WO2021131156A1 - 水処理システム及び水処理方法 - Google Patents

水処理システム及び水処理方法 Download PDF

Info

Publication number
WO2021131156A1
WO2021131156A1 PCT/JP2020/032011 JP2020032011W WO2021131156A1 WO 2021131156 A1 WO2021131156 A1 WO 2021131156A1 JP 2020032011 W JP2020032011 W JP 2020032011W WO 2021131156 A1 WO2021131156 A1 WO 2021131156A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane device
reverse osmosis
osmosis membrane
line
Prior art date
Application number
PCT/JP2020/032011
Other languages
English (en)
French (fr)
Inventor
勇規 中村
一重 高橋
史生 須藤
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN202080056641.2A priority Critical patent/CN114206785B/zh
Publication of WO2021131156A1 publication Critical patent/WO2021131156A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the RO membrane devices are arranged in a plurality of stages in order to improve the water quality of the permeated water of the RO membrane device.
  • the permeated water of the first-stage RO membrane device is treated by the second-stage RO membrane device to improve the quality of the permeated water of the entire RO membrane device.
  • the concentrated water of the second-stage RO membrane device is often sufficiently higher in purity than the water supplied by the first-stage RO membrane device.
  • the raw water can be diluted and the recovery rate can be increased by returning the concentrated water of the second-stage RO membrane device to the water to be treated (raw water) (see, for example, Patent Document 1).
  • Ultra-low pressure type to low pressure type reverse osmosis membranes are often used as RO membrane devices for pure water production, but in response to the recent increase in water quality demands, high pressure type such as those used for seawater desalination applications. Attempts have also been made to introduce reverse osmosis membrane devices into pure water production systems (see, for example, Patent Documents 2 and 3).
  • a method of bypassing the second-stage RO membrane device in a water treatment system having a two-stage RO membrane device according to the fluctuation of the water quality of raw water is disclosed (see, for example, Patent Documents 4 and 5).
  • the device configuration is determined in consideration of the water quality of the water to be treated and the required water quality of the treated water. For example, the composition of the RO membrane device, recovery rate, additive chemicals, resin amount of the ion exchange device, resin composition, regeneration frequency, etc. so that the boron concentration required for the treated water can be tolerated from the presented boron concentration of the water to be treated. Is determined. However, the quality of the water to be treated, such as raw water, fluctuates, and with the existing equipment configuration, the performance for removing impurities may be insufficient or the specifications may be over-engineered.
  • an object of the present invention is to provide a water treatment system and a water treatment method capable of obtaining treated water of a desired water quality while reducing operating costs.
  • a reverse osmosis membrane system having a first reverse osmosis membrane device and a second reverse osmosis membrane device arranged on the permeable water side of the first reverse osmosis membrane device.
  • the water quality measuring means arranged on the permeated water side of the second reverse osmosis membrane device, Water is passed through the first reverse osmosis membrane device according to the measured value of the water quality measuring means, and the permeated water of the first reverse osmosis membrane device is passed through the second reverse osmosis membrane device to obtain permeated water.
  • the line changing means connects the first confluence line connecting the concentrated water side and the permeated water side of the first reverse osmosis membrane device and the second confluence connecting the concentrated water side and the permeated water side of the second reverse osmosis membrane device.
  • the supply water pressure is 50% or less of the normal operating pressure and the recovery rate is 20% or less according to the measured value of the water quality measuring means.
  • the reverse osmosis membrane apparatus has a third reverse osmosis membrane apparatus for treating at least one of the concentrated water of the first reverse osmosis membrane apparatus and the concentrated water of the second reverse osmosis membrane apparatus, and the permeated water of the third reverse osmosis membrane apparatus is referred to as described above.
  • [5] The water treatment system according to any one of [1] to [4], wherein the component measured by the water quality measuring means contains boron.
  • a water treatment method including switching the water flow lines of (a) and (b) below according to the quality of the permeated water of the osmosis membrane system: (A) A water passage line that supplies water to be treated to a first reverse osmosis membrane device and supplies permeated water from the first reverse osmosis membrane device to a second reverse osmosis membrane device to obtain permeated water.
  • the first reverse osmosis membrane device is a low-pressure reverse osmosis membrane device
  • the second reverse osmosis membrane device is a high-pressure reverse osmosis membrane device.
  • the water treatment system according to the present invention has a reverse osmosis membrane system, a water quality measuring means, and a line changing means.
  • the reverse osmosis membrane system has a second reverse osmosis membrane device 10 having a different blocking rate from the first reverse osmosis membrane device 10 arranged on the permeated water side of the first reverse osmosis membrane device 10. It has a reverse osmosis membrane device 20.
  • the water quality measuring means 30 is arranged on the permeated water side Bt of the second reverse osmosis membrane device 20.
  • the line changing means is at least said by bypassing the flow of water to at least one of the first reverse osmosis membrane device 10 and the second reverse osmosis membrane device 20 to the bypass line according to the measured value of the water quality measuring means 30. Blocks water flow to one reverse osmosis membrane device. Alternatively, the concentrated water and the permeated water in at least one of the first reverse osmosis membrane device 10 and the second reverse osmosis membrane device 20 are merged.
  • the water treatment system 1 (1A) is arranged on the first reverse osmosis membrane device 10 for treating the water to be treated and the permeated water side At of the first reverse osmosis membrane device 10.
  • a reverse osmosis membrane system including a second reverse osmosis membrane device 20 having a different blocking rate from the first reverse osmosis membrane device 10 is provided.
  • the reverse osmosis membrane will also be referred to as an RO membrane.
  • the first RO membrane device 10 is an RO membrane device having a high blocking rate
  • the second RO membrane device 20 is an RO membrane device having a low blocking rate.
  • high and low blocking rates mean high relative blocking rates.
  • a water quality measuring means 30 is provided on the permeated water side Bt of the second RO membrane device 20.
  • the measurement items of the water quality measuring means 30 include silica, TOC, boron, urea, and the like, and it is preferable that one or more of them is used.
  • the water quality measurement item will be described as boron. Therefore, the blocking rate will also be described as the boron blocking rate.
  • the water treatment system 1A has a line changing means for changing at least one line of the first RO film device 10 and the second RO film device 20 according to the measured value of the water quality measuring means 30.
  • the "line” in the present invention means a flow path through which water passes.
  • the line changing means preferably has a first bypass line 15 that connects the supply side As and the permeated water side At of the first RO membrane device 10. Further, it is preferable to have a second bypass line 25 connecting the supply side Bs and the permeated water side Bt of the second RO membrane device 20. It is preferable that at least one of the first and second bypass lines 15 and 25 is arranged. Therefore, water flow to at least one of the first RO membrane device 10 and the second RO membrane device 20 can be bypassed.
  • the bypass line here means a line in which the supply water supplied to the supply side of the RO membrane device flows to the permeated water side without passing through the inside of the RO membrane device.
  • water is passed through either the first RO membrane device 10 or the second RO membrane device 20 through the first bypass line 15 or the second bypass line. Bypass to 25.
  • the water flow to the first RO membrane device 10 and the second RO membrane device 20 is bypassed to the first bypass line 15 and the second bypass line 25, respectively.
  • the term "line changing means” means to include all the flow paths, valves, and pumps related to the change of the water flow line.
  • This line changing means usually preferably has a control unit (not shown) that automatically or manually controls the valve or pump.
  • a control unit not shown
  • the supply line 41, the connection line 42, the treated water line 43, the first bypass line 15, the second bypass line 25, the sluice valves V1 to V5, and the like are included. It has a control unit that controls valves V1 to V5.
  • a supply line 41 for supplying water to be treated is connected to the supply side As of the first RO membrane device 10.
  • the permeated water side At of the first RO membrane device 10 and the supply side Bs of the second RO membrane device 20 are connected by a connection line 42, and the permeated water side Bt of the second RO membrane device 20 is a treated water line 43. Is connected.
  • the concentrated water line 44 is connected to the concentrated water side Ac of the first RO membrane device 10 and the concentrated water line 45 is connected to the concentrated water side Bc of the second RO membrane device 20.
  • the first bypass line 15 branches from the supply line 41 and is connected to the connection line 42
  • the second bypass line 25 branches from the connection line 42 and is connected to the treated water line 43.
  • the first bypass line 15 and the second bypass line 25 may share a portion connected to the connection line 42, or may be independently connected to the connection line 42.
  • the first bypass line 15 is connected to the first RO membrane device 10 side and the second bypass line 25 is connected to the second RO membrane device 20 side.
  • a sluice valve V1 is arranged in the supply line 41 installed between the branch point B1 between the supply line 41 and the first bypass line 15 and the first RO membrane device 10, and the first bypass line on the branch point B1 side. It is preferable that a sluice valve V2 is arranged at 15. Further, it is preferable that the sluice valve V3 is arranged on the connection line 42 and the sluice valve V4 is arranged on the connection line 42 side of the first bypass line 15. In the form shown in FIG. 1, the sluice valve V4 is shared with the sluice valve arranged on the connection line 42 side of the second bypass line 25.
  • connection line 42 When the second bypass line 25 is independently connected to the connection line 42, it is preferable to arrange a sluice valve (not shown) on the connection line 42 side of the second bypass line 25. It is preferable that the sluice valve V5 is arranged on the treated water line 43 side of the second bypass line 25.
  • the treated water line 43 is provided with a measurement line 31 branched from the downstream side of the confluence portion C1 of the second bypass line 25, and the water quality measuring means 30 is connected to the measurement line 31.
  • the water quality measuring means 30 for example, a boron monitor can be used.
  • the "downstream side” means the side through which water flows
  • the "upstream side” means the side through which water flows.
  • the water treatment system 1 preferably includes a water to be treated tank (not shown) in which the water to be treated is stored.
  • a supply line 41 for supplying water to be treated is connected to the water tank to be treated. Therefore, the water tank to be treated is connected to the supply side As of the first RO membrane device 10 via the supply line 41.
  • a pressure pump (not shown) is arranged in the supply line 41. Therefore, it is preferable that the water to be treated stored in the water tank to be treated is supplied by applying pressure to the supply side As of the first RO membrane device 10 by a pressure pump. Further, it is preferable to dispose a pressure pump (not shown) also on the connection line 42 between the supply side Bs of the second RO membrane device 20 and the sluice valve V3.
  • the sluice valves V1 and V3 are first opened, the sluice valves V2, V4 and V5 are closed, and the water to be treated is supplied from the supply line 41 to the first RO membrane device 10. Further, the permeated water of the first RO membrane device 10 is supplied to the second RO membrane device 20 via the connection line 42. At this time, the water supplied to the second RO membrane device 20 is only the permeated water of the first RO membrane device 10. Then, for example, the boron concentration is measured by the water quality measuring means 30.
  • the sluice valve V1 When the measured boron concentration is lower than the reference lower limit value (for example, 0.02 ppb), the sluice valve V1 is closed and the sluice valves V2 and V4 are opened. That is, the sluice valves V1 and V5 are closed, and the sluice valves V2, V3, and V4 are opened. Then, the water to be treated is allowed to flow through the first bypass line 15, and the water to be treated is treated by the second RO membrane device 20. At this time, when the sluice valve V1 is closed, the supply of water to be treated to the first RO membrane device 10 is cut off, and the operation of the first RO membrane device 10 is stopped.
  • the reference lower limit value for example 0.02 ppb
  • the sluice valve V1 When the boron concentration rises to a value higher than the reference upper limit value (for example, 0.05 ppb), the sluice valve V1 is opened again and the sluice valves V2 and V4 are closed. That is, the sluice valves V2, V4 and V5 are closed, and the sluice valves V1 and V3 are opened. Then, the water to be treated is treated by both the first and second RO membrane devices 10 and 20. At this time, the water supplied to the second RO membrane device 20 is only the permeated water of the first RO membrane device 10.
  • the reference upper limit value and lower limit value of the boron concentration are not limited to the above values, and can be appropriately set according to the desired water quality.
  • the second bypass line 25 may be used in the above operation method.
  • the water to be treated is treated by the first RO membrane device 10 and the second RO membrane device 20 in the same manner as described above, and the boron concentration is measured by the water quality measuring means 30.
  • the sluice valve V3 is closed and the sluice valves V4 and V5 are opened. That is, the sluice valves V2 and V3 are closed, and the sluice valves V1, V4 and V5 are opened.
  • the water to be treated is treated by the first RO membrane device 10, and the permeated water of the first RO membrane device is allowed to flow through the second bypass line 25.
  • the operation of the second RO membrane device 20 is stopped.
  • the sluice valve V3 is opened again and the sluice valves V4 and V5 are closed. That is, V2, V4, and V5 are closed, and V1 and V3 are opened.
  • the water to be treated is treated by both the first and second RO membrane devices 10 and 20. That is, water is passed through the first RO membrane device 10 and the permeated water of the first RO membrane device 10 is passed through the second RO membrane device 20 to obtain permeated water.
  • the boron concentration of the treated water can be reduced, the water quality can be improved, and the water quality can be kept within the standard.
  • the bypass operation can be performed by a method of bypassing the first RO membrane device 10 by using the first bypass line 15 and a method of bypassing the second RO membrane device 20 by using the second bypass line 25. ..
  • the second RO membrane device 20 is restarted, and then the first RO membrane device 10 is bypass-operated. That is, the operation of the first RO membrane device 10 which requires a large operating power to have a high boron blocking rate is switched to the operation of the second RO membrane device 20 having a low boron blocking rate. At this time, the operation of the first RO membrane device 10 is stopped. In this way, the operating cost of the water treatment system 1 can be reduced while continuing the target water treatment.
  • the water to be treated or the treated water can flow through the bypass line of the stopped RO membrane device while at least one of the RO membrane devices is stopped. In the meantime, the water to be treated can be treated by the other RO membrane device. Therefore, the operating cost can be reduced by stopping at least one RO membrane device without stopping the treatment of the water to be treated.
  • the boron concentration can be constantly monitored by the water quality measuring means 30, and the result can be fed back to control the operation of the RO membrane device. Therefore, the treated water passing through the treated water line 43 does not contain a high concentration of boron, and the boron concentration within the reference value can be maintained at all times. In this way, the quality of the treated water is maintained.
  • the concentrated water of the second RO membrane device 20 is mixed with the water to be treated. It is preferable to be done. This improves the recovery rate.
  • the concentrated water of the second RO membrane device 20 is normally discharged to the outside of the system.
  • the first RO film device 10 and the second RO film device 20 do not necessarily have different blocking rates, and may have the same blocking rate. In this case, when the first RO film device 10 of the first stage and the second RO film device 20 of the second stage are both operated, the first RO film device 10 and the second stage of the first stage are operated together.
  • any one of the second RO membrane devices 20 can be appropriately selected for bypass operation. Further, not only when either one of the first RO membrane device 10 and the second RO membrane device 20 is bypassed, but also depending on the water quality of the water to be treated, the first RO membrane device 10 and the second RO membrane Both of the devices 20 may be bypassed. For example, when the water quality of the water to be treated does not require RO membrane treatment and the boron concentration is equal to or less than the reference value, both the first and second RO membrane devices 10 and 20 can be bypassed.
  • the water treatment system 1 (1B) provided with another line changing means will be described below with reference to FIG. To do.
  • the line changing means includes the supply line 41, the connection line 42, the treated water line 43, the concentrated water lines 44 and 45, the first merging line 46, the second merging line 47, and the partition. It means that the valves V6 to V7, the back pressure valves Vb1 to Vb2, and the like are included, and it is preferable to have a control unit (not shown) for controlling the sluice valves V6 to V7 and the back pressure valves Vb1 to Vb2.
  • the water treatment system 1 (1B) has an RO membrane having a first RO membrane apparatus 10 and a second RO membrane apparatus 20 similar to the water treatment system 1A described in the first embodiment. It has a system and a water quality measuring means 30.
  • the water treatment system 1B has a line changing means for merging concentrated water and permeated water in at least one of the first RO membrane device 10 and the second RO membrane device 20 according to the measured value of the water quality measuring means 30. ..
  • the supply line 41, the connection line 42, and the treated water line 43 are arranged.
  • the concentrated water line 44 is connected to the concentrated side Ac of the first RO membrane device 10, and the back pressure valve Vb1 is arranged in the concentrated water line 44. Further, it is preferable that the concentrated water line 45 is connected to the concentrated side Bc of the second RO membrane device 20, and the back pressure valve Vb2 is arranged in the concentrated water line 45.
  • the back pressure valves Vb1 and Vb2 can keep the pressure in the concentrated water lines 44 and 45 of the concentrated water side Ac and Bc within a constant pressure range.
  • the line changing means includes a first line changing means and a second line changing means.
  • the first line changing means preferably includes a supply line 41, a first pump P1 arranged on the supply line 41, and a first pump inverter INV1 for controlling the rotation speed of the first pump P1.
  • the concentrated water line 44 is provided, and the first merging line 46 that branches off from the concentrated water line 44 and connects to the permeated water side At of the first RO membrane device 10 is arranged.
  • the first merging line 46 may be branched from the concentrated water line 44 or may be directly connected (not shown) to the concentrated water side Ac.
  • the sluice valve V6 is arranged on the first merging line 46.
  • the first line changing means usually has a control unit (not shown) for automatically or manually controlling a valve or a pump.
  • the first line changing means includes a supply line 41, a connection line 42, a concentrated water line 44, a first merging line 46, a first pump P1, a first pump inverter INV1, a sluice valve V6, and the like. Yes, it has a control unit that controls the first pump inverter INV1, the first pump P1, the sluice valve V6, and the like. This control unit performs the above control based on the measured value of the water quality measuring means 30.
  • the second line changing means preferably includes a connection line 42, a second pump P2 arranged on the connection line 42, and a second pump inverter INV2 that controls the rotation speed of the second pump P2.
  • a second merging line 47 having a concentrated water line 45 and branching from the concentrated water line 45 and connecting to the permeated water side Bt of the second RO membrane device 20 is arranged.
  • the second merging line 47 may be branched from the concentrated water line 45 or may be directly connected (not shown) to the concentrated water side Bc.
  • a sluice valve V7 is arranged on the second merging line 47.
  • the second line changing means usually has a control unit (not shown) for automatically or manually controlling a valve or a pump.
  • the second line changing means includes a connection line 42, a concentrated water line 45, a second merging line 47, a treated water line 43, a second pump P2, a second pump inverter INV2, a sluice valve V7, and the like. It has a control unit that controls the second pump inverter INV2, the second pump P2, the sluice valve V7, and the like.
  • This control unit performs the above control based on the measured value of the water quality measuring means 30. In this way, it is possible to form a line for merging the concentrated water of the first RO membrane device 10 and the second RO membrane device 20 to the permeated water side.
  • the line changing means having the above configuration, at least one of the first RO film device 10 and the second RO film device 20 is flushed by at least one of the first line changing means and the second line changing means (low pressure flushing operation). Will be possible.
  • this low-pressure flushing operation for example, it is preferable that the supply water pressure of at least one of the first and second RO membrane devices 10 and 20 is 50% or less of the normal operating pressure and the recovery rate is 20% or less.
  • water is passed through the first merging line 46 or the second merging line 47 corresponding to the at least one RO membrane device.
  • the normal operating pressure is defined as the pressure required to obtain a desired amount of permeated water from the second RO membrane device 20 when the first RO membrane device 10 and the second RO membrane device 20 are operated.
  • the first RO membrane device 10 and the second RO membrane device 20 can obtain the permeated water amount of 20 m 3 / h, respectively.
  • the pressure of the first RO membrane device 10 at that time is the normal operating pressure of the first RO membrane device 10
  • the pressure of the second RO membrane device 20 at that time is the normal operating pressure of the second RO membrane device 20. is there. If a low-pressure RO membrane is used, the normal operating pressure is about 0.75 to 1.5 MPa, and if it is a high-pressure RO membrane, it is about 1 to 4 MPa.
  • “%" of the recovery rate indicates “flow rate%”.
  • the operating pressure of the pump can be controlled by adjusting the inverter values of the first and second pump inverters INV1 and INV2 to adjust the rotation speed (rotation speed per unit time) of the pump. If the inverter value is lowered to the low frequency side, the rotation speed of the pump is lowered and the operating pressure is lowered. On the contrary, if the inverter value is raised to the high frequency side, the rotation speed of the pump is increased and the operating pressure is increased. From the viewpoint of energy cost reduction, the upper limit of the operating pressure is 50% or less of the normal operating pressure, preferably 20% or less, and more preferably 10% or less. From the viewpoint of reliably supplying the liquid to the subsequent device, the lower limit of the operating pressure is 2% or more, preferably 5% or more, and more preferably 7% or more of the normal operating pressure.
  • the recovery rate of the supply water of the RO membrane device for low-pressure flushing operation to the permeated water side has an upper limit of 20% or less, preferably 10% or less, and more preferably 5 from the viewpoint of energy cost reduction. % Or less.
  • the lower limit of the recovery rate is 0.05% or more, preferably 0.1% or more, from the viewpoint of preventing the growth of bacteria and the like.
  • a measurement line 31 branched from the downstream side of the merging portion C1 of the second merging line 47 is arranged in the treated water line 43, and the same water quality measuring means 30 as in the first embodiment is connected to the measuring line 31. It is preferable to be done.
  • the water treatment system 1B preferably includes a water tank to be treated (not shown) to which the water to be treated is stored and the supply line 41 is connected, as in the first embodiment.
  • the water to be treated is supplied from the water tank to be treated to the supply side As of the first RO membrane device 10 via the supply line 41.
  • the first pump P1 is arranged on the supply line 41. The water to be treated is supplied by the first pump P1 by applying a predetermined operating pressure to the supply side As of the first RO membrane device 10.
  • the sluice valves V6 and V7 are closed and the water to be treated is supplied from the supply line 41 to the first RO membrane device 10.
  • the first and second pump inverters INV1 and INV2 are set to frequencies at which normal operating pressure is obtained.
  • the permeated water treated by the first RO membrane device 10 is supplied to the second RO membrane device 20 via the connection line 42.
  • the boron concentration of the permeated water treated by the second RO membrane device 20 is measured by the water quality measuring means 30.
  • the back pressure valve Vb1 When the boron concentration measured by the water quality measuring means 30 becomes lower than the reference lower limit value, the back pressure valve Vb1 is closed, the sluice valve V6 is opened, and the water to be treated flows to the first merging line 46. Then, the concentrated water and the permeated water of the first RO membrane device 10 are merged, and the concentrated water and the permeated water are supplied to the second RO membrane device 20 for processing.
  • the inverter value of the first pump inverter INV1 is set to a low frequency to reduce the operation of the first pump P1, and the operating pressure of the first RO membrane device 10 is 50% or less of the normal operating pressure and recovered. Reduce the rate to 20% or less. As a result, the operating power of the first RO membrane device 10 is reduced, and the operating cost is suppressed.
  • the back pressure valve Vb1 is opened again, the sluice valve V6 is closed, and the water to be treated is first and second. It is processed by both RO membrane devices 10 and 20 of the above. At this time, only the permeated water of the first RO membrane device 10 is supplied to the supply side Bs of the second RO membrane device 20. Further, the first and second pump inverters INV1 and INV2 are set to frequencies that are normal operating pressures. In this way, the boron concentration of the treated water is set to be between the reference lower limit value and the reference upper limit value (within the reference value).
  • a second line changing means using the second merging line 47 may be used.
  • the sluice valves V6 and V7 are initially closed in the same manner as described above, and the water to be treated is treated by the first RO membrane device 10 and the second RO membrane device 20.
  • the boron concentration is measured by the water quality measuring means 30.
  • the back pressure valve Vb2 is closed and the sluice valve V7 is opened.
  • the water to be treated is treated by the first RO membrane device 10, and the permeated water of the first RO membrane device is flowed to the second RO membrane device 20.
  • the second RO membrane device 20 adjusts the second pump inverter INV2 to the low frequency side so that the operating pressure is 50% or less of the normal operating pressure and the recovery rate is 20% or less. Therefore, most of the supplied water flows from the concentrated water side Bc through the concentrated water line 45 and the second merging line 47 into the treated water line 43 and merges with the permeated water of the second RO membrane device 20.
  • the back pressure valve Vb2 is opened again, the sluice valve V7 is closed, and the water to be treated is discharged into the first and second RO membrane devices 10, 20. Process by both.
  • the second RO membrane device 20 By operating the second RO membrane device 20 in this way, the boron concentration of the treated water can be reduced, the water quality can be improved, and the water quality can be kept within the reference value.
  • At least one of the first line changing means and the second line changing means can be used. Whichever line changing means is used, the concentrated water can be flowed to the subsequent stage through the merging line while the operating pressure of the corresponding RO membrane device is lowered and the recovery rate is lowered. During that time, the water to be treated is purified to the desired water quality by the other RO membrane device. Therefore, when the measured value of the water quality of the treated water sufficiently satisfies the standard, the operation of any RO membrane device can be suppressed, and the operating cost of the suppressed RO membrane device can be reduced. Specifically, by lowering the inverter value, the pump output can be suppressed and the operating cost can be reduced.
  • the inverter value of the first pump inverter INV1 is lowered to lower the operating capacity of the first pump P1, and the back pressure valve Vb1 is used. It shall be in the closed state.
  • the water to be treated supplied to the first RO membrane device 10 slightly passes through the first RO membrane device 10 (recovery rate is 20% or less), but most of them are the first RO membrane device 10. It is discharged from the concentrated water side of.
  • the water to be treated slightly permeates the first RO membrane device 10 without completely blocking the flow of water to the first RO membrane device 10. This makes it possible to prevent the growth of bacteria and the like in the first RO membrane device 10.
  • the concentrated water and the permeated water of the first RO membrane device 10 are merged by the merging line 46 and supplied to the second RO membrane device 20 in the subsequent stage to perform the RO membrane treatment.
  • the operation of the first pump P1 is suppressed, and the cost is reduced.
  • the second RO membrane device 20 When the water quality deteriorates a little (for example, when the boron concentration becomes 0.05 ppb or more) while the second RO membrane device 20 is mainly operated, the second RO membrane device 20 The movement of the second pump P2 is suppressed by the second pump inverter INV2, the back pressure valve Vb2 is closed, and the sluice valve V7 is opened. At the same time, the back pressure valve Vb1 is opened, the sluice valve V6 is closed, and the inverter value of the first pump inverter INV1 of the first RO membrane device 10 is increased to increase the operating pressure of the first pump P1 and the first RO. The membrane device 10 is returned to normal operation. In this way, the first RO membrane device 10 switches to the main operation.
  • the first RO membrane device 10 has a higher boron blocking rate, so that the first RO membrane device 10 keeps the boron concentration below 0.05 ppb in the main operation. In this way, the water quality can be adjusted to the desired purity. At this time, the operation of the second pump P2 is suppressed, and the cost can be reduced. If the water quality still deteriorates (when the boron concentration exceeds, for example, 0.05 ppb), the back pressure valve Vb2 is opened, the sluice valve V7 is closed, and the inverter value of the second pump inverter INV2 is increased to increase the inverter value of the second pump P2. To return to normal operation.
  • both the first and second RO membrane devices 10 and 20 can be normally operated so that the boron concentration becomes 0.05 ppb or less, and the water quality can be further improved. Further, not only when water is passed through either the first line changing means or the second line changing means, but also depending on the water quality of the water to be treated, water is passed through both the first line changing means and the second line changing means. You may try to do it. For example, when the water quality of the water to be treated does not require RO membrane treatment and the boron concentration is equal to or less than the reference value, water can be passed through both the first and second line changing means.
  • the water quality measuring means 30 can constantly monitor the water quality, for example, the boron concentration, and feed back the result to control the operation of the RO membrane device. Therefore, the treated water does not contain a high concentration of boron, and the boron concentration within the reference value can be maintained at all times. Further, in the water treatment system 1B, since the first and second RO membrane devices 10 and 20 are constantly operated, the start-up is improved when the pump output is increased. Further, even while the concentrated water is flowing through any of the first and second merging lines 46 and 47, the concentrated water is passed through the RO membranes of the first and second RO membrane devices 10 and 20 to the permeated water side. Water flows though it is small. Therefore, since water does not stay in each RO membrane device, it is possible to suppress the growth of bacteria and the like in each RO membrane device.
  • the water treatment system 1C has the same configuration as the water treatment system 1A except that the first ion exchange device (IER) 51 is arranged in the treated water line 43 in the subsequent stage of the water treatment system 1A. It is a thing.
  • the first ion exchange device 51 is preferably arranged on the downstream side of the branch point B2 of the measurement line 31 connecting the water quality measuring means 30. In other words, the water quality can be measured on the upstream side (previous stage) of the first ion exchange device 51. Thereby, for example, even if the boron concentration of the permeated water of the second RO membrane device 20 is slightly increased or decreased, the boron can be removed by the first ion exchange device 51.
  • the boron concentration of the treated water can be more reliably suppressed to the reference value or less.
  • the first ion exchange device 51 has at least an anion exchange resin or a chelate resin having boron selectivity.
  • the ion exchange apparatus includes (1) a two-bed, two-tower regenerative ion exchange tower in which a cation exchange tower filled with a strongly acidic cation exchange resin and an anion exchange tower filled with a strongly basic anion exchange resin are connected in series.
  • first ion exchange device may or may not have another ion exchange device (for example, a second ion exchange device). Further, it is not always necessary for the permeated water of the second RO membrane device 20 to flow through the first ion exchange device 51.
  • a bypass line for bypassing the first ion exchange device 51 may be provided to bypass the first ion exchange device 51 according to the measured value of the water quality measuring means 30.
  • the water treatment system 1D has a cation exchange device 52 containing a cation exchange resin and / or a decarbonization device 53 including a decarbonization film arranged on the measurement line 31 of the water treatment system 1C described above, and other than that. It has the same configuration as the water treatment system 1C.
  • the cation exchange device 52 removes sodium ions and the like from the water supplied to the water quality measuring means 30.
  • the decarbonizing device 53 removes oxygen, carbon dioxide, etc. dissolved in the water supplied to the water quality measuring means 30. It is more preferable that both the cation exchange device 52 and the decarbonization device 53 are arranged.
  • the cation exchange resin is preferably an electroregeneration type from the viewpoint of enabling constant ion exchange.
  • the cation exchange device 52 and the decarbonization device 53 can be applied to the water treatment system 1B in the same manner as described above.
  • the second ion exchange device 54 is arranged in the treated water line 43 in the front stage of the first ion exchange device 51 of the water treatment system 1C (the stage before the branch point of the water quality measuring means 30).
  • the measurement line 31 is branched from the treated water line 43 between the first and second ion exchange devices 51 and 54. Therefore, it has the same configuration as the water treatment system 1C except for the first and second ion exchange devices 51 and 54 and the measurement line 31.
  • the boron concentration of water flowing through the treated water line 43 between the first and second ion exchange devices 51 and 54 can be measured by the water quality measuring means 30.
  • the specific resistance of the water supplied to the water quality measuring means 30 can be increased, and the boron concentration can be made accurate. It becomes possible to measure well. Further, even if the measured value of the boron concentration is high, the treatment of removing boron contained in the treated water of the second ion exchange device 54 can be performed by the first ion exchange device 51 in the subsequent stage. As a result, the boron concentration of the treated water discharged from the first ion exchange device 51 can be sufficiently reduced.
  • the boron concentration of the treated water of the second ion exchange device 54 can be slightly increased or decreased, the boron concentration of the treated water discharged from the first ion exchange device 51 can be suppressed to a reference value or less.
  • the first and second ion exchange devices 51 and 54 can be applied to the water treatment system 1B in the same manner as described above.
  • the water treatment system 1F is the same as the water treatment system 1E except that the RO film of the first RO film device 10 of the water treatment system 1E is BWRO and the RO film of the second RO film device 20 is SWRO. It has a structure.
  • BWRO is an abbreviation for Brackish Water Reverse Osmosis Membrane, which is a reverse osmosis membrane for brackish water.
  • SWRO is an abbreviation for Sea Water Reverse Osmosis Membrane, which is a reverse osmosis membrane for seawater.
  • BWRO is usually a low pressure RO membrane and SWRO is usually a high pressure RO membrane.
  • the water treatment system 1F causes membrane occlusion by using a low-pressure RO membrane for the first-stage first RO membrane device 10 and a high-pressure RO membrane for the second-stage second RO membrane device 20. It is possible to increase the flux (unit membrane area / amount of membrane filtered water per unit time). Therefore, the boron blocking rate can be improved.
  • the RO membrane of the first RO membrane apparatus 10 being BWRO and the RO membrane of the second RO membrane apparatus 20 being SWRO can be applied to the water treatment system 1B in the same manner as described above. it can.
  • a low-pressure membrane and an ultra-low-pressure membrane that can be operated at a relatively low pressure are preferably used.
  • the low-pressure membrane and ultra-low-pressure membrane have a permeation flux of pure water at an effective pressure of 1 MPa and a water temperature of 25 ° C. of 0.027 to 0.075 m / h (hours), preferably 0.027 to 0.042 m / h. Can be used.
  • the permeated flux is the amount of permeated water divided by the RO membrane area.
  • the "effective pressure” is the effective pressure acting on the membrane, which is described in JIS K3802: 2015 “Membrane Term", which is obtained by subtracting the osmotic pressure difference and the secondary lateral pressure from the average operating pressure.
  • the average operating pressure is an average value of the pressure of the membrane supply water (operating pressure) and the pressure of the concentrated water (concentrated water outlet pressure) on the primary side of the reverse osmosis membrane, and is expressed by the following formula.
  • Average operating pressure (operating pressure + concentrated water outlet pressure) / 2
  • the permeation flux per 1 MPa of effective pressure can be calculated from the information described in the catalog of the membrane manufacturer, for example, the amount of permeated water, the membrane area, the recovery rate at the time of evaluation, the NaCl concentration and the like.
  • the average operating pressure / secondary pressure of the pressure vessels When a plurality of RO membranes having the same permeation flux are loaded in one or more pressure vessels, the average operating pressure / secondary pressure of the pressure vessels, the quality of water to be treated, the amount of permeated water, and the number of membranes. From the information such as, the permeation flux of the loaded membrane can be calculated.
  • the second RO membrane device 20 is a high pressure type.
  • the high-pressure RO membrane device was conventionally developed for desalination of seawater, but it is possible to efficiently remove ions, TOC, etc. with lower operating pressure for water to be treated with low salinity. It becomes.
  • By using such an RO membrane device it is possible to dramatically increase the removal rate of non-dissociable substances such as silica, boron, urea, ethanol, and isopropyl alcohol, which could not be sufficiently removed by ultra-low pressure to low pressure membranes. is there.
  • the definition of "high pressure type" used in the second RO membrane device 20 can be roughly defined as having the following properties. That is, the permeation flux of pure water at an effective pressure of 1 MPa and a water temperature of 25 ° C. is 0.0083 to 0.027 m / h.
  • the effective pressure of the high-pressure RO membrane is preferably 1.5 to 2.0 MPa. By setting the effective pressure to 1.5 MPa or more, the boron blocking rate of the high-pressure RO membrane can be sufficiently increased. Further, by setting the effective pressure to 2.0 MPa or more, the effect of further improving the boron blocking rate can be expected, but since it is necessary to increase the durable pressure of the apparatus, the equipment cost may increase.
  • the relative inhibition rate of the RO membrane in the present invention is the inhibition rate evaluated under the same conditions such as neutral pH and other conditions (temperature, pressure, etc.).
  • the supply water may be pretreated before the RO membrane device. Further, the post-treatment of the treated water may be performed in the subsequent stage. Further, chemicals can be appropriately added to the supplied water in the pre-stage or the middle of the RO membrane device.
  • Pretreatment includes coagulation treatment, sand filtration, membrane filtration, decarboxylation, and softening.
  • coagulation treatment the charge of fine particles in water that are negatively charged by a positively charged flocculant is neutralized and aggregated to generate basal flocs, and the basal flocs are adsorbed by a coagulation aid such as a polymer to be coarse.
  • a coagulation aid such as a polymer to be coarse.
  • the flocculant include aluminum sulfate, polyaluminum chloride, ferric chloride, ferrous sulfate, and the like.
  • Sand filtration is a process of filtering by using the accumulated sand as a filter medium and passing water through the accumulated sand.
  • Membrane filtration is a process of filtering water by passing it through a filtration membrane.
  • the filtration membrane include a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, an ion exchange membrane, an RO membrane, and the like, depending on the size of the substance to be filtered and the driving force of the filtration.
  • Decarboxylation is a process of adjusting the pH by reducing carbonation in water by aeration using a decarboxylation tower.
  • Softening is a process of softening calcium ions, magnesium ions, etc. contained in water by exchanging them with sodium ions by a cation exchange resin.
  • UV irradiation is a process of irradiating water with ultraviolet rays to sterilize and inactivate microorganisms in the water by the ultraviolet rays. It is also a process of decomposing organic matter in water. Degassing is the process of removing dissolved gases (eg, oxygen, nitrogen, carbon dioxide, etc.) in water.
  • dissolved gases eg, oxygen, nitrogen, carbon dioxide, etc.
  • Examples of chemicals used for adding chemicals include acids that adjust pH, alkalis, scale dispersants that suppress or prevent the generation of scale, slime control agents that have bactericidal and antibacterial effects, oxidizing agents, reducing agents, and the like.
  • Examples of the acid for adjusting the pH of water include hydrochloric acid, sulfuric acid, and the like, and examples of the alkali include sodium hydroxide and the like.
  • Examples of the scale dispersant include sodium hydroxide (caustic soda), calcium hydroxide (slaked lime), and the like.
  • Examples of the slime control agent include sodium hypochlorite, hydrogen peroxide, and the like.
  • Examples of the oxidizing agent include ozone, hydrogen peroxide, and the like, and examples of the reducing agent include persulfate, hypochlorite, and the like.
  • the water treatment system 1 (1G) As another preferable embodiment (seventh embodiment) of the water treatment system according to the present invention, the water treatment system 1 (1G) will be described below with reference to FIG.
  • the water treatment system 1G is a system in which a third reverse osmosis membrane device (also referred to as a third RO membrane device) 60 is arranged on the above-mentioned water treatment system 1F. Specifically, it is preferable to connect the concentrated water side Ac of the first RO membrane device 10 and the supply side Cs of the third RO membrane device 60 via the concentrated water line 44. Further, it is preferable to connect the concentrated water side Bc of the second RO membrane device 20 and the supply side Cs of the third RO membrane device 60 via the concentrated water line 45.
  • the concentrated water lines 44 and 45 connected to the supply side Cs of the third RO membrane device 60 may be connected to the supply side Cs in common with the supply side Cs, or may be independently connected to the supply side Cs. ..
  • the concentrated water line 48 is connected to the concentrated water side Cc of the third RO membrane device 60, and the permeated water line 49 is connected to the permeated water side Ct.
  • the permeated water line 49 is preferably connected to the upstream side of the branch point B1 of the supply line 41.
  • the third RO membrane device 60 can be applied to the water treatment system 1B in the same manner as described above.
  • the water treatment system 1G supplies the concentrated water of the first and second RO membrane devices 10 and 20 to the third RO membrane device 60, and supplies the treated water (permeated water) of the third RO membrane device 60 to the RO membrane.
  • the recovery rate can be increased by merging with the water to be treated in the system. Further, if the concentrated water of the first and second RO membrane devices 10 and 20 is directly returned to the water to be treated in order to increase the recovery rate, the boron concentration in the system becomes high. Therefore, the concentrated water of the first and second RO membrane devices 10 and 20 is treated by the third RO membrane device 60, and the permeated water is returned to the water to be treated to increase the boron concentration in the system. It is possible to improve the recovery rate.
  • the third RO membrane device 60 may be either a low-pressure type or a high-pressure type, but a high-pressure type is preferable.
  • a high-pressure type is preferable.
  • Each of the water treatment systems 1 (1A to 1G) is a control unit (1A to 1G) that instructs the opening and closing operations of the sluice valves V1 to V7 and the back pressure valves Vb1 and Vb2 based on the measured values of the water quality measured by the water quality measuring means 30. (Not shown) is preferably provided.
  • each sluice valve V1 to V7 can be electrically opened and closed, for example, it is preferable to use an electromagnetic valve. As a result, valve operation can be automated.
  • this control unit can appropriately change the inverter values of the first and second pump inverters INV1 and INV2 based on the measured values of the water quality.
  • This control unit is included in the line changing means in the present invention.
  • the first pump inverter INV1 that functions as a flow rate control device is used to avoid a sudden increase in pressure. It is preferable to operate the first pump P1 through the system. At that time, the output (for example, the number of revolutions) of the motor (not shown) for driving the first pump P1 is controlled by the first pump inverter INV1 so that a sudden pressure change does not occur, and the flow rate of the water to be treated To adjust. By adjusting the flow rate, fluctuations in water pressure can be suppressed. It is preferable that the second pump P2 is also controlled by the second pump inverter INV2 in order to avoid sudden pressure fluctuations as in the first pump P1.
  • the first, second, and third RO membrane devices 10, 20, and 60 may have a one-stage bank configuration or a multi-stage configuration. In the case of a multi-stage configuration, it is preferable to arrange the RO films in series in multiple stages. Further, it is preferable that the bank is provided with a plurality of vessels. Further, it is preferable that the vessel is provided with a plurality of elements.
  • the RO membranes used in the first, second, and third RO membrane devices 10, 20, and 60 are not limited to the same brand, but are optimal depending on the intended use, water quality to be treated, required permeated water quality, and recovery rate.
  • the membrane can be selected.
  • a low-pressure reverse osmosis membrane is used for the first RO membrane device 10
  • a high-pressure reverse osmosis membrane used at a higher pressure than the RO membrane of the first RO membrane device 10 is used for the second RO membrane device 20. It is also preferable to do so.
  • the RO membrane of the above RO membrane apparatus is not particularly limited, and may be any RO membrane of ultra-ultra-low pressure type, ultra-low pressure type, low pressure type, medium pressure type, and high pressure type.
  • As low-pressure to ultra-low-pressure RO membranes for example, Nitto Denko ES series (ES15-D8, ES20-U8) (trade name), HYDRANAUTICS ESPA series (ESPAB, ESPA2, ESPA2-LD-MAX) (trade name).
  • CPA series CPA5-MAX, CPA7-LD
  • Toray TMG series TMG20-400, TMG20D-440
  • TM700 series TM720-440, TM720D-440
  • BW series BW30HR, BW30XFR-400 / 34i
  • SG series SG30LE-440, SG30-400
  • FORTILIFE registered trademark
  • high-pressure RO membrane examples include HYDRANAUTICS SWC series (SWC4, SWC5, SWC6) (trade name), Toray TM800 series (TM820V, TM820M) (trade name), Dow Chemical SW series (SW30HRLE, etc.). SW30ULE) (trade name) and the like can be mentioned.
  • the water treatment systems 1A to 1G according to the first to seventh embodiments can be suitably used as a pure water production system for producing pure water.
  • it can be suitably used for producing ultrapure water used in a manufacturing process of a semiconductor device or the like.
  • the water treatment method of the present invention will be described.
  • the first RO membrane device 10 and the second RO membrane device 10 arranged on the permeated water side At of the first RO membrane device 10 have different blocking rates.
  • the water to be treated is supplied to the reverse osmosis membrane system having the RO membrane device 20.
  • the water treatment method of the present invention includes switching the following water flow lines (a) and (b) according to the water quality of the permeated water of the reverse osmosis membrane system in supplying the water to be treated.
  • (A) A water flow line that supplies water to be treated to the first RO membrane device 10 and supplies permeated water from the first RO membrane device 10 to the second RO membrane device 20 to obtain permeated water.
  • the water treatment method of the present invention is not particularly limited except as specified in the present invention, and can be carried out using, for example, the above-mentioned water treatment system of the present invention.
  • the water treatment method of the present invention can be preferably carried out using the water treatment system according to the first to seventh embodiments described above.
  • Example 1 In Example 1, the water treatment system 1G described with reference to FIG. 6 described above was used. As the water to be treated, water having a sodium concentration of 8 ppm, a calcium concentration of 10 ppm, a hydrogen carbonate ion concentration of 1 ppm, an ionic silica of 10 ppm, and a boron concentration of 10 to 100 ppb was used. The hydrogen carbonate ion concentration was converted to calcium carbonate (CaCO 3). BWRO (manufactured by Nitto Denko KK, product name: CPA5-LD) was used as the reverse osmosis membrane of the first RO membrane apparatus 10, and the recovery rate of the first RO membrane apparatus 10 was 80%.
  • BWRO manufactured by Nitto Denko KK, product name: CPA5-LD
  • SWRO manufactured by Nitto Denko Corporation, product name: SWC5-MAX
  • SWC5-MAX the reverse osmosis membrane of the second RO membrane apparatus 20
  • the recovery rate of the reverse osmosis membrane of the second RO membrane apparatus 20 was 90%.
  • SWRO manufactured by Nitto Denko Corporation, product name: SWC5-MAX
  • the permeated water (treated water) line 49 of the third RO membrane device 60 was merged with the supply line 41 for supplying the water to be treated on the upstream side of the confluence point B1 (independent operation of the first-stage RO membrane device).
  • Organo Corporation's product name: EDI-XP was used for the first and second ion exchange devices (EDI: electric regenerative pure water device) 51 and 54, and the recovery rate was 90%.
  • the treated water of the first ion exchange device 51 was branched from the treated water line 43 by the measuring line 31, and the boron concentration was measured and monitored by the water quality measuring means 30.
  • An online boron monitor (manufactured by SUEZ, product name: Sievers online boron meter) was used as the water quality measuring means 30. Further, as a pressurizing pump (not shown) on the supply side of the first-stage first RO membrane device 10 and the supply side of the second-stage second RO membrane device 20, a multi-stage centrifugal pump (manufactured by Grundfos). Product name: CR10) was used. The operating pressure of the pressurizing pump was set to 0.8 MPa on the supply side of the first RO membrane device 10 in the first stage and 1.4 MPa on the supply side of the second RO membrane device 20 in the second stage.
  • the sluice valves V1, V4 and V5 were opened, the sluice valves V2 and V3 were closed, and the water to be treated was treated with the first RO membrane device 10 and the first and second ion exchange devices 51 and 54.
  • the reference upper limit of the treated water of the first ion exchange device 51 is set to a boron concentration of 0.05 ppb, and when the measured boron concentration value exceeds 0.05 ppb, the sluice valve V3 is opened and the sluice valves V4 and V5 are closed. It was. Then, the second RO membrane device 20 was started by using the permeated water of the first RO membrane device 10 as the supply water.
  • the permeated water of the second RO membrane device 20 was used as the water to be treated by the first ion exchange device 51.
  • the concentrated water of the second RO membrane device 20 merged with the concentrated water of the first RO membrane device 10 to serve as the supply water of the third RO membrane device 60 (two-stage operation of the RO membrane device).
  • the above operation was carried out for about 2400 hours (hours).
  • the boron concentration of the EDI-treated water after 2400 hours and the energy cost ratio required for operation were determined.
  • the power consumption consumed in the operation of 2400 hours in Example 1 was set to 1.
  • the boron concentration of the water to be treated after 2400 hours was 85 ppb.
  • Example 2 In Example 2, the water treatment system 1G described with reference to FIG. 6 described above was used.
  • the reference upper limit of the boron concentration was 0.05 ppb, and the reference lower limit was 0.02 ppb.
  • the operating pressure of the pressurizing pump was set in the same manner as in Example 1.
  • the sluice valves V1, V4, and V5 were opened, the sluice valves V2 and V3 were closed, and the first RO membrane device 10 was operated independently.
  • the sluice valves V1 and V5 are closed and the sluice valves V2 and V3 are opened. I opened it.
  • the sluice valves V2, V3, and V4 were opened, and the sluice valves V1 and V5 were closed. In this way, the operation of the first RO membrane device 10 is stopped, and at the same time, the water to be treated bypassed by the first bypass line 15 is supplied to the second RO membrane device 20, and the second RO membrane device is used alone. I switched to driving.
  • the boron concentration of the EDI-treated water was less than 0.05 ppb.
  • the sluice valve V1 was opened and the sluice valves V2 and V4 were closed.
  • the sluice valves V1 and V3 were opened, and the sluice valves V2, V4 and V5 were closed. In this way, the operation of the two-stage RO membrane device for operating the first RO membrane device 10 and the second RO membrane device 20 was switched.
  • the boron concentration of the EDI-treated water decreased, and when the boron concentration of the EDI-treated water was below the reference lower limit of 0.02 ppb, the sluice valve V1 was closed and the sluice valves V2 and V4 were opened. As a result, the sluice valves V2, V3, and V4 were opened, and the sluice valves V1 and V5 were closed. In this way, the operation of the first RO membrane device 10 was stopped, and the water to be treated was directly supplied to the supply side Bs of the second RO membrane device 20 using the first bypass line 15. In this way, the operation of the second RO membrane device 20 was switched to independent operation.
  • the sluice valves V1 and V5 were opened, and the sluice valves V2 and V3 were closed.
  • the sluice valves V1, V4, and V5 were opened, and the sluice valves V2 and V3 were closed.
  • the water to be treated was supplied to the first RO membrane device 10 to switch to the independent operation of the first RO membrane device 10.
  • the operation of the second RO membrane device 20 was stopped, and the permeated water of the first RO membrane device 10 was supplied to the treated water line 43 through the second bypass line 25.
  • the water treatment was performed by controlling the boron concentration of the EDI-treated water to be within the range of the reference upper limit value and the reference lower limit value.
  • the above operation was carried out for about 2400 hours.
  • the boron concentration of the EDI-treated water after 2400 hours and the energy cost ratio required for operation were determined.
  • the energy cost ratio is the ratio when the power consumption consumed in the operation of 2400 hours in Example 1 is 1.0.
  • Comparative Example 1 In Comparative Example 1, the water treatment system 1 described with reference to FIG. 6 described above was used except that the boron concentration was measured in the water to be treated. The operating pressure of the pressurizing pump was set in the same manner as in Example 1. First, the sluice valves V1 and V3 were opened, the sluice valves V2, V4 and V5 were closed, and the water to be treated was treated using both the first RO membrane device 10 and the second RO membrane device 20. (Two-stage operation of RO membrane device).
  • the reference value of the boron concentration of the water to be treated was set to 50 ppb, and when the boron concentration of the water to be treated was less than 50 ppb, the sluice valve V3 was closed and the sluice valves V4 and V5 were opened. In this way, the second RO membrane device 20 was stopped, and the permeated water of the first RO membrane device 10 was bypassed to the treated water line 43 by using the second bypass line 25. That is, the first RO membrane device 10 was operated independently. After that, when the boron concentration of the water to be treated exceeded 50 ppb, the sluice valve V3 was opened again and the sluice valves V4 and V5 were closed.
  • the second RO membrane device 20 was switched to operation, and both the first RO membrane device 10 and the second RO membrane device 20 were operated.
  • the object is covered.
  • Comparative Example 2 In Comparative Example 2, the water treatment system 1G described with reference to FIG. 6 described above was used. The operating pressure of the pressurizing pump was set in the same manner as in Example 1. Regardless of the boron concentration of the treated water, the sluice valves V1 and V3 are opened, the sluice valves V2, V4 and V5 are closed, and the first RO membrane device 10 and the second RO membrane device 20 are constantly operated (RO membrane device). (Two-stage operation). The above operation was carried out for about 2400 hours. The boron concentration of the EDI-treated water after 2400 hours and the energy cost ratio required for operation were determined.
  • Table 1 shows the measurement results of the boron concentration and the energy cost ratio of the EDI-treated water after the operation time of 2400 hours of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the boron concentration of the EDI-treated water became a sufficiently low value, and the energy cost ratio also became low. Therefore, the water quality can be maintained and the cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された第2の逆浸透膜装置とを有する逆浸透膜システムと、第2の逆浸透膜装置の透過水側に配した水質測定手段と、前記水質測定手段の測定値に応じて、第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に通水して透過水を得るラインと、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断するライン、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流するラインと、を変更するライン変更手段と、を有する水処理システム。

Description

水処理システム及び水処理方法
 水処理システム及び水処理方法に関する。
 純水製造システムの処理水に対し、高純度化の要求が高まっている。例えば、半導体装置の線幅微細化に伴い、半導体装置の洗浄には、高度に精製され、高純度化された水を用いることが要求される。特にTOC(Total Organic Carbon:全有機炭素)、シリカ、ホウ素等の除去レベルを高めることが求められている。また取水量削減の観点から、系統排水を回収して純水製造に利用するケースも増えてきており、回収水の水質向上も要求されるようになっている。
 逆浸透膜装置(以下、RO膜装置ともいう)を組み込んだ純水製造システムでは、RO膜装置の透過水の水質向上のため、RO膜装置を複数段に配することが行われている。例えば、1段目RO膜装置の透過水を2段目RO膜装置にて処理し、RO膜装置全体として、透過水の水質向上が図られている。この場合、2段目RO膜装置の濃縮水は、1段目RO膜装置の供給水と比較して純度が十分に高いことが多い。したがって、2段目RO膜装置の濃縮水を被処理水(原水)に戻すことによって原水を希釈することができ、また回収率を高めることができる(例えば特許文献1参照)。
 純水製造用途のRO膜装置としては、超低圧型~低圧型逆浸透膜が使用されることが多いが、昨今の水質要求の高まりを受けて、海水淡水化用途で用いられるような高圧型逆浸透膜装置の純水製造システムへの導入も試みられている(例えば特許文献2、3参照)。
 一方、原水の水質変動に応じて、2段RO膜装置を有する水処理システムにおいて2段目のRO膜装置をバイパスさせる方法が開示されている(例えば特許文献4、5参照)。
特開2004-167423号公報 特開2015-20131号公報 特開2016-117001号公報 特開2006-263542号公報 特開2013-52349号公報
 上記の通り、純水製造システム等の水処理システムでは、被処理水の水質および求められる処理水の水質を考慮して、装置構成が決定される。例えば、提示された被処理水のホウ素濃度から、処理水として求められるホウ素濃度を許容できるよう、RO膜装置の構成、回収率、添加薬品、イオン交換装置の樹脂量、樹脂構成、再生頻度等が決定される。しかし、原水等の被処理水の水質には変動があり、既存の装置構成では、不純物の除去性能が足りなくなったり、オーバースペックになったりする場合がある。また、水処理システムに複数段に配したRO膜装置を常時運転することが前提となるため、運転コストの削減には制約がある。
 また、上記特許文献4、5に記載されるように、被処理水の水質変動に応じて、2段RO膜装置のうち2段目RO膜装置をバイパスさせる方法を採用しても、被処理水の水質を指標にしている以上、RO膜のファウリングや膜劣化による透過水の水質変動は考慮されず、結果として水質の低下につながりやすい。
 そこで本発明は、運転コストの削減を図りながら、目的の水質の処理水を得ることができる水処理システム及び水処理方法を提供することを課題とする。
 本発明の上記課題は、以下の手段によって解決された。
[1]
 第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された第2の逆浸透膜装置とを有する逆浸透膜システムと、
 第2の逆浸透膜装置の透過水側に配された水質測定手段と、
 前記水質測定手段の測定値に応じて、第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に通水して透過水を得るラインと、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断するライン、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流するラインと、を変更する、ライン変更手段と、
を有する水処理システム。
[2]
 前記ライン変更手段が、第1の逆浸透膜装置の濃縮水側と透過水側とを繋ぐ第1合流ライン及び第2の逆浸透膜装置の濃縮水側と透過水側とを繋ぐ第2合流ラインの少なくとも一方を有し、
 前記水質測定手段の測定値に応じて、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方について、供給水圧を通常運転圧の50%以下、かつ、回収率を20%以下とし、当該少なくとも一方の逆浸透膜装置に対応する第1合流ライン及び第2合流ラインの少なくとも一方に通水させる、[1]に記載の水処理システム。
[3]
 第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置である、[1]又は[2]に記載の水処理システム。
[4]
 第1の逆浸透膜装置の濃縮水及び第2の逆浸透膜装置の濃縮水の少なくとも一方を処理する第3の逆浸透膜装置を有し、第3の逆浸透膜装置の透過水を前記逆浸透膜システムに供給する、[1]~[3]のいずれかに記載の水処理システム。
[5]
 前記水質測定手段によって測定される成分がホウ素を含む、[1]~[4]のいずれかに記載の水処理システム。
[6]
 第2の逆浸透膜装置の透過水を処理する第1のイオン交換装置を有する、[1]~[5]のいずれかに記載の水処理システム。
[7]
 第1のイオン交換装置の処理水を処理する第2のイオン交換装置を有し、前記水質測定手段が、第1のイオン交換装置よりも下流側に設置される、[6]に記載の水処理システム。
[8]
 前記水質測定手段の前段に、カチオン交換装置及び脱気装置のいずれか一つ以上を備える、[1]~[7]のいずれかに記載の水処理システム。
[9]
 第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された、第2の逆浸透膜装置とを有する逆浸透膜システムへ被処理水を供給するに当たり、該逆浸透膜システムの透過水の水質に応じて下記(a)及び(b)の通水ラインを切り替えることを含む、水処理方法:
(a)被処理水を第1の逆浸透膜装置に供給し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に供給して透過水を得る通水ライン、
(b)第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断する通水ライン(b-1)、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流する通水ライン(b-2)。
[10]
 第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置であり、
 前記水質測定手段によって測定される成分がホウ素を含む、[9]に記載の水処理方法。
 本発明の水処理システム及び水処理方法によれば、運転コストの削減を図りながら、目的の水質の処理水を得ることができる。
本発明に係る水処理システムの好ましい一実施形態(第1実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第2実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第3実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第4実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第5実施形態及び第6実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第7実施形態)を示した概略構成図である。
 本発明に係る水処理システムは、逆浸透膜システムと水質測定手段とライン変更手段とを有する。逆浸透膜システムは、第1の逆浸透膜装置10と、第1の逆浸透膜装置10の透過水側に配された、第1の逆浸透膜装置10とは阻止率が異なる第2の逆浸透膜装置20とを有する。水質測定手段30は、第2の逆浸透膜装置20の透過水側Btに配される。ライン変更手段は、水質測定手段30の測定値に応じて、第1の逆浸透膜装置10及び第2の逆浸透膜装置20の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断する。又は、第1の逆浸透膜装置10及び第2の逆浸透膜装置20の少なくとも一方における濃縮水と透過水とを合流する。
 以下に、本発明に係る水処理システムの好ましい一実施形態(第1実施形態)を、図1を参照して具体的に説明する。
 図1に示すように、水処理システム1(1A)は、被処理水を処理する第1の逆浸透膜装置10と、第1の逆浸透膜装置10の透過水側Atに配された、第1の逆浸透膜装置10とは阻止率の異なる第2の逆浸透膜装置20とを有する逆浸透膜システムを備える。以下、逆浸透膜をRO膜とも称して説明する。例えば、第1のRO膜装置10を阻止率の高いRO膜装置とし、第2のRO膜装置20を阻止率の低いRO膜装置とする。ここでいう阻止率の高い、低いは、相対的な阻止率の高さを意味する。
 第2のRO膜装置20の透過水側Btには、水質測定手段30を有する。水質測定手段30の測定項目は、シリカ、TOC、ホウ素、尿素、等が挙げられ、それらのうちの1種以上であることが好ましい。以下、一例として、水質測定項目をホウ素として説明する。したがって、阻止率についてもホウ素阻止率として説明する。
 水処理システム1Aは、水質測定手段30の測定値に応じて、第1のRO膜装置10及び第2のRO膜装置20の少なくとも一方のラインを変更するライン変更手段を有する。本発明における「ライン」とは水が通る流路を意味する。
 上記ライン変更手段は、第1のRO膜装置10の供給側Asと透過水側Atとを繋ぐ第1バイパスライン15を有することが好ましい。また第2のRO膜装置20の供給側Bsと透過水側Btとを繋ぐ第2バイパスライン25を有することが好ましい。第1、第2バイパスライン15、25は、少なくとも一方が配されていることが好ましい。
 したがって、第1のRO膜装置10及び第2のRO膜装置20の少なくとも一方への通水をバイパスさせることができる。ここでいうバイパスラインとは、RO膜装置の供給側に供給される供給水をRO膜装置の内部を通さず透過水側に流すラインを意味する。
 このようにして、水質測定手段30の測定値に応じて、第1のRO膜装置10及び第2のRO膜装置20のいずれか一方への通水を第1バイパスライン15又は第2バイパスライン25にバイパスする。又は第1のRO膜装置10及び第2のRO膜装置20への通水をいずれも、それぞれ第1バイパスライン15及び第2バイパスライン25にバイパスする。このようにバイパスすることで、水処理を継続しながら少なくともいずれか一方のRO膜装置への通水を遮断することができる。したがって、水処理は、通水を遮断していないRO膜装置によってなされ、もしくは被処理水が十分に高純度の場合にはRO膜装置による処理を経ずに回収される。
 本発明において「ライン変更手段」という場合、通水ラインの変更に係る流路、弁、ポンプをすべて含む意味である。このライン変更手段は通常、弁やポンプを自動ないし手動で制御する制御部(図示せず)を有することが好ましい。具体的には、水処理システム1Aの場合、供給ライン41、接続ライン42、処理水ライン43、第1バイパスライン15、第2バイパスライン25、仕切弁V1~V5等を含む意味であり、仕切弁V1~V5を制御する制御部を有する。
 上記第1のRO膜装置10の供給側Asには、被処理水を供給する供給ライン41が接続される。第1のRO膜装置10の透過水側Atと第2のRO膜装置20の供給側Bsとは接続ライン42によって接続され、第2のRO膜装置20の透過水側Btは処理水ライン43が接続される。第1のRO膜装置10の濃縮水側Acには濃縮水ライン44が接続され、第2のRO膜装置20の濃縮水側Bcには濃縮水ライン45が接続されることが好ましい。
 第1バイパスライン15は供給ライン41から分岐して接続ライン42に接続され、第2バイパスライン25は接続ライン42から分岐して処理水ライン43に接続される。第1バイパスライン15と第2バイパスライン25は、図示したように、接続ライン42に接続する部分が共用されていてもよく、または独立してそれぞれが接続ライン42に接続されていてもよい。独立して接続される場合、第1バイパスライン15が第1のRO膜装置10側に、第2バイパスライン25が第2のRO膜装置20側に接続されることが好ましい。
 供給ライン41と第1バイパスライン15との分岐点B1と、第1のRO膜装置10との間に設置する供給ライン41には仕切弁V1が配され、分岐点B1側の第1バイパスライン15には、仕切弁V2が配されることが好ましい。また接続ライン42には仕切弁V3が配され、第1バイパスライン15の接続ライン42側には、仕切弁V4が配されることが好ましい。図1に示した形態において、この仕切弁V4は、第2バイパスライン25の接続ライン42側に配される仕切弁と共用される。なお、第2バイパスライン25が独立して接続ライン42に接続される場合には、第2バイパスライン25の接続ライン42側に図示していない仕切弁を配することが好ましい。第2バイパスライン25の処理水ライン43側には、仕切弁V5が配されることが好ましい。
 処理水ライン43には、第2バイパスライン25の合流部C1よりも下流側から分岐した測定用ライン31が配され、その測定用ライン31には水質測定手段30が接続されることが好ましい。水質測定手段30には、例えばホウ素モニターを用いることができる。本発明における「下流側」とは水が流れ行く側を意味し、「上流側」とは水が流れ来る側を意味する。
 上記水処理システム1は、被処理水が貯液される被処理水タンク(図示せず)を備えることが好ましい。被処理水タンクには被処理水を供給する供給ライン41が接続される。したがって、被処理水タンクは供給ライン41を介して第1のRO膜装置10の供給側Asが接続される。供給ライン41には加圧ポンプ(図示せず)が配されることが好ましい。したがって、被処理水タンクに貯液されている被処理水は加圧ポンプによって第1のRO膜装置10の供給側Asに圧力をかけて供給されることが好ましい。また、第2のRO膜装置20の供給側Bsと仕切弁V3との間の接続ライン42にも加圧ポンプ(図示せず)を配することが好ましい。
 上記水処理システム1Aによって水処理する場合、まず仕切弁V1、V3を開け、仕切弁V2、V4、V5を閉じて、被処理水を供給ライン41から第1のRO膜装置10に供給する。さらに第1のRO膜装置10の透過水を、接続ライン42を介して第2のRO膜装置20に供給する。このとき、第2のRO膜装置20に供給される水は第1のRO膜装置10の透過水のみである。そして、水質測定手段30によって、例えばホウ素濃度を測定する。測定したホウ素濃度が基準下限値(例えば0.02ppb)よりも低い値になっていた場合には、仕切弁V1を閉じて、仕切弁V2、V4を開ける。すなわち仕切弁V1とV5が閉じられ、仕切弁V2とV3とV4が開けられた状態とする。そして、被処理水を第1バイパスライン15に流し、その被処理水を第2のRO膜装置20によって処理する。このとき、仕切弁V1が閉じられることによって、第1のRO膜装置10への被処理水の供給が遮断され、第1のRO膜装置10の運転は停止する。そしてホウ素濃度が上昇して、基準上限値(例えば0.05ppb)よりも高い値になった場合には、再び、仕切弁V1を開けて、仕切弁V2、V4を閉じる。すなわち、仕切弁V2とV4とV5が閉じられ、仕切弁V1とV3が開けられた状態とする。そして、被処理水を第1、第2のRO膜装置10、20の両方によって処理する。このとき、第2のRO膜装置20に供給される水は第1のRO膜装置10の透過水のみである。
 上記ホウ素濃度の基準上限値、下限値は、上記値に制限されることはなく、求める水質に応じて、適宜設定することができる。
 または、上記運転方法において、第2バイパスライン25を用いてもよい。この場合には、上記同様に被処理水を第1のRO膜装置10と第2のRO膜装置20によって処理し、水質測定手段30によって、ホウ素濃度を測定する。測定したホウ素濃度が基準下限値よりも低い値になった場合には、仕切弁V3を閉じて、仕切弁V4、V5を開ける。すなわち、仕切弁V2とV3が閉じられ、仕切弁V1とV4とV5が開けられた状態とする。そして被処理水を第1のRO膜装置10によって処理し、第1のRO膜装置の透過水を第2バイパスライン25に流す。このとき、第2のRO膜装置20の運転は停止する。ホウ素濃度が上昇して、基準上限値よりも高くなった場合には、再び、仕切弁V3を開けて、仕切弁V4、V5を閉じる。すなわち、V2とV4とV5が閉じられ、V1とV3が開けられた状態とする。そして、被処理水を第1、第2のRO膜装置10、20の両方によって処理する。すなわち、第1のRO膜装置10に通水し、第1のRO膜装置10の透過水を第2のRO膜装置20に通水して透過水を得る。これによって、処理水のホウ素濃度を低減し、水質を向上させて基準内に収めることができる。
 バイパス運転は、第1バイパスライン15を用いて第1のRO膜装置10をバイパスする方法と、第2バイパスライン25を用いて第2のRO膜装置20をバイパスする方法とを行うことができる。ホウ素濃度に応じて、1段目の第1のRO膜装置10及び2段目の第2のRO膜装置20のどちらをバイパスするか選択することができる。
 例えば、ホウ素濃度が基準下限値の0.02ppbを下回ると、まず第1のRO膜装置10よりもホウ素阻止率の低い第2のRO膜装置20をバイパス運転する。すなわち、第2のRO膜装置20の運転を停止する。それでもさらにホウ素濃度が0.02ppbを下回るようであれば、第2のRO膜装置20を再起動した後、第1のRO膜装置10をバイパス運転する。すなわち、高いホウ素阻止率を有するために大きな運転動力を必要とする第1のRO膜装置10の運転を、ホウ素阻止率の低い第2のRO膜装置20の運転へと切り替える。このとき、第1のRO膜装置10の運転は停止する。
 このようにして、目的の水処理を継続しつつ、水処理システム1の運転コストが削減できる。
 このように、いずれの方法を用いても、少なくとも一方のRO膜装置を停止させた間は、停止させたRO膜装置のバイパスラインを通じて被処理水または処理水を流すことができる。そして、その間は、他方のRO膜装置によって被処理水を処理することができる。このため、被処理水の処理を停止することなく、少なくとも一方のRO膜装置を停止させることによって、運転コストを削減できる。また、上記水処理システム1Aでは、常時、水質測定手段30によってホウ素濃度をモニタリングし、その結果をフィードバックしてRO膜装置の運転を制御することができる。そのため、処理水ライン43を通る処理水に高濃度のホウ素が含まれることはなく、常時、基準値内のホウ素濃度を維持することができる。このようにして、処理水の水質が維持される。
 また、1段目の第1のRO膜装置10及び2段目の第2のRO膜装置20がともに運転されている時は、第2のRO膜装置20の濃縮水は被処理水に混合されることが好ましい。これによって、回収率が向上する。また、第1のRO膜装置10が第1バイパスライン15を用いてバイパス運転される時は、第2のRO膜装置20の濃縮水は、通常は系外に排出される。
 なお、第1のRO膜装置10と第2のRO膜装置20とは、必ずしも阻止率が異なるものである必要はなく、阻止率が同じものでも良い。この場合、1段目の第1のRO膜装置10及び2段目の第2のRO膜装置20がともに運転されている時は、1段目の第1のRO膜装置10及び2段目の第2のRO膜装置20のいずれか一方を適宜選択してバイパス運転をすることができる。
 また、第1のRO膜装置10及び第2のRO膜装置20のいずれか一方をバイパスする場合に限らず、被処理水の水質によっては、第1のRO膜装置10及び第2のRO膜装置20の両方をバイパスするようにしても良い。例えば、被処理水の水質がRO膜処理を必要としないホウ素濃度が基準値以下の水質の場合には、第1、第2のRO膜装置10、20の両方をバイパスすることができる。
 次に、本発明に係る水処理システムの別の好ましい実施形態(第2実施形態)として、別のライン変更手段を備えた水処理システム1(1B)について、図2を参照して以下に説明する。水処理システム1Bの場合、ライン変更手段は、具体的には、供給ライン41、接続ライン42、処理水ライン43、濃縮水ライン44、45、第1合流ライン46、第2合流ライン47、仕切弁V6~V7、背圧弁Vb1~Vb2等を含む意味であり、仕切弁V6~V7、背圧弁Vb1~Vb2を制御する制御部(図示せず)を有することが好ましい。
 図2に示すように、水処理システム1(1B)は、第1実施形態で説明した水処理システム1Aと同様の、第1のRO膜装置10及び第2のRO膜装置20を有するRO膜システムと、水質測定手段30とを有する。
 水処理システム1Bは、水質測定手段30の測定値に応じて、第1のRO膜装置10及び第2のRO膜装置20の少なくとも一方における濃縮水と透過水とを合流するライン変更手段を有する。
 また第1実施形態の水処理システム1Aと同様に、供給ライン41、接続ライン42、処理水ライン43が配されている。
 第1のRO膜装置10の濃縮側Acに濃縮水ライン44が接続され、この濃縮水ライン44には背圧弁Vb1が配されることが好ましい。また第2のRO膜装置20の濃縮側Bcに濃縮水ライン45が接続され、この濃縮水ライン45には背圧弁Vb2が配されることが好ましい。上記背圧弁Vb1、Vb2によって、各濃縮水側Ac、Bcの濃縮水ライン44、45内の圧力を一定の圧力範囲に保つことができる。
 上記ライン変更手段は、第1ライン変更手段と第2ライン変更手段とを有する。
 第1ライン変更手段は、供給ライン41、該供給ライン41に配された第1ポンプP1、第1ポンプP1の回転数を制御する第1ポンプインバータINV1を有することが好ましい。また濃縮水ライン44を有し、該濃縮水ライン44から分岐して第1のRO膜装置10の透過水側Atに接続する第1合流ライン46が配されることが好ましい。この第1合流ライン46は、図示したように、濃縮水ライン44から分岐しても、濃縮水側Acに直接接続(図示せず)してもよい。さらに第1合流ライン46には仕切弁V6が配されることが好ましい。
 また、上記第1ライン変更手段は、通常、弁やポンプを自動ないし手動で制御する制御部(図示せず)を有することが好ましい。具体的には、第1ライン変更手段は、供給ライン41、接続ライン42、濃縮水ライン44、第1合流ライン46、第1ポンプP1、第1ポンプインバータINV1、仕切弁V6等を含む意味であり、第1ポンプインバータINV1、第1ポンプP1、仕切弁V6等を制御する制御部を有する。この制御部は、水質測定手段30の測定値に基づいて上記の制御を行う。
 第2ライン変更手段は、接続ライン42、該接続ライン42に配された第2ポンプP2、第2ポンプP2の回転数を制御する第2ポンプインバータINV2を有することが好ましい。また濃縮水ライン45を有し、該濃縮水ライン45から分岐して第2のRO膜装置20の透過水側Btに接続する第2合流ライン47が配されることが好ましい。この第2合流ライン47は、図示したように、濃縮水ライン45から分岐しても、濃縮水側Bcに直接接続(図示せず)していてもよい。さらに第2合流ライン47には仕切弁V7が配されることが好ましい。
 また、上記第2ライン変更手段は、通常、弁やポンプを自動ないし手動で制御する制御部(図示せず)を有することが好ましい。具体的には、第2ライン変更手段は、接続ライン42、濃縮水ライン45、第2合流ライン47、処理水ライン43、第2ポンプP2、第2ポンプインバータINV2、仕切弁V7等を含む意味であり、第2ポンプインバータINV2、第2ポンプP2、仕切弁V7等を制御する制御部を有する。この制御部は、水質測定手段30の測定値に基づいて上記の制御を行う。
 このようにして、第1のRO膜装置10及び第2のRO膜装置20の濃縮水を透過水側に合流させるラインの形成が可能な状態となっている。
 上記構成のライン変更手段により、第1ライン変更手段及び第2ライン変更手段の少なくとも一方によって、第1のRO膜装置10及び第2のRO膜装置20の少なくとも一方をフラッシング運転(低圧フラッシング運転)することが可能になる。この低圧フラッシング運転では、例えば、第1、第2のRO膜装置10、20の少なくとも一方の供給水圧を通常運転圧の50%以下、かつ、回収率を20%以下とすることが好ましい。そして、当該少なくとも一方のRO膜装置に対応する第1合流ライン46又は第2合流ライン47に通水させる。通常運転圧とは、第1のRO膜装置10及び第2のRO膜装置20を運転した際、第2のRO膜装置20から所望の透過水量を得るために必要な圧力と定義される。例えば第2のRO膜装置20の透過水量として20m/hが必要な場合、20m/hの透過水量を得るために、第1のRO膜装置10及び第2のRO膜装置20のそれぞれに圧力をかける。その時の第1のRO膜装置10の圧力が第1のRO膜装置10の通常運転圧であり、その時の第2のRO膜装置20の圧力が第2のRO膜装置20の通常運転圧である。使用するのが低圧RO膜であれば、通常運転圧は0.75~1.5MPa程度になり、高圧RO膜であれば、1~4MPa程度となる。
 回収率はフラッシング運転するRO膜装置の供給水の透過水側への回収率であり、回収率(流量%)=[透過水量(流量)/RO膜装置の供給水量(流量)]×100(%)である。以下、回収率の「%」は「流量%」を示す。被処理水の回収率を高めることによって、より効率的な運転が可能になる。
 回収率は、ポンプインバータの出力調整を実施することによって調整することができる。例えばポンプインバータによってポンプの出力を制御することにより、RO透過水、RO濃縮水の流量を制御して回収率を調整することができる。
 ポンプの運転圧の制御は、第1、第2ポンプインバータINV1、INV2のインバータ値を調節してポンプの回転速度(単位時間当たりの回転数)を調節することによって行うことができる。インバータ値を低周波数側に下げれば、ポンプの回転速度が低下し、運転圧が低下する。逆にインバータ値を高周波数側に上げれば、ポンプの回転速度が上昇し、運転圧が高められる。
 上記運転圧は、エネルギーコスト削減という観点から、上限値が通常運転圧の50%以下であり、好ましくは20%以下であり、さらに好ましくは10%以下である。そして後段装置への送液を確実に実施するという観点から、運転圧の下限値は、通常運転圧の2%以上であり、好ましくは5%以上であり、さらに好ましくは7%以上である。
 また、低圧フラッシング運転するRO膜装置の供給水の透過水側への回収率は、エネルギーコスト削減という観点から、上限値が20%以下であり、好ましくは10%以下であり、さらに好ましくは5%以下である。そして回収率の下限値は、細菌等の繁殖を防ぐという観点から、0.05%以上であり、好ましくは0.1%以上である。
 そして、低圧フラッシング運転している第1のRO膜装置10又は第2のRO膜装置20は、第1合流ライン46又は第2合流ライン47によって、透過水および濃縮水を合流したのちに、後段の装置に送液する。
 処理水ライン43には第2合流ライン47の合流部C1よりも下流側から分岐した測定用ライン31が配され、その測定用ライン31には第1実施形態と同様の水質測定手段30が接続されることが好ましい。
 上記水処理システム1Bは、第1実施形態と同様に、被処理水が貯液され、供給ライン41が接続される被処理水タンク(図示せず)を備えることが好ましい。これによって、被処理水は、被処理水タンクから供給ライン41を介して第1のRO膜装置10の供給側Asに供給される。また供給ライン41には第1ポンプP1が配されることが好ましい。被処理水は第1ポンプP1によって第1のRO膜装置10の供給側Asに所定の運転圧をかけて供給される。
 上記水処理システム1Bの第1ライン変更手段を用いて水処理する場合、仕切弁V6、V7を閉じて、被処理水を供給ライン41から第1のRO膜装置10に供給する。このとき、第1、第2ポンプインバータINV1、INV2は通常の運転圧を得る周波数にする。さらに第1のRO膜装置10にて処理した透過水を、接続ライン42を介して第2のRO膜装置20に供給する。そして、第2のRO膜装置20にて処理した透過水のホウ素濃度を、水質測定手段30によって測定する。
 水質測定手段30によって測定したホウ素濃度が基準下限値よりも低い値になった場合には、背圧弁Vb1を閉じ、仕切弁V6を開けて、被処理水を第1合流ライン46に流す。そして第1のRO膜装置10の濃縮水と透過水とを合流させ、それを第2のRO膜装置20に供給して処理する。このとき、第1ポンプインバータINV1のインバータ値を低周波数にして、第1ポンプP1の稼働を低下させ、第1のRO膜装置10の運転圧を、通常運転圧の50%以下、かつ、回収率を20%以下にする。これによって、第1のRO膜装置10の運転動力が低減され、運転コストが抑えられる。
 水質測定手段30によって測定したホウ素濃度が上昇して、基準上限値よりも高くなった場合には、再び、背圧弁Vb1を開け、仕切弁V6を閉じて、被処理水を第1、第2のRO膜装置10、20の両方によって処理する。このとき、第2のRO膜装置20の供給側Bsには第1のRO膜装置10の透過水のみが供給される。また、第1、第2ポンプインバータINV1、INV2は通常運転圧となる周波数にする。このようにして処理水のホウ素濃度が基準下限値と基準上限値の間(基準値内)になるようにする。
 または、上記運転方法において、第2合流ライン47を用いた第2ライン変更手段を用いてもよい。この場合は、初めは上記同様に仕切弁V6、V7を閉じて、被処理水を第1のRO膜装置10と第2のRO膜装置20とによって処理する。そして水質測定手段30によってホウ素濃度を測定する。測定したホウ素濃度の値が基準下限値よりも低くなった場合には、背圧弁Vb2を閉じ、仕切弁V7を開ける。そして被処理水を第1のRO膜装置10によって処理し、第1のRO膜装置の透過水を第2のRO膜装置20に流す。このとき、第2のRO膜装置20は、第2ポンプインバータINV2を低周波数側に調節することによって、運転圧を通常運転圧の50%以下、かつ、回収率を20%以下にする。したがって、供給水はほとんど濃縮水側Bcから濃縮水ライン45、第2合流ライン47を通って処理水ライン43に流れ込み、第2のRO膜装置20の透過水と合流する。
 そしてホウ素濃度が上昇して基準上限値よりも高くなった場合には、再び、背圧弁Vb2を開け、仕切弁V7を閉じて、被処理水を第1、第2のRO膜装置10、20の両方によって処理する。このように第2のRO膜装置20も運転することによって、処理水のホウ素濃度を低減し、水質を向上させて基準値内に収めることができる。
 上記水処理システム1Bの運転方法では、第1ライン変更手段及び第2ライン変更手段の少なくとも一方を用いることができる。どちらのライン変更手段を用いても、対応するRO膜装置の運転圧を低くし、回収率を低下させている間は合流ラインを通じて濃縮水を後段に流すことができる。その間は、他方のRO膜装置によって被処理水が目的の水質へと浄化される。このため、処理水の水質測定値が十分に基準を満たしている場合は、いずれかのRO膜装置の運転を抑制することができ、抑制させたRO膜装置分の運転コストの削減ができる。具体的には、インバータ値を低下させることによって、ポンプ出力を抑えて運転コストの低減を図ることができる。
 例えば、水質が十分にきれいな場合(ホウ素濃度が例えば0.02ppb以下の場合)は、第1ポンプインバータINV1のインバータ値を低下させて、第1ポンプP1の運転能力を低下させ、背圧弁Vb1は閉じた状態とする。これによって、第1のRO膜装置10に供給された被処理水は、第1のRO膜装置10をわずかに通過はするが(回収率20%以下)、多くは第1のRO膜装置10の濃縮水側から排出される。第1のRO膜装置10への通水を完全に遮断することなく、被処理水が第1のRO膜装置10をわずかに透過する。これによって、第1のRO膜装置10における細菌等の繁殖を防ぐことができる。
 そして、合流ライン46によって、第1のRO膜装置10の濃縮水と透過水とを合流させて、後段の第2のRO膜装置20に供給し、RO膜処理を行う。これによって、第1ポンプP1の運転が抑制されて、コストの削減になる。
 第2のRO膜装置20を主に運転をしている状態で、水質が少し悪化してきた場合(ホウ素濃度が例えば0.05ppb以上になった場合)には、第2のRO膜装置20の第2ポンプインバータINV2により第2ポンプP2の可動を抑制し、背圧弁Vb2を閉じ、仕切弁V7は開いた状態にする。それとともに、背圧弁Vb1を開け、仕切弁V6を閉じ、第1のRO膜装置10の第1ポンプインバータINV1のインバータ値を高めることによって第1ポンプP1の運転圧を高めて、第1のRO膜装置10を通常運転に戻す。このようにして第1のRO膜装置10が主となる運転に切り替える。この時点では、第1のRO膜装置10の方がホウ素の阻止率が高いので、第1のRO膜装置10が主の運転でホウ素濃度が0.05ppbを下回るようにしている。こうして水質を目的の純度へと調整することができる。このとき、第2ポンプP2の稼働が抑制されて、コストの低減が可能になる。それでも水質が悪化した場合(ホウ素濃度が例えば0.05ppbを超えている場合)には、背圧弁Vb2を開け、仕切弁V7を閉じ、第2ポンプインバータINV2のインバータ値を高めて第2ポンプP2を通常運転に戻す。このようにして、ホウ素濃度が0.05ppb以下になるように第1、第2のRO膜装置10、20の両方を通常運転して、さらなる水質の向上を図ることができる。
 また、第1ライン変更手段及び第2ライン変更手段のいずれか一方に通水する場合に限らず、被処理水の水質によっては、第1ライン変更手段及び第2ライン変更手段の両方に通水するようにしても良い。例えば、被処理水の水質がRO膜処理を必要としないホウ素濃度が基準値以下の水質の場合には、第1、第2ライン変更手段の両方に通水することができる。
 また、上記水処理システム1Bでは、常時、水質測定手段30によって、水質として、例えばホウ素濃度をモニタリングして、その結果をフィードバックしてRO膜装置の運転を制御することができる。そのため、処理水に高濃度のホウ素が含まれることはなく、常時、基準値内のホウ素濃度を維持することができる。
 さらに、上記水処理システム1Bでは、第1、第2のRO膜装置10、20が常時運転されているため、ポンプ出力を高めた時の立ち上がりが良くなる。また、濃縮水が第1、第2合流ライン46,47のいずれかに流されている間であっても、第1、第2のRO膜装置10、20の各RO膜を通して透過水側にも少ないながら水が流れる。そのため、各RO膜装置内で水が滞留することがないため、各RO膜装置内において細菌等の繁殖を抑えることができる。
 次に、本発明に係る水処理システムの別の好ましい実施形態(第3実施形態)として、水処理システム1(1C)について、図3を参照して以下に説明する。
 水処理システム1Cは、前述の水処理システム1Aの後段の処理水ライン43に第1のイオン交換装置(IER)51を配したものであり、それ以外は水処理システム1Aと同様の構成を有するものである。この第1のイオン交換装置51は、水質測定手段30を接続する測定用ライン31の分岐点B2よりも下流側に配されることが好ましい。言い換えれば、第1のイオン交換装置51の上流側(前段)で水質測定を行うことができる。これによって、例えば、第2のRO膜装置20の透過水のホウ素濃度が多少増減しても、第1のイオン交換装置51によってホウ素を除去することができる。そのため、最終的には処理水のホウ素濃度を基準値以下へと、より確実に抑えることができる。ホウ素の除去を目的とする場合、第1のイオン交換装置51は少なくともアニオン交換樹脂もしくはホウ素選択性を持つキレート樹脂を有することが好ましい。イオン交換装置としては、(1)強酸性カチオン交換樹脂が充填されたカチオン交換塔と強塩基性アニオン交換樹脂が充填されたアニオン交換塔とを直列に接続した2床2塔式再生型イオン交換装置、(2)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが別々の異なる層となるように一つの塔内に充填した2床1塔式再生型イオン交換装置、(3)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して一つの塔内に充填した混床型再生式イオン交換装置、(4)電気再生式脱イオン装置(EDI)が好適に使用できる。
 なお説明の便宜上、図3では「第1のイオン交換装置」との表現を用いているが、図3の実施形態において、備えられたイオン交換装置は「第1のイオン交換装置」1台だけでもよい。すなわち、本発明において「第1のイオン交換装置」という場合、別のイオン交換装置(例えば、第2のイオン交換装置)を有してもよいし、有していなくてもよい。
 また、第2のRO膜装置20の透過水を必ずしも第1のイオン交換装置51に流す必要はない。例えば、第1のイオン交換装置51をバイパスするバイパスラインを設け、水質測定手段30の測定値に応じて、第1のイオン交換装置51をバイパスするようにしても良い。
 次に、本発明に係る水処理システムの別の好ましい実施形態(第4実施形態)として、水処理システム1(1D)について、図4を参照して以下に説明する。
 水処理システム1Dは、前述の水処理システム1Cの測定用ライン31に、カチオン交換樹脂を含むカチオン交換装置52及び/又は脱炭素膜を含む脱炭素装置53を配したものであり、それ以外は水処理システム1Cと同様の構成を有するものである。カチオン交換装置52は、水質測定手段30に供給される水からナトリウムイオン等を除去する。脱炭素装置53は、水質測定手段30に供給される水に溶存する酸素、二酸化炭素、等を除去する。カチオン交換装置52及び脱炭素装置53は、両方が配されていることがより好ましい。このような構成では、水質測定手段30に供給される水の比抵抗を高めることができるため、例えば、ホウ素濃度を精度よく測定することが可能になる。カチオン交換樹脂は、常時イオン交換を可能にするという観点から、電気再生式が好ましい。
 カチオン交換装置52及び脱炭素装置53は、上記水処理システム1Bについても、上記と同様に適用することができる。
 次に、本発明に係る水処理システムの別の好ましい実施形態(第5実施形態)として、水処理システム1(1E)について、図5を参照して以下に説明する。
 水処理システム1Eは、前述の水処理システム1Cの第1のイオン交換装置51の前段(水質測定手段30の分岐点の前段)の処理水ライン43に第2のイオン交換装置54を配し、測定用ライン31を第1、第2のイオン交換装置51、54間の処理水ライン43から分岐させたものである。したがって、第1、第2のイオン交換装置51、54、測定用ライン31以外は水処理システム1Cと同様の構成を有するものである。
 上記水処理システム1Eは、第1、第2のイオン交換装置51、54の間の処理水ライン43を流れる水のホウ素濃度を、水質測定手段30によって測定することができる。第2のイオン交換装置54によって水質測定手段30に供給される水からイオン等を除去することができるため、水質測定手段30に供給される水の比抵抗を高めることができ、ホウ素濃度を精度よく測定することが可能になる。また、そのホウ素濃度の測定値が高くても、後段の第1のイオン交換装置51によって、第2のイオン交換装置54の処理水に含まれるホウ素を除去する処理を行うことができる。これによって、第1のイオン交換装置51から出る処理水のホウ素濃度を十分に低減できる。したがって、第2のイオン交換装置54の処理水のホウ素濃度が多少増減しても、第1のイオン交換装置51にから出る処理水のホウ素濃度を基準値以下に抑えることができる。
 第1、第2のイオン交換装置51、54は、上記水処理システム1Bについても、上記と同様に適用することができる。
 次に、本発明に係る水処理システムの別の好ましい実施形態(第6実施形態)として、水処理システム1(1F)について、前述の図5を参照して以下に説明する。
 水処理システム1Fは、前述の水処理システム1Eの第1のRO膜装置10のRO膜をBWROとし、第2のRO膜装置20のRO膜をSWROとした以外、水処理システム1Eと同様の構成を有するものである。BWROは、Brackish Water Reverse Osmosis Membraneの略であり、汽水用逆浸透膜である。SWROは、Sea Water Reverse Osmosis Membraneの略であり、海水用逆浸透膜である。BWROは通常は低圧RO膜であり、SWROは通常は高圧RO膜である。
 上記水処理システム1Fは、1段目の第1のRO膜装置10に低圧RO膜を用い、2段目の第2のRO膜装置20に高圧RO膜を用いることによって、膜閉塞を起こすことなく、フラックス(単位膜面積・単位時間当たりの膜ろ過水量)を上げることができる。よって、ホウ素阻止率を向上させることができる。
 上記のように第1のRO膜装置10のRO膜をBWROとし、第2のRO膜装置20のRO膜をSWROとすることは、上記水処理システム1Bについても、上記同様に適用することができる。
 本発明で用いる低圧型RO膜装置に使用されるRO膜は、比較的低い圧力で運転が可能である低圧膜、超低圧膜が好適に使用される。低圧膜、超低圧膜としては、有効圧力1MPa、水温25℃における純水の透過流束が0.027~0.075m/h(時間)、好ましくは0.027~0.042m/hのものを使用することができる。
 ここで、透過流束は、透過水量をRO膜面積で割算したものである。「有効圧力」とは、JIS K3802:2015「膜用語」に記載の、平均操作圧から浸透圧差及び2次側圧を差し引いた、膜に働く有効な圧である。なお、平均操作圧は、逆浸透膜の1次側における膜供給水の圧力(運転圧力)と濃縮水の圧力(濃縮水出口圧力)の平均値であり、以下の式により表される。
 
 平均操作圧=(運転圧力+濃縮水出口圧力)/2
 
 有効圧力1MPaあたりの透過流束は、膜メーカーのカタログに記載の情報、例えば、透過水量、膜面積、評価時の回収率、NaCl濃度等から計算することができる。また、1つ又は複数の圧力容器に同一の透過流束であるRO膜が複数本装填されている場合、圧力容器の平均操作圧/2次側圧力、被処理水水質、透過水量、膜本数等の情報より、装填された膜の透過流束を計算することができる。
 本発明において、第2のRO膜装置20は、高圧型のものが用いられる。高圧型RO膜装置は、従来海水淡水化用として開発されたものであるが、塩濃度の低い被処理水に対しては、より低い運転圧力によって、効率的なイオンやTOC等の除去が可能となる。例えば、超低圧~低圧型RO膜装置2段分の処理能力を、高圧型RO膜装置であれば1段で実現することも可能である。このようなRO膜装置を用いることで、超低圧~低圧膜では十分に除去できなかったシリカ、ホウ素、尿素、エタノール、イソプロピルアルコールといった非解離物質の除去率を飛躍的に上昇させることが可能である。
 本発明において、第2のRO膜装置20に用いられる「高圧型」の定義としては、おおよそ、次の性質を示すものを挙げることができる。すなわち、有効圧力1MPa、水温25℃における純水の透過流束が0.0083~0.027m/hのものである。高圧型RO膜の有効圧力は、1.5~2.0MPaであることが好ましい。有効圧力を1.5MPa以上にすることで、高圧型RO膜のホウ素阻止率を十分に高めることができる。また、有効圧力を2.0MPa以上にすることで、更なるホウ素阻止率向上の効果が見込めるが、装置の耐久圧力を高める必要があるため、設備費用が増加する場合がある。本発明におけるRO膜の相対的な阻止率は、pHが中性であり、その他(温度、圧力、等)同一条件で評価された阻止率である。
 本発明の水処理システムでは、RO膜装置の前段において供給水の前処理を行ってもよい。また、後段において処理水の後処理を行ってもよい。さらに、RO膜装置の前段ないし途中において供給水に適宜、薬品を添加することもできる。
 前処理としては、凝集処理、砂ろ過、膜ろ過、脱炭酸、軟化が挙げられる。
 凝集処理は、正電荷を持つ凝集剤によって負に帯電している水中の微粒子の帯電を中和して凝集させて基礎フロックを生成し、ポリマー等の凝集助剤によって基礎フロックを吸着させて粗大フロックを生成して沈殿しやすくする処理である。凝集剤には、硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄、等が挙げられる。
 砂ろ過は、堆積した砂をろ材に用い、その堆積した砂内に水を通すことによってろ過する処理である。
 膜ろ過は、ろ過膜を通すことによって水をろ過する処理である。ろ過膜には、ろ過対象物質の大きさと、ろ過の駆動力によって、精密ろ過(MF)膜、限外ろ過(UF)膜、イオン交換膜、RO膜、等が挙げられる。
 脱炭酸は、脱炭酸塔を用いて爆気することによって水中の炭酸を減らしてpHを調整する処理である。
 軟化は、水中に含まれるカルシウムイオンやマグネシウムイオン等をカチオン交換樹脂によってナトリウムイオンに交換して軟水化する処理である。
 後処理としては、紫外線(UV)照射、脱気、等が挙げられる。
 紫外線照射は、紫外線を水に照射して、水中の微生物を紫外線によって殺菌、不活性化する処理である。また、水中の有機物を分解する処理でもある。
 脱気は、水中の溶存ガス(例えば酸素、窒素、二酸化炭素、等)を除去する処理である。
 薬品添加に用いる薬品としては、pHを調整する酸、アルカリ、スケールの発生を抑制、防止するスケール分散剤、殺菌作用や抗菌作用を有するスライムコントロール剤、酸化剤、還元剤、等が挙げられる。
 水のpHを調整する、酸としては、塩酸、硫酸、等が挙げられ、アルカリとしては、水酸化ナトリウム、等が挙げられる。
 スケール分散剤としては、水酸化ナトリウム(苛性ソーダ)、水酸化カルシウム(消石灰)、等が挙げられる。
 スライムコントロール剤としては、次亜塩素酸ナトリウム、過酸化水素、等が挙げられる。
 酸化剤としては、オゾン、過酸化水素、等が挙げられ、還元剤としては、過硫酸塩、次亜塩素酸塩、等が挙げられる。
 次に、本発明に係る水処理システムの別の好ましい実施形態(第7実施形態)として、水処理システム1(1G)について、図6を参照して以下に説明する。
 水処理システム1Gは、前述の水処理システム1Fに第3の逆浸透膜装置(第3のRO膜装置ともいう)60を配したものである。具体的には、濃縮水ライン44を介して、第1のRO膜装置10の濃縮水側Acと第3のRO膜装置60の供給側Csとを接続することが好ましい。また、濃縮水ライン45を介して、第2のRO膜装置20の濃縮水側Bcと第3のRO膜装置60の供給側Csとを接続することが好ましい。第3のRO膜装置60の供給側Csと接続する濃縮水ライン44、45は、供給側Csが共用されて供給側Csに接続されても、独立して供給側Csに接続されてもよい。第3のRO膜装置60の濃縮水側Ccには濃縮水ライン48が接続され、透過水側Ctには透過水ライン49が接続されることが好ましい。この透過水ライン49は、供給ライン41の分岐点B1よりも上流側に接続されることが好ましい。
 上記第3のRO膜装置60は、上記水処理システム1Bについても、上記同様に適用することができる。
 水処理システム1Gは、第1、第2のRO膜装置10、20の濃縮水を第3のRO膜装置60に供給し、第3のRO膜装置60の処理水(透過水)をRO膜システムの被処理水に合流させることから、回収率を高めることができる。また、回収率を高めるために、第1、第2のRO膜装置10、20の濃縮水を直接被処理水に戻すと、系内のホウ素濃度が高くなってしまう。そこで、第1、第2のRO膜装置10、20の濃縮水を第3のRO膜装置60にて処理し、その透過水を被処理水に戻すことによって、系内のホウ素濃度を高めることなく、回収率を向上させることが可能になる。
 第3のRO膜装置60は、低圧型または高圧型のいずれであってもよいが、高圧型のものが好ましい。第3のRO膜装置60を高圧型RO膜装置にすることで、第3のRO膜装置60からの透過水23の水質が向上し、被処理水の希釈効果を高めることができる。結果として、EDI処理水の向上につながることとなる。
 上記各水処理システム1(1A~1G)は、水質測定手段30によって測定されて水質の測定値に基づいて、上記仕切弁V1~V7及び背圧弁Vb1,Vb2の開閉動作を指示する制御部(図示せず)を備えることが好ましい。制御部によって、仕切弁V1~V7及び背圧弁Vb1,Vb2の開閉動作をさせるために、各仕切弁V1~V7は、電気的に開閉動作が行える、例えば電磁弁を用いることが好ましい。これによって、弁操作の自動化が行える。また、この制御部は、水質の測定値に基づいて、第1、第2ポンプインバータINV1、INV2のインバータ値を適宜変更することができる。この制御部は、本発明ではライン変更手段に含まれる。
<RO膜にかかる供給水の供給圧力>
 第1、第2のRO膜装置10、20に被処理水を供給する際の供給圧力を上昇させる場合には、急激な圧力上昇を避けるために流量制御装置として機能する第1ポンプインバータINV1を介して、第1ポンプP1を動作させることが好ましい。その際、急激な圧力変化が生じないように、第1ポンプインバータINV1によって、第1ポンプP1を駆動する電動機(図示せず)の出力(例えば、回転数)を制御して被処理水の流量を調節する。この流量調節によって、水圧変動を抑えることができる。第2ポンプP2についても、第1ポンプP1と同様に急激な圧力変動を避けるために、第2ポンプインバータINV2によって制御することが好ましい。
<RO膜装置>
 上記第1、第2、第3のRO膜装置10、20、60は、バンク構成が1段構成であっても、多段構成であってもよい。多段構成の場合、RO膜を直列に多段に配することが好ましい。また、バンクには複数のベッセルを備えることが好ましい。さらにベッセルには複数のエレメントを備えることが好ましい。
<RO膜>
 第1、第2、第3のRO膜装置10、20、60に使用されるRO膜は、使用用途や被処理水水質、求められる透過水水質、回収率によって同一銘柄に限らずそれぞれ最適な膜を選定することができる。たとえば、第1のRO膜装置10に低圧型逆浸透膜を使用し、第2のRO膜装置20には第1のRO膜装置10のRO膜よりも高圧で用いる高圧型逆浸透膜を使用することも好ましい。
 上記のRO膜装置のRO膜は特に制限されず、極超低圧型、超低圧型、低圧型、中圧型、高圧型のいずれのRO膜であってもよい。
 低圧~超低圧型RO膜として、例えば、日東電工社製ESシリーズ(ES15-D8、ES20-U8)(商品名)、HYDRANAUTICS社製ESPAシリーズ(ESPAB、ESPA2、ESPA2-LD-MAX)(商品名)、CPAシリーズ(CPA5-MAX、CPA7-LD)(商品名)、東レ社製TMGシリーズ(TMG20-400、TMG20D-440)(商品名)、TM700シリーズ(TM720-440、TM720D-440)(商品名)、ダウケミカル社製BWシリーズ(BW30HR、BW30XFR-400/34i)、SGシリーズ(SG30LE-440、SG30-400)、FORTILIFE(登録商標)CR100などが挙げられる。
 高圧型RO膜としては、例えば、HYDRANAUTICS社製SWCシリーズ(SWC4、SWC5、SWC6)(商品名)、東レ社製TM800シリーズ(TM820V、TM820M)(商品名)、ダウケミカル社製SWシリーズ(SW30HRLE、SW30ULE)(商品名)などを挙げることができる。
 上記第1~第7実施形態に係る水処理システム1A~1Gは、純水を製造する純水製造システムとして好適に用いることができる。特に、半導体装置の製造工程等に用いられる超純水の製造に、好適に用いることができる。
 続いて、本発明の水処理方法について説明する。
 本発明の水処理方法では、第1のRO膜装置10と、第1のRO膜装置10の透過水側Atに配された、第1のRO膜装置10とは阻止率が異なる第2のRO膜装置20とを有する逆浸透膜システムへ被処理水を供給する。本発明の水処理方法は、この被処理水の供給に当たって、該逆浸透膜システムの透過水の水質に応じて下記(a)及び(b)の通水ラインを切り替えることを含む。
(a)被処理水を第1のRO膜装置10に供給し、第1のRO膜装置10の透過水を第2のRO膜装置20に供給して透過水を得る通水ライン。
(b)第1のRO膜装置10及び第2のRO膜装置20のいずれか一方への通水を第1バイパスライン15又は第2バイパスライン25によってバイパスすることにより当該いずれか一方のRO膜装置への通水を遮断する通水ライン(b-1)、又は、第1のRO膜装置10及び第2のRO膜装置20のいずれか一方における濃縮水と透過水とを合流する第1合流ライン46又は第2合流ライン47に通水する通水ライン(b-2)。
 本発明の水処理方法は、本発明で規定すること以外は特に制限されず、例えば、上述した本発明の水処理システムを用いて実施することができる。本発明の水処理方法は、好ましくは、上記の第1~第7実施形態に係る水処理システムを用いて実施することができる。
[実施例1]
 実施例1は、前述の図6によって説明した水処理システム1Gを用いた。被処理水には、ナトリウム濃度8ppm、カルシウム濃度10ppm、炭酸水素イオン濃度1ppm、イオン状シリカ10ppm、ホウ素濃度10~100ppbの被処理水を用いた。炭酸水素イオン濃度は炭酸カルシウム(CaCO)換算とした。第1のRO膜装置10の逆浸透膜には、BWRO(日東電工社製、製品名:CPA5-LD)を用い、第1のRO膜装置10の回収率を80%とした。第2のRO膜装置20の逆浸透膜には、SWRO(日東電工社製、製品名:SWC5-MAX)を用い、第2のRO膜装置20の逆浸透膜の回収率を90%とした。第3の(ブライン)RO膜装置60の逆浸透膜には、SWRO(日東電工社製、製品名:SWC5-MAX)を用い、第3のRO膜装置60の回収率を50%をとした。
 第3のRO膜装置60の透過水(処理水)ライン49は合流点B1よりも上流側の被処理水を供給する供給ライン41に合流させた(1段目RO膜装置の単独運転)。第1、第2のイオン交換装置(EDI:電気式再生式純水装置)51、54にはオルガノ社製、製品名:EDI―XPを用い、その回収率は90%とした。
 第1のイオン交換装置51の処理水を処理水ライン43から測定用ライン31によって分岐し、水質測定手段30でホウ素濃度を測定して監視した。水質測定手段30には、オンラインホウ素モニター(SUEZ社製、製品名:Sieversオンライン・ホウ素計)を用いた。
 また、1段目の第1のRO膜装置10の供給側および2段目の第2のRO膜装置20の供給側の加圧用ポンプ(図示せず)として、多段渦巻ポンプ(グルンドフォス社製、製品名:CR10)を用いた。加圧用ポンプの運転圧は1段目の第1のRO膜装置10の供給側で0.8MPa、2段目の第2のRO膜装置20の供給側で1.4MPaに設定した。
 仕切弁V1、V4、V5を開け、仕切弁V2、V3を閉じて、被処理水を第1のRO膜装置10及び第1、第2のイオン交換装置51、54で処理をした。
 第1のイオン交換装置51の処理水の基準上限値を、ホウ素濃度0.05ppbとし、ホウ素濃度測定値が0.05ppbを上回った時に、仕切弁V3を開けて、仕切弁V4、V5を閉じた。そして第1のRO膜装置10の透過水を供給水として第2のRO膜装置20を起動した。第2のRO膜装置20の透過水を第1のイオン交換装置51の被処理水とした。第2のRO膜装置20の濃縮水は第1のRO膜装置10の濃縮水と合流し、第3のRO膜装置60の供給水とした(RO膜装置の2段運転)。上記運転を約2400h(時間)実施した。2400h後のEDI処理水のホウ素濃度および、運転に要したエネルギーコスト比を求めた。エネルギーコスト比は、実施例1において2400hの運転で消費した電力消費量を1とした。
 なお、2400h経過時の被処理水のホウ素濃度は85ppbであった。
[実施例2]
 実施例2は、前述の図6によって説明した水処理システム1Gを用いた。ホウ素濃度の基準上限値を0.05ppb、基準下限値を0.02ppbとした。加圧用ポンプの運転圧は実施例1と同様に設定した。
 仕切弁V1、V4、V5を開けて、仕切弁V2、V3を閉じ、第1のRO膜装置10の単独運転を行った。
 この単独運転中に第1のイオン交換装置51の処理水(以下、EDI処理水という)のホウ素濃度が0.05ppbを上回った時に、仕切弁V1、V5を閉じて、仕切弁V2、V3を開けた。これにより仕切弁V2、V3、V4が開いた状態になり、仕切弁V1、V5が閉じた状態になった。こうして、第1のRO膜装置10の運転を停止し、それとともに、第1バイパスライン15によってバイパスされた被処理水を第2のRO膜装置20に供給し、第2のRO膜装置の単独運転に切り替えた。この切り替えによりEDI処理水のホウ素濃度は0.05ppbを下回った。
 RO膜装置の切り替え後、EDI処理水のホウ素濃度が再び0.05ppbを上回っていた時に、仕切弁V1を開けて、仕切弁V2、V4は閉じた。これにより仕切弁V1、V3が開いた状態になり、仕切弁V2、V4、V5が閉じた状態になった。このようにして、第1のRO膜装置10と第2のRO膜装置20とを運転する2段RO膜装置の運転に切り替えた。
 この切り替えによりEDI処理水のホウ素濃度は低下し、EDI処理水のホウ素濃度が基準下限値の0.02ppbを下回っていた時に、仕切弁V1を閉じて、仕切弁V2、V4を開けた。これにより仕切弁V2、V3、V4が開いた状態になり、仕切弁V1、V5が閉じた状態になった。こうして、第1のRO膜装置10の運転を停止し、第1バイパスライン15を用いて被処理水を直接第2のRO膜装置20の供給側Bsに供給した。このようにして、第2のRO膜装置20の単独運転に切り替えた。
 その後、EDI処理水のホウ素濃度が0.02ppbを下回っていたため、仕切弁V1、V5を開けて、仕切弁V2、V3は閉じた。これにより仕切弁V1、V4、V5が開いた状態になり、仕切弁V2、V3が閉じた状態になった。こうして、被処理水を第1のRO膜装置10に供給して第1のRO膜装置10の単独運転に切り替えた。この切り替えにより、第2のRO膜装置20の運転は停止し、第1のRO膜装置10の透過水は第2バイパスライン25を通して処理水ライン43に供給された。このようにして、EDI処理水のホウ素濃度が基準上限値と基準下限値との範囲内になるように制御して水処理を行った。
 上記運転を約2400h実施した。2400h後のEDI処理水のホウ素濃度、および運転に要したエネルギーコスト比を求めた。以下、エネルギーコスト比は、実施例1における2400hの運転で消費した電力消費量を1.0としたときの比とした。
[比較例1]
 比較例1は、ホウ素濃度の測定を被処理水で実施した以外は、前述の図6によって説明した水処理システム1を用いた。加圧用ポンプの運転圧は実施例1と同様に設定した。
 先ず、仕切弁V1、V3は開けて、仕切弁V2、V4、V5は閉じて、被処理水の処理を第1のRO膜装置10及び第2のRO膜装置20の両方を用いて実施した(RO膜装置の2段運転)。そして被処理水のホウ素濃度の基準値を50ppbとし、被処理水のホウ素濃度が50ppbを下回った場合に、仕切弁V3を閉じ、仕切弁V4、V5を開けた。こうして、第2のRO膜装置20を停止させ、第2バイパスライン25を用いて第1のRO膜装置10の透過水を処理水ライン43にバイパスした。すなわち、第1のRO膜装置10の単独運転を実施した。その後、被処理水のホウ素濃度が50ppbを上回った場合、再び、仕切弁V3は開けて、仕切弁V4、V5は閉じた。そして、第2のRO膜装置20を運転に切り替え、第1のRO膜装置10及び第2のRO膜装置20の両方を運転した。このようにして、基準値を基準にして、第1のRO膜装置10の単独運転と、第1のRO膜装置10及び第2のRO膜装置20の2段運転とを切替えることによって、被処理水のホウ素濃度の変化に対応した。
 上記運転を約2400h実施した。2400h後のEDI処理水のホウ素濃度および、運転に要したエネルギーコスト比を求めた。
[比較例2]
 比較例2は、前述の図6によって説明した水処理システム1Gを用いた。加圧用ポンプの運転圧は実施例1と同様に設定した。
 処理水のホウ素濃度にかかわらず、仕切弁V1、V3は開け、仕切弁V2、V4、V5は閉じて、第1のRO膜装置10及び第2のRO膜装置20を常時運転(RO膜装置の2段運転)した。
 上記運転を約2400h実施した。2400h後のEDI処理水のホウ素濃度および、運転に要したエネルギーコスト比を求めた。
 上記実施例1、2及び比較例1,2の運転時間2400h後のEDI処理水のホウ素濃度及びエネルギーコスト比の測定結果を表1に示す。エネルギーコスト比は以下の様に算出した。
 エネルギーコスト比は、実施例1における2400hの運転で消費した電力消費量を1とした場合の電力消費量の比として求めた。すなわち、エネルギーコスト比=[2400h運転における電力消費量]/[2400h運転における実施例1の電力消費量]によって求めた。上記電力消費量は、ポンプの電力消費量である。
Figure JPOXMLDOC01-appb-T000001
 この結果、本発明では、EDI処理水のホウ素濃度が十分に低い値になり、エネルギーコスト比も低くなった。よって、水質の維持が図れるとともに、コスト削減が図れた。
 本発明をその実施例とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2019年12月25日に日本国で特許出願された特願2019-234250に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 1、1A~1G 水処理システム
 10 第1の逆浸透膜装置(第1のRO膜装置)
 15 第1バイパスライン
 20 第2の逆浸透膜装置(第2のRO膜装置)
 25 第2バイパスライン
 30 水質測定手段
 31 測定用ライン
 41 供給ライン
 42 接続ライン
 43 処理水ライン
 44、45 濃縮水ライン
 46 第1合流ライン
 47 第2合流ライン
 48 濃縮ライン
 49 透過水ライン
 51 第1のイオン交換装置(IER)
 52 カチオン交換装置
 53 脱炭素装置
 54 第2のイオン交換装置
 60 第3の逆浸透膜装置(第3のRO膜装置)
 As、Bs、Cs 供給側
 Ac、Bc、Cc 濃縮水側
 At、Bt、Ct 透過水側
 B1~B2 分岐点
 C1 合流点
 INV1 第1ポンプインバータ
 INV2 第2ポンプインバータ
 P1 第1ポンプ
 P2 第2ポンプ
 V1~V7 仕切弁
 Vb1、Vb2 背圧弁

Claims (10)

  1.  第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された第2の逆浸透膜装置とを有する逆浸透膜システムと、
     第2の逆浸透膜装置の透過水側に配した水質測定手段と、
     前記水質測定手段の測定値に応じて、第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に通水して透過水を得るラインと、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断するライン、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流するラインと、を変更するライン変更手段と、
    を有する水処理システム。
  2.  前記ライン変更手段が、第1の逆浸透膜装置の濃縮水側と透過水側とを繋ぐ第1合流ライン及び第2の逆浸透膜装置の濃縮水側と透過水側とを繋ぐ第2合流ラインの少なくとも一方を有し、
     前記水質測定手段の測定値に応じて、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方について、供給水圧を通常運転圧の50%以下、かつ、回収率を20%以下とし、当該少なくとも一方の逆浸透膜装置に対応する第1合流ライン及び第2合流ラインの少なくとも一方に通水させる、請求項1に記載の水処理システム。
  3.  第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置である、請求項1又は2に記載の水処理システム。
  4.  第1の逆浸透膜装置の濃縮水及び第2の逆浸透膜装置の濃縮水の少なくとも一方を処理する第3の逆浸透膜装置を有し、第3の逆浸透膜装置の透過水を前記逆浸透膜システムに供給する、請求項1~3のいずれか1項に記載の水処理システム。
  5.  前記水質測定手段によって測定される成分がホウ素を含む、請求項1~4のいずれか1項に記載の水処理システム。
  6.  第2の逆浸透膜装置の透過水を処理する第1のイオン交換装置を有する、請求項1~5のいずれか1項に記載の水処理システム。
  7.  第1のイオン交換装置の処理水を処理する第2のイオン交換装置を有し、前記水質測定手段が、第1のイオン交換装置よりも下流側に設置される、請求項6に記載の水処理システム。
  8.  前記水質測定手段の前段に、カチオン交換装置及び脱気装置のいずれか一つ以上を備える、請求項1~7のいずれか1項に記載の水処理システム。
  9.  第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された、第2の逆浸透膜装置とを有する逆浸透膜システムへ被処理水を供給するに当たり、該逆浸透膜システムの透過水の水質に応じて下記(a)及び(b)の通水ラインを切り替えることを含む、水処理方法:
    (a)被処理水を第1の逆浸透膜装置に供給し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に供給して透過水を得る通水ライン、
    (b)第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断する通水ライン(b-1)、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流する通水ライン(b-2)。
  10.  第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置であり、
     前記水質測定手段によって測定される成分がホウ素を含む、請求項9に記載の水処理方法。

     
PCT/JP2020/032011 2019-12-25 2020-08-25 水処理システム及び水処理方法 WO2021131156A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080056641.2A CN114206785B (zh) 2019-12-25 2020-08-25 水处理系统以及水处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-234250 2019-12-25
JP2019234250A JP6860648B1 (ja) 2019-12-25 2019-12-25 水処理システム及び水処理方法

Publications (1)

Publication Number Publication Date
WO2021131156A1 true WO2021131156A1 (ja) 2021-07-01

Family

ID=75520859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032011 WO2021131156A1 (ja) 2019-12-25 2020-08-25 水処理システム及び水処理方法

Country Status (4)

Country Link
JP (1) JP6860648B1 (ja)
CN (1) CN114206785B (ja)
TW (1) TWI738493B (ja)
WO (1) WO2021131156A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150923A (ja) * 1990-10-12 1992-05-25 Kawasaki Heavy Ind Ltd 低圧用逆浸透膜による高濃度溶液の濃縮方法及び装置
JPH0580585A (ja) * 1991-03-01 1993-04-02 Kao Corp 静電荷像現像剤組成物
JP2002085941A (ja) * 2000-07-13 2002-03-26 Toray Ind Inc 造水方法および造水装置
JP2003200160A (ja) * 2002-01-09 2003-07-15 Toray Ind Inc 造水方法および造水装置
US20030141250A1 (en) * 2002-01-18 2003-07-31 Masahiro Kihara Desalination method and desalination apparatus
JP2005342587A (ja) * 2004-06-01 2005-12-15 Toray Ind Inc 造水方法および造水装置
JP2008132421A (ja) * 2006-11-28 2008-06-12 Kurita Water Ind Ltd 水処理装置および水処理方法
JP4172394B2 (ja) * 2002-01-22 2008-10-29 東レ株式会社 造水方法および造水装置
JP2009131785A (ja) * 2007-11-30 2009-06-18 Kobelco Eco-Solutions Co Ltd 浄化水回収装置及び浄化水の回収方法
JP2009154070A (ja) * 2007-12-26 2009-07-16 Kobelco Eco-Solutions Co Ltd 浄化水回収装置及び浄化水の回収方法
WO2012033257A1 (en) * 2010-09-09 2012-03-15 Gs Engineering & Construction Corp. Two-pass reverse osmosis desalination apparatus and method
JP2014100706A (ja) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl 特に超純水を得るための水の処理
JP2014128767A (ja) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd 純水製造システム
JP2015188767A (ja) * 2014-03-27 2015-11-02 株式会社エフテック技研 浄水装置
WO2018225277A1 (ja) * 2017-06-08 2018-12-13 シャープ株式会社 浄水装置および家庭用浄水器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580585U (ja) * 1991-12-03 1993-11-02 株式会社オニック 造水装置
CA2186963C (en) * 1996-10-01 1999-03-30 Riad A. Al-Samadi High water recovery membrane purification process
JP2002001068A (ja) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd 膜分離方法および装置
EP1743689A1 (de) * 2005-07-13 2007-01-17 KRONES Aktiengesellschaft Crossflow-Membranfilteranlage sowie Verfahren
CN102745775A (zh) * 2007-10-29 2012-10-24 株式会社神钢环境舒立净 水处理方法、水处理装置、净化水的回收方法及净化水回收装置
AU2008202302A1 (en) * 2008-05-22 2009-12-10 Al-Samadi, Riad Dr High Water Recovery Membrane Purification Process
JP2014034005A (ja) * 2012-08-09 2014-02-24 Toray Ind Inc 塩水淡水化装置および造水方法
KR101929815B1 (ko) * 2012-11-08 2018-12-17 엘지전자 주식회사 복수 개의 역삼투막 장치를 이용한 수처리장치 및 수처리방법
JP6435961B2 (ja) * 2014-03-31 2018-12-12 宇部興産株式会社 ガス分離システム及び富化ガスの製造方法
JP6634918B2 (ja) * 2016-03-25 2020-01-22 栗田工業株式会社 超純水製造システム
US20180111070A1 (en) * 2016-10-25 2018-04-26 Ds Services Of America, Inc. Bypass for high demand periods for water purification system
JP6807219B2 (ja) * 2016-11-18 2021-01-06 オルガノ株式会社 逆浸透膜処理システムおよび逆浸透膜処理方法
EP3778496A4 (en) * 2018-03-27 2021-07-14 Toray Industries, Inc. WATER TREATMENT PROCESS AND WATER TREATMENT DEVICE
WO2019215971A1 (ja) * 2018-05-10 2019-11-14 シャープ株式会社 浄水装置および家庭用浄水器
CN208454565U (zh) * 2018-06-11 2019-02-01 孙凌君 反渗透即时产水系统
CN108821391A (zh) * 2018-08-21 2018-11-16 上海电力学院 一种无预处理工艺的膜法海水淡化系统

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150923A (ja) * 1990-10-12 1992-05-25 Kawasaki Heavy Ind Ltd 低圧用逆浸透膜による高濃度溶液の濃縮方法及び装置
JPH0580585A (ja) * 1991-03-01 1993-04-02 Kao Corp 静電荷像現像剤組成物
JP2002085941A (ja) * 2000-07-13 2002-03-26 Toray Ind Inc 造水方法および造水装置
JP2003200160A (ja) * 2002-01-09 2003-07-15 Toray Ind Inc 造水方法および造水装置
US20030141250A1 (en) * 2002-01-18 2003-07-31 Masahiro Kihara Desalination method and desalination apparatus
JP4172394B2 (ja) * 2002-01-22 2008-10-29 東レ株式会社 造水方法および造水装置
JP2005342587A (ja) * 2004-06-01 2005-12-15 Toray Ind Inc 造水方法および造水装置
JP2008132421A (ja) * 2006-11-28 2008-06-12 Kurita Water Ind Ltd 水処理装置および水処理方法
JP2009131785A (ja) * 2007-11-30 2009-06-18 Kobelco Eco-Solutions Co Ltd 浄化水回収装置及び浄化水の回収方法
JP2009154070A (ja) * 2007-12-26 2009-07-16 Kobelco Eco-Solutions Co Ltd 浄化水回収装置及び浄化水の回収方法
WO2012033257A1 (en) * 2010-09-09 2012-03-15 Gs Engineering & Construction Corp. Two-pass reverse osmosis desalination apparatus and method
JP2014100706A (ja) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl 特に超純水を得るための水の処理
JP2014128767A (ja) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd 純水製造システム
JP2015188767A (ja) * 2014-03-27 2015-11-02 株式会社エフテック技研 浄水装置
WO2018225277A1 (ja) * 2017-06-08 2018-12-13 シャープ株式会社 浄水装置および家庭用浄水器

Also Published As

Publication number Publication date
TW202124032A (zh) 2021-07-01
JP6860648B1 (ja) 2021-04-21
TWI738493B (zh) 2021-09-01
CN114206785A (zh) 2022-03-18
JP2021102191A (ja) 2021-07-15
CN114206785B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US5651894A (en) Water purification system and method
RU2342330C2 (ru) Система и способ обработки кислотных сточных вод
EP1363856B1 (en) Method of boron removal in presence of magnesium ions
JP4917581B2 (ja) 純水製造方法
IL196746A (en) A seawater desalination system and a method for treating seawater to lower the total amount of dissolved solids
CN112805247B (zh) 水处理装置、水处理方法、正渗透膜处理方法、正渗透膜处理系统及水处理系统
KR102459286B1 (ko) 피처리수 중의 붕소 제거 방법, 붕소 제거 시스템, 초순수 제조 시스템 및 붕소 농도의 측정 방법
JP5834492B2 (ja) 超純水製造装置
WO2020184045A1 (ja) ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法
JP3137831B2 (ja) 膜処理装置
JP2007307561A (ja) 高純度水の製造装置および方法
WO2021131156A1 (ja) 水処理システム及び水処理方法
JP5238778B2 (ja) 淡水化システム
TWI826657B (zh) 純水製造裝置及純水之製造方法
Singh Production of high-purity water by membrane processes
WO2021161569A1 (ja) 超純水製造装置及び超純水製造方法
CN111760460A (zh) 一种电解铜箔中水回用ro膜的清洗组合配方及其清洗工艺
US20170267550A1 (en) Ultrapure water producing method
CN216513257U (zh) 高效节能环保的水处理设备和锅炉给水系统
WO2014010075A1 (ja) 超純水製造装置
KR20210145125A (ko) 막 탈기 장치의 세정 방법 및 초순수 제조 시스템
JP2023128657A (ja) 水処理システム及び水処理方法
JP2016187791A (ja) カルシウムイオン及び無機炭素含有水の処理方法
TWI592207B (zh) Ultrapure water manufacturing equipment
KR20230088599A (ko) 반도체 폐수의 재이용 처리수 생산 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907728

Country of ref document: EP

Kind code of ref document: A1