JP5238778B2 - 淡水化システム - Google Patents

淡水化システム Download PDF

Info

Publication number
JP5238778B2
JP5238778B2 JP2010206511A JP2010206511A JP5238778B2 JP 5238778 B2 JP5238778 B2 JP 5238778B2 JP 2010206511 A JP2010206511 A JP 2010206511A JP 2010206511 A JP2010206511 A JP 2010206511A JP 5238778 B2 JP5238778 B2 JP 5238778B2
Authority
JP
Japan
Prior art keywords
water
raw water
reverse osmosis
osmosis membrane
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010206511A
Other languages
English (en)
Other versions
JP2012061402A (ja
Inventor
健志 出
清一 村山
武士 松代
太 黒川
英顕 山形
秀之 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010206511A priority Critical patent/JP5238778B2/ja
Publication of JP2012061402A publication Critical patent/JP2012061402A/ja
Application granted granted Critical
Publication of JP5238778B2 publication Critical patent/JP5238778B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明の実施形態は、塩分を含む水から塩分を除去して淡水にする淡水化システムに関する。
海水やかん水等の塩分(塩類)を含む水を淡水化する方法として、蒸発法、電気透析法や逆浸透法等の方法がある。また、これら複数の方法を組合わせて利用することもある(例えば、特許文献1又は2参照)。
しかしながら、塩分を含む水を淡水化し、飲料水等として供給する際には、処理対象の原水、処理過程で得られる処理水又は処理で得られた淡水に殺菌剤やpH調整剤等の薬品を添加する必要がある。したがって、塩分を含む水の淡水化には、使用する薬品の調達、輸送、貯蔵等を行う必要があり、そのための手間やコストが必要な問題があった。
特開2009−95821号公報 特許第2887105号公報
上述したように、従来の技術において塩分を含む水の淡水化には、複数の薬品が必要であり、薬品の調達、輸送、貯蔵等に手間やコストが必要な問題があった。
上記課題に鑑み、本発明の実施形態では、必要な薬品の調達、輸送、貯蔵の手間を不要とし又は軽減することのできる淡水化システムを提供する。
上記課題を解決するため、実施形態に係る淡水化システムでは、塩分を含む原水に凝集剤を添加して凝集させて原水中の不純物を濾過する前処理装置と、前記前処理装置で不純物が除去された原水を、塩分濃度が低い希釈水と塩分濃度が高い濃縮水とに分離するとともに、淡水化で使用する薬品を製造する電気透析装置と、前記電気透析装置で分離された希釈水を、淡水と塩分濃度が高い濃縮水とに分離する逆浸透膜とを備える。
本発明の実施形態に係る淡水化システムを説明する図である。 図1の淡水化システムの前処理装置を説明する図である。 図1の淡水化システムの電気透析装置を説明する図である。 図1の淡水化システムの逆浸透膜型淡水化装置を説明する図である。 第1変形例に係る淡水化システムを説明する図である。 第2変形例に係る淡水化システムを説明する図である。 第3変形例に係る淡水化システムを説明する図である。 逆浸透膜型淡水化装置の変形例を説明する図である。 逆浸透膜型淡水化装置の他の変形例を説明する図である。
以下に、図面を用いて本発明の実施形態に係る淡水化システムについて説明する。以下の説明において、同一の構成については同一の符号を付して説明を省略する。実施形態に係る淡水化システムは、海水やかん水等の塩分を含む水を原水として淡水化するシステムであり、以下では海水を原水とした例で説明するが、塩分を含む水であれば海水でなくても同様である。
図1に示すように、本発明の実施形態に係る淡水化システム1は、送水ポンプ10によって原水(海水)が送水される前処理装置20と、前処理装置20で処理された原水が導入され、塩分の濃度が低い希釈水と塩分の濃度が高い濃縮水とに分離するとともに、苛性ソーダ水、塩素及び次亜塩素酸ナトリウムを生成する電気透析装置30と、電気透析装置30で得られた希釈水を淡水化する逆浸透膜型淡水化装置40とを備えている。この淡水化システム1では、電気透析装置30で生成される苛性ソーダ水及び塩素は前処理装置20へ供給され、前処理に利用される。また、淡水化システム1では、電気透析装置30で生成される次亜塩素酸ナトリウム水は、逆浸透膜型淡水化装置40で得られた淡水に添加される。
[前処理装置]
前処理装置20は、淡水化の処理対象である原水を前処理する装置であって、図2に示すように、送水ポンプ10によって送水されて第1原水ラインL1を流れる原水に凝集剤供給ラインL21を介して凝集剤を供給する凝集剤供給装置21と、凝集剤が供給された原水を濾過する濾過装置22とを有している。第1原水ラインL1には、凝集剤供給ラインL21の他、塩素ラインL32と苛性ソーダ水ラインL34とが接続されており、濾過装置22に流入する原水には塩素ガスと苛性ソーダ水が供給される。
凝集剤供給装置21は、凝集剤供給ラインL21を介して第1原水ラインL1を流れる原水に凝集剤を供給する。この凝集剤は、原水中の濁質等の不純物をフロックにするものであり、例えば、塩化第2鉄等の第2鉄塩や、塩化第一鉄や硫酸第一鉄等の第一鉄塩である。第2鉄塩、特に塩化第二鉄FeC13・6H2O は、凝集pH を低くできることから、逆浸透膜による海水淡水化施設の前処理装置に凝集剤として使われている。一方、第一鉄塩は水に添加したときに生じる水酸化第一鉄Fe(OH2)が水に対する溶解度が大きいので、凝集が起きない。しかし、pH を10 程度に高くすれば、水中の溶存酸素で酸化されて水酸化第二鉄Fe(OH)3 となり、フロックを生じる。すなわち、原水がアルカリである場合には、硫酸第一鉄を凝集剤として利用すると凝集効果を得やすく好ましい。硫酸第一鉄は、pH9以上で水酸化第二鉄となりフロックを形成することができるため、pH値が高くても凝集可能で効率よく凝集処理することができる。
塩素ラインL32は、電気透析装置30と接続されており、電気透析装置30で得られた塩素ガスを第1原水ラインL1を流れる原水に混合させる。前処理装置20では、原水に塩素ガス混合して塩素の酸化作用によって原水中の貝類や微生物等の繁殖を防止し、機器の閉塞や故障、ラインの閉塞、バイオファウリングによる淡水化システム1の処理効率の低下を防止することができる。また、凝集剤供給装置21で鉄系の凝集剤を使用した場合、残留鉄イオンは塩素ラインL32を介して供給される塩素ガスによって酸化して固形物として後段の濾過装置22で分離され、機器やラインのさびや淡水の色つきを防止することができる。
苛性ソーダ水ラインL34は、電気透析装置30と接続されており、電気透析装置30で得られた苛性ソーダ水を第1原水ラインL1を流れる凝集剤供給前の原水に混合させる。苛性ソーダ水の供給によって原水のpH値を8.0〜11.0程度(より好ましくは9.0〜10.0程度)に調整することで、凝集剤の凝集効果を利用したフロックの生成の際にカルシウムイオン、マグネシウムイオン、鉄イオン等の多価陽イオンを、難水溶性の水酸化物や炭酸塩に変化させて濾過装置22で分離可能にする。具体的には、原水のpH値を8.0〜11.0程度(より好ましくは9.0〜10.0程度)にすることにより、水酸化物を生成される。また、原水のpH値をpH値8.0〜11.0程度にすることにより、6.0〜8.0程度の場合に原水(海水)中の金属成分と均衡を保って溶解している原水(海水)中の炭酸イオンが炭酸塩となる。
濾過装置22は、第1原水ラインL1を介して流入する原水を濾過する。例えば、濾過装置22は、MF膜モジュールを多段に配列した膜分離装置である。この濾過装置22に流入する原水は、難水溶性の水酸化物や炭酸塩を含んでいる。濾過装置22は、流入した原水を濾過してこれら水酸化物や炭酸塩等の固形物質を除去する。濾過装置22で固形物質が除去された原水は、第2原水ラインL2を介して電気透析装置30に流出される。また、濾過装置22では、所定のタイミング(例えば、30分毎)で逆洗水を逆流させて原水から除去された固形物を含む排水を排水ラインL22から排出する。
なお、原水(海水)中のホウ素は、原水をpH値8.0〜11.0程度にすることによりホウ酸イオンに解離するために濾過装置22を透過するが、後段の電気透析装置30や逆浸透膜型淡水化装置40で分離することができる。また、濾過装置22には、膜分離装置の他、沈殿池又は濾過池等のように原水から固形物質を除去する他の手段を用いてもよい。
上述したように、前処理装置20で原水のpH値を8.0〜11.0に調整して不純物をフロックとして除去し、多価陽イオンを難水溶性の水酸化物や炭酸塩として除去していることで、後段の逆浸透膜型淡水化装置40の膜で不純物、水酸化物、炭酸塩等がスケール成分として析出することを防止することができる。したがって、スケール成分の析出防止のためのpH調整剤の添加が不要となる。
また、前処理装置20でpH値を8.0〜11.0程度に調整することで、原水(海水)中のホウ素をホウ酸に解離させて電気透析装置30や逆浸透膜淡水化装置40で分離することが可能になる。
[電気透析装置]
電気透析装置30は、隔膜型の電気透析装置であって、図3に示すように、陰極31が設置される陰極室32と、陽極33が設置される陽極室34と、陰極室32と陽極室34との間に交互に設けられる複数の希釈室35及び濃縮室36と、陰極室32と稀釈室35、希釈室35と濃縮室36又は稀釈室35と陽極室34の間を隔てるために交互に設けられる複数の陰イオン交換膜37及び陽イオン交換膜38とを有している。
各希釈室35及び濃縮室36には第2原水ラインL2が接続されており、送水ポンプ39a,39bにより前処理装置20で不純物、水酸化物、炭酸塩等が除去された原水が送水される。稀釈室35及び濃縮室36が流入する原水には、ナトリウムイオン(Na+)、ホウ酸イオン(BO3 -)、塩化物イオン(Cl-)、硫酸イオン(SO4 2-)等を含んでいる。陰極31と陽極33との間に電圧をかけると、希釈室35内の原水中のナトリウムイオン等の陽イオンは、陽イオン交換膜38を透過して濃縮室36又は陰極室32に移動する。一方、希釈室35内の原水中のホウ素イオン、塩化物イオン等の陰イオンは、陰イオン交換膜37を透過して濃縮室36又は陽極室34に移動する。
陰極室32には、陰極液ラインL37が接続されており、この陰極液ラインL37を介して逆浸透膜型淡水化装置40で得られた淡水を流入する。陰極室32では、希釈室35からナトリウムイオンが移動すると、ナトリウムイオンの濃度が上がり、0.01〜1規定の苛性ソーダ水が生成される。具体的には、電気透析により陰極室32内の原水(海水)に含まれるナトリウムイオンが濃縮され、陰極31の表面で水が電気分解して生成する水酸化物イオンからなる苛性ソーダ水となる。また、陰極室32では苛性ソーダ水の生成の際に水素が発生(副生成)する。
陰極室32には苛性ソーダ水ラインL34と水素ラインL36が接続されている。陰極室32で生成された苛性ソーダ水は、図1に示すように苛性ソーダ水ラインL34を介して前処理装置20に送られる。また、陰極室32で生成されて水素ラインL36から流出する水素は、燃料電池等の発電装置(図示せず)で利用され、淡水化システム1に必要な電力を発電する燃料として利用することができる。
陽極室34には、陽極液ラインL38が接続されており、この陽極液ラインL38を介してpH値が2〜3に調整された電解液(例えば、希塩酸)を流入する。陽極室34では、希釈室35から塩化物イオンが移動すると、陽極33で酸化されて塩素ガスが発生する。
陽極室34には塩素ラインL32と酸性水ラインL33とが接続されている。陽極室34で生成された塩素は、図1に示すように塩素ラインL32を介して前処理装置20に送られる。また、陽極室34内では、塩素にならなかった塩化物イオンや希釈室35から移動した他の陰イオンを陽極液に溶解して塩酸等の酸が溶解した酸性水が生成される。陽極室34で生成された酸性水は、図1に示すように酸性水ラインL33を介して逆浸透膜型淡水化装置40に送られる。
なお、図示を省略するが、この酸性水ラインL33を第2原水ラインL2に接続して原水に酸性水を混合し、酸性(例えば、pH値6.5以下)の原水を電気透析装置30に流入させてもよい。具体的には、前処理装置20で電気透析装置30や逆浸透膜型淡水化装置40内で膜面に膜の機能を損なう原水中のスケール成分(水酸化物、炭酸塩等)を除去することが不十分な場合、原水を酸性にして電気透析装置30に流入させる。酸性にした原水を流入させることで、原水中のスケール成分を溶解し、電気透析装置30や逆浸透膜型淡水化装置40内で原水中のスケール成分が濃縮された場合やpH値が変化した場合にもスケール成分の膜面への析出を防止することができる。
苛性ソーダ水ラインL34と塩素ラインL32とは、次亜塩素酸ナトリウム水ラインL35に接続されており、陰極室32で生成された苛性ソーダ水の一部は次亜塩素酸ナトリウム水ラインL35に供給され、陽極室34で生成された塩素の一部は次亜塩素酸ナトリウム水ラインL35に供給される。苛性ソーダ水(水酸化ナトリウム)と塩素との混合し反応させて生成された次亜塩素酸ナトリウム水は、殺菌剤として次亜塩素酸ナトリウム水ラインL35を介し淡水ラインL4に送られる。
希釈室35には、希釈水ラインL3が接続されており、脱塩により陽イオン及び陰イオンの濃度が下がった希釈水は、この希釈水ラインL3を介して逆浸透膜型淡水化装置40に送られる。例えば、この希釈水は、原水と比較して、脱塩率10〜75%脱塩されている。また、濃縮室36には排水ラインL31が接続されており、ナトリウムイオンや塩化物イオンを含む濃縮液を排水ラインL31を介して濃縮室36から流出する。
ここで、実施形態に係る淡水化システム1では、電気透析装置30による原水の脱塩率は10〜75%の範囲とし、前処理装置20と電気透析装置30とを合わせた脱塩率が50%になるように、陰極31と陽極33の間の電圧あるいは電流を調整することが望ましい。
このように、電気透析装置30では殺菌剤として使用する塩素や次亜塩素酸ナトリウム水、pH調整剤として使用する苛性ソーダ水、酸性水を生成し、前処理装置20における処理や逆浸透膜型淡水化装置40における処理でこれらの薬品を使用している。したがって、淡水化システム1で必要な薬品の調達、輸送、貯蔵の手間を不要又は低減することができる。
また、電気透析装置30で逆浸透膜型淡水化装置40での淡水化処理の前に塩水を稀釈している。これにより、塩水の浸透圧が下がるため後段の逆浸透膜型淡水化装置40で必要な圧力が下がり、結果、動力を低下させて省エネルギ化を図ることができる。
あるいは、浸透圧が低下する為、逆浸透膜を透過する水量を増加させることができる。すなわち、濃縮水の水量に対して、生成される淡水の水量の割合を増加させることができ、同様の淡水を得る場合の原水の必要量が減り、ポンプの動力、必要な薬品量を低減させることができる。
[逆浸透膜型淡水化装置]
逆浸透膜型淡水化装置40は、塩分を含む原水を淡水化する装置であって、図4に示すように、希釈水ラインL3から流入する原水(希釈水)を濾過する逆浸透膜モジュール42と、逆浸透膜モジュール42で濾過する前の希釈水に、脱塩作用及び殺菌作用を有する還元剤を供給する脱塩素剤供給装置45と、逆浸透膜モジュール42で希釈水から塩分が除去された膜濾過水(淡水)の硬度およびpHを調整する調整剤供給装置46と、逆浸透膜モジュール42から排出される濃縮水の圧力エネルギーを回収して希釈水に圧力を加える動力回収装置43とを有している。
希釈水ラインL3には酸性水ラインL33が接続されている。逆浸透膜型淡水化装置40では、電気透析装置30から流入する希釈水に酸性水ラインL33を介してpH調整剤である酸性水を混合し、希釈水のpH値を6.5に調整する。希釈水を酸性にすることで、濃縮やpH変化によって稀釈水中のスケール成分(不純物、水酸化物、炭酸塩等)を溶解し、逆浸透膜モジュール42において希釈水が濃縮した場合にもスケール成分の膜面への析出を防止することができる。
また、希釈水ラインL3には脱塩素剤ラインL40が接続されている。pH値が調整された稀釈水には、脱塩素剤ラインL40を介して脱塩素剤供給装置45から供給された脱塩作用及び殺菌作用を有する脱塩素剤(例えば、重亜硫酸ナトリウム(SBS)等)が混合される。稀釈水中の残留塩素を除去することで、ポリアミド系の逆浸透膜(PA膜)を使用した逆浸透膜モジュール42の塩素に膜の劣化を防止することができる。また、脱塩素剤の殺菌作用を利用することで、脱塩された希釈水による逆浸透膜型淡水化装置40で貝類や微生物等が繁殖を防止し、機器の閉塞や故障、ラインの閉塞、バイオファウリングによる逆浸透膜型淡水化装置40の処理効率の低下を防止することができる。
さらに、希釈水ラインL3にはポンプ41が設置されている。このポンプ41は、例えば、高圧ポンプ(昇圧ポンプ)であって、電気透析装置30から送水され、酸性水及び脱塩素剤が混合された希釈水に逆浸透膜モジュール42に必要な圧力(例えば、2〜7MPa程度)を与え、水圧を調整した稀釈水を逆浸透膜モジュール42に送出する。具体的には、前処理装置20と電気透析装置30による原水(海水)の脱塩率が50%の場合、約3MPa必要になる。
ここで、希釈水ラインL3を介して電気透析装置30から流入した希釈水の一部はポンプ41を介して逆浸透膜モジュール42に送られ、残りは、動力回収装置43に送られる。例えば、ポンプ41は、逆浸透膜型淡水化装置40に流入した原水の4〜7割程度(例えば、5割)を逆浸透膜モジュール42に送る。
逆浸透膜モジュール42は、ポリアミド系の逆浸透膜(PA膜)を使用し、希釈水ラインL3を介して流入する希釈水を、濃縮水と淡水(膜透過水)とに分離する。逆浸透膜モジュール42は、海水中の塩分のほとんどが脱塩された淡水を淡水ラインL4を介して流出する。また、逆浸透膜モジュール42は、逆浸透膜モジュール42の運転圧力エネルギーをほぼ維持した状態の濃縮水をラインL41を介して動力回収装置43に流出する。
動力回収装置43は、ラインL41流入する濃縮水から、逆浸透膜モジュール42に与えられた圧力エネルギーを回収し、希釈水ラインL3を介して逆浸透膜モジュール42に送る希釈水に回収したエネルギーを与える。具体的には、動力回収装置43は、逆浸透膜モジュール42の運転圧力エネルギーをほぼ維持した状態の濃縮水を逆浸透膜モジュール43から流入する。動力回収装置43は、流入する濃縮水からエネルギーを回収する。また、動力回収装置43は、回収したエネルギーを稀釈水に加えて、ラインL42を介して逆浸透膜モジュール42に流入させる希釈水に合流させる。ここで、動力回収装置43が濃縮水から得られた圧力エネルギーは、逆浸透膜モジュール42で必要な圧力の一部(例えば、約8〜10割)である。したがって、ラインL42には、高圧ポンプ(昇圧ポンプ)等のポンプ44を設置し、動力回収装置43から送られる希釈水に逆浸透膜モジュール42で必要な圧力エネルギーを加え、希釈水ラインL3を流れる希釈水に合流させる。
一方、動力回収装置43は、希釈水を加圧することによって、減圧(例えば、数百kPa程度)された濃縮水を濃縮水ラインL43から排出する。なお、排出された濃縮水は、排水に必要な処理(例えば、海水との混合による希薄化)を施した後には放水することができる。
例えば、動力回収装置43には、多段タービン水車方式等のタービン式やピストン式等の方法で圧力エネルギーから動力を回収する装置を利用することが可能である。この動力回収装置43の性能に応じて濃縮水から回収して希釈水に与えることのできる圧力が異なる。
淡水ラインL4には、調整剤ラインL44が接続されており、調整剤供給装置46から、この調整剤ラインL44を介して淡水の硬度とpH値を調整する調整剤を淡水に供給し、淡水を飲料水の基準値に調整する。硬度とpH値が調整された淡水は、淡水ラインL4を介して淡水化システム1から流出される。調整剤供給装置46は、硬度及びpH値の調整のため、例えば、石灰等のカルシウムを調整剤として淡水に供給する。逆浸透膜モジュール42で得られる淡水は、逆浸透の前に酸性水を混合して稀釈水を酸性にしていることや、原水である海水中の炭酸成分が脱塩によって炭酸ガスとなって溶解してpH値が低い値(pH値5〜7程度)になっている。そのため、逆浸透膜モジュール42で得られる淡水は、腐食性が高いとともに水質基準を満たさない。また、逆浸透膜モジュール42で得られる淡水は、カルシウムイオン及びマグネシウムイオンの硬度成分の含有量が少ない。したがって、ランゲリア指数を改善し、飲料水として味を改善するとともに、管材からの成分溶出を防止するために、淡水に調整剤を混合して淡水の硬度やpH値を調整する。
このように、実施形態に係る淡水化システム1では、海水を淡水化する際に殺菌剤として使用する塩素、次亜塩素酸ナトリウム、pH調整剤として使用する苛性ソーダ、酸性水等の薬品を電気透析装置30を用いて淡水化処理の過程で生成することができる。したがって、淡水化システム1では、薬品の調達、輸送、貯蔵等の手間やコストを不要とし又は軽減することができる。
[第1変形例]
図1を用いて上述した淡水化システム1では、前処理装置20の濾過装置22で濾過された原水の全量が電気透析装置30に流入する。これに対し、図5に示すように、第1変形例に係る淡水化システム1aでは、前処理装置20から流出する原水の一部は電気透析装置30に流入するが、残りは電気透析装置30で得られた希釈水と混合されて逆浸透膜型淡水化装置40に流入する。
この第1変形例に係る淡水化システム1aのように原水の一部のみに電気透析処理を施すことで、必要な量の薬品(塩素、次亜塩素酸ナトリウム、苛性ソーダ、酸性水等)を生成することができる。すなわち、淡水化システム1のように原水の全量に電気透析処理を施して得られる薬品の量が淡水化システム1で使用する薬品の量よりも多い場合には、原水の一部のみに電気透析処理を施すことが有効である。
[第2変形例]
図6に示すように、第2変形例に係る淡水化システム1bでは、第2原水ラインL2は、電気透析装置30ではなく逆浸透膜型淡水化装置40に接続されており、前処理装置20で処理された原水の全量は、逆浸透膜型淡水化装置40に流入する。また、電気透析装置30には濃縮水ラインL43が接続されており、電気透析装置30には、逆浸透膜型淡水化装置40で得られる濃縮水の一部又は全量が流入する。さらに、希釈水ラインL3は、第2原水ラインL2に接続されており、電気透析装置30から流出する希釈水は、前処理装置で得られた原水に混合されて逆浸透膜型淡水化装置40に流入する。
この第2変形例に係る淡水化システム1bのように逆浸透膜型淡水化装置40で得られた必要量の濃縮水に電気透析処理を施すことで、電気透析処理で必要な量の薬品(塩素、次亜塩素酸ナトリウム、苛性ソーダ、酸性水等)のみを生成することができる。
[第3変形例]
上述した淡水化システム1では、逆浸透膜型淡水化装置40において、逆浸透膜モジュール42の膜透過水である淡水に調整剤供給装置46がカルシウム等の調整剤を供給していた。これに対し、図7に示すように、第3変形例に係る淡水化システム1cでは、電気透析装置30で得られる苛性ソーダ水を硬度及びpH値の調整剤として供給する。具体的には、逆浸透膜型淡水化装置40は、苛性ソーダ水ラインL34を介して電気透析装置30と接続されており、逆浸透膜モジュール42の膜透過水である淡水には苛性ソーダ水ラインL34を介して苛性ソーダ水が供給される。
この第3変形例に係る淡水化システム1cでは、電気透析装置30で除去できなかったカルシウムイオンやマグネシウムイオンを含む苛性ソーダ水を淡水に混合させて硬度及びpH値を調整することができる。
[第4変形例]
上述した淡水化システム1では、図4に示すように、逆浸透膜型淡水化装置40はポリアミド系の逆浸透膜を使用していた。これに対し、第4変形例に係る淡水化システムは、図4を用いて上述した逆浸透膜型淡水化装置40に代えて、図8に示すようにアセチレンセルロース系の逆浸透膜(CA膜)の逆浸透膜モジュール42aを使用する逆浸透膜型淡水化装置40aを有している。なお、その他の構成は、図1を用いて上述した淡水化システム1と同一である為、淡水化システム全体の構成については図示を省略する。
アセチレンセルロース系の逆浸透膜(CA膜)は、塩素耐性があるため、脱塩素剤を供給する必要がない。したがって、図8に示すように逆浸透膜型淡水化装置40aでは、図4に示す逆浸透膜型淡水化装置40のように脱塩素剤供給装置45を備えていない。
また、逆浸透膜型淡水化装置40aでは希釈水に脱塩素剤を供給しないため、残留塩素による殺菌作用が働く。したがって、逆浸透膜型淡水化装置40aでは、残留塩素の殺菌作用により、貝類や微生物等の繁殖による機器の閉塞や故障、ラインの閉塞を防止するとともに、バイオファウリングによる逆浸透膜モジュール42aの処理効率の低下を防止することができる。
さらに、淡水化システムでは、前処理装置20で原水のpH値を8.0〜11.0程度に調整し、原水中のカルシウムイオン、マグネシウムイオン、鉄イオン等の多価陽イオンを、難水溶性の水酸化物、炭酸塩として濾過装置22で除去している。そのため、前処理装置20で水酸化物や炭酸塩が十分に除去された原水で得られた希釈水を、逆浸透膜モジュール42aで処理する場合、膜面に希釈水中のスケール成分(水酸化物や炭酸塩)が析出することはない。したがって、希釈水に酸性水を混合させる必要もない。
[第5変形例]
第5変形例に係る淡水化システムは、図4を用いて上述した逆浸透膜型淡水化装置40に代えて、図9に示すように低圧逆浸透膜モジュール48を使用する逆浸透膜型淡水化装置40bを有している。なお、その他の構成は、図1を用いて上述した淡水化システム1と同一である為、淡水化システム全体の構成については図示を省略する。
図9に示すように、逆浸透膜型淡水化装置40bでは、逆浸透膜モジュール42(PA膜)の後段に低圧逆浸透膜モジュール48が設置されており、逆浸透膜モジュール42から流出する透過水が逆浸透膜透過水ラインL45を介して低圧逆浸透膜モジュール48に流入する。逆浸透膜透過水ラインL45には高圧ポンプ(昇圧ポンプ)等のポンプ47が配置されており、このポンプ47によって逆浸透膜モジュール42の透過水に圧力を加えて低圧逆浸透膜モジュール48で必要な水圧(例えば、1〜3Pa)に調整する。また、逆浸透膜透過水ラインL45には苛性ソーダ水ラインL34が接続されており、逆浸透膜モジュール42の透過水には苛性ソーダ水が混合されてpH値が9以上に調整される。
低圧逆浸透膜モジュール48は、アセチレンセルロース系の逆浸透膜(CA膜)であって、逆浸透膜透過水ラインL45を介して流入する透過水を、濃縮水と淡水とに分離し、分離された濃縮水を第2濃縮水ラインL46を介して希釈水ラインL3に循環させる。また、低圧逆浸透膜モジュール48を透過した淡水は、調整剤供給装置46によって供給される調整剤によって硬度とpH値が飲料水の基準に調整された後に淡水ラインL4を介して淡水化システム1から流出する。なお、調整剤供給装置46は、電気透析装置30で得られる酸性水をpHを調整する調整剤としてもよい。
低圧逆浸透膜モジュール48に送水される透過水は、苛性ソーダ水の混合によってpH値9以上にされている為、原水中にホウ酸として溶解しているホウ素は、ホウ酸イオンに解離され、膜分離することができる。このように、透過水中のホウ素をホウ酸イオンにして低圧逆浸透膜モジュール48で分離することで、淡水化システムの処理水として得られる淡水中の残留ホウ素濃度を低減することができる。
本発明の各実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,1a〜1c…淡水化システム
10…送水ポンプ
20…前処理装置
21…凝集剤供給装置
22…濾過装置
30…電気透析装置
31…陰極
32…陰極室
33…陽極
34…陽極室
35…希釈室
36…濃縮室
37…陰イオン交換膜
38…陽イオン交換膜
40,40a…逆浸透膜型淡水化装置
41…ポンプ
42…ポンプ
42,42a…逆浸透膜モジュール
43…動力回収装置
44…ポンプ
45…脱塩素剤供給装置
46…調整剤供給装置
L1…第1原水ライン
L2…第2原水ライン
L3…希釈水ライン
L4…淡水ライン
L21…凝集剤供給ライン
L22…排水ライン
L31…排水ライン
L32…塩素ライン
L33…酸性水ライン
L34…苛性ソーダ水ライン
L35…次亜塩素酸ナトリウム水ライン
L36…水素ライン
L37…陰極液ライン
L38…陽極液ライン
L40…脱塩素剤ライン
L41…ライン
L42…ライン

Claims (7)

  1. 塩分を含む原水に凝集剤を添加して凝集させて原水中の不純物を濾過する前処理装置と、
    前記前処理装置で不純物が除去された原水を、塩分濃度が低い希釈水と塩分濃度が高い濃縮水とに分離し、原水の浸透圧よりも低い浸透圧の希釈水を送出するとともに、淡水化で使用する薬品を製造する電気透析装置と、
    前記電気透析装置で分離されるとともに浸透圧を下げた希釈水を、淡水と塩分濃度が高い濃縮水とに分離する逆浸透膜と、
    を備えることを特徴とする淡水化システム。
  2. 塩分を含む原水に凝集剤を添加して凝集させて原水中の不純物を濾過する前処理装置と、
    前記前処理装置で不純物が除去された原水の一部を、塩分濃度が低い希釈水と塩分濃度が高い濃縮水とに分離し、原水の浸透圧よりも低い浸透圧の希釈水を送出するとともに、淡水化で使用する薬品を製造する電気透析装置と、
    前記前処理装置で不純物が除去された原水の残りと前記電気透析装置で分離されるとともに浸透圧を下げた希釈水との混合水を、淡水と塩分濃度が高い濃縮水とに分離する逆浸透膜と、
    を備えることを特徴とする淡水化システム。
  3. 前記電気透析装置の陽極で発生する塩素に、苛性ソーダラインから供給される苛性ソーダを混合して、次亜塩素酸ナトリウムを生成することを特徴とする請求項に記載の淡水化システム。
  4. 前記前処理装置に流入する前の原水と、前記淡水化システムから流出する淡水との少なくともいずれか一方に、生成した次亜塩素酸ナトリウムを供給することを特徴とする請求項に記載の淡水化システム。
  5. 塩水を含む原水中を流入すると、流入した原水のpHを9以上にしてこの原水中の不純物を除去する前処理装置と、
    陽極及び陰極を有し、前記前処理装置で不純物が除去された原水を、希釈水と塩分濃度が高い濃縮水とに分離する電気透析装置と、
    前記電気透析装置で分離された希釈水を、淡水と塩分濃度が高い濃縮水とに分離する逆浸透膜と、
    前記前処理装置で濾過する前の原水に、原水のpH値を調整するために、前記電気透析装置の陰極で発生する苛性ソーダを供給する苛性ソーダ水ラインと、
    を備えることを特徴とする淡水化システム。
  6. 前記前処理装置では、第一鉄塩を凝集剤として添加して濾過することを特徴とする請求項に記載の淡水化システム。
  7. 前記逆浸透膜から流出される淡水の一部を前記電気透析装置に陰極液として供給する淡水ラインをさらに備えること特徴とする請求項1乃至のいずれかに記載の淡水化システム。
JP2010206511A 2010-09-15 2010-09-15 淡水化システム Expired - Fee Related JP5238778B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206511A JP5238778B2 (ja) 2010-09-15 2010-09-15 淡水化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206511A JP5238778B2 (ja) 2010-09-15 2010-09-15 淡水化システム

Publications (2)

Publication Number Publication Date
JP2012061402A JP2012061402A (ja) 2012-03-29
JP5238778B2 true JP5238778B2 (ja) 2013-07-17

Family

ID=46057705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206511A Expired - Fee Related JP5238778B2 (ja) 2010-09-15 2010-09-15 淡水化システム

Country Status (1)

Country Link
JP (1) JP5238778B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616962B (zh) * 2012-03-30 2015-05-06 中国石油化工股份有限公司 一种工业废水深度分级处理方法
JP6179784B2 (ja) * 2012-08-16 2017-08-16 ラマン,アヒランRAMAN,Ahilan 塩化ナトリウム鹹水の製造方法及びシステム
CN103145264B (zh) * 2013-02-27 2014-04-02 瓮福(集团)有限责任公司 一种高含盐中水净化处理回用工艺
JP6209013B2 (ja) * 2013-07-31 2017-10-04 三菱重工業株式会社 飲料水製造装置及び方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352731B2 (ja) * 1992-10-22 2002-12-03 野村マイクロ・サイエンス株式会社 純水製造方法
JPH06262172A (ja) * 1993-03-12 1994-09-20 Asahi Glass Co Ltd 造水プロセス
JPH08318136A (ja) * 1995-05-25 1996-12-03 Sumitomo Heavy Ind Ltd 海水の淡水化及び製塩法
JP2887105B2 (ja) * 1996-04-24 1999-04-26 幸子 林 飲料水および塩の製造方法および製造装置
JP2002346561A (ja) * 2001-05-29 2002-12-03 Tsukishima Kikai Co Ltd 高濃度の塩類を含む廃水の処理方法
JP2004033848A (ja) * 2002-07-01 2004-02-05 Mitsubishi Heavy Ind Ltd 逆浸透膜を用いたかん水製造装置及びかん水製造方法
JP2009095821A (ja) * 2007-09-28 2009-05-07 Asahi Kasei Chemicals Corp 塩水の処理方法
JP2009125708A (ja) * 2007-11-27 2009-06-11 Kurita Water Ind Ltd Cmp排水の処理方法
JP5489982B2 (ja) * 2008-03-24 2014-05-14 メタウォーター株式会社 被処理水の逆浸透膜による分離のための前処理方法
JP4978593B2 (ja) * 2008-09-01 2012-07-18 三浦工業株式会社 純水製造システム

Also Published As

Publication number Publication date
JP2012061402A (ja) 2012-03-29

Similar Documents

Publication Publication Date Title
Ang et al. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants
CA2663906C (en) Method and apparatus for desalination
AU2010219284B2 (en) Desalination system
JP5873771B2 (ja) 有機性廃水の処理方法及び処理装置
US10071929B2 (en) Desalination system and desalination method
JP5733351B2 (ja) ホウ素含有水の処理方法及び装置
WO1999016714A1 (en) Process for desalination of saline water, especially sea water, having increased product yield and quality
US20190263697A1 (en) Treatment of saline water for agricultural and potable use and for generation of disinfectant solution
JP2013111559A (ja) 膜を用いて海水中の塩分を脱塩もしくは濃縮する装置に供給する前処理装置
US20130206697A1 (en) Fresh Water Generating Apparatus and Fresh Water Generating Method
JP5238778B2 (ja) 淡水化システム
JP2013063372A (ja) 淡水化システム
JP2011050843A (ja) 被処理水の淡水化方法および淡水化システム
JP3137831B2 (ja) 膜処理装置
Wittmann et al. Water treatment
US20150083663A1 (en) System for enhanced reclaimed water recovery
JP2017012985A (ja) 水処理システム及び水処理方法
JP2011056411A (ja) 被処理水の淡水化システムおよび淡水化方法
WO2020184044A1 (ja) 純水製造装置および純水の製造方法
US20130082001A1 (en) Fresh Water Generating Apparatus and Fresh Water Generating Method
WO2021090583A1 (ja) 水処理システム及び水処理方法
JP6860648B1 (ja) 水処理システム及び水処理方法
NL2021733B1 (en) Method for the production of drinking water
Janse Van Rensburg Optimising the treatment process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5238778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees