WO2021142752A1 - 一种有机硅树脂导电胶及其制备方法和应用 - Google Patents

一种有机硅树脂导电胶及其制备方法和应用 Download PDF

Info

Publication number
WO2021142752A1
WO2021142752A1 PCT/CN2020/072639 CN2020072639W WO2021142752A1 WO 2021142752 A1 WO2021142752 A1 WO 2021142752A1 CN 2020072639 W CN2020072639 W CN 2020072639W WO 2021142752 A1 WO2021142752 A1 WO 2021142752A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
silver
parts
conductive
dimensional dendritic
Prior art date
Application number
PCT/CN2020/072639
Other languages
English (en)
French (fr)
Inventor
许静文
孙丰振
李德林
Original Assignee
深圳市首骋新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市首骋新材料科技有限公司 filed Critical 深圳市首骋新材料科技有限公司
Priority to CN202080000045.2A priority Critical patent/CN113412321A/zh
Priority to PCT/CN2020/072639 priority patent/WO2021142752A1/zh
Publication of WO2021142752A1 publication Critical patent/WO2021142752A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the invention belongs to the technical field of semiconductor materials, and specifically relates to an organic silicon resin conductive adhesive and a preparation method and application thereof.
  • conductive adhesive As an adhesive with certain conductivity after drying or curing, conductive adhesive is widely used in the manufacture and assembly of electronic equipment, integrated circuits, semiconductor devices, passive components, solar cells, solar modules and/or light-emitting diodes .
  • the conductive adhesive provides mechanical bonding and electrical conduction between the two surface components, so the conductive adhesive must have good mechanical properties and low resistance electrical conduction performance.
  • conductive adhesive formulations are composed of conductive particles, polymer resins, and additives. The resin usually provides the mechanical bond between the two components, and the conductive particles usually provide the required electrical conduction connection.
  • the traditional conductive adhesive uses spherical, spheroidal, and flake-shaped silver particles or spherical, spheroidal, and flake-shaped silver-coated copper particles. Whether it is two spherical conductive particles or two flake conductive particles, two The contact between conductive particles is a point contact, and the conductivity is low; therefore, in order to improve the conductive performance of the conductive adhesive, the number or dosage of conductive particles must be increased to improve the conductive performance, which leads to an increase in cost.
  • the traditional conductive adhesive is easy to dry during the dispensing or printing operation. Generally, it is exposed for no more than 8 hours at room temperature.
  • the traditional conductive adhesive has a long curing time, generally requiring 30 minutes or longer, which leads to an increase in the production cycle and a decrease in production capacity.
  • the present invention provides a silicone resin conductive adhesive.
  • the conductive adhesive has high conductivity, good adhesion, and curing.
  • the time is short and the operability time is long, which solves the problems of the existing conductive adhesives that increase the cost, short operating time, and long curing time to increase the electrical conductivity and increase the production cycle.
  • Another object of the present invention is to provide a preparation method of the above-mentioned organosilicon resin conductive adhesive, which has simple operation, mild conditions and easy realization.
  • the present invention also provides the application of the above-mentioned organic silicon resin conductive adhesive in semiconductor components.
  • a silicone resin conductive adhesive based on 100 parts by total weight, the conductive adhesive includes the following components by weight;
  • the conductive particles are conductive particles with a three-dimensional dendritic microstructure.
  • the contact between conductive particles is multi-point contact, forming a conductive network, which is different from the one-point contact between conventional spherical conductive particles, flake conductive particles or spherical conductive particles when they are mixed, so that the contact resistance is greatly reduced.
  • the conductive performance is greatly improved; in addition, through multi-point contact, the conductive effect can be achieved when fewer conductive particles are used, thereby reducing the amount of conductive particles used, reducing costs, and improving the performance of conductive adhesives.
  • the specific surface area of the conductive particles with a three-dimensional dendritic microstructure is 0.2-3.5 m 2 /g.
  • the specific surface area of the conductive particles with a three-dimensional dendritic microstructure is 0.2-3.5m 2 /g, which ensures the conductivity of the conductive particles with a three-dimensional dendritic microstructure while also ensuring its printing performance;
  • the surface area exceeds 3.5m 2 /g, the resulting conductive adhesive is difficult to print and difficult to use on a large scale.
  • the conductive particles with a three-dimensional dendritic microstructure are silver particles with a three-dimensional dendritic microstructure or silver-coated copper particles with a three-dimensional dendritic microstructure.
  • the conductive particles of the present invention may include silver particles having a three-dimensional dendritic microstructure, and one or more of spherical silver particles, flaky silver particles, or spheroidal silver particles;
  • the conductive particles of the present invention may include silver particles having a three-dimensional dendritic microstructure, and one or more of spherical silver particles, flaky silver particles, or spheroidal silver particles;
  • the conductive particles of the present invention may include silver-coated copper particles with a three-dimensional dendritic microstructure, and one or more of spherical silver particles, flake silver particles, or spheroidal silver particles;
  • the conductive particles of the present invention may include silver-coated copper particles having a three-dimensional dendritic microstructure, and one of spherical silver-coated copper particles, flake-shaped silver-coated copper particles, or spheroidal silver-coated copper particles or Many kinds.
  • the conductive particles are a mixture of spherical silver particles and silver particles with a three-dimensional dendritic microstructure, and the total mass ratio of the silver particles with a three-dimensional dendritic microstructure to the conductive particles is (0.05-0.95) :1.
  • the specific surface area of the silver particles with a three-dimensional dendritic microstructure is 0.2-3.5 m 2 /g, and the size of the spherical silver particles is 0.1-50 ⁇ m.
  • the conductive particles are a mixture of spherical silver particles and silver-coated copper particles with a three-dimensional dendritic microstructure, and the total mass ratio of the silver-coated copper particles with a three-dimensional dendritic microstructure to the conductive particles is ( 0.05-0.95): 1.
  • the specific surface area of the silver-coated copper particles with a three-dimensional dendritic microstructure is 0.2-3.5 m 2 /g, and the size of the spherical silver particles is 0.1-50 ⁇ m.
  • the conductive particles are a mixture of flake silver particles and silver particles with a three-dimensional dendritic microstructure, and the total mass ratio of the silver particles with a three-dimensional dendritic microstructure to the conductive particles is (0.05 ⁇ 0.95). ): 1.
  • the specific surface area of the silver particles with a three-dimensional dendritic microstructure is 0.2-3.5 m 2 /g, and the size of the flake-shaped silver particles is 0.1-50 ⁇ m.
  • the conductive particles are a mixture of flake silver particles and silver-coated copper particles with a three-dimensional dendritic microstructure, and the total mass ratio of the silver-coated copper particles with a three-dimensional dendritic microstructure to the conductive particles is (0.05-0.95): 1.
  • the specific surface area of the silver-coated copper particles with a three-dimensional dendritic microstructure is 0.2-3.5 m 2 /g, and the size of the flaky silver particles is 0.1-50 ⁇ m.
  • the conductive particles are a mixture of flake-shaped silver-coated copper particles and silver-coated copper particles with a three-dimensional dendritic microstructure, and the total mass of the silver-coated copper particles with a three-dimensional dendritic microstructure and the conductive particles
  • the ratio is (0.05-0.95):1
  • the specific surface area of the silver-coated copper particles with three-dimensional dendritic microstructure is 0.2-3.5 m 2 /g
  • the size of the flake-shaped silver-coated copper particles is 0.1-50 ⁇ m.
  • the conductive particles are a mixture of spherical silver-coated copper particles and silver-coated copper particles with a three-dimensional dendritic microstructure, and the total mass ratio of the silver-coated copper particles with a three-dimensional dendritic microstructure to the conductive particles is It is (0.05-0.95):1, the specific surface area of the silver-coated copper particles with a three-dimensional dendritic microstructure is 0.2-3.5 m 2 /g, and the size of the spherical silver-coated copper particles is 0.1-50 ⁇ m.
  • the size of the silver particles with a three-dimensional dendritic microstructure is 0.1-50 ⁇ m.
  • the size of the silver-coated copper particles with a three-dimensional dendritic microstructure is 0.1-50 ⁇ m.
  • the printing ink permeability of simple conductive particles with a three-dimensional dendritic microstructure is weaker than that of spherical particles, flake particles or spheroidal particles.
  • the conductive particles with a three-dimensional dendritic microstructure are mixed with the above-mentioned morphological particles, it can The advantages of both parties are retained, that is, it not only improves the conductivity of the conductive particles, but also overcomes the problem of poor ink permeability of the printed conductive particles with a three-dimensional dendritic microstructure.
  • the specific embodiments of the present invention are not limited to the above-mentioned silver particles with three-dimensional dendritic microstructure or silver-coated copper particles with three-dimensional dendritic microstructure and spherical silver particles, flake silver particles, spherical silver-coated copper particles or flake silver particles.
  • the specific proportion of copper particles may be silver particles with a three-dimensional dendritic microstructure and spherical silver particles, flake silver particles, spherical silver particles, spherical silver-coated copper particles, flake silver-coated copper particles, and spherical silver-coated copper particles.
  • One or more of the particles can also be silver-coated copper particles with a three-dimensional dendritic microstructure and spherical silver particles, flaky silver particles, spheroidal silver particles, spherical silver-coated copper particles, and flake silver-coated copper particles , One or more of spherical silver-coated copper particles.
  • the total mass ratio of the particles with the three-dimensional dendritic microstructure to the conductive particles is (0.05-0.95):1.
  • the conductive particles are particles with three-dimensional dendritic microstructures or their mixtures with conductive particles of other morphologies, and the mass of the particles with three-dimensional dendritic structures accounts for 5-100% of the total mass of the conductive particles, more preferably 5- 100%.
  • 95% of the conductive particles, spherical particles, flaky particles or spheroidal particles with a three-dimensional dendritic microstructure at the same time all have a size of 0.1-50 ⁇ m. Therefore, when conductive particles with a three-dimensional dendritic microstructure are mixed with flake, spherical or spherical-like conventional conductive particles, the conductive particles are also in multi-point contact, and the conductive performance is good.
  • the conductive particles are silver particles or silver-coated copper particles, wherein the coating weight of silver in the copper-coated particles having a three-dimensional dendritic microstructure is 5-40%.
  • the silicone resin is at least one of methyl polysiloxane, methyl hydrogen polysiloxane and methyl vinyl polysiloxane.
  • the silicone oil is methyl silicone oil, ethyl silicone oil, phenyl silicone oil, methyl hydrogen-containing silicone oil, methyl phenyl silicone oil, methyl chlorophenyl silicone oil, methyl ethoxy silicone oil, methyl trifluoropropane
  • base silicone oil methyl vinyl silicone oil, methyl hydroxy silicone oil, ethyl hydrogen silicone oil, and hydroxy hydrogen silicone oil.
  • the silane coupling agent is at least one of vinyl triethoxy silane, vinyl trimethoxy silane, vinyl tris ( ⁇ -methoxyethoxy) silane and isobutyl triethoxy silicon A sort of.
  • the silane coupling agent builds a "molecular bridge" between the conductive adhesive and the semiconductor element that needs to be bonded, such as a chip, that is, connects two materials with very different properties to increase the bonding strength.
  • the catalyst is a platinum catalyst.
  • the inhibitor is 3-methyl-1-butyn-3-ol, 1-acetylene cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol, pyridine, acrylonitrile , At least one of 2-vinyl isopropanol, benzotriazole, organic phosphine compound and diallyl maleate.
  • the conductive adhesive is composed of conductive particles, silicone resin, silane coupling agent, silicone oil, inhibitor, and catalyst, and the resulting conductive adhesive is a heat-curing conductive adhesive, which can be heat-cured at one time or twice.
  • the one-time thermal curing of conductive adhesive can preferably be cured within 15-300s in the range of 50-170°C.
  • the one-time curing operation is suitable for products with low repair rate; the two-time curing operation is suitable for products with high repair rate.
  • the curing can be pre-cured within 15-20s at 50 ⁇ 170°C.
  • the cured conductive adhesive has sufficient adhesion to the substrate to test the performance of the semiconductor device, but it is easy to repair.
  • the second curing can be within 50 ⁇ It can be cured in 15 ⁇ 300s at 170°C.
  • the conductive adhesive has the characteristics of good adhesion and low resistivity after curing; at the same time, the conductive adhesive can be operated and used for more than 48 hours at a room temperature of 22-25°C, which is enough For long-term use under various electronic assembly and solar photovoltaic module operating conditions, the viscosity of the conductive adhesive does not rise more than 20% when exposed to room temperature for 24hrs, and does not exceed 50% when exposed to room temperature for 48hrs;
  • the glue is suitable for operation and use in the manner of dispensing, and the conductive glue is also suitable for operation and use in the manner of printing.
  • the conductive adhesive of the present invention can form conductive bonds between two substrates or components and substrates, and can be used in the manufacture and assembly of electronic equipment, integrated circuits, semiconductor devices, passive components, and solar photovoltaic modules.
  • the present invention also protects the preparation method of the aforementioned organic silicon resin conductive adhesive, which includes the following steps:
  • the stirring and mixing process can be mechanical stirring and mixing, grinding and mixing or a combination of the two.
  • the present invention also protects the application of the aforementioned silicone resin conductive agent in semiconductor elements.
  • the present invention has the following beneficial effects:
  • the present invention uses conductive particles with a three-dimensional dendritic microstructure to make the contact between the conductive particles a multi-point contact, thereby forming a conductive network, which greatly reduces the contact resistance and greatly improves the conductivity; at the same time, it also reduces The amount of conductive particles can effectively reduce costs;
  • spherical or spheroidal conductive particles By mixing conductive particles with three-dimensional dendritic microstructure and flake, spherical or spheroidal conductive particles in the present invention, the advantages of high conductivity of conductive particles with three-dimensional dendritic microstructure are maintained, and the advantages of It has better ink permeability of flake, spherical or spheroidal conductive particles, and overcomes the shortcomings of poor ink permeability of simply using conductive particles with three-dimensional dendritic microstructures;
  • the present invention adopts a combination of methyl polysiloxane, methyl hydrogen polysiloxane, methyl vinyl polysiloxane, methyl silicone oil, methyl hydrogen silicone oil, methyl vinyl silicone oil, vinyl
  • An organic system composed of triethoxysilane, vinyl trimethoxy silicon, 3-methyl-1-butyn-3-ol, 2-vinyl isopropanol and platinum catalyst in a specific ratio, so that the resulting conductive adhesive has The advantages of fast curing and long-term operation and use at room temperature;
  • the preparation method of the present invention is simple, the conditions are mild, and it is suitable for industrial production.
  • Figure 1 is a schematic diagram of the contact between two existing spherical conductive particles; where 001 represents the spherical conductive particle, and 0011a represents the contact point between the two spherical conductive particles;
  • Figure 2 is an SEM image of a silver particle with a three-dimensional dendritic microstructure from a visual angle
  • Figure 3 is another SEM image of silver particles with a three-dimensional dendritic microstructure from another visual angle
  • FIG. 4 is a schematic diagram of contact between conductive particles with a three-dimensional dendritic microstructure and spherical conductive particles; among them, 002 represents a conductive particle with a three-dimensional dendritic microstructure, 001 represents a spherical conductive particle; 0012a is a contact point;
  • FIG. 5 is a schematic diagram of contact between conductive particles with a three-dimensional dendritic microstructure and conductive particles with a three-dimensional dendritic microstructure; wherein 002a and 002b both represent conductive particles with a three-dimensional dendritic microstructure, and 002ab represents a contact point;
  • Figure 6 is a schematic diagram of the tensile strength of the bond strength test.
  • This embodiment provides a silicone resin conductive adhesive, based on its total weight of 100 parts, including the following parts by weight of raw materials:
  • the conductive particles comprising 20 parts of spherical silver particles and 52 parts of silver particles having a three-dimensional dendritic microstructure; spherical silver particles, i.e. the size of particle diameter D 50 of 1.5 m, a specific surface area of 0.3m 2 / g, having a three-dimensional dendritic
  • the microstructured silver particles have a particle size D 50 of 4.0 ⁇ m and a specific surface area of 0.69 m 2 /g;
  • Silicone resin includes 10.5 parts of methyl polysiloxane, 3.5 parts of methyl hydrogen polysiloxane, and 1.0 part of methyl vinyl polysiloxane;
  • Silicone oil includes 9.4 parts of methyl silicone oil, 1.77 parts of methyl hydrogen-containing silicone oil, and 0.90 parts of methyl vinyl silicone oil;
  • the silane coupling agent includes 0.55 parts of vinyl triethoxy silane and 0.30 parts of vinyl trimethoxy silane;
  • the inhibitors include 0.04 parts of 3-methyl-1-butyn-3-ol and 0.03 parts of 2-vinylisopropanol.
  • This embodiment also provides a method for preparing the aforementioned conductive adhesive, which includes the following steps:
  • each component according to the following parts by weight: 52 parts of silver particles with three-dimensional dendritic microstructure, 20 parts of spherical silver particles, 10.5 parts of methyl polysiloxane, 3.5 parts of methyl hydrogen polysiloxane , 1.0 parts of methyl vinyl polysiloxane, 9.4 parts of methyl silicone oil, 1.77 parts of methyl hydrogen silicone oil, 0.90 parts of methyl vinyl silicone oil, 0.55 parts of vinyl triethoxy silane, vinyl trimethoxy 0.30 parts of silane, 0.01 parts of platinum catalyst, 0.04 parts of 3-methyl-1-butyn-3-ol, and 0.03 parts of 2-vinylisopropanol for use;
  • the mixture is further ground and mixed on a three-roll mill to obtain 200 g of silicone resin conductive adhesive.
  • This embodiment provides a silicone resin conductive adhesive, based on its total weight of 100 parts, including the following parts by weight of raw materials:
  • the conductive particles comprise tabular silver particles and 20 parts 52 parts of silver particles having a three-dimensional dendritic microstructure; tabular silver particle size, i.e. particle diameter D 50 of 1.5 m, a specific surface area of 0.3m 2 / g, having a three-dimensional
  • the silver particles with dendritic microstructure have a particle size D 50 of 4.0 ⁇ m and a specific surface area of 0.69 m 2 /g;
  • Silicone resin includes 10.5 parts of methyl polysiloxane, 3.5 parts of methyl hydrogen polysiloxane, and 1.0 part of methyl vinyl polysiloxane;
  • Silicone oil includes 9.4 parts of methyl silicone oil, 1.77 parts of methyl hydrogen-containing silicone oil, and 0.90 parts of methyl vinyl silicone oil;
  • the silane coupling agent includes 0.55 parts of vinyl triethoxy silane and 0.30 parts of vinyl trimethoxy silane;
  • the inhibitors include 0.04 parts of 3-methyl-1-butyn-3-ol and 0.03 parts of 2-vinylisopropanol.
  • This embodiment provides a silicone resin conductive adhesive, based on its total weight of 100 parts, including the following parts by weight of raw materials:
  • the conductive particles include 20 parts of flaky silver particles and 52 parts of silver-coated copper particles with a three-dimensional dendritic microstructure; the size of the flaky silver particles, that is, the particle size D 50 is 1.5 ⁇ m, and the specific surface area is 0.35 m 2 /g.
  • the silver-coated copper particles with a three-dimensional dendritic microstructure have a particle size D 50 of 6.5 ⁇ m and a specific surface area of 0.49 m 2 /g;
  • Silicone resin includes 10.5 parts of methyl polysiloxane, 3.5 parts of methyl hydrogen polysiloxane, and 1.0 part of methyl vinyl polysiloxane;
  • Silicone oil includes 9.4 parts of methyl silicone oil, 1.77 parts of methyl hydrogen-containing silicone oil, and 0.90 parts of methyl vinyl silicone oil;
  • the silane coupling agent includes 0.55 parts of vinyl triethoxy silane and 0.30 parts of vinyl trimethoxy silane;
  • the inhibitors include 0.04 parts of 3-methyl-1-butyn-3-ol and 0.03 parts of 2-vinylisopropanol.
  • the preparation method of this embodiment is the same as the preparation method of Example 1.
  • This embodiment provides a silicone resin conductive adhesive, based on its total weight of 100 parts, including the following parts by weight of raw materials:
  • the conductive particles are 72 parts of silver particles with a three-dimensional dendritic microstructure, the particle size D 50 of the silver particles with a three-dimensional dendritic microstructure is 4.0 ⁇ m, and the specific surface area is 0.69 m 2 /g;
  • Silicone resin includes 10.5 parts of methyl polysiloxane, 3.5 parts of methyl hydrogen polysiloxane, and 1.0 part of methyl vinyl polysiloxane;
  • Silicone oil includes 9.4 parts of methyl silicone oil, 1.77 parts of methyl hydrogen-containing silicone oil, and 0.90 parts of methyl vinyl silicone oil;
  • the silane coupling agent includes 0.55 parts of vinyl triethoxy silane and 0.30 parts of vinyl trimethoxy silane;
  • the inhibitors include 0.04 parts of 3-methyl-1-butyn-3-ol and 0.03 parts of 2-vinylisopropanol.
  • the preparation method of this embodiment is the same as the preparation method of Example 1.
  • This embodiment provides a silicone resin conductive adhesive, based on its total weight of 100 parts, including the following parts by weight of raw materials:
  • the conductive particles are 65 parts of silver particles with a three-dimensional dendritic microstructure, the particle size D 50 of the silver particles with a three-dimensional dendritic microstructure is 4.0 ⁇ m, and the specific surface area is 0.69 m 2 /g;
  • Silicone resin includes 18.5 parts of methyl polysiloxane, 2.5 parts of methyl hydrogen polysiloxane, and 1.0 part of methyl vinyl polysiloxane;
  • Silicone oil includes 9.4 parts of methyl silicone oil, 1.77 parts of methyl hydrogen-containing silicone oil, and 0.90 parts of methyl vinyl silicone oil;
  • the silane coupling agent includes 0.55 parts of vinyl triethoxy silane and 0.30 parts of vinyl trimethoxy silane;
  • the inhibitors include 0.04 parts of 3-methyl-1-butyn-3-ol and 0.03 parts of 2-vinylisopropanol.
  • the preparation method of this embodiment is the same as the preparation method of Example 1.
  • This embodiment provides a silicone resin conductive adhesive, based on its total weight of 100 parts, including the following parts by weight of raw materials:
  • the conductive particles are 72 parts of silver-coated copper particles with a three-dimensional dendritic microstructure, and the particle size D 50 of the silver-coated copper particles with a three-dimensional dendritic microstructure is 6.5 ⁇ m and the specific surface area is 0.49 m 2 /g;
  • Silicone resin includes 10.5 parts of methyl polysiloxane, 3.5 parts of methyl hydrogen polysiloxane, and 1.0 part of methyl vinyl polysiloxane;
  • Silicone oil includes 9.4 parts of methyl silicone oil, 1.77 parts of methyl hydrogen-containing silicone oil, and 0.90 parts of methyl vinyl silicone oil;
  • the silane coupling agent includes 0.55 parts of vinyl triethoxy silane and 0.30 parts of vinyl trimethoxy silane;
  • the inhibitors include 0.04 parts of 3-methyl-1-butyn-3-ol and 0.03 parts of 2-vinylisopropanol.
  • the preparation method of this embodiment is the same as the preparation method of Example 1.
  • This embodiment provides a silicone resin conductive adhesive, based on its total weight of 100 parts, including the following parts by weight of raw materials:
  • the conductive particles are 65 parts of silver-coated copper particles with a three-dimensional dendritic microstructure.
  • the particle size D 50 of the silver-coated copper particles with a three-dimensional dendritic microstructure is 6.5 ⁇ m and the specific surface area is 0.49 m 2 /g;
  • Silicone resin includes 18.5 parts of methyl polysiloxane, 2.5 parts of methyl hydrogen polysiloxane, and 1.0 part of methyl vinyl polysiloxane;
  • Silicone oil includes 9.4 parts of methyl silicone oil, 1.77 parts of methyl hydrogen-containing silicone oil, and 0.90 parts of methyl vinyl silicone oil;
  • the silane coupling agent includes 0.55 parts of vinyl triethoxy silane and 0.30 parts of vinyl trimethoxy silane;
  • the inhibitors include 0.04 parts of 3-methyl-1-butyn-3-ol and 0.03 parts of 2-vinylisopropanol.
  • the preparation method of this embodiment is the same as the preparation method of Example 1.
  • This embodiment provides a silicone resin conductive adhesive, based on its total weight of 100 parts, including the following parts by weight of raw materials:
  • the conductive particles are 72 parts of silver particles with a three-dimensional dendritic microstructure, the particle size D 50 of the silver particles with a three-dimensional dendritic microstructure is 2.0 ⁇ m, and the specific surface area is 3.5 m 2 /g;
  • Silicone resin includes 10.5 parts of methyl polysiloxane, 3.5 parts of methyl hydrogen polysiloxane, and 1.0 part of methyl vinyl polysiloxane;
  • Silicone oil includes 9.4 parts of methyl silicone oil, 1.77 parts of methyl hydrogen-containing silicone oil, and 0.90 parts of methyl vinyl silicone oil;
  • the silane coupling agent includes 0.55 parts of vinyl triethoxy silane and 0.30 parts of vinyl trimethoxy silane;
  • the inhibitors include 0.04 parts of 3-methyl-1-butyn-3-ol and 0.03 parts of 2-vinylisopropanol.
  • the preparation method of this embodiment is the same as the preparation method of Example 1.
  • the formula and preparation method are the same as in Example 4, except that the particle size D 50 of the silver particles with a three-dimensional dendritic microstructure is 1.7 ⁇ m and the specific surface area is 4.19 m 2 /g.
  • the formula and preparation method are the same as in Example 1, except that the conductive particles are 72 parts of spherical silver particles, the particle diameter D 50 of the spherical silver particles is 1.5 ⁇ m, and the specific surface area is 0.3 m 2 /g.
  • the formula and preparation method are the same as in Example 1, except that the conductive particles are 72 parts of flaky silver particles, the diameter D 50 of the spherical silver particles is 1.5 ⁇ m, and the specific surface area is 0.3 m 2 /g.
  • the conductive adhesives of Examples 1 to 8 of the present invention all have good performance.
  • the viscosity of the conductive adhesive is tested by using a viscometer at 25°C, the thermal expansion coefficient is tested by the TMA method; the glass transition temperature is tested by the DSC method; the curing time, temperature and time are tested in a chain heating furnace;
  • the volume resistivity test process of the conductive adhesive is as follows: the conductive adhesive sample is printed on a glass sheet, and then cured, the curing temperature is 1500°C, the curing time is 15s; the width of the cured conductive adhesive is 5mm, the height is 42um, and the length is 70mm; then test its resistance and calculate the volume resistivity of its conductive gel according to the following formula:
  • L, b, d are the length, width and thickness (cm) of the conductive adhesive sample
  • R is the resistance ( ⁇ ) of the conductive adhesive sample
  • is the volume resistivity ( ⁇ cm) of the conductive adhesive sample.
  • the shear strength test process of the conductive adhesive is as follows: refer to the national standard GB/T 7124-2008 Determination of the Tensile Shear Strength of the Adhesive (Rigid Material vs. Rigid Material) method to measure the bonding strength of the conductive adhesive sample;
  • Figure 6 is a schematic diagram of the measurement. During the measurement, the tensile machine stretched two aluminum sheets at a speed of 200mm/min in a direction of 180 degrees until the conductive adhesive layer was broken. Write down the breaking load on the dial of the testing machine, take 6 tensile samples for testing, and press Formula to calculate the shear strength (W):
  • W is the shear strength
  • P is the breaking load
  • S is the overlap area
  • the test process of the viscosity change of the conductive adhesive is: use the Brookfield HBT viscometer to test the viscosity of the conductive adhesive under the conditions of 10rpm SC4-14/6R 25°C, and then expose the conductive adhesive to a room temperature of 25°C for 48hrs. Test its viscosity and calculate its viscosity change according to the following formula:
  • Table 1 is the performance data table of the conductive adhesive samples of Example 1 to Example 8 and Comparative Example 1 to Comparative Example 3. It can be seen from Table 1:
  • the conductive adhesives of Examples 1 to 3 respectively used conductive particles of spherical silver particles or flake silver particles mixed with silver particles with a three-dimensional dendritic microstructure and silver-coated copper particles with a three-dimensional dendritic microstructure.
  • the results show that The volume resistivity of Example 1 to Example 3 is lower than that of the comparative example by more than 45%;
  • Example 4 and Example 5 both use 100% silver particles with a three-dimensional dendritic microstructure.
  • the volume resistivity of the conductive gel is significantly lower than that of Comparative Example 1 to Comparative Example 2.
  • the amount of conductive particles used in Example 7 is reduced.
  • the volume resistivity is still significantly lower than that of Comparative Example 1 to Comparative Example 2.
  • the results show that the conductive adhesive with silver-coated copper particles with a three-dimensional dendritic microstructure is also significantly lower than that of Comparative Example. 1 ⁇ Comparative Example 3.
  • the conductive particles in Comparative Example 2 and Comparative Example 3 are spherical silver particles or flaky silver particles, as shown in Figure 1, the contact between two spherical silver particles is point contact, and the contact area is small; while the conductive particles of the embodiment
  • the conductive particles in the glue sample are conductive particles with a three-dimensional dendritic structure or a mixture of conductive particles with a three-dimensional dendritic structure and spherical, flake or spheroid-like particles.
  • Figures 2 and 3 show silver with a three-dimensional dendritic microstructure.
  • the SEM images of the particles at two visual angles are the typical morphologies of the silver particles with three-dimensional dendritic microstructure used in the present invention.
  • the contact between the two conductive particles is Multi-point contact establishes network-like electrical conduction, which effectively reduces the contact resistance between conductive particles and greatly improves its electrical conductivity.
  • the volume resistivity of Comparative Example 1 is greatly increased, and the printing performance is greatly reduced, indicating that the conductive particles with a three-dimensional dendritic microstructure can increase the volume resistivity of the conductive adhesive sample
  • the specific surface area of the silver particles with three-dimensional dendritic microstructure used in Comparative Example 1 is 4.19m 2 /g, which is higher than the specific surface area of Example 4 (0.69m 2 /g), indicating the three-dimensional dendritic microstructure
  • the specific surface area of the silver particles cannot be too high, otherwise the printing performance will be reduced and it will be difficult to use in large-scale batches.
  • the printing performance of the samples of Example 4 to Example 8 is lower than that of the samples of Comparative Example 2 and Comparative Example 3.
  • the printing performance of the samples of Example 1 to Example 3 is better than that of the samples of Example 4 to Example 8. This is due to the unique three-dimensional dendritic microstructure of the conductive particles, which makes their printing ink permeability inferior to spherical silver particles or flake silver particles.
  • Spherical silver particles or flake silver particles have the advantage of good printing ink permeability, but they are conductive
  • the performance is worse than silver particles with three-dimensional dendritic microstructure or silver-coated copper particles.
  • the advantages of the high conductivity of the dendritic microstructure have overcome the shortcomings of its poor printing ink permeability.
  • the produced conductive adhesive has the characteristics of good conductivity and superior printing ink permeability.
  • Example 1 to Example 8 and the samples of Comparative Example 1 to 3 have similar changes in viscosity at 48 hrs exposure.
  • the samples of the Example and the samples of the comparative example adopt organic systems that are both methyl poly Silicone, methyl hydrogen polysiloxane, methyl vinyl polysiloxane, methyl silicone oil, methyl hydrogen silicone oil, methyl vinyl silicone oil, vinyl triethoxy silane, vinyl trimethoxy
  • the base silicon, 3-methyl-1-butyn-3-ol, 2-vinyl isopropanol and platinum catalyst are composed in a specific proportion.
  • the specific organic material composition makes the conductive adhesive made of conductive adhesives capable of fast curing and at room temperature. The advantages of long-term operation and use.

Abstract

本发明公开了一种有机硅树脂导电胶,按总重量100份计,包括以下重量份的组分:导电颗粒40~84份,有机硅树脂10~25份,硅油5.5~20份,硅烷偶联剂0.2~3.0份,催化剂0.01~1份,抑制剂0.005~0.05份;导电颗粒为具有三维树枝状微观结构的导电颗粒。本发明还保护上述有机硅树脂导电胶的制备方法以及在半导体元件中的应用。本发明通过应用具有三维树枝状微观结构的导电颗粒,使导电颗粒之间的接触为多点接触,从而形成导电网络,使其接触电阻大大降低,导电性能大幅度提高;同时本发明得到的导电胶具有能够快速固化并且在室温环境下长时间操作使用的优点,且制备方法简单,条件温和,适用于工业化生产。

Description

一种有机硅树脂导电胶及其制备方法和应用 技术领域
本发明属于半导体材料技术领域,具体涉及一种有机硅树脂导电胶及其制备方法和应用。
背景技术
导电胶作为一种干燥或固化后具有一定导电性的胶黏剂,被广泛用于电子设备、集成电路、半导体器件、无源元件、太阳能电池、太阳能组件和/或发光二极管的制造和组装中。导电胶在两个表面元器件之间提供机械结合和电导通,所以导电胶必须具备良好的机械性能和低电阻电导通性能。通常,导电胶配方由导电颗粒和聚合物树脂以及助剂组成,其中树脂通常提供两种元器件之间的机械结合,而导电颗粒通常提供所需的电导通连接。
首先,传统的导电胶使用球状、类球状、和片状银颗粒或者球状、类球状、和片状银包铜颗粒,不管是两个球状导电颗粒,还是两个片状导电颗粒,其两个导电颗粒之间的接触是一个点接触,导电性能较低;因此,为了提高其导电胶的导电性能,就必须增加导电颗粒数量或者用量,以提高其导电性能,从而导致成本增加。其次,传统的导电胶在点胶或者印刷操作使用过程中容易变干,在室温环境下一般暴露不超过8小时,如果超过8小时,没有使用完的导电胶变得难以使用,导致使用过程中的不方便和浪费。再次,传统的导电胶固化时间长,一般要求30min或者更长的时间,导致生产周期增加,生产能力下降。
发明内容
为了解决上述问题,本发明提供一种有机硅树脂导电胶,通过使用具有三维树枝状微观结构的导电颗粒,以及对导电胶的配方的调整,使导电胶的导电性能高、附着力好、固化时间短,可操作性时间长,解决了现有导电胶为提高导电性而增加成本、操作时间短、固化时间长而增加生产周期的问题。
本发明的另一个目的是提供上述有机硅树脂导电胶的制备方法,该制备方法操作简单,条件温和,易于实现。
本发明还提供上述有机硅树脂导电胶在半导体元件中的应用。
本发明所采用的技术方案是:
一种有机硅树脂导电胶,按总重量100份计,该导电胶包括以下重量份的组分;
导电颗粒40~84份,有机硅树脂10~25份,硅油5.5~20份,硅烷偶联剂0.2~3.0份,催化剂0.01~1份,抑制剂0.005~0.05份;
其中,所述导电颗粒为具有三维树枝状微观结构的导电颗粒。
这样,导电颗粒之间的接触为多点接触,形成导电网络,不同于常规球状导电颗粒、片状导电颗粒或者类球状导电颗粒混合时相互之间的一个点接触,从而使其接触电阻大大降低,导电性能大幅度提高;另外,通过多点接触,在使用较少的导电颗粒时即可达到导电效果,从而降低导电颗粒的使用量,降低成本,提高导电胶的使用性能。
优选地,所述具有三维树枝状微观结构的导电颗粒的比表面积为0.2~3.5m 2/g。
这样,所述具有三维树枝状微观结构的导电颗粒的比表面积为0.2~3.5m 2/g,在保证具有三维树枝状微观结构的导电颗粒的导电性的同时, 也保证其印刷性能;当比表面积超过3.5m 2/g时,得到的导电胶印刷比较困难,难以大规模使用。
优选地,所述具有三维树枝状微观结构的导电颗粒为具有三维树枝状微观结构的银颗粒或者具有三维树枝状微观结构的银包铜颗粒。
这样,在具体实施例中,本发明的导电颗粒可以包括具有三维树枝状微观结构的银颗粒,以及球状银颗粒、片状银颗粒或类球状银颗粒中的一种或多种;
在具体实施例中,本发明的导电颗粒可以包括具有三维树枝状微观结构的银颗粒,以及球状银颗粒、片状银颗粒或类球状银颗粒中的一种或多种;
在具体实施例中,本发明的导电颗粒可以包括具有三维树枝状微观结构的银包铜颗粒,以及球状银颗粒、片状银颗粒或类球状银颗粒中的一种或多种;
在具体实施例中,本发明的导电颗粒可以包括具有三维树枝状微观结构的银包铜颗粒,以及球状银包铜颗粒、片状银包铜颗粒或类球状银包铜颗粒中的一种或多种。
优选地,所述导电颗粒为球状银颗粒与具有三维树枝状微观结构的银颗粒的混合,所述具有三维树枝状微观结构的银颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50μm。
优选地,所述导电颗粒为球状银颗粒与具有三维树枝状微观结构的银包铜颗粒的混合,所述具有三维树枝状微观结构的银包铜颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50μm。
优选地,所述导电颗粒为片状银颗粒与具有三维树枝状微观结构的银颗粒的混合,所述具有三维树枝状微观结构的银颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述片状银颗粒的尺寸为0.1~50μm。
优选地,所述导电颗粒为片状银颗粒与具有三维树枝状微观结构的银包铜颗粒的混合,所述具有三维树枝状微观结构的银包铜颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述片状银颗粒的尺寸为0.1~50μm。
优选地,所述导电颗粒为片状银包铜颗粒与具有三维树枝状微观结构的银包铜颗粒的混合,所述具有三维树枝状微观结构的银包铜颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述片状银包铜颗粒的尺寸为0.1~50μm。
优选地,所述导电颗粒为球状银包铜颗粒与具有三维树枝状微观结构的银包铜颗粒的混合,所述具有三维树枝状微观结构的银包铜颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述球状银包铜颗粒的尺寸为0.1~50μm。
优选地,所述具有三维树枝状微观结构的银颗粒的尺寸为0.1~50μm。
优选地,所述具有三维树枝状微观结构的银包铜颗粒的尺寸为0.1~50μm。
这样,单纯的具有三维树枝状微观结构的导电颗粒的印刷透墨性弱于球状颗粒、片状颗粒或者类球状颗粒,将具有三维树枝状微观结构的导电颗粒与上述形貌颗粒混合时,能保留双方的优点,即既提高导电颗粒的导电性,又克服单纯具有三维树枝状微观结构导电颗粒印刷透墨性不好的问题。
本发明的具体实施例不仅限于上述具有三维树枝状微观结构的银颗粒或者具有三维树枝状微观结构的银包铜颗粒与球状银颗粒、片状银颗粒、球状银包铜颗粒或者片状银包铜颗粒的具体配比。本发明的具体实施例可以为具有三维树枝状微观结构的银颗粒与球状银颗粒、片状银颗粒、类球状银颗粒、球状银包铜颗粒、片状银包铜颗粒、类球状银包铜颗粒中的一种或多种,也可以为具有三维树枝状微观结构的银包铜颗粒与球状银颗粒、片状银颗粒、类球状银颗粒、球状银包铜颗粒、片状银包铜颗粒、类球状银包铜颗粒中的一种或多种。
其中,所述具有三维树枝状微观结构的颗粒与所述导电颗粒总的质量比为(0.05~0.95):1。
这样,导电颗粒为具有三维树枝状微观结构的颗粒或者其与其他形貌导电颗粒的混合物,且具有三维树枝状机构的颗粒的质量占导电颗粒总质量的5~100%,更优选为5~95%,同时具有三维树枝状微观结构的导电颗粒、球状颗粒、片状颗粒或者类球状颗粒的尺寸均为0.1~50μm。因此,具有三维树枝状微观结构的导电颗粒与片状、球状或者类球状常规导电颗粒混合时,导电颗粒之间也为多点接触,导电性能好。
优选地,所述导电颗粒为银颗粒或者银包铜颗粒,其中具有三维树枝状微观结构的包铜颗粒中银的包覆重量为5~40%。
优选地,所述有机硅树脂是甲基聚硅氧烷、甲基氢基聚硅氧烷和甲基乙烯基聚硅氧烷中的至少一种。
优选地,所述硅油是甲基硅油、乙基硅油、苯基硅油、甲基含氢硅油、甲基苯基硅油、甲基氯苯基硅油、甲基乙氧基硅油、甲基三氟丙基硅油、甲基乙烯基硅油、甲基羟基硅油、乙基含氢硅油和羟基含氢硅油中的至少一种。
优选地,所述硅烷偶联剂是乙烯基三乙氧基硅烷,乙烯基三甲氧基硅烷,乙烯基三(β-甲氧乙氧基)硅烷和异丁基三乙氧基硅中的至少一种。
这样,硅烷偶联剂在导电胶和需要粘结的半导体元件如芯片之间架起“分子桥”,即把两种性质悬殊的材料连接在一起增加其粘接强度。
优选地,所述催化剂为铂金催化剂。
优选地,所述抑制剂是3-甲基-1-丁炔-3-醇,1-乙炔环己醇,3,5-二甲基-1-己炔-3-醇,吡啶,丙烯腈,2-乙烯基异丙醇,苯并三氮唑,有机膦化合物和马来酸二烯丙酯中的至少一种。
这样,导电胶由导电颗粒、有机硅树脂、硅烷偶联剂、硅油、抑制剂、和催化剂组成,得到的导电胶为热固化型导电胶,可以一次性热固化,也可以两次性热固化。导电胶一次性热固化可优选于50~170℃范围内在15~300s内固化,一次性固化操作适应于返修率不高的产品;两次性固化操作适应于返修率高的产品,第一次固化可于50~170℃下在15~20s内预固化,固化后的导电胶和基材具有足够的附着力,足以测试半导体元件的性能,但是又容易返修,第二次固化可于50~170℃下在15~300s实现固化。
无论选择一次固化还是两次固化,所述导电胶固化后均具有粘附性好、电阻率低的特点;同时所述导电胶可以在22~25℃的室温条件下操作使用48小时以上,足以在各种电子装配和太阳能光伏组件操作条件下长期使用,所述导电胶暴露在室温环境下24hrs其粘度上升不超过20%,暴露在室温环境下48hrs其粘度上升不超过50%;所述导电胶适用于以点胶的方式操作使用,所述导电胶也适用于以印刷的方式操作使用。而且本发明所述的导电胶能够在两种基板或者元器件与基板之间形成导电键,可用于电子设备、集成电路、半导体器件、无源元件、太阳能光伏组件的制造和组装。
本发明还保护上述有机硅树脂导电胶的制备方法,包括以下步骤:
S1、按照以下重量份称取各组分:导电颗粒40~84份,有机硅树脂10~25份,硅油5.5~20份,硅烷偶联剂0.2~3.0份,催化剂0.01~1份,抑制剂0.005~0.05份,其中,所述导电颗粒包括具有三维树枝状微观结构的导电颗粒,备用;
S2、将所述S1称取的所述有机硅树脂、所述硅油、所述硅烷偶联剂、所述催化剂和所述引发剂置于反应器中,搅拌均匀,加入所述导电颗粒,搅拌均匀,得到混合料;搅拌混合过程可以是机械搅拌混合、研磨混合或者两者的结合。
S3、对所述混合料研磨,得到有机硅树脂导电胶。
本发明还保护上述有机硅树脂导电剂在半导体元件中的应用。
与现有技术相比,本发明具有以下有益效果:
1、本发明通过应用具有三维树枝状微观结构的导电颗粒,使导电颗粒之间的接触为多点接触,从而形成导电网络,使其接触电阻大大降低,导电性能大幅度提高;同时也降低了导电颗粒的用量,有效降低成本;
2、本发明通过将具有三维树枝状微观结构的导电颗粒与片状、球状或类球状导电颗粒的混合使用,既保持了具有三维树枝状微观结构的导电颗粒的高导电性的优点,又利用了片状、球状或类球状导电颗粒较好的透墨性,克服了单纯使用具有三维树枝状微观结构的导电颗粒印刷透墨性不好的缺点;
3、本发明通过采用由甲基聚硅氧烷、甲基氢基聚硅氧烷、甲基乙烯基聚硅氧烷、甲基硅油、甲基含氢硅油、甲基乙烯基硅油、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅、3-甲基-1-丁炔-3-醇、2-乙烯基异丙醇和铂金催化 剂按照特定比例组成的有机体系,使得到的导电胶具有能够快速固化并且在室温环境下长时间操作使用的优点;
4、本发明的制备方法简单,条件温和,适用于工业化生产。
附图说明
图1是现有的两个球状导电颗粒之间的接触示意图;其中001代表球状导电颗粒,0011a代表两个球状导电颗粒之间的接触点;
图2是具有三维树枝状微观结构的银颗粒的一个视觉角度的SEM图;
图3是具有三维树枝状微观结构的银颗粒另一个视觉角度的SEM图;
图4是具有三维树枝状微观结构的导电颗粒与球状导电颗粒的接触示意图;其中,002代表具有三维树枝状微观结构的导电颗粒,001代表球状导电颗粒;0012a为接触点;
图5是具有三维树枝状微观结构的导电颗粒与具有三维树枝状微观结构的导电颗粒的接触示意图;其中,002a和002b均代表具有三维树枝状微观结构的导电颗粒,002ab代表接触点;
图6是粘接强度测试试验拉伸示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下实施例所使用的具有三维树枝状微观结构的银颗粒、具有三维树枝状微观结构的银包铜颗粒、球状银颗粒、片状银颗粒、类球状银颗粒、球状银包铜颗粒、片状银包铜颗粒和类球状银包铜颗粒均是通过购买得到。
实施例1
本实施例提供一种有机硅树脂导电胶,按照其总重量为100份计,包括以下重量份的原料:
导电颗粒72份,有机硅树脂15份,硅油12.07份,硅烷偶联剂0.85份,抑制剂0.07份,铂金催化剂0.01份。
其中,导电颗粒包括球状银颗粒20份和具有三维树枝状微观结构的银颗粒52份;球状银颗粒的尺寸即粒径D 50为1.5μm,比表面积为0.3m 2/g,具有三维树枝状微观结构的银颗粒的粒径D 50为4.0μm,比表面积为0.69m 2/g;
有机硅树脂包括甲基聚硅氧烷10.5份,甲基氢基聚硅氧烷3.5份,甲基乙烯基聚硅氧烷1.0份;
硅油包括甲基硅油9.4份,甲基含氢硅油1.77份,甲基乙烯基硅油0.90份;
硅烷偶联剂包括乙烯基三乙氧基硅烷0.55份和乙烯基三甲氧基硅烷0.30份;
抑制剂包括3-甲基-1-丁炔-3-醇0.04份和2-乙烯基异丙醇0.03份。
本实施例还提供上述导电胶的制备方法,包括以下步骤:
S1、按照以下重量份数称取各组分:具有三维树枝状微观结构的银颗粒52份,球状银颗粒20份,甲基聚硅氧烷10.5份,甲基氢基聚硅氧烷3.5份,甲基乙烯基聚硅氧烷1.0份,甲基硅油9.4份,甲基含氢硅油1.77份,甲基乙烯基硅油0.90份,乙烯基三乙氧基硅烷括0.55份,乙烯基三甲氧基硅烷0.30份,铂金催化剂0.01份,3-甲基-1-丁炔-3-醇0.04份和2-乙烯基异丙醇0.03份,备用;
S2、将所述S1称取的甲基聚硅氧烷、甲基氢基聚硅氧烷、甲基乙烯基 聚硅氧烷、甲基硅油、甲基含氢硅油、甲基乙烯基硅油、乙烯基三乙氧基硅烷括、乙烯基三甲氧基硅烷、铂金催化剂、3-甲基-1-丁炔-3-醇和2-乙烯基异丙醇依次放入到不锈钢容器中,进行搅拌混合,然后加入具有三维树枝状微观结构的银颗粒和球状银颗粒,得到混合料;
S3、将所述混合料在三辊研磨机上进一步研磨混合,得到200g有机硅树脂导电胶。
实施例2
本实施例提供一种有机硅树脂导电胶,按照其总重量为100份计,包括以下重量份的原料:
导电颗粒72份,有机硅树脂15份,硅油12.07份,硅烷偶联剂0.85份,抑制剂0.07份,铂金催化剂0.01份。
其中,导电颗粒包括片状银颗粒20份和具有三维树枝状微观结构的银颗粒52份;片状银颗粒的尺寸即粒径D 50为1.5μm,比表面积为0.3m 2/g,具有三维树枝状微观结构的银颗粒的粒径D 50为4.0μm,比表面积为0.69m 2/g;
有机硅树脂包括甲基聚硅氧烷10.5份,甲基氢基聚硅氧烷3.5份,甲基乙烯基聚硅氧烷1.0份;
硅油包括甲基硅油9.4份,甲基含氢硅油1.77份,甲基乙烯基硅油0.90份;
硅烷偶联剂包括乙烯基三乙氧基硅烷0.55份和乙烯基三甲氧基硅烷0.30份;
抑制剂包括3-甲基-1-丁炔-3-醇0.04份和2-乙烯基异丙醇0.03份。
本实施例的制备方法与实施例1的相同。
实施例3
本实施例提供一种有机硅树脂导电胶,按照其总重量为100份计,包括以下重量份的原料:
导电颗粒72份,有机硅树脂15份,硅油12.07份,硅烷偶联剂0.85份,抑制剂0.07份,铂金催化剂0.01份。
其中,导电颗粒包括片状银颗粒20份和具有三维树枝状微观结构的银包铜颗粒52份;片状银颗粒的尺寸即粒径D 50为1.5μm,比表面积为0.35m 2/g,具有三维树枝状微观结构的银包铜颗粒的粒径D 50为6.5μm,比表面积为0.49m 2/g;
有机硅树脂包括甲基聚硅氧烷10.5份,甲基氢基聚硅氧烷3.5份,甲基乙烯基聚硅氧烷1.0份;
硅油包括甲基硅油9.4份,甲基含氢硅油1.77份,甲基乙烯基硅油0.90份;
硅烷偶联剂包括乙烯基三乙氧基硅烷0.55份和乙烯基三甲氧基硅烷0.30份;
抑制剂包括3-甲基-1-丁炔-3-醇0.04份和2-乙烯基异丙醇0.03份。
本实施例的制备方法与实施例1的制备方法相同。
实施例4
本实施例提供一种有机硅树脂导电胶,按照其总重量为100份计,包括以下重量份的原料:
导电颗粒72份,有机硅树脂15份,硅油12.07份,硅烷偶联剂0.85份,抑制剂0.07份,铂金催化剂0.01份。
其中,导电颗粒为具有三维树枝状微观结构的银颗粒72份,具有三维 树枝状微观结构的银颗粒的粒径D 50为4.0μm,比表面积为0.69m 2/g;
有机硅树脂包括甲基聚硅氧烷10.5份,甲基氢基聚硅氧烷3.5份,甲基乙烯基聚硅氧烷1.0份;
硅油包括甲基硅油9.4份,甲基含氢硅油1.77份,甲基乙烯基硅油0.90份;
硅烷偶联剂包括乙烯基三乙氧基硅烷0.55份和乙烯基三甲氧基硅烷0.30份;
抑制剂包括3-甲基-1-丁炔-3-醇0.04份和2-乙烯基异丙醇0.03份。
本实施例的制备方法与实施例1的制备方法相同。
实施例5
本实施例提供一种有机硅树脂导电胶,按照其总重量为100份计,包括以下重量份的原料:
导电颗粒65份,有机硅树脂22份,硅油12.07份,硅烷偶联剂0.85份,抑制剂0.07份,铂金催化剂0.01份。
其中,导电颗粒为具有三维树枝状微观结构的银颗粒65份,具有三维树枝状微观结构的银颗粒的粒径D 50为4.0μm,比表面积为0.69m 2/g;
有机硅树脂包括甲基聚硅氧烷18.5份,甲基氢基聚硅氧烷2.5份,甲基乙烯基聚硅氧烷1.0份;
硅油包括甲基硅油9.4份,甲基含氢硅油1.77份,甲基乙烯基硅油0.90份;
硅烷偶联剂包括乙烯基三乙氧基硅烷0.55份和乙烯基三甲氧基硅烷0.30份;
抑制剂包括3-甲基-1-丁炔-3-醇0.04份和2-乙烯基异丙醇0.03份。
本实施例的制备方法与实施例1的制备方法相同。
实施例6
本实施例提供一种有机硅树脂导电胶,按照其总重量为100份计,包括以下重量份的原料:
导电颗粒72份,有机硅树脂15份,硅油12.07份,硅烷偶联剂0.85份,抑制剂0.07份,铂金催化剂0.01份。
其中,导电颗粒为具有三维树枝状微观结构的银包铜颗粒72份,具有三维树枝状微观结构的银包铜颗粒的粒径D 50为6.5μm,比表面积为0.49m 2/g;
有机硅树脂包括甲基聚硅氧烷10.5份,甲基氢基聚硅氧烷3.5份,甲基乙烯基聚硅氧烷1.0份;
硅油包括甲基硅油9.4份,甲基含氢硅油1.77份,甲基乙烯基硅油0.90份;
硅烷偶联剂包括乙烯基三乙氧基硅烷0.55份和乙烯基三甲氧基硅烷0.30份;
抑制剂包括3-甲基-1-丁炔-3-醇0.04份和2-乙烯基异丙醇0.03份。
本实施例的制备方法与实施例1的制备方法相同。
实施例7
本实施例提供一种有机硅树脂导电胶,按照其总重量为100份计,包括以下重量份的原料:
导电颗粒65份,有机硅树脂22份,硅油12.07份,硅烷偶联剂0.85份,抑制剂0.07份,铂金催化剂0.01份。
其中,导电颗粒为具有三维树枝状微观结构的银包铜颗粒65份,具有 三维树枝状微观结构的银包铜颗粒的粒径D 50为6.5μm,比表面积为0.49m 2/g;
有机硅树脂包括甲基聚硅氧烷18.5份,甲基氢基聚硅氧烷2.5份,甲基乙烯基聚硅氧烷1.0份;
硅油包括甲基硅油9.4份,甲基含氢硅油1.77份,甲基乙烯基硅油0.90份;
硅烷偶联剂包括乙烯基三乙氧基硅烷0.55份和乙烯基三甲氧基硅烷0.30份;
抑制剂包括3-甲基-1-丁炔-3-醇0.04份和2-乙烯基异丙醇0.03份。
本实施例的制备方法与实施例1的制备方法相同。
实施例8
本实施例提供一种有机硅树脂导电胶,按照其总重量为100份计,包括以下重量份的原料:
导电颗粒72份,有机硅树脂15份,硅油12.07份,硅烷偶联剂0.85份,抑制剂0.07份,铂金催化剂0.01份。
其中,导电颗粒为具有三维树枝状微观结构的银颗粒72份,具有三维树枝状微观结构的银颗粒的粒径D 50为2.0μm,比表面积为3.5m 2/g;
有机硅树脂包括甲基聚硅氧烷10.5份,甲基氢基聚硅氧烷3.5份,甲基乙烯基聚硅氧烷1.0份;
硅油包括甲基硅油9.4份,甲基含氢硅油1.77份,甲基乙烯基硅油0.90份;
硅烷偶联剂包括乙烯基三乙氧基硅烷0.55份和乙烯基三甲氧基硅烷0.30份;
抑制剂包括3-甲基-1-丁炔-3-醇0.04份和2-乙烯基异丙醇0.03份。
本实施例的制备方法与实施例1的制备方法相同。
对比例1
与实施例4的配方和制备方法相同,不同的是具有三维树枝状微观结构的银颗粒的粒径D 50为1.7μm,比表面积为4.19m 2/g。
对比例2
与实施例1的配方和制备方法相同,不同的是导电颗粒为球状银颗粒72份,所述球状银颗粒的粒径D 50为1.5μm,比表面为0.3m 2/g。
对比例3
与实施例1的配方和制备方法相同,不同的是导电颗粒为片状银颗粒72份,所述球状银颗粒的粒径D 50为1.5μm,比表面为0.3m 2/g。
本发明实施例1~实施例8的导电胶均具有较好的性能,我们对实施例1~实施例8的导电胶样品以及对比例1~对比例3的导电胶样品进行了性能测试,包括粘度性能测试、热膨胀系数测试、玻璃化转变温度测试、固化温度和时间测试、体电阻率测试、剪切强度测试以及粘度变化测试等。
其中,导电胶的粘度通过在25℃下使用粘度计进行测试,热膨胀系数通过TMA方法测试;玻璃化转变温度通过DSC方法测试;固化时间温度和时间通过在链式加热炉中进行测试;
导电胶的体电阻率测试过程为:将导电胶样品印刷到一个玻璃片上,然后进行固化,固化温度为1500℃,固化时间为15s;固化后的导电胶宽度为5mm,高度为42um,长度为70mm;然后测试其电阻并按照以下公式计算其导电胶的体电阻率:
Figure PCTCN2020072639-appb-000001
式中:L、b、d分别为导电胶样品的长度、宽度和厚度(cm),R为导电胶样品的电阻(Ω),ρ为导电胶样品的体积电阻率(Ω·cm)。
导电胶的剪切强度测试过程为:将导电胶样品参照国标GB/T 7124-2008胶粘剂拉伸剪切强度的测定(刚性材料对刚性材料)方法测量其粘接强度;图6是测量示意图,测量时拉力机以200mm/min的速度以180度的方向拉伸两个铝片直到导电胶层破坏为止,记下试验机刻度盘上的破坏负荷,取6个拉伸样品测试,并按下式计算剪切强度(W):
W=P/S
式中:W为剪切强度,P为破坏负荷,S为搭接面积。
导电胶的粘度变化测试过程为:将导电胶样品使用粘度计Brookfield HBT在10rpm SC4-14/6R 25℃的条件下测试其粘度,然后将所述的导电胶暴露在25℃室温环境下48hrs再测试其粘度,并按照以下公式计算其粘度变化:
Figure PCTCN2020072639-appb-000002
表1导电胶样品的性能数据表
Item 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 对比例1 对比例2 对比例3
体积电阻率(Ω.cm) 2.3x10 -3 2.3x10 -3 2.4x10 -3 2.0x10 -3 2.3x10 -3 2.1x10 -3 2.3x10 -3 2.5x10 -3 8.9x10 -3 8.5x10 -3 8.4x10 -3
剪切强度(MPa) 2.2 2.1 2.2 1.9 1.8 1.9 1.7 1.9 1.9 2.3 2.3
印刷性能 印刷良好 印刷良好 印刷良好 可接受 可接受 可接受 可接受 可接受 印刷困难 印刷良好 印刷良好
粘度@26℃,Pa.s 40±15 40±15 40±15 40±15 40±15 40±15 40±15 49±15 69±15 36±15 38±15
48hrs暴露粘度变化(%) <50% <50% <50% <50% <50% <50% <50% <50% <50% <50% <50%
热膨胀系数(ppm) 156±20 156±20 156±20 156±20 156±20 156±20 156±20 156±20 156±20 156±20 156±20
玻璃化转变温度(℃) -35±10 -35±10 -35±10 -35±10 -35±10 -35±10 -35±10 -35±10 -35±10 -35±10 -35±10
表1为实施例1~实施例8以及对比例1~对比例3的导电胶样品的性能 数据表,从表1可以看出:
(1)实施例1~实施例8的样品的体电阻率明显低于对比例1~对比例3的样品;
实施例1~实施例3的导电胶分别使用了球状银颗粒或者片状银颗粒与具有三维树枝状微观结构的银颗粒以及具有三维树枝状微观结构的银包铜颗粒混合的导电颗粒,结果显示实施例1~实施例3的体电阻率比对比例低45%以上;
实施例4和实施例5均使用了100%具有三维树枝状微观结构的银颗粒的导电胶的体电阻率明显低于对比例1~对比例2,特别是实施例7的导电颗粒使用量减少到65%,其体电阻率仍然明显低于对比例1~对比例2;同时结果显示使用了具有三维树枝状微观结构的银包铜颗粒的导电胶,其体电阻率也明显低于对比例1~对比例3。
因为对比例2和对比例3中导电颗粒为球状银颗粒或者片状银颗粒,如图1所示,两个球状银颗粒之间的接触是点接触,接触面积较小;而实施例的导电胶样品中导电颗粒为具有三维树枝状结构的导电颗粒或者具有三维树枝状结构的导电颗粒与球状、片状或者类球状颗粒的混合,其中图2和图3为具有三维树枝状微观结构的银颗粒在两个视觉角度的SEM图,也就是本发明使用的具有三维树枝状微观结构的银颗粒的典型形貌。将具有三维树枝状结构的导电颗粒混合或者具有三维树枝状结构的导电颗粒与球状、片状或者类球状颗粒的混合时,如图4和图5所示,两个导电颗粒之间的接触为多点接触,建立起网络状的电导通,这样有效减小了导电颗粒之间的接触电阻,其导电性能大幅度提高。
(2)与对比例2~对比例3的样品相比,对比例1体电阻率大幅升高, 印刷性能大幅下降,说明具有三维树枝状微观结构的导电颗粒能够提高导电胶样品的体电阻率,但是对比例1使用的具有三维树枝状微观结构的银颗粒的比表面积为4.19m 2/g,高于实施例4的比表面积(0.69m 2/g),说明具有三维树枝状微观结构的银颗粒的比表面积不能太高,否则印刷性能降低,难以大规模批量使用。
(3)实施例4~实施例8样品的印刷性能低于对比例2和对比例3样品的印刷性能,实施例1~实施例3样品的印刷性能优于实施例4~实施例8的样品,这是由于导电颗粒独特的三维树枝状微观结构导致了其印刷透墨性能不如球状银颗粒或者片状银颗粒,球状银颗粒或者片状银颗粒具有印刷透墨性能好的优点,但是其导电性能比具有三维树枝状微观结构的银颗粒或者银包铜颗粒差,将球状银颗粒或者片状银颗粒与具有三维树枝状微观结构的银颗粒或者银包铜颗粒混合使用,既保持了其三维树枝状微观结构的高导电性能的优点,又克服了其印刷透墨性能不好的缺点,所制作的导电胶具有导电性能好,印刷透墨性能优越的特点。
(4)实施例1~实施例8的样品与对比例1~对比例3的样品于48hrs暴露粘度变化情况相当,是由于实施例的样品和对比例的样品采用的有机体系均为甲基聚硅氧烷、甲基氢基聚硅氧烷、甲基乙烯基聚硅氧烷、甲基硅油、甲基含氢硅油、甲基乙烯基硅油、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅、3-甲基-1-丁炔-3-醇、2-乙烯基异丙醇和铂金催化剂按照特定比例组成,其特定有机材料组成使其制作的导电胶具有能够快速固化并且在室温环境下长时间操作使用的优点。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可 轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种有机硅树脂导电胶,其特征在于,按总重量100份计,该导电胶包括以下重量份的组分;
    导电颗粒40~84份,有机硅树脂10~25份,硅油5.5~20份,硅烷偶联剂0.2~3.0份,催化剂0.01~1份,抑制剂0.005~0.05份;
    其中,所述导电颗粒包括具有三维树枝状微观结构的导电颗粒。
  2. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述具有三维树枝状微观结构的导电颗粒的比表面积为0.2~3.5m 2/g。
  3. 根据权利要求2所述的一种有机硅树脂导电胶,其特征在于,所述具有三维树枝状微观结构的导电颗粒为具有三维树枝状微观结构的银颗粒或具有三维树枝状微观结构的银包铜颗粒。
  4. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述导电颗粒为球状银颗粒与具有三维树枝状微观结构的银颗粒的混合,所述具有三维树枝状微观结构的银颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50μm。
  5. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述导电颗粒为球状银颗粒与具有三维树枝状微观结构的银包铜颗粒的混合,所述具有三维树枝状微观结构的银包铜颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述球状银颗粒的尺寸为0.1~50μm。
  6. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述导电颗粒为片状银颗粒与具有三维树枝状微观结构的银颗粒的混合,所述具 有三维树枝状微观结构的银颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银颗粒的比表面积为0.2~3.5m 2/g,所述片状银颗粒的尺寸为0.1~50μm。
  7. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述导电颗粒为片状银颗粒与具有三维树枝状微观结构的银包铜颗粒的混合,所述具有三维树枝状微观结构的银包铜颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述片状银颗粒的尺寸为0.1~50μm。
  8. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述导电颗粒为片状银包铜颗粒与具有三维树枝状微观结构的银包铜颗粒的混合,所述具有三维树枝状微观结构的银包铜颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述片状银包铜颗粒的尺寸为0.1~50μm。
  9. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述导电颗粒为球状银包铜颗粒与具有三维树枝状微观结构的银包铜颗粒的混合,所述具有三维树枝状微观结构的银包铜颗粒与所述导电颗粒总的质量比为(0.05~0.95):1,所述具有三维树枝状微观结构的银包铜颗粒的比表面积为0.2~3.5m 2/g,所述球状银包铜颗粒的尺寸为0.1~50μm。
  10. 根据权利要求2、4或6所述的一种有机硅树脂导电胶,其特征在于,所述具有三维树枝状微观结构的银颗粒的尺寸为0.1~50μm。
  11. 根据权利要求3、5、7或8所述的一种有机硅树脂导电胶,其特征在于,所述具有三维树枝状微观结构的银包铜颗粒的尺寸为0.1~50μm。
  12. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述 有机硅树脂是甲基聚硅氧烷、甲基氢基聚硅氧烷和甲基乙烯基聚硅氧烷中的至少一种。
  13. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述硅油是甲基硅油、乙基硅油、苯基硅油、甲基含氢硅油、甲基苯基硅油、甲基氯苯基硅油、甲基乙氧基硅油、甲基三氟丙基硅油、甲基乙烯基硅油、甲基羟基硅油、乙基含氢硅油和羟基含氢硅油中的至少一种。
  14. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述硅烷偶联剂是乙烯基三乙氧基硅烷,乙烯基三甲氧基硅烷,乙烯基三(β-甲氧乙氧基)硅烷和异丁基三乙氧基硅中的至少一种。
  15. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述催化剂为铂金催化剂。
  16. 根据权利要求1所述的一种有机硅树脂导电胶,其特征在于,所述抑制剂是3-甲基-1-丁炔-3-醇,1-乙炔环己醇,3,5-二甲基-1-己炔-3-醇,吡啶,丙烯腈,2-乙烯基异丙醇,苯并三氮唑,有机膦化合物和马来酸二烯丙酯中的至少一种。
  17. 根据权利要求1~16任一项所述的一种有机硅树脂导电胶的制备方法,其特征在于,包括以下步骤:
    S1、按照以下重量份称取各组分:导电颗粒40~84份,有机硅树脂10~25份,硅油5.5~20份,硅烷偶联剂0.2~3.0份,催化剂0.01~1份,抑制剂0.005~0.05份;其中,所述导电颗粒包括具有三维树枝状微观结构的导电颗粒,备用;
    S2、将所述S1称取的所述有机硅树脂、所述硅油、所述硅烷偶联剂、所述催化剂和所述引发剂置于反应器中,搅拌均匀,加入所述导电颗粒,搅 拌均匀,得到混合料;
    S3、对所述混合料研磨,得到有机硅树脂导电胶。
  18. 一种根据权利要求1~16任一项所述的有机硅树脂导电胶在半导体元件中的应用。
PCT/CN2020/072639 2020-01-17 2020-01-17 一种有机硅树脂导电胶及其制备方法和应用 WO2021142752A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080000045.2A CN113412321A (zh) 2020-01-17 2020-01-17 一种有机硅树脂导电胶及其制备方法和应用
PCT/CN2020/072639 WO2021142752A1 (zh) 2020-01-17 2020-01-17 一种有机硅树脂导电胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072639 WO2021142752A1 (zh) 2020-01-17 2020-01-17 一种有机硅树脂导电胶及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021142752A1 true WO2021142752A1 (zh) 2021-07-22

Family

ID=76864494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072639 WO2021142752A1 (zh) 2020-01-17 2020-01-17 一种有机硅树脂导电胶及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113412321A (zh)
WO (1) WO2021142752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082845A (zh) * 2023-01-05 2023-05-09 厦门牛转乾坤新材料有限公司 一种导电硅胶及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015410A (zh) * 2021-11-12 2022-02-08 凯仁精密材料(江苏)有限公司 一种导电性胶水的预混方法以及导电胶带及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400637A (zh) * 2013-08-05 2013-11-20 清华大学深圳研究生院 一种导电浆料及其制备方法以及印刷线路材料
WO2015184597A1 (en) * 2014-06-04 2015-12-10 Dow Global Technologies Llc Solid polymer electrolyte and compound used for thereof
WO2016151859A1 (ja) * 2015-03-26 2016-09-29 住友金属鉱山株式会社 銀コート銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート
CN106573303A (zh) * 2014-08-26 2017-04-19 住友金属矿山株式会社 银包覆铜粉及使用银包覆铜粉的导电膏、导电涂料、导电片
EP3162466A1 (en) * 2014-06-25 2017-05-03 Sumitomo Metal Mining Co., Ltd. Copper powder, and copper paste, electrically conductive coating material and electrically conductive sheet each produced using said copper powder
EP3192597A1 (en) * 2014-09-12 2017-07-19 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130045326A (ko) * 2010-07-30 2013-05-03 다이요 홀딩스 가부시키가이샤 오프셋 인쇄용 도전성 페이스트
JP2016139597A (ja) * 2015-01-26 2016-08-04 住友金属鉱山株式会社 樹枝状銀コート銅粉の製造方法
CN110249001A (zh) * 2017-01-26 2019-09-17 横滨橡胶株式会社 导电性组合物
JP2019218590A (ja) * 2018-06-18 2019-12-26 住友金属鉱山株式会社 銅粉の製造方法及び銅粉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400637A (zh) * 2013-08-05 2013-11-20 清华大学深圳研究生院 一种导电浆料及其制备方法以及印刷线路材料
WO2015184597A1 (en) * 2014-06-04 2015-12-10 Dow Global Technologies Llc Solid polymer electrolyte and compound used for thereof
EP3162466A1 (en) * 2014-06-25 2017-05-03 Sumitomo Metal Mining Co., Ltd. Copper powder, and copper paste, electrically conductive coating material and electrically conductive sheet each produced using said copper powder
CN106573303A (zh) * 2014-08-26 2017-04-19 住友金属矿山株式会社 银包覆铜粉及使用银包覆铜粉的导电膏、导电涂料、导电片
EP3192597A1 (en) * 2014-09-12 2017-07-19 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
WO2016151859A1 (ja) * 2015-03-26 2016-09-29 住友金属鉱山株式会社 銀コート銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082845A (zh) * 2023-01-05 2023-05-09 厦门牛转乾坤新材料有限公司 一种导电硅胶及其制备方法

Also Published As

Publication number Publication date
CN113412321A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
CN108102589B (zh) 一种低温固化低模量的环氧树脂封装导电胶及其制备方法
CN111480206B (zh) 导电性糊剂
CN104106182B (zh) 各向异性导电连接材料、连接结构体、连接结构体的制造方法和连接方法
JP2010109334A (ja) 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール
JP2009194359A (ja) 回路接続用接着フィルム、これを用いた回路部材の接続構造及び回路部材の接続方法
WO2021142752A1 (zh) 一种有机硅树脂导电胶及其制备方法和应用
CN113372844B (zh) 一种耐高温环氧树脂导电胶粘剂及其制备方法
CN111548765A (zh) 有机硅体系导电胶及其制备方法
CN108137930B (zh) 树脂组合物、接合体及半导体装置
WO2012018123A1 (ja) 異方導電性接着フィルムおよび硬化剤
CN111448670B (zh) 导电性糊剂
CN115785865A (zh) 一种导电胶以及太阳能电池
KR20140035993A (ko) 회로 접속 재료 및 회로 기판의 접속 구조체
WO2021142750A1 (zh) 一种改性环氧丙烯酸树脂导电胶及其制备方法和应用
CN113412319B (zh) 一种环氧树脂导电胶及其制备方法和应用
JP2010083952A (ja) 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール
JP2008308682A (ja) 回路接続材料
CN110922939A (zh) 一种具有导电性的有机硅凝胶
JP2004168870A (ja) 接着剤組成物、これを用いた接着フィルムおよび半導体装置
WO2021142751A1 (zh) 一种丙烯酸导电胶及其制备方法和应用
JP2016117869A (ja) 半導体接着用樹脂組成物及び半導体装置
JPH1112551A (ja) 導電性樹脂ペースト及びこれを用いて製造された半導体装置
JP5013027B2 (ja) 電極の接続方法
JP5013028B2 (ja) フィルム状回路接続材料の製造方法
CN115926738A (zh) 一种高强度半导体封装用导热绝缘硅胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913731

Country of ref document: EP

Kind code of ref document: A1