯酸酯1.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0份、硅烷偶联剂1.0份、阳离子固化剂1.2份(优选为,双氰胺和 改性咪唑,共计1.2份)。
通过计算,以上组分中,具有三维树枝状微观结构的银包铜颗粒的重量与导电颗粒总重量的比值为13:18;
此外,本实施例中的片状银颗粒D50为1.5μm,比表面为0.36m 2/g;球状银颗粒D50为1.5μm,比表面为0.35m 2/g;具有三维树枝状微观结构的银包铜颗粒的D50为6.5μm,比表面积为0.49m 2/g;
本实施例的一种环氧树脂导电胶的制备方法与实施例1的制备方法相同。
实施例3
本实施例提供的一种改环氧树脂导电胶,按总重量为100份计,包括如下原料组分:具有三维树枝状微观结构的银颗粒72份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂8份、聚氨酯丙烯酸酯1.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0份、硅烷偶联剂1.0份、阳离子固化剂1.2份(优选为,双氰胺和改性咪唑,共计1.2份)。
其中,具有三维树枝状微观结构的银颗粒的D50为4.0μm,比表面积为0.69m 2/g;
本实施例的一种环氧树脂导电胶的制备方法与实施例1的制备方法相同。
同样对本实施例的导电胶进行了固化时间测试试验,体电阻率测试试验和粘接强度测试试验,具体测试方法与实施例1相同,得到的结果汇总在表3中。
实施例4
本实施例提供的一种环氧树脂导电胶,按总重量为100份计,包括如下原 料组分:具有三维树枝状银包铜颗粒72份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂8份、聚氨酯丙烯酸酯1.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0份、硅烷偶联剂1.0份、阳离子固化剂1.2份(优选为,双氰胺和改性咪唑,共计1.2份)。
其中,具有三维树枝状微观结构的银包铜颗粒的D50为6.5μm,比表面积为0.49m 2/g;
本实施例的一种环氧树脂导电胶的制备方法与实施例1的制备方法相同。
实施例5
本实施例提供的环氧树脂导电胶,按总重量为100份计,包括如下原料组分:具有三维树枝状微观结构的银颗粒62份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂18份、聚氨酯丙烯酸酯1.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0份、硅烷偶联剂1.0份;阳离子固化剂1.2份(优选为,双氰胺和改性咪唑,共计1.2份)。
其中,具有三维树枝状微观结构的银颗粒的D50为4.0μm,比表面积为0.69m 2/g;
本实施例的一种环氧树脂导电胶的制备方法与实施例1的制备方法相同。
同样对本实施例的导电胶进行了固化时间测试试验,体电阻率测试试验和粘接强度测试试验,具体测试方法与实施例1相同,得到的结果汇总在表3中。
实施例6
本实施例提供的一种环氧树脂导电胶,按总重量为100份计,包括如下原 料组分:具有三维树枝状微观结构的银颗粒72份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂8份、聚氨酯丙烯酸酯1.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0份、硅烷偶联剂1.0份、阳离子固化剂1.2份。
其中,具有三维树枝状微观结构的银颗粒的D50为4.0μm,比表面积为3.5m 2/g;
本实施例的一种改性环氧丙烯酸树脂导电胶的制备方法与实施例1的制备方法相同。
对比例1
本对比例提供的一种环氧树脂导电胶,按总重量为100份计,包括如下原料组分:片状银颗粒72份;萘型环氧树脂7份;聚氨酯改性环氧树脂3份;双酚F环氧树脂9.8份;邻甲酚缩水甘油醚3.0份;C12~C14烷基缩水甘油醚3.0份,硅烷偶联剂1.0份;阳离子固化剂1.2份(优选为双氰胺和改性咪唑,共计1.2份)。
其中,片状银颗粒的D50为1.5μm;比表面积0.36m 2/g;
本对比例的一种环氧树脂导电胶的制备方法与实施例1的制备方法相同。
对比例2
本对比例提供的一种环氧树脂导电胶,按总重量为100份计,包括如下原料组分:球状银颗粒72份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂9.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0 份、硅烷偶联剂1.0份、阳离子固化剂1.2份(优选为双氰胺和改性咪唑,共计1.2份)。
其中,球状银颗粒的D50为1.5μm,比表面积0.35m 2/g;
本对比例的环氧树脂导电胶的制备方法与实施例1的制备方法相同。
对比例3
本对比例提供的一种环氧树脂导电胶,按总重量为100份计,包括如下原料组分:具有三维树枝状微观结构的银颗粒72份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂9.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0份、硅烷偶联剂1.0份、阳离子固化剂1.2份(优选为双氰胺和改性咪唑,共计1.2份)。
其中,具有三维树枝状微观结构的银颗粒的D50为1.7μm,比表面积4.19m 2/g;
本对比例的环氧树脂导电胶的制备方法与实施例1的制备方法相同。
对比例4
本对比例提供的一种环氧树脂导电胶,按总重量为100份计,包括如下原料组分:球状银颗粒8份、片状银颗粒12份,具有三维树枝状微观结构的银颗粒52份、萘型环氧树脂7份、聚氨酯改性环氧树脂3份、双酚F环氧树脂9.8份、邻甲酚缩水甘油醚3.0份、C12~C14烷基缩水甘油醚3.0份、硅烷偶联剂1.0份、阳离子固化剂1.2份(优选为双氰胺和改性咪唑,共计1.2份)。
通过计算,以上组分中,具有三维树枝状微观结构的银包铜颗粒的重量与 导电颗粒总重量的比值为13:18;
此外,本对比例中的片状银颗粒D50为1.5μm,比表面为0.36m 2/g;球状银颗粒D50为1.5μm,比表面为0.35m 2/g;具有三维树枝状微观结构的银包铜颗粒的D50为4.0μm,比表面积为069m 2/g。
本对比例的环氧树脂导电胶的制备方法与实施例1的制备方法相同。
表1 实施例1-实施例6以及对比例1-对比例4获得的环氧树脂导电胶的各组分的含量以及参数
Figure PCTCN2020072632-appb-000002
Figure PCTCN2020072632-appb-000003
Figure PCTCN2020072632-appb-000004
Figure PCTCN2020072632-appb-000005
从表1中可知:
实施例1相较于实施例2而言,区别在于,实施例1使用了片状银颗粒、球状银颗粒与具有三维树枝状微观结构的银颗粒混合物;实施例2使用了片状银颗粒、球状银颗粒、与三维树枝状微观结构的银包铜颗粒混合物;
实施例5相较于实施例3而言,区别在于,实施例5中使用的具有三维树枝状微观结构的银颗粒含量比实施例3降低了10%,其有机体系与实施例3相同;
对比例1和对比例2,相较于实施例1而言,区别在于,对比例1和对比例2不含具有三维树枝状微观结构的导电颗粒且单独包含片状银颗粒或球状银颗粒;而实施例1既含有球状和片状导电颗粒,又含有具有三维树枝状微观结构的导电颗粒。
对比例3,相较于实施例3而言,区别在于,具有三维树枝状微观结构的导电颗粒的比表面积不同,实施例3的比表面积为0.69m 2/g,处于0.2~3.5m 2/g之间;而对比例3的具有三维树枝状微观结构的导电颗粒的比表面积却高达4.19m 2/g。
对比例4,相较于实施例1而言,区别在于,对比例4仅包含了环氧树脂,而实施例1包含了环氧树脂和丙烯酸酯且两者的重量比为10:1,位于0.2:30~2:20之间。
为了验证本发明实施例获得的环氧树脂导电胶的性能,现对实施例1-6以及对比例1-3获得的环氧树脂导电胶分别进行粘度性能测试、热膨胀系数测试、玻璃化转变温度测试、固化温度和时间测试、体电阻率测试以及剪切强度强度测试,
其中,导电胶的粘度通过在25℃下使用粘度计进行测试,热膨胀系数通过TMA方法测试;玻璃化转变温度通过DSC方法测试;固化时间温度和时间通 过在链式加热炉中进行测试;
导电胶的体电阻率测试方法为:将导电胶样品印刷到一个玻璃片上,然后进行固化,固化温度为1500℃,固化时间为15s;固化后的导电胶宽度为5mm,高度为42um,长度为70mm;然后测试其电阻并按照以下公式计算其导电胶的体电阻率:
Figure PCTCN2020072632-appb-000006
式中:L、b、d分别为导电胶样品的长度、宽度和厚度(cm),R为导电胶样品的电阻(Ω),ρ为导电胶样品的体积电阻率(Ω.cm)。
导电胶的剪切强度测试过程为:将导电胶样品参照国标GB/T 7124-2008胶粘剂拉伸剪切强度的测定(刚性材料对刚性材料)方法测量其粘接强度;图6是测量示意图,测量时拉力机以200mm/min的速度以180度的方向拉伸两个铝片直到导电胶层破坏为止,记下试验机刻度盘上的破坏负荷,取6个拉伸样品测试,并按下式计算剪切强度(W):
W=P/S
式中:W为剪切强度,P为破坏负荷,
此外,本试验的拉伸样品为5个,取其平均值。
导电胶的粘结区域是否有开裂的测试过程,用导电胶将两个铝片粘结,如图7所示,铝片尺寸为30x5x1mm,导电胶粘结部分尺寸为5x3mm,导电胶固化之后,将铝片进行弯曲如图8所示,弯曲半径5cm,观察导电胶粘结区域是否有开裂,观察结果汇总在表2中。
以上各导电胶具体检测结果如下表2所示:
表2 实施例1~实施例6以及对比例1~对比例4的导电胶样品的性能数据表
Figure PCTCN2020072632-appb-000007
从表2中的数据可知:
1、实施例1~实施例6,以及对比例1~对比例4的热膨胀系数,以及玻璃化转变温度几乎相同;
2、将实施例1与实施例2相比可知,具有三维树枝状微观结构的银颗粒或者银包铜颗粒可以与相邻的导电颗粒多点接触,建立起网络状的电导通,具有体积电阻率低,导电性能好的特点,但是其独特的三维树枝状微观结构导致了其印刷透墨性能不如球状银颗粒或者片状银颗粒,而球状银颗粒或者片状银颗粒具有印刷透墨性能好的优点,但是其导电性能比具有三维树枝状微观结构的银颗粒或者银包铜颗粒差;只有将球状银颗粒或者片状银颗粒与三维树枝状微观结构的银颗粒或者银包铜颗粒混合使用,既保持了其三维树枝状微观结构的高导电性能的优点,又克服了其印刷透墨性能不好的缺点,所制作的导电胶具有导电性能好,印刷透墨性能优越的特点。
3.将实施例5与实施例3相比,因为实施例5中具有三维树枝状微观结构 的银颗粒含量的降低,导致其电阻率略高于实施例3,但是仍然大幅低于对比例1-3,这也反映出,具有三维树枝状微观结构的银颗粒具有很好的导电性能的原因。3、将对比例1和对比例2,与实施例1相比,对比例1、对比例2和实施例1的导电胶都具有良好的印刷性,说明即使本实施例的导电胶中的导电颗粒即使不含有具有三维树枝状微观结构的导电颗粒,仍然能够制备出印刷性较好的导电胶;
但是,对比例1和对比例2的体积电阻率明显高于实施例1-实施例6的体积电阻率,说明对比例1和对比例2的导电性较差,即如果导电胶中的导电颗粒仅仅只含有球状导电颗粒,或者片状导电颗粒,就会导致导电胶的体积电阻率增加,导电性变差;这也反映出,当使用的导电颗粒的重量份相同的情况下,采用具有三维树枝状的导电颗粒,能够降低导电胶的体积电阻率,提高导电性。
4、将对比例3与实施例3相比,因为具有三维树枝微观结构状的导电颗粒的比表面积的增加,导致对比例3的体积电阻率明显高于实施例3的体积电阻率,粘度也明显高于实施例3的粘度,从而导致印刷困难,所以如果要保证导电胶的导电性以及印刷性,需要使具有三维树枝微观结构状的导电颗粒的比表面积处于0.2~3.5m 2/g之间。
5、将对比例4与实施例1相比可知,实施例1中通过使用重量比例为10:1的环氧树脂和丙烯酸树脂,使得制得的导电胶在弯曲试验中不开裂,对比例4的导电胶在弯曲试验中开裂,说明实施例1的电胶的柔韧性要优于对比例4的电胶的柔韧性,即如果导电胶中仅仅含有环氧树脂,就会导致导电胶的柔韧性 变差;这也反映出,当使用的导电颗粒的重量份相同的情况下,再加入丙烯酸树脂,能够提高导电胶的柔韧性。
综上所述,1)本发明所涉及到的环氧树脂导电胶使用具有三维树枝状微观结构的导电颗粒,其两个导电颗粒之间的接触是多个点接触,因此其接触电阻大大降低,导电性能大幅提高,进而降低导电颗粒的使用量,降低成本,提高性能;2)本发明所涉及到的改性环氧丙烯酸树脂导电胶使用改性环氧丙烯酸和用硅烷偶联剂作为附着力促进剂,使本发明的环氧树脂导电胶具有固化速度快、附着力高、可以在室温下长时间操作使用的特点。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (21)

  1. 一种环氧树脂导电胶,其特征在于,按总质量份数为100份计,包括以下原料组分:导电颗粒30.0~90.0份、环氧树脂8.0~30.0份、丙烯酸酯树脂0.2~3份、反应型稀释剂1.0~15份、增韧剂0.2~15份、硅烷偶联剂0.2~5.0份、阳离子固化剂0.1~5.0份;
    其中,所述导电颗粒包括具有三维树枝状微观结构的导电颗粒。
  2. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述具有三维树枝状微观结构的导电颗粒的比表面积为0.2~3.5m 2/g。
  3. 根据权利要求2所述的一种环氧树脂导电胶,其特征在于,所述具有三维树枝状微观结构的导电颗粒为具有三维树枝状微观结构的银颗粒或具有三维树枝状微观结构的银包铜颗粒。
  4. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述导电颗粒为球状银颗粒与具有三维树枝状微观结构的银颗粒的混合物,其中,所述具有三维树枝状微观结构的银颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50.0μm。
  5. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述导电颗粒为球状银颗粒与具有三维树枝状微观结构的银包铜颗粒的混合物,其中,所述具有三维树枝状微观结构的银包铜颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;所述具有三维树枝状微观结构的银包铜颗粒的比表面积为 0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50.0μm。
  6. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述导电颗粒为片状银颗粒与具有三维树枝状微观结构的银颗粒的混合物,其中,所述具有三维树枝状微观结构的银颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述片状银颗粒的尺寸为0.1~50.0μm。
  7. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述导电颗粒为片状银颗粒与具有三维树枝状微观结构的银包铜颗粒的混合物,其中,所述具有三维树枝状微观结构的银包铜颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述片状银颗粒的尺寸为0.1~50.0μm。
  8. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述导电颗粒为片状银包铜颗粒与具有三维树枝状微观结构的银包铜颗粒的混合物,其中,所述具有三维树枝状微观结构的银包铜颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;所述具有三维树枝状微观结构的银包铜颗粒比表面积为0.2~3.5m 2/g,所述片状银包铜颗粒的尺寸为0.1μm–50.0μm。
  9. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述导电颗粒为球状银颗粒、片状银颗粒以及具有三维树枝状微观结构的银颗粒的混合物,其中,所述片状银颗粒与球状银颗粒和片状银颗粒两者总的质量百分比为(0.3~0.7):1;所述具有三维树枝状微观结构的银颗粒导电颗粒总的质量百分 比为(0.05~0.95):1;所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50.0μm。
  10. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述导电颗粒为球状银颗粒、片状银颗粒以及具有三维树枝状微观结构的银包铜颗粒的混合物,其中,其中,所述片状银颗粒与球状银颗粒和片状银颗粒两者总的质量百分比为(0.3~0.7):1;所述具有三维树枝状微观结构的银包铜颗粒与导电颗粒总的质量百分比为(0.05~0.95):1;所述具有三维树枝状微观结构的银包铜颗粒比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50.0μm。
  11. 根据权利要求3、4、6或9所述的一种环氧树脂导电胶,其特征在于,所述具有三维树枝状微观结构的银颗粒的颗粒尺寸为0.1~50um。
  12. 根据权利要求3、5、7、8或10所述的一种环氧树脂导电胶,其特征在于,所述具有三维树枝状微观结构的银包铜颗粒的颗粒尺寸为0.1~50um。
  13. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述丙烯酸酯与所述的环氧树脂的重量比例为0.2:30~2:20。
  14. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述环氧树脂为双酚A型环氧树脂、双酚F型环氧树脂、萘型环氧树脂、聚氨酯改性环氧树脂、脂环族环氧树脂、氢化双酚A环氧树脂中的至少一种。
  15. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述丙烯酸酯是聚氨酯丙烯酸酯和脂肪族聚氨酯丙烯酸酯中的一种或者两种混合,其中所述丙烯酸酯与所述的环氧树脂的重量比例为0.2:30~2:20。
  16. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述硅烷偶联剂为2-(3,4-环氧环己基)乙烷基三甲氧基硅烷、3-缩水甘油醚氧基丙基甲基二甲氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷、3-缩水甘油醚氧基丙基甲基二乙氧基硅烷、3-缩水甘油醚氧基丙基三乙氧基硅烷中的至少一种。
  17. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述反应型稀释剂为脂肪族缩水甘油醚1,6己二醇二缩水甘油醚、C12-C14烷基缩水甘油醚、二丙二醇二缩水甘油醚、壬基酚缩水甘油醚、和邻甲酚缩水甘油醚、三羟甲基丙烷三缩水甘油醚、蓖麻油三缩水甘油醚、季戊四醇四缩水甘油醚中的至少一种。
  18. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述增韧剂为核壳橡胶环氧树脂增韧剂、聚酯多元醇、气相二氧化硅中的至少一种。
  19. 根据权利要求1所述的一种环氧树脂导电胶,其特征在于,所述固化剂为双氰胺类环氧固化剂、取代脲促进剂、脂肪胺类环氧固化剂、聚酰胺类环氧固化剂、咪唑类环氧固化剂、路易斯酸类环氧固化剂中的至少一种。
  20. 一种环氧树脂导电胶的制备方法,其特征在于,该方法包括以下步骤:
    步骤1、按照总质量份数为100份计,分别称取以下原料组分:导电颗粒30.0~90.0份、环氧树脂8.0~30.0份、丙烯酸酯树脂0.2~3份、反应型稀释剂1.0~15份、增韧剂0.2~15份、硅烷偶联剂0.2~5.0份、固化剂0.1~5.0份;
    步骤2、将步骤1中所述环氧树脂、丙烯酸酯树脂、反应型稀释剂、消泡剂、增韧剂、硅烷偶联剂以及固化剂混合并搅拌均匀,再加入所述导电颗粒, 继续搅拌至混合均匀,获得混合料;
    步骤3、对所述混合料进行研磨,获得环氧树脂导电胶。
  21. 一种如权利要求1-19任意一项所述的一种环氧树脂导电胶在半导体元件中的应用。
PCT/CN2020/072632 2020-01-17 2020-01-17 一种环氧树脂导电胶及其制备方法和应用 WO2021142748A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072632 WO2021142748A1 (zh) 2020-01-17 2020-01-17 一种环氧树脂导电胶及其制备方法和应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202080000044.8A CN113412319A (zh) 2020-01-17 2020-01-17 一种环氧树脂导电胶及其制备方法和应用
PCT/CN2020/072632 WO2021142748A1 (zh) 2020-01-17 2020-01-17 一种环氧树脂导电胶及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021142748A1 true WO2021142748A1 (zh) 2021-07-22

Family

ID=76864486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072632 WO2021142748A1 (zh) 2020-01-17 2020-01-17 一种环氧树脂导电胶及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113412319A (zh)
WO (1) WO2021142748A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165654A (en) * 1987-12-23 1989-06-29 Sumitomo Bakelite Co Ltd Conductive resin paste
CN1262492A (zh) * 1998-09-30 2000-08-09 凸版资讯股份有限公司 导电性糊及其固化方法、信息收发体及其天线的形成方法
JP2013232527A (ja) * 2012-04-27 2013-11-14 Kyocera Chemical Corp ダイアタッチペーストおよびその製造方法、ならびに半導体装置
TW201348400A (zh) * 2012-04-02 2013-12-01 Three Bond Co Ltd 導電性組成物
CN104080561A (zh) * 2012-02-02 2014-10-01 户田工业株式会社 银微粒及其制造方法以及含有该银微粒的导电性膏、导电性膜和电子设备
CN106928892A (zh) * 2017-04-14 2017-07-07 广州日高新材料科技有限公司 单组份环氧电子胶及其制备方法和应用
CN108102589A (zh) * 2017-11-27 2018-06-01 烟台德邦科技有限公司 一种低温固化低模量的环氧树脂封装导电胶及其制备方法
CN108913047A (zh) * 2018-07-26 2018-11-30 深圳广恒威科技有限公司 导电固晶粘结胶液、高导热性能导电胶膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3689159B2 (ja) * 1995-12-01 2005-08-31 ナミックス株式会社 導電性接着剤およびそれを用いた回路
JP4933217B2 (ja) * 2006-10-26 2012-05-16 タツタ電線株式会社 導電性接着剤
CN103400637B (zh) * 2013-08-05 2016-07-13 清华大学深圳研究生院 一种导电浆料及其制备方法以及印刷线路材料
KR101952004B1 (ko) * 2014-08-29 2019-02-25 후루카와 덴키 고교 가부시키가이샤 도전성 접착제 조성물

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165654A (en) * 1987-12-23 1989-06-29 Sumitomo Bakelite Co Ltd Conductive resin paste
CN1262492A (zh) * 1998-09-30 2000-08-09 凸版资讯股份有限公司 导电性糊及其固化方法、信息收发体及其天线的形成方法
CN104080561A (zh) * 2012-02-02 2014-10-01 户田工业株式会社 银微粒及其制造方法以及含有该银微粒的导电性膏、导电性膜和电子设备
TW201348400A (zh) * 2012-04-02 2013-12-01 Three Bond Co Ltd 導電性組成物
JP2013232527A (ja) * 2012-04-27 2013-11-14 Kyocera Chemical Corp ダイアタッチペーストおよびその製造方法、ならびに半導体装置
CN106928892A (zh) * 2017-04-14 2017-07-07 广州日高新材料科技有限公司 单组份环氧电子胶及其制备方法和应用
CN108102589A (zh) * 2017-11-27 2018-06-01 烟台德邦科技有限公司 一种低温固化低模量的环氧树脂封装导电胶及其制备方法
CN108913047A (zh) * 2018-07-26 2018-11-30 深圳广恒威科技有限公司 导电固晶粘结胶液、高导热性能导电胶膜及其制备方法

Also Published As

Publication number Publication date
CN113412319A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
JP5738274B2 (ja) 耐熱用接着剤
JP5723498B1 (ja) ポリイミド樹脂組成物、及びそれを用いた熱伝導性接着フィルム
JP6477483B2 (ja) エポキシ樹脂組成物、樹脂層付きキャリア材料、金属ベース回路基板および電子装置
KR20090092786A (ko) 반도체 패키지, 코어층 재료, 빌드업층 재료 및 시일링 수지 조성물
JP6452243B2 (ja) ポリイミド樹脂組成物、及びそれを用いた接着フィルム
CN102676109A (zh) 一种led散热基材用挠性导热绝缘胶膜的制备方法
KR101391696B1 (ko) 이방 전도성 조성물 및 필름
CN104364290A (zh) 固化性树脂组合物、树脂组合物、树脂片、及这些组合物和树脂片的固化物
TW201444962A (zh) 裝置、接著劑用組成物、接著片
CN109486461A (zh) 一种高稳定性led封装用导电银胶及其制备方法
JP5760702B2 (ja) 電子機器用接着剤組成物および電子機器用接着剤シート
KR20190057400A (ko) 열전도성 페이스트 및 전자 장치
TW201531528A (zh) 導電性糊及導電性膜
WO2021142748A1 (zh) 一种环氧树脂导电胶及其制备方法和应用
TWI752222B (zh) 密封用薄膜、密封結構體、及密封結構體的製造方法
JP2017057340A (ja) ポリイミド樹脂組成物、及びそれを用いた接着フィルム
TW201940589A (zh) 樹脂組合物、預浸料、層壓板、覆金屬箔層壓板以及印刷電路板
KR20190056448A (ko) 열전도성 페이스트 및 전자 장치
WO2020262061A1 (ja) エポキシ樹脂組成物
WO2021142750A1 (zh) 一种改性环氧丙烯酸树脂导电胶及其制备方法和应用
WO2021142752A1 (zh) 一种有机硅树脂导电胶及其制备方法和应用
JPH07179833A (ja) 導電性樹脂ペースト
CN113462128B (zh) 一种树脂组合物、功能膜及其应用
CN110862653B (zh) 一种无卤树脂组合物、rcc、胶膜和覆金属箔层压板
JP6021150B2 (ja) 耐低温性樹脂組成物及びそれを用いた超電導線材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE