KR102459286B1 - 피처리수 중의 붕소 제거 방법, 붕소 제거 시스템, 초순수 제조 시스템 및 붕소 농도의 측정 방법 - Google Patents

피처리수 중의 붕소 제거 방법, 붕소 제거 시스템, 초순수 제조 시스템 및 붕소 농도의 측정 방법 Download PDF

Info

Publication number
KR102459286B1
KR102459286B1 KR1020207032547A KR20207032547A KR102459286B1 KR 102459286 B1 KR102459286 B1 KR 102459286B1 KR 1020207032547 A KR1020207032547 A KR 1020207032547A KR 20207032547 A KR20207032547 A KR 20207032547A KR 102459286 B1 KR102459286 B1 KR 102459286B1
Authority
KR
South Korea
Prior art keywords
water
boron
treated
reverse osmosis
osmosis membrane
Prior art date
Application number
KR1020207032547A
Other languages
English (en)
Other versions
KR20200142553A (ko
Inventor
유키 나카무라
지카 겐모치
Original Assignee
오르가노 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오르가노 가부시키가이샤 filed Critical 오르가노 가부시키가이샤
Publication of KR20200142553A publication Critical patent/KR20200142553A/ko
Application granted granted Critical
Publication of KR102459286B1 publication Critical patent/KR102459286B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/022Column or bed processes characterised by the construction of the column or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • B01J47/127Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes in the form of filaments or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/53Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

피처리수 중의 붕소 제거 방법이며, 해당 붕소 제거 방법은, 상기 피처리수를 역침투막 처리를 거치게 하는 공정과, 해당 역침투막 처리의 투과수의 적어도 일부를 양이온 제거 처리를 거치게 하는 공정과, 해당 양이온 제거 처리 후의 상기 투과수 중의 붕소 농도를 측정하는 공정을 포함하고, 상기 붕소 농도 측정값에 기초하여 하기 (a) 내지 (e) 중 적어도 하나를 제어하는 피처리수 중의 붕소 제거 방법: (a) 상기 역침투막 처리에 있어서의 상기 피처리수의 회수율, (b) 상기 피처리수의 온도, (c) 상기 피처리수의 pH, (d) 상기 역침투막 처리의 역침투막에 가해지는 상기 피처리수의 공급 압력, 및 (e) 상기 역침투막 처리에 사용하는 역침투막의 교환 시기.

Description

피처리수 중의 붕소 제거 방법, 붕소 제거 시스템, 초순수 제조 시스템 및 붕소 농도의 측정 방법
피처리수 중의 붕소 제거 방법, 붕소 제거 시스템, 초순수 제조 시스템 및 붕소 농도의 측정 방법에 관한 것이다.
반도체 디바이스 제조나 의약품 제조 등에 있어서는, 고도로 정제된 순수가 사용된다. 순수 제조용 원수(피처리수)로서는, 상수, 정수, 하천수, 공업용수 외에, 공장의 각 공정으로부터 배출되는 세정 배수나 스크러버 배수와 같은 공장 배수, 해수를 역침투법이나 증발법에 의해 탈염한 해수 담수화 처리수 등을 들 수 있다.
이 원수를 흡착 제거, 여과 처리 등을 조합한 전처리 시스템을 거치게 하고, 다음에 역침투막 처리, 탈기 처리, 이온 교환 처리 등을 조합한 1차 순수 시스템에 의해 이온 성분이나 전유기 탄소(TOC)를 제거하여 1차 순수가 제조된다. 얻어진 1차 순수는 필요에 따라 자외선 산화 처리, 한외 여과 처리 등을 조합한 2차 순수 시스템(서브 시스템)에 의해 순도가 더욱 높아져, 초순수로서 사용된다.
상기 1차 순수 시스템에 의해 이온 성분 내지 TOC의 대부분을 제거할 수 있다. 그러나, 수중에서 비해리 물질로서 행동하는 붕소는, 역침투막이나 이온 교환 처리에 의해서는 충분히 제거하는 것이 어렵다. 한편, 요즘, 순수의 고순도화에 대한 요구는 높고, 붕소 농도의 저감에 대한 요구 레벨도 높아지고 있다.
물의 pH를 알칼리측으로 제어함으로써, 역침투막(RO막)에 의한 붕소의 제거 효율이 높아지는 것이 알려져 있다. 이것은, 물을 알칼리성으로 함으로써, 붕소가 붕산 이온(B(OH)4 -)으로 되기 때문이다. 예를 들어 특허문헌 1에는, 피처리수 중의 2가 이상의 양이온을 제거하고, pH를 9 이상으로 조정한 후, 역침투막에 의해 붕소를 제거하는 기술이 기재되어 있다.
일본 특허 공개 평9-290275호 공보
순수 내지 초순수의 제조에 있어서는, 피처리수 중의 붕소 농도의 증감이나, RO막의 경년적인 열화에 의해, 투과수 중의 붕소 농도는 변동된다. 그와 같은 상황에서 RO막 처리에 의해 붕소의 제거 효율을 높이기 위해, 상기와 같이 피처리수에 pH 조정제(전형적으로는 알칼리제)를 첨가하여, 피처리수의 pH를 알칼리측으로 높이는 것이 행해진다. 필요한 pH 조정제의 첨가량은, RO막의 투과수 중의 붕소 농도에 대응하여 증감시킬 수 있다. 즉, 투과수 중의 붕소 농도가 목적의 농도보다도 높으면, 붕소의 제거율을 보다 높이기 위해 pH 조정제의 첨가량도 많이 할 필요가 있다. 한편, 투과수 중의 붕소 농도를 충분히 저감할 수 있으면, pH 조정제의 첨가량을 적게 해도 붕소 농도를 목적의 레벨까지 저감할 수 있다. 따라서, RO막의 투과수 중의 붕소 농도를 측정할 수 있으면, 그 측정값에 따라, pH 조정제의 첨가량을 조정할 수 있다. 구체적으로는, 측정값이 높으면 pH 조정제의 첨가량을 증가시키고, 측정값이 낮으면 pH 조정제의 첨가량을 감소시킴으로써, pH 조정제를 낭비없이 사용할 수 있어, 운전 비용의 저감으로 이어진다.
또한, RO막 투과수의 붕소 농도의 제어는, 붕소 농도의 저감이 요구되는 순수 내지 초순수 제조 시스템의 운전 관리의 관점에서도 중요도가 증가되고 있다.
붕소 측정 수단으로서 일반적으로 사용되는 온라인 붕소 모니터는, 도전율을 지표로 한 측정이기 때문에, 급수의 비저항이 15MΩ·㎝ 이상이 아니면 노이즈가 높아(백그라운드 신호값이 높아) ppb 레벨의 붕소 농도를 정확하게 측정할 수 없다. 유도 결합 플라스마(ICP) 발광 분광 분석법을 사용하여 저농도의 붕소를 측정할 때도 마찬가지로, 측정수의 비저항을 충분히 높여 측정할 필요가 있다. 그러나, 일반적인 RO막을 투과한 투과수의 비저항은 1MΩ·㎝ 정도이고, RO막의 투과수의 붕소 농도를 고감도로 측정하여, 순수 제조의 운전 관리를 행하는 것은 곤란하다.
그래서 본 발명은, 피처리수를 RO막 처리를 거치게 하여 불순물 성분을 제거함에 있어서, RO막 투과수 중의 붕소 농도를 고감도 측정하고, 이 측정값에 기초하여 피처리수의 RO막 처리를 제어함으로써, RO막 투과수 중의 붕소 농도를 원하는 낮은 레벨로 안정적으로, 효율적으로, 또한 저운전 비용으로 제어할 수 있는, 피처리수 중의 붕소 제거 방법을 제공하는 것을 과제로 한다. 또한 본 발명은, 이 방법의 실시에 적합한 붕소 제거 시스템을 제공하는 것을 과제로 한다. 또한 본 발명은, 상기 붕소 제거 시스템을 갖는 초순수 제조 시스템을 제공하는 것을 과제로 한다. 또한 본 발명은, 피처리수의 붕소 농도의 측정기로서 일반적으로 사용되는 온라인 붕소 모니터 등을 사용하여 ppb 레벨의 붕소 농도를 보다 정확하게 측정하는 것을 가능하게 하는 붕소 농도의 측정 방법을 제공하는 것을 과제로 한다.
본 발명자들은 상기 과제를 감안하여 예의 검토를 거듭한 결과, 피처리수를 RO막 처리를 거치게 하여 얻어지는 투과수를 양이온 제거 장치에서 처리함으로써, 당해 투과수의 비저항을 충분히 높일 수 있음을 알아냈다. 그 결과, 투과수의 붕소를 고감도로 검출할 수 있어, 반도체 디바이스 제조나 의약품 제조 등의, 순수 중의 붕소 제거의 요구 레벨이 높은 분야에도 적용 가능한 순수를, 안정적으로, 효율적으로, 또한 저운전 비용으로 공급하는 것이 가능해짐을 알아냈다.
본 발명은, 상기 지견에 기초하여 더욱 검토를 거듭하여, 완성되기에 이른 것이다.
즉, 본 발명의 상기 과제는, 이하의 수단에 의해 해결되었다.
[1]
피처리수 중의 붕소 제거 방법이며,
해당 붕소 제거 방법은, 상기 피처리수를 역침투막 처리를 거치게 하는 공정과, 해당 역침투막 처리의 투과수의 적어도 일부를 양이온 제거 처리를 거치게 하는 공정과, 해당 양이온 제거 처리 후의 상기 투과수 중의 붕소 농도를 측정하는 공정을 포함하고,
상기 붕소 농도 측정값에 기초하여 하기 (a) 내지 (e) 중 적어도 하나를 제어하는 피처리수 중의 붕소 제거 방법:
(a) 상기 역침투막 처리에 있어서의 상기 피처리수의 회수율,
(b) 상기 피처리수의 온도,
(c) 상기 피처리수의 pH,
(d) 상기 역침투막 처리의 역침투막에 가해지는 상기 피처리수의 공급 압력, 및
(e) 상기 역침투막 처리에 사용하는 역침투막의 교환 시기.
[2]
상기 역침투막 처리를 거치게 하는 상기 피처리수의 pH를 9 이상으로 제어하는, [1]에 기재된 피처리수 중의 붕소의 제거 방법.
[3]
상기 역침투막 처리가 복수단의 역침투막 장치에 의한 처리이며, 적어도 일단의 역침투막 장치에 급수되는 피처리수의 pH를 9 이상으로 제어하는, [1] 또는 [2]에 기재된 피처리수 중의 붕소의 제거 방법.
[4]
상기 복수단의 역침투막 장치 중 적어도 일단의 역침투막 장치가 고압 역침투막 장치인, [3]에 기재된 피처리수 중의 붕소의 제거 방법.
[5]
상기 복수단의 역침투막 장치를 구성하는 제1단째의 역침투막 장치의 유효 압력 1㎫당의 투과 유속이, 제2단째의 역침투막 장치의 유효 압력 1㎫당의 투과 유속보다도 큰, [3] 또는 [4]에 기재된 피처리수 중의 붕소의 제거 방법.
[6]
상기 피처리수를 상기 역침투막 처리를 거치게 하기 전에, 해당 피처리수를 양이온 교환 처리를 거치게 하고, 다음에 탈탄산 처리를 거치게 하는, [1] 내지 [5] 중 어느 것에 기재된 피처리수 중의 붕소의 제거 방법.
[7]
상기 양이온 제거 처리를 전기 재생식 탈양이온 제거 장치에 의해 행하는, [1] 내지 [6] 중 어느 것에 기재된 피처리수 중의 붕소의 제거 방법.
[8]
피처리수 중으로부터 붕소를 제거하는 붕소 제거 시스템이며,
상기 붕소 제거 시스템은, 피처리수를 처리하는 역침투막 장치와, 해당 역침투막 장치의 투과수의 적어도 일부를 처리하는 양이온 제거 장치와, 해당 양이온 제거 장치에 의한 처리수 중의 붕소 농도를 측정하는 붕소 분석 장치를 갖고,
상기 붕소 분석 장치에 의해 측정된 붕소 농도에 기초하여 하기 (a) 내지 (e) 중 적어도 하나를 제어하는 붕소 제거 시스템:
(a) 상기 역침투막 장치에 있어서의 상기 피처리수의 회수율,
(b) 상기 피처리수의 온도,
(c) 상기 피처리수의 pH,
(d) 상기 역침투막 장치의 역침투막에 가해지는 피처리수의 공급 압력, 및
(e) 상기 역침투막 장치에 있어서의 역침투막의 교환 시기.
[9]
전처리 시스템과 1차 순수 시스템과 서브 시스템을 갖는 초순수 제조 시스템이며, 해당 1차 순수 시스템이 [8]에 기재된 붕소 제거 시스템을 갖는 초순수 제조 시스템.
[10]
액 중의 붕소 농도를 측정하는 방법이며,
피처리수를 이온 제거 처리를 거치게 하는 공정과,
상기 이온 제거 처리한 처리수 중의 붕소 농도를 측정하는 공정을 포함하는, 붕소 농도의 측정 방법.
[11]
상기 피처리수는, 역침투막 처리 후의 투과수이며,
상기 이온 제거 처리는, 양이온 제거 처리인, [10]에 기재된 붕소 농도의 측정 방법.
본 발명의 붕소 제거 방법 및 붕소 제거 시스템에 의하면, 피처리수를 RO막 처리를 거치게 하여 불순물 성분을 제거함에 있어서, RO막 투과수 중의 붕소 농도를 고감도 측정하고, 이 측정값에 기초하여 피처리수의 RO막 처리를 제어할 수 있다. 이에 의해, RO막 투과수 중의 붕소 농도를 원하는 낮은 레벨로 안정적으로, 효율적으로, 또한 저운전 비용으로 제어할 수 있다. 본 발명의 초순수 시스템은, 붕소가 충분히 제거된 초순수를, 안정적으로, 효율적으로, 또한 저운전 비용으로 얻는 것을 가능하게 한다.
본 발명의 붕소 농도의 측정 방법에 의하면, 피처리수의 붕소 농도의 측정기로서 일반적으로 사용되는 온라인 붕소 모니터 등을 사용하여 ppb 레벨의 붕소 농도를 보다 정확하게 측정하는 것이 가능해진다.
본 발명의 상기 및 다른 특징 및 이점은, 하기의 기재 및 첨부의 도면으로부터 보다 명백하게 될 것이다.
도 1은 본 발명에 관한 붕소 제거 시스템의 바람직한 일 실시 형태(제1 실시 형태)를 도시한 개략 구성도이다.
도 2는 본 발명에 관한 붕소 제거 시스템의 바람직한 일 실시 형태(제2 실시 형태)를 도시한 개략 구성도이다.
도 3은 본 발명에 관한 붕소 제거 시스템의 바람직한 일 실시 형태(제3 실시 형태)를 도시한 개략 구성도이다.
도 4는 본 발명에 관한 붕소 제거 시스템의 바람직한 일 실시 형태(제4 실시 형태)를 도시한 개략 구성도이다.
도 5는 본 발명의 붕소 제거 시스템이 적용되는 초순수 제조 장치의 바람직한 일례를 도시한 개략 구성도이다.
본 발명에 관한 붕소 제거 시스템의 바람직한 일 실시 형태(제1 실시 형태)를, 도 1을 참조하여 설명한다.
도 1에 도시한 바와 같이, 붕소 제거 시스템1(1A)에는, 주 배관(11)이 배치된다. 이 주 배관(11)에는, 피처리수(원수)중의 붕소를 제거하는 RO막 장치(12)가 배치된다.
또한, RO막 장치(12)의 입구측(12in)의 주 배관(11)에는, RO막 장치(12)에 대하여 먼 측으로부터, 열교환기(31), 알칼리성의 약액(알칼리제)을 공급하는 약액 배관(32)의 합류부(32A), 펌프(41)를 구비한다. 약액 배관(32) 단부에는 알칼리제 공급원(34)이 접속되어 있다. 또한, 약액 배관(32)에는 약주 펌프(35)가 배치되고, 약주 펌프(35)에 의해 알칼리 공급원(34)에 저장되어 있는 알칼리제를 주 배관(11)측으로 보낸다.
RO막 장치의 출구측(12out)의 주 배관(11)에는, 붕소 분석 장치(21)가 접속된 분기 배관(22)의 분기부(22A)가 배치된다. 이 분기 배관(22)에는 양이온 제거 장치(23)가 배치된다.
상기 RO막 장치(12)는 특별히 제한되지 않고, 초저압형, 저압형, 중압형, 고압형 중 어느 RO막 장치여도 된다. RO막 장치에 사용하는 RO막의 일례로서, 다우 케미컬사제 BW 시리즈(BW30HR-440, BW30XFR-400/34i), 도레이사제 TMG 시리즈(TMG20, TMG-20D), TML 시리즈(TML20, TML-20D), 닛토덴코사제 ES 시리즈(ES20-D8, ES15-D8) HYDRANAUTICS제 LFC 시리즈(LFC3-LD), CPA 시리즈(CPA5-LD) 등을 들 수 있다.
RO막 장치(12)는, 염류나 불순물이 농축된 물(농축수)을 배출하는 기구를 갖고, 이에 의해 가압측 염 농도의 과도한 상승이나, 막 표면에 있어서 난용해성 물질(스케일)의 생성을 억제하면서 연속적으로 투과수를 얻을 수 있다. 농축수는 RO막 장치(12)에 접속된 농축수 배관(25)을 통해 배출된다. 농축수 배관(25)에는 압력 조절 밸브(26)가 배치되는 것이 바람직하다. 압력 조절 밸브(26)에 의해, 농축수 배관(25) 내의 압력을 조절할 수 있어, RO막(12)의 투과수량이나 농축수량을 조정할 수 있다.
상기 열교환기(31)는, 주 배관(11)을 흐르는 물의 온도를 조정하기 위해 사용한다. 열교환기의 2차측에는, 가온용 증기나 냉각수를 흘릴 수 있다.
상기 펌프(41)에는, 피처리수를 압송하는 통상의 가압 펌프를 사용할 수 있다. 가압 펌프는 펌프 인버터(42)를 구비하는 것이 바람직하다. 펌프 인버터(42)는, 가압 펌프의 구동 모터(도시하지 않음)의 회전수를 제어하는 것이며, 구동 모터의 회전수를 서서히 변화시키는 것이다. 펌프의 회전수를 서서히 변화시킴(예를 들어, 높임)으로써, 수압의 급격한 변화(예를 들어, 상승)를 방지할 수 있다. 이에 의해, 수압의 급격한 변화에 의한 RO막 장치(12)의 손상을 방지할 수 있다. 또한, 구동 모터의 회전수를 올림으로써, RO막 장치(12)에 공급하는 피처리수의 유량 및 압력을 높일 수 있다.
알칼리제 공급원(34)은, 피처리수의 pH를 상승시키기 위한 약제 공급원이며, 이 알칼리제는 수산화나트륨(NaOH: 가성 소다)을 포함하는 것이 바람직하다. 알칼리제는 통상은 NaOH를 용해하여 이루어지는 수용액이다. NaOH 수용액 중의 NaOH 농도는 목적의 pH 조정이 가능한 범위에서 적절히 설정된다. 알칼리제로서는, NaOH 수용액 외에 수산화칼륨(KOH) 수용액 등을 사용할 수도 있다.
약주 펌프(35)는, 알칼리제 공급원(34)으로부터 주 배관(11)에 알칼리제를 압송하는 것이며, 예를 들어 정량식 펌프를 사용할 수 있다. 즉, 지정된 주입량만이 주 배관(11)에 보내지도록, 약주 펌프(35)가 가동하는 것이다. 약주 펌프(35)는, 펌프의 스트로크 또는 회전수의 제어에 의해 주입량을 변화시키기 때문에, 약주 펌프(35)의 배출구는, 주 배관(11)에 가까운 위치에 배치되는 것이 바람직하다.
또한, 도시는 하지 않지만, 약주 펌프(35)와 주 배관(11) 사이의 약액 배관(32)에, 도시는 하지 않지만, 제어 밸브를 구비하고, 이 제어 밸브의 개폐 정도에 따라 알칼리제의 주입량을 변화시킬 수도 있다.
양이온 제거 장치(23)는, 피처리수 중의 양이온(Na+, Ca2 +, Mg2 +, NH4+, K+ 등)을 제거하는 것이다. 양이온 제거 장치(23)의 구체예로서, 양이온 교환 수지(바람직하게는 강산성 양이온 교환 수지)를 충전하여 이루어지는 양이온 교환 장치를 들 수 있다. 양이온 제거 장치(23)에 의해 양이온을 제거함으로써, 투과수의 비저항을 충분히 높일 수 있다. 이것은, 투과수 중에 존재하는 이온 성분에 차지하는 아니온 성분은 조금이며, 카티온 성분이 많이 포함되어 있는 것에 의한다. 즉, 일반적으로 사용되는 폴리아미드계 RO막, 아세트산셀룰로오스계 RO막의 표면은 마이너스로 대전되어 있기 때문에, 아니온 성분은 정전기적인 반발에 의해 RO막을 통과하기 어려운 한편, 카티온 성분은 RO막을 투과하기 쉽다. 따라서, RO막 장치의 투과수로부터 카티온 성분을 제거하는 것만으로, 후술하는 바와 같이 투과수의 비저항을, 붕소의 고감도 측정에 필요한 레벨로까지 높일 수 있다.
붕소 분석 장치(21)는, RO막 장치(12)를 투과한 투과수 중의 붕소 농도를 측정하는 장치이다. 이 붕소 분석 장치(21)는, 리얼타임으로 온라인 측정 가능한 기기인 것이 바람직하다. 붕소 분석 장치(21)로서, 예를 들어 GE사제 Sievers 온라인·붕소계를 들 수 있다. 또한, 리얼타임 측정은 아니지만, ICP 발광 분광 분석 장치를 사용할 수도 있다.
상기 붕소 제거 시스템(1A)에서는, 피처리수가, 주 배관(11)을 통해 펌프(41)에 의해 RO막 장치(12)로 압송된다. RO막 장치(12)에서는, 피처리수 중의 붕소를 제거한다. RO막 장치(12)를 투과하여 붕소가 제거된 투과수는, 주 배관(11)을 통해 다음 공정으로 반송된다. 그 일부의 투과수는 분기 배관(22)에 의해 분기되어, 양이온 제거 장치(23)에 공급된다. 이 양이온 제거 장치(23)에 의해 투과수 중의 양이온을 제거한다. 투과수로부터 양이온을 제거하는 것만으로, 투과수의 비저항을, 예를 들어 15MΩ·㎝ 이상으로 높일 수 있다. 이와 같이 투과수의 비저항을 높이고 나서 붕소 분석 장치(21)에 공급함으로써, 극미량의 붕소 농도라도 정확하게 측정할 수 있게 된다. 붕소 분석 장치에 따라 다르기도 하지만, 예를 들어 ppt 레벨의 붕소 농도를 검출하는 것이 가능해진다.
본 발명의 붕소 제거 시스템에서는, 붕소 분석 장치(21)에 의해 측정한 붕소 농도의 측정값(붕소 농도의 변동 상태)에 기초하여, 하기 (a) 내지 (e) 중 적어도 하나를 제어한다. 이에 의해, 붕소 제거를 보다 효율적으로 행하는 것이 가능해진다.
(a) 상기 역침투막에 있어서의 피처리수의 회수율,
(b) 상기 피처리수의 온도,
(c) 상기 피처리수의 pH,
(d) 상기 역침투막 처리의 역침투막에 가해지는 피처리수의 공급 압력, 및
(e) 상기 역침투막 처리에 사용하는 역침투막의 교환 시기.
통상은, 붕소 농도의 측정값에 기준값을 마련하여, 기준값으로부터의 변동량을 계산하고, 계산 결과를 기초로 상기 (a) 내지 (e) 중 적어도 하나를 제어한다.
상기 (a) 내지 (e)에 대하여 보다 상세하게 설명한다.
<(a) 역침투막에 있어서의 피처리수의 회수율>
피처리수의 회수율(유량%)=투과수량(유량)/피처리수량(유량)이다. 이하, 회수율의 「%」는 「유량%」를 나타낸다. RO막 장치(12)의 투과수의 붕소 농도가 규정값보다 높아진 경우에는, RO막 장치(12)에 공급하는 피처리수량(유량)에 대한 RO막 장치(12)를 투과한 투과수량(유량)의 비율(피처리수의 회수율)을 저감함으로써, 투과수의 붕소 농도를 저감할 수 있다. RO막 장치(12)의 투과수의 붕소 농도가 규정값보다 충분히 낮은 경우에는, RO막 장치(12)에 있어서의 피처리수의 회수율을 높여, 보다 효율적인 운전을 할 수도 있다.
회수율은, 펌프 인버터(42)의 출력 조정, 압력 조정 밸브(26)의 개방도 조정, 또는 이들 양쪽을 실시함으로써 조정할 수 있다. 예를 들어 펌프 인버터(42)에 의해 펌프(41)의 출력을 제어함으로써, RO 투과수, RO 농축수의 유량을 제어하여 회수율을 조정할 수 있다. 또한, 예를 들어 신호선 S3을 통해 압력 조정 밸브(26)의 개방도를 크게 하여 농축수량을 증가시켜 회수율을 저하시키면, RO막 장치(12)의 가압측의 붕소 농도가 저감되기 때문에, 그것에 수반하여 투과측의 붕소 농도도 저감할 수 있다.
상기 피처리수의 회수율은, RO막 장치가 1단인 경우에는, RO막 장치(12)에 들어가는 피처리수량에 대한 RO막 장치(12)를 나오는 투과수량의 비율로 구한다. 또한, RO막이 다단(예를 들어, 후술하는 제1, 제2 RO막(14, 16))인 경우에는, 제1, 제2 RO막(14, 16) 각각에 공급되는 피처리수량과 투과수량으로부터, 각각의 RO막의 회수율을 구한다. 여기에서의 제2 RO막(16)의 피처리수는, 제1 RO막(14)의 투과수와 동의이다.
<(b) 피처리수의 온도>
RO막 장치(12)의 투과수의 붕소 농도가 규정값보다 높은 경우에는, 피처리수의 수온을 저하시킴으로써, RO막 장치(12)에 의한 붕소의 제거율(저지율)을 높일 수 있어, 투과수의 붕소 농도를 저감할 수 있다. 예를 들어, 신호선 S4를 통해, 열교환기(31)를 제어하여, 피처리수를 냉각함으로써, RO막 장치(12)를 투과한 투과수의 붕소 농도를 저하시킬 수 있다.
<(c) 피처리수의 pH>
RO막 장치(12)의 투과수의 붕소 농도가 규정값보다 높은 경우에는, 피처리수의 pH를 올림으로써, RO막 장치(12)의 붕소 저지율을 높일 수 있다. 즉, 피처리수의 pH를 상승시키도록, 피처리수에 알칼리제를 도입함으로써, RO막 장치(12)의 투과수의 붕소 농도를 저하시킬 수 있다. 예를 들어, 붕소 농도의 변화량에 대응시켜, 알칼리제의 도입량을 결정하고, 신호선 S1을 통해, 결정한 알칼리제량에 대응하여 약주 펌프(35)를 연속적으로 가동시킬 수 있다.
예를 들어, RO막 장치(12)의 투과수의 붕소 농도가 규정값보다 높은 경우에는, 피처리수의 pH가 예를 들어 9.0 이상이 되도록 약주 펌프(35)를 가동하여, 알칼리제 공급원(34)으로부터 알칼리제(예를 들어 NaOH 수용액)를 주 배관(11)의 피처리수에 도입한다. 또한, RO막 장치(12)의 투과수의 붕소 농도가 규정값보다 충분히 낮은 경우에는, 알칼리제의 도입량을 저감할 수도 있어, 과잉의 알칼리제의 사용을 방지할 수 있다. 또한, 피처리수의 pH의 상한은, RO막의 내약품성이라는 관점에서, 12 이하로 하는 것이 바람직하고, 11 이하로 하는 것이 보다 바람직하다.
<(d) 역침투막에 가해지는 피처리수의 공급 압력>
RO막 장치(12)의 투과수의 붕소 농도가 규정값보다 높아진 경우에는, RO막 장치(12)에 가해지는 피처리수의 공급 압력을 높여, RO막 장치(12)의 투과수의 붕소 농도를 저하시킬 수 있다. 즉, RO막 장치(12)에 가해지는 피처리수의 공급 압력이 상승하도록, 유량 제어 장치로서 기능하는 펌프 인버터(42)를 통해, 펌프(41)를 동작시킨다. 그때, 신호선 S2를 통해, 급격한 압력 변화가 발생하지 않도록, 펌프 인버터(42)에 의해, 펌프를 구동하는 전동기의 출력(예를 들어, 회전수)을 제어하여 피처리수의 유량을 많게 하여 수압을 높일 수 있다. 또한 신호선 S3을 통해, 압력 조정 밸브(26)의 개방도를 폐쇄 방향으로 조정함으로써, RO막(12)에 배압이 가해지기 때문에, 압력이 상승한다. 이와 같은 수단으로 압력을 상승시킴으로써, RO막 장치(12)를 투과한 투과수 중의 붕소 농도를 저하시킬 수 있다. 또한, RO막 장치(12)의 투과수의 붕소 농도가 규정값보다 충분히 낮은 경우에는, 피처리수의 공급 압력을 저하시켜, RO막 장치(12)의 투과수의 붕소 농도를 높일 수 있다.
또한, 피처리수의 공급 압력의 제어에 의해, (a)의 회수율도 변동시킬 수 있지만, 본 발명에 있어서는, 이 공급 압력의 제어를 목적으로 한 조작은, 상술한 (a)의 제어가 아니라, (d)의 제어에 해당하는 것으로 한다.
<(e) 역침투막의 교환 시기>
RO막은, 사용에 수반되는 경년적인 열화, 산화제 접촉에 의한 산화 열화, 알칼리 분위기에 의해 일어나는 가수분해 등에 의해, 붕소 저지율이 저하된다. RO막 장치(12)의 투과수의 붕소 농도가 규정값보다 높아진 경우에는, RO막 장치(12)가 열화되어 있는 것이 원인인 경우가 있다. 이와 같은 경우에는, 신품의 RO막 장치로 교환함으로써, RO막 장치(12)의 투과수의 붕소 농도를 저하시킬 수 있다.
다음에, 붕소 제거 방법의 일 실시 형태에 대하여, 상기 도 1에 도시한 붕소 제거 시스템(1A)을 참조하여 이하에 설명한다.
도 1에 도시한 바와 같이, 주 배관(11) 중을 통과시켜 피처리수를 RO막 장치(12)에 도입한다. RO막 장치(12)에 의해 피처리수 중의 각종 성분과 함께, 붕소가 제거된다.
RO막 장치(12)를 투과하여 얻은 투과수의 적어도 일부는, 분기 배관(22)을 통해 양이온 제거 장치(23)에 의해 양이온이 제거된다. 계속해서 붕소 분석 장치(21)에 의해, 양이온이 제거된 투과수의 붕소 농도를 측정한다.
그리고, 붕소 분석 장치(21)에 의해 측정한 붕소 농도에 기초하여, 상기 (a) 내지 (e)를 제어한다. 이들 제어는, 붕소 분석 장치(21)와는 다른, 도시하지 않은 제어 장치, 예를 들어 컴퓨터에 의해 행할 수도 있다.
상기 붕소 제거 시스템(1A)에서는, RO막 장치(12)의 입구측(12in)에 있어서의 피처리수의 pH를 알칼리측으로 하는 것이 바람직하고, 보다 바람직하게는 pH9 이상이 되도록 제어한다. 이와 같이 피처리수의 pH를 제어함으로써, RO막(12)에 의한 붕소 저지율을 높일 수 있다. 투과수의 붕소 농도가 높은 경우에는, 보다 많은 알칼리제를 첨가하여 pH를 보다 높임으로써, RO막 장치에 의한 붕소의 제거율을 높일 수 있다. 반대로, 투과수의 붕소 농도가 충분히 낮은 경우에는, 피처리수에 첨가하는 알칼리제의 양을 적게 해도 목적의 붕소 제거를 실현할 수 있다. 즉, 알칼리제의 과잉의 사용을 방지할 수 있어, 운전 비용을 저감할 수 있다.
상기 양이온 제거 장치는, 양이온 교환능을 갖는 한 특별히 제한은 없다. 예를 들어, 전기 재생식 탈양이온 제거 장치를 적합하게 사용할 수 있다.
전기 재생식 탈양이온 제거 장치에 사용되는 이온 교환체는, 다공질 이온 교환체로서는, 서로 연결되어 있는 매크로 포어와 매크로 포어의 벽 내에 평균 직경이 1 내지 1000㎛, 바람직하게는 10 내지 100㎛의 메소 포어를 갖는 연속 기포 구조인 것이 바람직하다. 또한, 전세공 용적이 1 내지 50ml/g, 바람직하게는 4 내지 20ml/g이며, 이온 교환기가 균일하게 분포되고, 이온 교환 용량이 0.5mg당량/g 건조 다공질체 이상의 것이 바람직하다. 다공질 이온 교환체의 그 밖의 물성 및 그 제조 방법은, 예를 들어 일본 특허 공개 제2003-334560호 공보에 개시되어 있다.
양이온 교환체로서 다공질 이온 교환체를 사용하면, 세공 용적이나 비표면적을 현저히 크게 할 수 있다. 이 때문에, 전기 재생식 탈양이온 장치의 탈이온 효율이 현저하게 향상되어 매우 유리하다. 또한, 다공질 이온 교환체의 전세공 용적이 1ml/g 미만이면, 단위 단면적당의 통수량이 작아져 버려, 처리 능력이 저하되어버리기 때문에 바람직하지 않다. 한편, 전세공 용적이 50ml/g을 초과하면, 골격 부분이 차지하는 비율이 저하되어, 다공질체의 강도가 현저하게 저하되어 버리기 때문에 바람직하지 않다. 전세공 용적이 1 내지 50ml/g인 다공질 이온 교환체를 전기 재생식 탈양이온 장치의 이온 교환체로서 사용한 경우, 다공질체의 강도와 탈이온 효율을 모두 만족시킨 것으로 할 수 있는 점에서 바람직하다. 또한, 다공질 이온 교환체의 이온 교환 용량이 0.5mg당량/g 건조 다공질체 미만이면, 이온 흡착용량이 부족하여 바람직하지 않다. 또한, 이온 교환기의 분포가 불균일하면, 다공질 양이온 교환체 내의 이온 이동이 불균일해져, 흡착된 이온의 신속한 배제가 저해되므로 바람직하지 않다.
섬유상 다공질 이온 교환체로서는, 예를 들어 일본 특허 공개 평5-64726호 공보에 기재된 단섬유나 단섬유의 집합체인 직포 및 부직포, 또한 이들의 가공품에 방사선 그래프트 중합을 이용하여 이온 교환기를 도입하여, 가공 성형한 것을 들 수 있다. 또한, 입자 응집형 다공질 이온 교환체로서는, 예를 들어 일본 특허 공개 평10-192716호 공보, 일본 특허 공개 평10-192717호 공보에 기재된 열가소성 폴리머와 열경화성 폴리머의 혼합 폴리머, 혹은 가교성 폴리머를 사용하여 이온 교환 수지 입자를 결합하여, 가공 성형한 것을 들 수 있다.
양이온 제거 장치(23)로서 상기 전기 재생식 탈양이온 제거 장치를 적용함으로써, 통상의 이온 교환 장치에서 필요한 약액을 사용한 재생 공정을 생략할 수 있어, 연속적인 양이온 제거가 가능해진다. 다공질 이온 교환체의 평균 직경은, 수은 압입법에 의해 구할 수 있다. 또한, 다공질 이온 교환체의 전세공 용적은, 예를 들어 마이크로 메리틱스사제의 세공 분포 측정 장치: AutoPoreIII9420에 의해 측정할 수 있다.
RO막 장치(12)에는, 고압 RO막 장치를 사용하는 것이 바람직하다. 고압 RO막 장치는, 종래, 해수 담수화용으로서 개발된 것이며, 염 농도가 낮은 원수에 대해서는, 보다 낮은 운전 압력에 의해, 효율적인 이온이나 TOC 등의 제거가 가능해진다. 예를 들어, 저압 RO막 장치 2단분의 여과능을, 고압 RO막 장치이면 일단으로 실현하는 것도 가능하고, 저압 RO막 장치와 고압 RO막 장치를 조합한 다단 RO막 장치, 또는 고압 RO막 장치를 사용한 다단 RO막 장치를 사용하는 것도 가능하다. 이와 같은 RO막 장치를 사용함으로써, 붕소, 실리카, 요소, 에탄올, 이소프로필알코올과 같은 비해리 물질의 제거율을 비약적으로 상승시키는 것이 가능해진다. 고압 RO막 장치로서, 예를 들어 HYDEANAUTICS사제 SWC 시리즈(SWC4, SWC5, SWC6), 도레이사제 TM800 시리즈(TM820V, TM820M), 다우 케미컬사제 SW 시리즈(SW30HRLE, SW30ULE) 등을 들 수 있다.
RO막 장치(12)에 있어서의 피처리수의 회수율은, 순수 제조 비용 저감의 관점에서, 80% 이상이 바람직하고, 85% 이상이 보다 바람직하고, 90% 이상이 더욱 바람직하다. 회수율을 「80% 이상」으로 함으로써 피처리수에 대하여 보다 많은 투과수량이 얻어진다는 이점이 있다.
다음에, 본 발명에 관한 붕소 제거 시스템의 바람직한 일 실시 형태(제2 실시 형태)를, 도 2를 참조하여 설명한다.
도 2에 도시한 바와 같이, 붕소 제거 시스템(1(1B))은, 전술한 붕소 제거 시스템(1A)에 있어서, RO막 장치(12) 대신에, 제1 RO막 장치(14) 및 제2 RO막 장치(16)를 주 배관(11)에 직렬로 배치한 형태이다. 또한, 약액 배관(36)의 합류부(36A)가 제1 RO막 장치(14)의 입구측(14in) 또는 제2 RO막 장치(16)의 입구측(16in) 중 어느 한쪽의 주 배관(11)에 배치되는 것이 바람직하다. 그 밖의 구성은, 붕소 제거 시스템(1A)과 마찬가지이다. 또한, 도 2에서는, 주 배관(11), 제1 RO막 장치(14), 제2 RO막 장치(16), 붕소 분석 장치(21), 분기 배관(22), 양이온 제거 장치(23)의 주요 구성 요소만을 나타내고, 그 밖의 구성 요소의 도시는 생략하였지만, 그 밖의 구성 요소는 도 1에 의해 설명한 것과 마찬가지이다.
상기 붕소 제거 시스템(1B)을 사용한 붕소 제거 방법에서는, 피처리수를 2단의 RO막 장치(제1 RO막 장치(14), 제2 RO막 장치(16))에 연속하여 통과시키는 점에서, 붕소를 포함하는 불순물 성분의 제거 효율을 보다 높일 수 있다. 또한, 제1 RO막 장치(14)의 입구측(14in)에 약액 배관(36)의 합류부(36A)가 배치되어 있는 경우, 제1 RO막 장치(14)에 공급하는 피처리수에 알칼리제를 공급할 수 있기 때문에, 피처리수의 pH를 높일(바람직하게는 pH9 이상으로 높일) 수 있다. 이 경우, 제1 RO막 장치(14)의 붕소 제거 능력이 높아진다. 또한, 제2 RO막 장치(16)의 입구측(16in)에 약액 배관(36)의 합류부(36A)가 배치되어 있는 경우에는, 제2 RO막 장치(16)의 피처리수의 pH를 높일(바람직하게는 pH9 이상으로 높일) 수 있기 때문에, 제2 RO막 장치(16)의 붕소 제거 능력이 높아진다. 또한, 제2 RO막 장치(16)로부터 배출되는 농축수는, 제1 RO막(12)에 피처리수를 보내는 펌프(도시하지 않음)보다 상류에 있어서, 제1 RO막 장치(14)의 피처리수와 혼합되어도 된다. 제2 RO막 장치(16)의 피처리수는 제1 RO막 장치(14)에 의해 처리되고 있기 때문에, 설령 농축수여도 제1 RO막 장치(14)의 피처리수보다도 수질적으로는 양호한 경우가 있다. 이와 같은 경우에 있어서는, 제2 RO막 장치(16)의 농축수를 제1 RO막 장치(14)의 피처리수와 혼합함으로써, 제1 RO막 장치(14)의 피처리수에 대하여 희석 효과가 작용하여, 제1 RO막 장치(12)에 공급되는 붕소 농도를 저감할 수 있다.
도 2의 형태에 있어서, 상기와 같은 복수의 RO막 장치(예를 들어 제1 RO막 장치(14), 제2 RO막 장치(16)) 중, 적어도 하나가 고압 RO막 장치인 것이 바람직하다. 보다 바람직하게는, 복수의 RO막 장치 중 적어도 일단의 역침투막 장치에 급수되는 피처리수의 pH가 9 이상으로 제어되고, 그 역침투막 장치가 고압 역침투막 장치인 것이 바람직하다.
RO막 장치는, 1단째의 제1 RO막 장치(14)의 유효 압력 1㎫당의 투과 유속이, 2단째의 제2 RO막 장치(16)의 유효 압력 1㎫당의 투과 유속보다도 큰 것이 바람직하다. 투과 유속은, 투과수량을 RO막 면적으로 나눈 것이다. 「유효 압력」이란, JIS K3802:2015 「막 용어」에 기재된, 평균 조작압으로부터 침투압차 및 2차측 압을 차감한, 막에 작용하는 유효한 압이다. 또한, 평균 조작압은, RO막의 1차측에 있어서의 막 공급수의 압력(운전 압력)과 농축수의 압력(농축수 출구 압력)의 평균값이며, 이하의 식에 의해 표시된다.
평균 조작압=(운전 압력+농축수 출구 압력)/2
유효 압력 1㎫당의 투과 유속은, 막 메이커의 카탈로그에 기재된 정보, 예를 들어 투과수량, 막 면적, 평가 시의 회수율, NaCl 농도 등으로부터 계산할 수 있다. 또한, 하나 또는 복수의 압력 용기에 동일한 투과 유속인 RO막이 복수개 장전되어 있는 경우, 압력 용기의 평균 조작압/2차측 압력, 원수 수질, 투과수량, 막 개수 등의 정보로부터, 장전된 막의 투과 유속을 계산할 수 있다. 구체적으로는, 제1 RO막 장치(14)의 RO막의 유효 압력 1㎫당의 투과 유속과 제2 RO막 장치(16)의 RO막의 유효 압력 1㎫당의 투과 유속의 차는, 얻어지는 투과 수질이라는 관점에서, 0.3m3/(m2·d) 이상이 바람직하고, 0.5m3/(m2·d) 이상이 보다 바람직하고, 0.7m3/(m2·d) 이상이 더욱 바람직하다. 그리고 제2 RO막 장치(16)의 펌프 동력이라는 관점에서, 1m3/(m2·d) 이하가 바람직하다.
상기 RO막은 2단 구성이지만, 다단 구성이어도 된다. 이 경우, RO막을 직렬로 다단으로 배치하는 것이 바람직하다. 다단의 RO막 장치 중 적어도 일단이 고압 RO막 장치인 것이 바람직하다. 또한, 적어도 일단의 RO막 장치에 도입하는 피처리수의 pH를 높이는(바람직하게는 pH9 이상으로 하는) 것이 바람직하다.
다음에, 본 발명에 관한 붕소 제거 시스템의 바람직한 일 실시 형태(제3 실시 형태)를, 도 3을 참조하여 설명한다.
도 3에 도시한 바와 같이, 붕소 제거 시스템(1(1C))은, 전술한 붕소 제거 시스템(1B)에 있어서, RO막 장치에 의한 붕소 제거 처리 전에 전처리를 행하는 것이다. 전처리는, 양이온 교환 수지를 충전한 양이온 교환 장치(51)에 통과시켜 양이온 교환 처리를 행하고, 계속해서 탈탄산 장치(53)를 통과시키는 탈탄산 처리를 행하는 것이 바람직하다. 구체적으로는, 제1 RO막(14)의 전단의 주 배관(11)에, 전처리 시스템으로서, 제1 RO막(14)으로부터 먼 측으로부터, 양이온 교환 장치(51), 탈탄산 장치(53)의 순으로 배치되고, 이들은 도 1에 도시한 열교환기(31)의 전단에 배치되는 것이 바람직하다. 또한, 「전단」이란, 대상이 되는 주 배관(11)의 위치로부터 피처리수 또는 투과수의 흐름의 상류측을 의미한다.
양이온 교환 장치(51)에 있어서의 양이온 교환 처리에서는, 바람직하게는 강산성 양이온 교환 수지가 사용된다. 강산성 양이온인 R-SO3·H의 H가, 수중의 Na+, Ca2+, Mg2 + 등과 교체되어 제거된다(R은 이온 교환 수지의 모체를 나타낸다). 양이온 교환 장치(51)에 의한 처리에서는 이온 교환 수지로부터는 H+가 해리되기 때문에, 피처리수는 산성이 된다. 이 피처리수를 탈탄산 장치(53)에 보낸다.
또한, 본 양이온 교환 수지는, R-SO3·Na인 나트륨형 수지를 사용해도 된다. 이 경우, 이온 교환 수지에 의한 처리 전후의 pH는 변화되지 않지만, 이온 교환 수지 처리수에 산을 첨가함으로써, pH를 내리는 것도 가능하다.
탈탄산 장치(53)에서는, 산성으로 된 물을 기액 접촉시킴으로써, 수중에 포함되는 탄산 성분을 가스화하여, 제거한다. 즉, 수중의 HCO3 -는, HCO3 -+H+→H2CO3로 변화된다. 여기에 공기를 불어 넣음으로써, H2CO3→H2O+CO2의 반응이 발생하고, CO2(이산화탄소)는 피처리수 중으로부터 대기 중으로 대부분이 방출된다. 따라서, 양이온 교환 장치(51)를 통과시킨 피처리수를 탈탄산 장치(53)에 보내고, 탈탄산 장치(53)에 의해 공기를 보내어, 탄산 성분을 제거할 수 있다.
또한, 피처리수의 pH를 제어하는 알칼리제를 공급하는 약액 배관(36)의 합류부(36A)가, 제1 RO막 장치(14)의 입구측(14in) 또는 제2 RO막 장치(16)의 입구측(16in)의 주 배관(11)에 배치되는 것이 바람직하다. 이 약액 배관(36)은, 도 1에 의해 설명한 약액 배관(32)과 마찬가지의 것이다.
또한, 제1 RO막 장치(14)와 제2 RO막 장치(16) 사이의 주 배관(11)에는, 피처리수 pH를 제어하는 산성 약액을 공급하는 산성 약액 배관(37)의 합류부(37A)를 배치하고, 제2 RO막 장치(16)의 피처리수에 산을 첨가하여, 피처리수 pH를 7 내지 8 정도의 중성으로 조정해도 된다. 알칼리성으로 된 제2 RO막 장치(16)의 피처리수를 중성 내지 중성 부근으로 조정함으로써, 제2 RO막 장치(16)의 카티온 제거율을 올릴 수 있다. 결과로서, 양이온 제거 장치(23)에서 제거해야 할 카티온양이 저감되기 때문에, 양이온 제거 장치(23)의 재생 강도를 저감할 수 있다. 예를 들어 양이온 제거 장치(23)가 전기 재생식인 경우, 재생에 필요한 전압을 저하시키는 것이 가능하다. 산성 약액으로서는, 황산(H2SO4), 염산(HCl), 질산(NHO3) 등을 들 수 있다. 산성 약액의 농도는 적절히 설정된다. 그 밖의 구성은, 붕소 제거 시스템(1B)과 마찬가지이다. 또한, 도 3에서는, 주 배관(11), 제1 RO막 장치(14), 제2 RO막 장치(16), 붕소 분석 장치(21), 분기 배관(22), 양이온 제거 장치(23), 양이온 교환 장치(51), 탈탄산 장치(53)의 주요 구성 요소만을 나타내고, 그 밖의 구성 요소의 도시는 생략하였다. 그 밖의 구성 요소는 도 1에 의해 설명한 것과 마찬가지이다.
상기 붕소 제거 시스템(1C)에 의한 붕소 제거 방법에서는, 양이온 교환 장치(51)에 의해, 피처리수 중의 Na+, Ca2 +, Mg2 + 등의 양이온을 제거할 수 있다. 또한, 탈탄산 장치(53)에 의해, 산성액 중에서 발생한 피처리수 중의 탄산을 분해 제거할 수 있다. 이에 의해, 피처리수의 pH는 대략 중성이 된다. 또한, 주 배관(11) 내에는, 약액 배관(36)을 통해 알칼리제(NaOH 수용액)가 공급되어, 피처리수의 pH가 높아진다(바람직하게는, pH9.0 이상으로 제어된다). 양이온 교환 장치(51) 및 탈탄산 장치(53)에 의해, Ca2 +, Mg2 + 등의 경도 성분 및 탄산이 제거되기 때문에, pH를 알칼리측으로 조정해도, 난용해 물질(스케일)의 생성이 일어나지 않는다. 이 피처리수에 대하여, 제1 RO막 장치(14)에 의해 붕소 제거를 행한다. 제1 RO막 장치(14)를 투과한 투과수에 대하여, 필요에 따라 알칼리 약액 혹은 산성 약액을 공급하여, 투과수의 pH를 조정할 수도 있다. 그 후는 제1 실시 형태와 마찬가지로 하여, 제2 RO막 장치(16)의 투과수의 붕소 농도를 측정하고, 측정값에 기초하여 RO막의 관리를 행한다.
다음에, 본 발명에 관한 붕소 제거 시스템의 바람직한 일 실시 형태(제4 실시 형태)를, 도 4를 참조하여 설명한다.
도 4에 도시한 바와 같이, 붕소 제거 시스템(1(1D))은, 전술한 붕소 제거 시스템(1C)에 있어서, 양이온 제거 장치(23)를 제2 RO막 장치(16)와 분기 배관(22)의 분기부(22A) 사이의 주 배관(11)에 배치한 것이다. 그 밖의 구성 요소는 전술한 붕소 제거 시스템(1C)과 마찬가지이다.
상기 붕소 제거 시스템(1D)에서는, 투과수의 전량을 양이온 제거 장치(23)에 통과시키기 때문에, 투과수 중의 양이온을 제거할 수 있다. 이 때문에, 붕소 제거 시스템(1D)은, 초순수 제조의 1차 순수계 시스템에 사용할 수 있다.
이하에 본 발명의 붕소 제거 시스템을 갖는 초순수 제조 시스템의 바람직한 일례에 대하여, 도 5를 참조하여, 설명한다.
도 5에 도시한 바와 같이, 초순수 제조 시스템(101)은, 1차 순수계 시스템(110)과 2차 순수계 시스템(서브 시스템)(120)에 의해 구성된다. 또한, 1차 순수계 시스템(110)의 전단에 전처리 시스템(130)을 배치하는 것이 바람직하다. 이 전처리 시스템(130)에서는, 응집, 여과, 막 분리 등에 의해, 피처리수(원수)에 포함되는 미립자(현탁 물질이나 콜로이드성 물질 등)를 제거한다. 구체적으로는, 응집 침전, 가압 부상, 모래 여과, MF/UF막을 사용한 제탁, 탈탄산, 연화 등을 들 수 있다.
그리고 1차 순수계 시스템(110)에서는, 이온류, TOC, 용존 가스(산소, CO2), SiO2의 거의 대부분 등을 제거할 수 있다. 그 결과, 1차 순수계 시스템(110)의 수질은, 비저항이 17.5MΩ·㎝ 이상이나 된다.
1차 순수계 시스템(110)에서는, 전처리 시스템(130)에 의해 전처리한 피처리수를 탱크(111)에 유입시킨다. 탱크(111)로부터는, 상시, 피처리수가 1차 주 배관(141)을 통해 하류측으로 흐르는 것이 바람직하다. 탱크(111)의 하류측의 1차 주 배관(141)에는, 열교환기(112), RO막(113), 이온 교환 장치(114), 탈기 장치(115)가 배치되어 차례로 직렬로 접속되어 있는 것이 바람직하다.
이온 교환 장치로서는, 2상2탑식 재생형 이온 교환 장치, 2상1탑식 재생형 이온 교환 장치, 혼상형 재생식 이온 교환 장치, 재생형 이온 교환 장치 등을 적합하게 사용한다. 2상2탑식 재생형 이온 교환 장치는, 강산성 카티온 교환 수지가 충전된 카티온 교환탑과, 강염기성 아니온 교환 수지가 충전된 아니온 교환탑이 직렬로 접속되어 있다. 2상1탑식 재생형 이온 교환 장치는, 강산성 카티온 교환 수지와 강염기성 아니온 교환 수지가 각각의 다른 층이 되도록 하나의 탑 내에, 임의의 순번으로 선택된 해당 강산성 카티온 교환 수지와 강염기성 아니온 교환 수지가 충전되어 있다. 혼상형 재생식 이온 교환 장치는, 강산성 카티온 교환 수지와 강염기성 아니온 교환 수지가 균일하게 혼합되어 하나의 탑 내에 충전되어 있다. 재생형 이온 교환 장치는, 전기 재생식 탈이온 장치가 1단 또는 복수단 직렬로 접속되어 있다.
또한, 1차 순수 시스템에 자외선 산화 장치, 자외선 살균 장치를 설치해도 되고, 나아가 상기 배열에 구애되지 않고, 최적의 배치로 할 수 있다. 예를 들어 RO막(113)의 피처리수 및 처리수의 살균 목적으로서 자외선 살균 장치를 설치할 수 있다. 또한 RO막(113)의 투과수를 탈기 처리하여 무기 탄소를 제거한 후에 자외선 산화, 이온 교환 장치의 순번으로 통수할 수도 있고, 또는 RO 투과수를 직접 자외선 산화하여, 이온 교환 수지 장치에 도입할 수도 있다. 나아가, RO막(113)의 전단에, 2상3탑식의 이온 교환 장치를 설치해도 된다. 2상3탑식의 이온 교환 장치는, 카티온 교환탑, 아니온 교환탑 및 탈탄산탑을 포함한다. 카티온 교환탑은, 강산성 카티온 교환 수지와 약산성 카티온 수지가 각각의 다른 층이 되도록 하나의 탑 내에 설치되어 있다. 아니온 교환탑은, 강염기성 아니온 교환 수지와 약염기성 아니온 교환 수지가 각각의 다른 층이 되도록 하나의 탑 내에 설치되어 있다. 탈탄산탑은, 피처리수 중의 CO2를 제거한다. 이들 1차 순수 시스템의 구성은, 피처리수의 성상, 구하는 1차 순수의 성상을 감안하여, 임의로 선택할 수 있다. 이와 같은 처리에 의해 얻어지는 1차 순수의 수질로서는, 비저항 18MΩ·㎝ 이상, TOC 20ppb 이하, 나트륨 1ppb 이하, 염화물 이온 1ppb 이하, 금속(철, 망간, 알루미늄, 아연) 1ppb 이하, 이온상 실리카 10ppb 이하, 붕소 0.05ppb 이하로 할 수 있다.
이 1차 순수계 시스템(110)에서는, RO막(113)으로서, 본 발명의 붕소 제거 시스템(1)의 RO막 장치를 내장하여, 이 붕소 제거 시스템(1)을 적용하는 것이 바람직하다.
열교환기(112)는 전술한 열교환기(31)(도 1 참조)와 마찬가지의 것을 사용할 수 있고, RO막(113)도 전술한 RO막 장치(12)의 RO막(도 1 참조)과 마찬가지의 것을 사용할 수 있다.
이온 교환 장치(114)는, 주로, 이온, TOC, 용존 산소나 탄산 가스를 제거하는 것이다. 예를 들어, 양이온 교환 수지와 음이온 교환 수지를 동일 탑 내에 충전한 혼상식을 사용해도 된다. 양이온 교환 수지는 Ca2 +, Mg2 +, Na+ 등의 양이온 성분을 제거할 수 있고, 음이온 교환 수지는 SO4 2-, NO3 - 등의 음이온 성분을 제거할 수 있다.
탈기 장치(115)는, 예를 들어 기액 분리막을 사용하여 효율적으로, 주로 수중의 용존 산소나 탄산 가스를 제거하는 것이다.
탈기하여 얻은 순수는, 2차 순수계 시스템(120)의 탱크(121)에 유입된다. 2차 순수계 시스템(120)에서는, 1차 순수계 시스템(110)에서 완전히 제거되지 않은 미량의 이온류, TOC를 제거함과 함께, 1차 순수계 시스템(110) 이후에 시스템 구성 부재로부터 용출된 이온류, TOC를 제거할 수 있다.
2차 순수계 시스템(120)은, 탱크(121)의 하류측에 2차 주 배관(142)이 접속된다. 2차 주 배관(142)에는, 열교환기(122), 자외선(UV) 산화 장치(123), 이온 교환 장치(124), UF막(한외 여과막: Ultrafiltration Membrane) 장치(125)가 배치되어 차례로 직렬 접속되는 것이 바람직하다. 또한 2차 주 배관(142)의 단부에는, 유스 포인트(150)가 접속되는 것이 바람직하다. 유스 포인트(150)에서 사용되지 않은 초순수는, 복귀 배관(143)을 통해, 탱크(121)로 되돌려지는 것이 바람직하다. 따라서, 초순수는, 도중에 체류하지 않고, 유스 포인트(150)에서 사용되거나, 또는 탱크(121)로부터 2차 주 배관(142), 복귀 배관(143)을 통해, 다시 탱크(121)로 되돌려지는 순환계 내를 계속해서 흐를 수 있다. 이와 같은 순환계를 취함으로써, 초순수는 순환계의 도중에 오염될 리스크가 적어진다.
열교환기(122)는, 전술한 열교환기(31)(도 1 참조)와 마찬가지의 것을 사용할 수 있다.
UV 산화 장치(123)는 TOC를 제거할 수 있다. 주로 파장 185㎚의 자외선을 사용한 처리에서, 자외선을 물에 직접 조사함으로써 산화력이 강한 히드록시 라디칼(OH 라디칼)을 발생시키고, 이 산화 작용에 의해 저분자 유기물을 탄산 가스와 유기산으로 분해할 수 있다.
이온 교환 장치(124)는, 2차 순수계 시스템(120)까지 잔류하는 이온을 제거하는 것이며, 일반적으로는, 이온 교환 수지를 대략 수백리터 이하의 용기에 넣은 디미너라 불리는 것이 사용되는 것이 바람직하다. UV 산화 장치(123)에 의해 발생한 탄산 가스와 유기산 등도 통상은 음이온 교환 수지로 흡착 및/또는 제거하는 것이 바람직하다.
UF 장치(125)는, 구멍 직경이 0.01 내지 0.001㎛인 막이며, 초순수 제조의 마무리 처리(미립자 제거)로서 사용하는 기능재이다. UF막은 구멍의 크기가 작기 때문에 저지된 미립자나 불순물에 의해 단시간에 막이 폐색된다. 이 때문에, 통상은 막의 표면을 따라서 일정 방향으로 원액을 계속해서 흘려, 미립자나 불순물이 농축된 농축수를 연속적으로 배출, 또는 송액측으로 되돌리면서 사용함으로써 미립자나 불순물의 막 표면에 대한 부착을 저감시키는 크로스 플로우 방식이 채용되는 것이 바람직하다.
상기 각 실시 형태에 있어서, 피처리수의 수질은 특별히 한정되지 않는다. 피처리수에는, 공업용수, 표층수, 수돗물, 지하수, 해수, 해수를 역침투법 혹은 증발법에 의해 탈염한 해수 담수화 처리수, 각종 배수, 예를 들어 반도체 제조 공정에서 배출되는 배수에 대해서도 적합하게 사용할 수 있다. 대상이 되는 붕소 농도는 특별히 한정되지 않지만, 붕소 농도 1ppb 내지 5ppm, 바람직하게는 5ppb 내지 1ppm, 보다 바람직하게는 5ppb 내지 100ppb이면 된다.
본 발명의 붕소의 측정 방법은, 액 중의 붕소 농도를 측정하는 방법이며, 상기 피처리수를 이온 제거 처리를 거치게 하는 공정과, 이온 제거 처리한 처리수 중의 붕소 농도를 측정하는 공정을 포함한다. 피처리수는, 역침투막 처리 후의 투과수인 것이 바람직하고, 이온 제거 처리는, 상기한 바와 같은 양이온 제거 처리인 것이 바람직하다.
이 붕소의 측정 방법은, 투과수의 이온 제거에 의해 비저항을 충분히 높게(예를 들어 15MΩ·㎝ 이상) 하여, 붕소 농도의 측정을 할 수 있다. 따라서, 일반적으로 사용되는 온라인 붕소 모니터 등을 사용하여 ppb 레벨의 붕소 농도를 정확하게 측정할 수 있다. 본 발명의 붕소의 측정 방법은, 예를 들어 본 발명의 피처리수 중의 붕소의 제거 방법 내지 제거 시스템에 있어서의 붕소 농도의 측정에 적합하게 적용할 수 있다.
실시예
(실시예 1)
실시예 1은, 도 2에 도시한 붕소 제거 시스템(1B)을 사용하고, 피처리수에 공업용수를 사용하고, 그 피처리수에, 제1 RO막 장치(14)의 입구측의 약액 배관(36)으로부터 NaOH 수용액을 첨가하여 pH를 10.5로 하고, 2단 RO막 장치(제1 RO막 장치(14) 및 제2 RO막 장치(16))에 통수하였다. 제1 RO막 장치(14)와 제2 RO막 장치(16) 사이의 약액 배관(36)으로부터는 약액을 첨가하지 않았다. 2단 RO막 장치를 통과한 투과수를 양이온 제거 장치(23)(전기 재생식 탈양이온 제거 장치)에 통과시킨 후의 붕소 농도를, 붕소 분석 장치(21)에 의해 측정하였다. 붕소 분석 장치(21)에는, ICP 발광 분광 분석 장치(SII·나노테크놀로지 가부시키가이샤제 SPS3100을 사용하였다. TDS(Total Dissolved Solids: 총 용해 고형물)의 측정은 증발 건고법(JIS: K0102)에 준거하였다. 도전율(비저항)의 측정에는, 호리바 어드밴스드 테크노사제 도전율 측정 장치 HE-200H를 사용하였다. Na 농도의 측정에는, 다이오넥스사제 이온 크로마토그래프 시스템 ICS-1600을 사용하였다. 제1 RO막 장치(14), 제2 RO막 장치(16)로서, ES20-D8(닛토덴코사제, 유효 압력 1㎫당의 투과 유속: 1.14m3/m2/d)을 사용하였다. 제1 RO막 장치(14)의 회수율 80%, 제2 RO막 장치(16)의 회수율 90%로 운전하였다. 도시하고 있지 않지만, 제2 RO막 장치(16)의 농축수는, 제1 RO막 장치(14)의 피처리수에 합류시켰다.
알칼리 첨가 후의 제1 RO막 장치(14) 입구에 있어서, TDS가 150ppm, 도전율이 340μS/㎝(비저항이 2.9㏀·㎝), Na 농도가 54ppm, 붕소 농도가 10ppb였다.
(실시예 2)
실시예 2는, 도 3에 도시한 붕소 제거 시스템(1C)을 사용하고, 피처리수에 공업용수를 사용하고, 그 피처리수를 양이온 교환 장치(51), 탈탄산 장치(53), 약액 배관(36)으로부터의 알칼리 첨가, 2단 고압 RO막 장치(제1 RO막 장치(14) 및 제2 RO막 장치(16))의 순번으로 통과시켰다. 또한, 산성 약액 배관(37)으로부터는 산성 약액을 첨가하지 않았다. 또한, 2단 RO막 장치를 통과한 투과수를 양이온 제거 장치(23)에 통과시킨 후, 투과수 중의 붕소 농도를, 붕소 분석 장치(21)에 의해 측정하였다. 붕소 분석 장치(21)에는, 상기 ICP 발광 분광 분석 장치를 사용하여 측정하였다. TDS, 도전율(비저항) 및 Na 농도의 측정은, 실시예 1과 마찬가지로 하였다. 제1 RO막 장치(14), 제2 RO막 장치(16)로서, 「SWC5MAX」(Hydranautics사제, 유효 압력 1㎫당의 투과 유속: 0.32m3/m2/d)를 사용하였다. 그 밖의 조건은 실시예 1과 마찬가지로 하였다.
알칼리 첨가 후의 제1 RO막 장치(14) 입구에 있어서, pH가 10, TDS가 140ppm, 도전율이 320μS/㎝(비저항이 3.1㏀·㎝), Na 농도가 45ppm, 붕소 농도가 10ppb였다.
(비교예 1)
비교예 1은, 실시예 1에 있어서, 양이온 제거 장치(23)를 통과시키지 않고 투과수의 붕소 농도를 측정하였다. 그것 이외는 실시예 1과 마찬가지로 하였다.
(비교예 2)
비교예 2는, 실시예 1에 있어서, 양이온 제거 장치(23) 대신에 혼상 수지를 사용한 이온 제거 장치(오르가노사제, 앰버제트: EG4-HG)를 사용하였다. 그것 이외는 실시예 1과 마찬가지로 하였다.
붕소 농도 측정 전(2단 RO막 장치를 통과한 투과수를 양이온 제거 장치(23)에 통과시킨 후)의 투과수의 비저항, Na 농도 및 붕소 분석 장치(21)에 의한 붕소 농도의 측정 결과를 표 1에 나타낸다.
Figure 112020120530917-pct00001
그 결과, 실시예 1 및 2에서는, 양이온 제거 장치(23)를 통과시킨 후의 피처리수에 포함되는 ppb 레벨의 붕소 농도를 측정할 수 있음을 확인할 수 있었다.
비교예 1에서 측정된 붕소 농도는, 실시예 1보다도 저하되었다. 이것은, 나트륨 이온의 농도가 너무 높기 때문에, 급수의 비저항이 작고, 결과, 노이즈가 커져 붕소 농도를 정확하게 측정할 수 없었기 때문이다.
비교예 2에서는, 실시예 1에 비해 붕소 농도가 10분의 1로 되었다. 이것은, 혼상 수지에 의해 붕소가 제거되어 버린 것이 원인이다. 이것에서는, RO막의 투과수의 정확한 붕소 농도를 측정할 수 없다. 따라서, 비교예 1, 2에서는, RO막 처리 직후의 투과수의 붕소 농도를 정확하게 측정할 수 없어, 붕소 농도를 지표로 한 RO막의 운전 관리를 정확하게 행할 수 없다.
(실시예 3)
실시예 3은, 실시예 2에 있어서, 붕소 분석 장치(21)에 GE사제 온라인 붕소 측정기를 사용하여 붕소 농도의 연속 감시를 실시하였다.
(비교예 3)
비교예 3은, 비교예 1에 있어서, 실시예 3과 마찬가지의 온라인 붕소 측정기를 사용하여 붕소 농도의 연속 감시를 실시하였다.
그 결과를 표 2에 나타낸다.
Figure 112020120530917-pct00002
비교예 3에서는, 온라인 붕소 측정기의 급수 수질을 만족시키지 않아, 노이즈가 커서 정확한 붕소 농도의 측정을 할 수 없었다.
본 발명을 그 실시예와 함께 설명하였지만, 우리들은 특별히 지정하지 않는 한 우리들의 발명을 설명의 어느 세부에 있어서도 한정하려고 하는 것은 아니고, 첨부의 청구범위에 나타낸 발명의 정신과 범위에 반하지 않고 폭넓게 해석되어야 한다고 생각한다.
본원은, 2018년 6월 20일에 일본에서 특허 출원된 특허 출원 제2018-117270호에 기초하는 우선권을 주장하는 것이며, 이것은 여기에 참조하여 그 내용을 본 명세서의 기재된 일부로서 포함한다.
1, 1A, 1B, 1C, 1D: 붕소 제거 시스템
11: 주 배관
12: 역침투막 장치(RO막 장치)
12in, 14in, 16in: 입구측
12out: 출구측
14: 제1 RO막 장치
16: 제2 RO막 장치
21: 붕소 분석 장치
22: 분기 배관
22A: 분기부
23: 양이온 제거 장치
25: 농축수 배관
26: 압력 조절 밸브
31: 열교환기
32, 36: 약액 배관
32A, 36A: 합류부
34: 알칼리제 공급원
35: 약주 펌프
37: 산성 약액 배관
37A: 합류부
41: 펌프
42: 펌프 인버터
51: 양이온 교환 장치
53: 탈탄산 장치
101: 초순수 제조 시스템
110: 1차 순수계 시스템
111: 탱크
112: 열교환기
113: RO막
114: 이온 교환 장치
115: 탈기 장치
120: 2차 순수계 시스템(서브 시스템)
121: 탱크
122: 열교환기
123: 자외선(UV) 산화 장치
124: 이온 교환 장치
125: UF 장치
130: 전처리 시스템
141: 1차 주 배관
142: 2차 주 배관
143: 복귀 배관
S1, S2, S3, S4: 신호선

Claims (11)

  1. 피처리수 중의 붕소 제거 방법이며,
    해당 붕소 제거 방법은, 상기 피처리수를 역침투막 처리를 거치게 하는 공정과, 해당 역침투막 처리의 투과수의 적어도 일부를 양이온 제거 처리를 거치게 하는 공정과, 해당 양이온 제거 처리 후의 상기 투과수 중의 붕소 농도를 측정하는 공정을 포함하고,
    상기 양이온 제거 처리를 전기 재생식 탈양이온 장치에 의해 행하고,
    상기 붕소 농도 측정값에 기초하여 하기 (a) 내지 (e) 중 적어도 하나를 제어하는, 피처리수 중의 붕소 제거 방법:
    (a) 상기 역침투막 처리에 있어서의 상기 피처리수의 회수율,
    (b) 상기 피처리수의 온도,
    (c) 상기 피처리수의 pH,
    (d) 상기 역침투막 처리의 역침투막에 가해지는 상기 피처리수의 공급 압력, 및
    (e) 상기 역침투막 처리에 사용하는 역침투막의 교환 시기.
  2. 제1항에 있어서,
    상기 역침투막 처리를 거치게 하는 상기 피처리수의 pH를 9 이상으로 제어하는 피처리수 중의 붕소의 제거 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 역침투막 처리가 복수단의 역침투막 장치에 의한 처리이며, 적어도 일단의 역침투막 장치에 급수되는 피처리수의 pH를 9 이상으로 제어하는 피처리수 중의 붕소의 제거 방법.
  4. 제3항에 있어서,
    상기 복수단의 역침투막 장치 중 적어도 일단의 역침투막 장치가 고압 역침투막 장치인 피처리수 중의 붕소의 제거 방법.
  5. 제3항에 있어서,
    상기 복수단의 역침투막 장치를 구성하는 제1단째의 역침투막 장치의 유효 압력 1㎫당의 투과 유속이, 제2단째의 역침투막 장치의 유효 압력 1㎫당의 투과 유속보다도 큰 피처리수 중의 붕소의 제거 방법.
  6. 제1항 또는 제2항에 있어서,
    상기 피처리수를 상기 역침투막 처리를 거치게 하기 전에, 해당 피처리수를 양이온 교환 처리를 거치게 하고, 다음에 탈탄산 처리를 거치게 하는 피처리수 중의 붕소의 제거 방법.
  7. 삭제
  8. 피처리수 중으로부터 붕소를 제거하는 붕소 제거 시스템이며,
    상기 붕소 제거 시스템은, 피처리수를 처리하는 역침투막 장치와, 해당 역침투막 장치의 투과수의 적어도 일부를 처리하는 전기 재생식 탈양이온 장치와, 해당 전기 재생식 탈양이온 장치에 의한 처리수 중의 붕소 농도를 측정하는 붕소 분석 장치를 갖고,
    상기 붕소 분석 장치에 의해 측정된 붕소 농도에 기초하여 하기 (a) 내지 (e) 중 적어도 하나를 제어하는 붕소 제거 시스템:
    (a) 상기 역침투막 장치에 있어서의 피처리수의 회수율,
    (b) 상기 피처리수의 온도,
    (c) 상기 피처리수의 pH,
    (d) 상기 역침투막 장치의 역침투막에 가해지는 피처리수의 공급 압력, 및
    (e) 상기 역침투막 장치에 있어서의 역침투막의 교환 시기.
  9. 전처리 시스템과 1차 순수 시스템과 서브 시스템을 갖는 초순수 제조 시스템이며, 해당 1차 순수 시스템이 제8항에 기재된 붕소 제거 시스템을 갖는 초순수 제조 시스템.
  10. 삭제
  11. 삭제
KR1020207032547A 2018-06-20 2019-04-05 피처리수 중의 붕소 제거 방법, 붕소 제거 시스템, 초순수 제조 시스템 및 붕소 농도의 측정 방법 KR102459286B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018117270A JP7454330B2 (ja) 2018-06-20 2018-06-20 被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法
JPJP-P-2018-117270 2018-06-20
PCT/JP2019/015130 WO2019244443A1 (ja) 2018-06-20 2019-04-05 被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法

Publications (2)

Publication Number Publication Date
KR20200142553A KR20200142553A (ko) 2020-12-22
KR102459286B1 true KR102459286B1 (ko) 2022-10-28

Family

ID=68983938

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207032547A KR102459286B1 (ko) 2018-06-20 2019-04-05 피처리수 중의 붕소 제거 방법, 붕소 제거 시스템, 초순수 제조 시스템 및 붕소 농도의 측정 방법

Country Status (6)

Country Link
US (1) US11655162B2 (ko)
JP (1) JP7454330B2 (ko)
KR (1) KR102459286B1 (ko)
CN (1) CN111867986A (ko)
TW (1) TW202000599A (ko)
WO (1) WO2019244443A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10947143B2 (en) 2019-04-01 2021-03-16 Saline Water Conversion Corporation Desalination brine concentration system and method
US20210053848A1 (en) 2019-08-22 2021-02-25 Saline Water Conversion Corporation Multi-Valent Ion Concentration Using Multi-Stage Nanofiltration
JP6799657B1 (ja) * 2019-10-24 2020-12-16 オルガノ株式会社 水処理システム及び超純水製造システム並びに水処理方法
KR102346894B1 (ko) * 2020-01-13 2022-01-04 (주) 시온텍 방사성 폐액의 붕소분리장치 및 방법
JP7183208B2 (ja) 2020-02-14 2022-12-05 栗田工業株式会社 超純水製造装置及び超純水製造方法
US11806668B2 (en) 2021-12-14 2023-11-07 Saline Water Conversion Corporation Method and system for extraction of minerals based on divalent cations from brine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342587A (ja) * 2004-06-01 2005-12-15 Toray Ind Inc 造水方法および造水装置
JP2014100706A (ja) 2012-11-21 2014-06-05 Ovivo Luxembourg Srl 特に超純水を得るための水の処理
JP2017131846A (ja) * 2016-01-28 2017-08-03 栗田工業株式会社 超純水製造装置および超純水製造装置の運転方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871431A (en) * 1988-07-11 1989-10-03 Ionics, Incorporated Apparatus for the removal of dissolved solids from liquids using bipolar membranes
JP3200301B2 (ja) * 1994-07-22 2001-08-20 オルガノ株式会社 純水又は超純水の製造方法及び製造装置
JPH08117744A (ja) * 1994-10-21 1996-05-14 Nomura Micro Sci Co Ltd イオン交換装置のブレーク検知方法
JP3319321B2 (ja) * 1996-02-29 2002-08-26 東レ株式会社 造水装置及び水中のほう素の除去方法
TW404847B (en) * 1996-08-12 2000-09-11 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US5925255A (en) * 1997-03-01 1999-07-20 Mukhopadhyay; Debasish Method and apparatus for high efficiency reverse osmosis operation
US6537456B2 (en) * 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US8758720B2 (en) * 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
JP3885319B2 (ja) * 1997-10-31 2007-02-21 栗田工業株式会社 純水製造装置
US7368058B2 (en) * 2002-01-22 2008-05-06 Toray Industries, Inc. Method of generating fresh water and fresh-water generator
WO2003086629A1 (en) * 2002-04-12 2003-10-23 Ionics, Incorporated Ion exchange regeneration and upw treatment system
US20030230531A1 (en) * 2002-06-13 2003-12-18 Hydranautics And Nitto Denko Corporation Method for reducing boron concentration in high salinity liquid
AU2003248687B2 (en) * 2002-06-13 2008-08-21 Hydranautics Methods for reducing boron concentration in high salinity liquid
JP3852926B2 (ja) 2002-08-08 2006-12-06 オルガノ株式会社 ホウ素選択吸着能を有する有機多孔質体、これを用いたホウ素除去モジュールおよび超純水製造装置
US20060121491A1 (en) * 2004-12-02 2006-06-08 Wolber Paul K Partially degenerate oligonucleotide standards and methods for generating the same
JP4671272B2 (ja) 2004-12-15 2011-04-13 オルガノ株式会社 液中の陰イオン検出方法及び検出装置
JP5151152B2 (ja) 2006-03-29 2013-02-27 栗田工業株式会社 ナノろ過膜又は逆浸透膜の阻止率向上剤、阻止率向上方法、ナノろ過膜又は逆浸透膜、水処理方法、及び、水処理装置
JP5486204B2 (ja) 2009-03-13 2014-05-07 オルガノ株式会社 液中の陰イオンの検出方法及び検出装置
US8357300B2 (en) * 2010-08-16 2013-01-22 Hydranautics Methods and materials for selective boron adsorption from aqueous solution
JP5648106B2 (ja) 2013-09-13 2015-01-07 オルガノ株式会社 液中の陰イオンの検出方法及び検出装置
CL2014000579A1 (es) * 2014-03-10 2014-06-20 Fundacion Chile Sistema de tratamiento continuo y modular para remocion de boro, compuesto por sistema de boro junto a uno de regeneracion de resina, que comprende 3 columnas que operan en forma alternada, dos de las columnas estan en operacion, en remocion de boro, mientras la tercera columna se encuentra en regeneracion
JP6228531B2 (ja) * 2014-12-19 2017-11-08 栗田工業株式会社 超純水製造装置及び超純水製造方法
JP6415509B2 (ja) * 2016-10-04 2018-10-31 野村マイクロ・サイエンス株式会社 逆浸透膜の再生方法
CN107170505A (zh) * 2017-06-29 2017-09-15 江苏金环环保设备有限公司 一种核电厂含硼放射性废液的组合处理系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342587A (ja) * 2004-06-01 2005-12-15 Toray Ind Inc 造水方法および造水装置
JP2014100706A (ja) 2012-11-21 2014-06-05 Ovivo Luxembourg Srl 特に超純水を得るための水の処理
JP2017131846A (ja) * 2016-01-28 2017-08-03 栗田工業株式会社 超純水製造装置および超純水製造装置の運転方法

Also Published As

Publication number Publication date
KR20200142553A (ko) 2020-12-22
TW202000599A (zh) 2020-01-01
US11655162B2 (en) 2023-05-23
CN111867986A (zh) 2020-10-30
WO2019244443A1 (ja) 2019-12-26
JP2019217463A (ja) 2019-12-26
JP7454330B2 (ja) 2024-03-22
US20210261445A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
KR102459286B1 (ko) 피처리수 중의 붕소 제거 방법, 붕소 제거 시스템, 초순수 제조 시스템 및 붕소 농도의 측정 방법
US6929748B2 (en) Apparatus and method for continuous electrodeionization
KR102602540B1 (ko) 초순수 제조 장치 및 초순수 제조 장치의 운전 방법
EP1070020A1 (en) Water treatment system and process comprising ph-adjustment
JP6634918B2 (ja) 超純水製造システム
WO2020184045A1 (ja) ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法
JP5953726B2 (ja) 超純水製造方法及び装置
JP5757110B2 (ja) 水処理方法及び水処理システム
JP7405066B2 (ja) 超純水製造装置及び超純水製造方法
JP2013202587A (ja) 超純水製造装置
US20230183115A1 (en) Boron removal device and boron removal method, and pure water production device and pure water production method
JP2012192364A (ja) 水処理方法及び水処理システム
JP7192519B2 (ja) ホウ素超高純度除去型超純水製造装置及びホウ素超高純度除去超純水の製造方法
JPH10277572A (ja) 水中の有機物除去方法
JP6860648B1 (ja) 水処理システム及び水処理方法
JP7460729B1 (ja) 純水製造方法、純水製造装置及び超純水製造システム
JP5257175B2 (ja) 超純水製造装置
WO2014010075A1 (ja) 超純水製造装置
JP2017018849A (ja) 水処理システム
KR20210145125A (ko) 막 탈기 장치의 세정 방법 및 초순수 제조 시스템
KR20240036500A (ko) 순수 제조 시스템의 운전 방법
Motomura Hot Ultrapure Water System
CN112520879A (zh) 超纯水制造系统及超纯水制造方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right