JP2021102191A - 水処理システム及び水処理方法 - Google Patents

水処理システム及び水処理方法 Download PDF

Info

Publication number
JP2021102191A
JP2021102191A JP2019234250A JP2019234250A JP2021102191A JP 2021102191 A JP2021102191 A JP 2021102191A JP 2019234250 A JP2019234250 A JP 2019234250A JP 2019234250 A JP2019234250 A JP 2019234250A JP 2021102191 A JP2021102191 A JP 2021102191A
Authority
JP
Japan
Prior art keywords
water
membrane device
reverse osmosis
osmosis membrane
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019234250A
Other languages
English (en)
Other versions
JP6860648B1 (ja
Inventor
勇規 中村
Yuki Nakamura
勇規 中村
一重 高橋
Kazushige Takahashi
一重 高橋
史生 須藤
Fumio Sudo
史生 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2019234250A priority Critical patent/JP6860648B1/ja
Priority to PCT/JP2020/032011 priority patent/WO2021131156A1/ja
Priority to CN202080056641.2A priority patent/CN114206785B/zh
Priority to TW109130312A priority patent/TWI738493B/zh
Application granted granted Critical
Publication of JP6860648B1 publication Critical patent/JP6860648B1/ja
Publication of JP2021102191A publication Critical patent/JP2021102191A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

【課題】本発明は、運転コストの削減を図りながら、目的の水質の処理水を得ることができる水処理システム及び水処理方法を提供する。【解決手段】 第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された第2の逆浸透膜装置とを有する逆浸透膜システムと、第2の逆浸透膜装置の透過水側に配した水質測定手段と、前記水質測定手段の測定値に応じて、第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に通水して透過水を得るラインと、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断するライン、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流するラインと、を変更するライン変更手段と、を有する水処理システム。【選択図】図1

Description

水処理システム及び水処理方法に関する。
純水製造システムの処理水に対し、高純度化の要求が高まっている。例えば、半導体装置の線幅微細化に伴い、半導体装置の洗浄には、高度に精製され、高純度化された水を用いることが要求される。特にTOC(Total Organic Carbon:全有機炭素)、シリカ、ホウ素等の除去レベルを高めることが求められている。また取水量削減の観点から、系統排水を回収して純水製造に利用するケースも増えてきており、回収水の水質向上も要求されるようになっている。
逆浸透膜装置(以下、RO膜装置ともいう)を組み込んだ純水製造システムでは、RO膜装置の透過水の水質向上のため、RO膜装置を複数段に配することが行われている。例えば、1段目RO膜装置の透過水を2段目RO膜装置にて処理し、RO膜装置全体として、透過水の水質向上が図られている。この場合、2段目RO膜装置の濃縮水は、1段目RO膜装置の供給水と比較して純度が十分に高いことが多い。したがって、2段目RO膜装置の濃縮水を被処理水(原水)に戻すことによって原水を希釈することができ、また回収率を高めることができる(例えば特許文献1参照)。
純水製造用途のRO膜装置としては、超低圧型〜低圧型逆浸透膜が使用されることが多いが、昨今の水質要求の高まりを受けて、海水淡水化用途で用いられるような高圧型逆浸透膜装置の純水製造システムへの導入も試みられている(例えば特許文献2、3参照)。
一方、原水の水質変動に応じて、2段RO膜装置を有する水処理システムにおいて2段目のRO膜装置をバイパスさせる方法が開示されている(例えば特許文献4、5参照)。
特開2004−167423号公報 特開2015−20131号公報 特開2016−117001号公報 特開2006−263542号公報 特開2013−52349号公報
上記の通り、純水製造システム等の水処理システムでは、被処理水の水質および求められる処理水の水質を考慮して、装置構成が決定される。例えば、提示された被処理水のホウ素濃度から、処理水として求められるホウ素濃度を許容できるよう、RO膜装置の構成、回収率、添加薬品、イオン交換装置の樹脂量、樹脂構成、再生頻度等が決定される。しかし、原水等の被処理水の水質には変動があり、既存の装置構成では、不純物の除去性能が足りなくなったり、オーバースペックになったりする場合がある。また、水処理システムに複数段に配したRO膜装置を常時運転することが前提となるため、運転コストの削減には制約がある。
また、上記特許文献4、5に記載されるように、被処理水の水質変動に応じて、2段RO膜装置のうち2段目RO膜装置をバイパスさせる方法を採用しても、被処理水の水質を指標にしている以上、RO膜のファウリングや膜劣化による透過水の水質変動は考慮されず、結果として水質の低下につながりやすい。
そこで本発明は、運転コストの削減を図りながら、目的の水質の処理水を得ることができる水処理システム及び水処理方法を提供することを課題とする。
本発明の上記課題は、以下の手段によって解決された。
[1]
第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された第2の逆浸透膜装置とを有する逆浸透膜システムと、
第2の逆浸透膜装置の透過水側に配された水質測定手段と、
前記水質測定手段の測定値に応じて、第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に通水して透過水を得るラインと、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断するライン、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流するラインと、を変更する、ライン変更手段と、
を有する水処理システム。
[2]
前記ライン変更手段が、第1の逆浸透膜装置の濃縮水側と透過水側とを繋ぐ第1合流ライン及び第2の逆浸透膜装置の濃縮水側と透過水側とを繋ぐ第2合流ラインの少なくとも一方を有し、
前記水質測定手段の測定値に応じて、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方について、供給水圧を通常運転圧の50%以下、かつ、回収率を20%以下とし、当該少なくとも一方の逆浸透膜装置に対応する第1合流ライン及び第2合流ラインの少なくとも一方に通水させる、[1]に記載の水処理システム。
[3]
第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置である、[1]又は[2]に記載の水処理システム。
[4]
第1の逆浸透膜装置の濃縮水及び第2の逆浸透膜装置の濃縮水の少なくとも一方を処理する第3の逆浸透膜装置を有し、第3の逆浸透膜装置の透過水を前記逆浸透膜システムに供給する、[1]〜[3]のいずれかに記載の水処理システム。
[5]
前記水質測定手段によって測定される成分がホウ素を含む、[1]〜[4]のいずれかに記載の水処理システム。
[6]
第2の逆浸透膜装置の透過水を処理する第1のイオン交換装置を有する、[1]〜[5]のいずれかに記載の水処理システム。
[7]
第1のイオン交換装置の処理水を処理する第2のイオン交換装置を有し、前記水質測定手段が、第1のイオン交換装置よりも下流側に設置される、[6]に記載の水処理システム。
[8]
前記水質測定手段の前段に、カチオン交換装置及び脱気装置のいずれか一つ以上を備える、[1]〜[7]のいずれかに記載の水処理システム。
[9]
第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された、第2の逆浸透膜装置とを有する逆浸透膜システムへ被処理水を供給するに当たり、該逆浸透膜システムの透過水の水質に応じて下記(a)及び(b)の通水ラインを切り替えることを含む、水処理方法:
(a)被処理水を第1の逆浸透膜装置に供給し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に供給して透過水を得る通水ライン、
(b)第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断する通水ライン(b−1)、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流する通水ライン(b−2)。
[10]
第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置であり、
前記水質測定手段によって測定される成分がホウ素を含む、[9]に記載の水処理方法。
本発明の水処理システム及び水処理方法によれば、運転コストの削減を図りながら、目的の水質の処理水を得ることができる。
本発明に係る水処理システムの好ましい一実施形態(第1実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第2実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第3実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第4実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第5実施形態及び第6実施形態)を示した概略構成図である。 本発明に係る水処理システムの好ましい一実施形態(第7実施形態)を示した概略構成図である。
本発明に係る水処理システムは、逆浸透膜システムと水質測定手段とライン変更手段とを有する。逆浸透膜システムは、第1の逆浸透膜装置10と、第1の逆浸透膜装置10の透過水側に配された、第1の逆浸透膜装置10とは阻止率が異なる第2の逆浸透膜装置20とを有する。水質測定手段30は、第2の逆浸透膜装置20の透過水側Btに配される。ライン変更手段は、水質測定手段30の測定値に応じて、第1の逆浸透膜装置10及び第2の逆浸透膜装置20の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断する。又は、第1の逆浸透膜装置10及び第2の逆浸透膜装置20の少なくとも一方における濃縮水と透過水とを合流する。
以下に、本発明に係る水処理システムの好ましい一実施形態(第1実施形態)を、図1を参照して具体的に説明する。
図1に示すように、水処理システム1(1A)は、被処理水を処理する第1の逆浸透膜装置10と、第1の逆浸透膜装置10の透過水側Atに配された、第1の逆浸透膜装置10とは阻止率の異なる第2の逆浸透膜装置20とを有する逆浸透膜システムを備える。以下、逆浸透膜をRO膜とも称して説明する。例えば、第1のRO膜装置10を阻止率の高いRO膜装置とし、第2のRO膜装置20を阻止率の低いRO膜装置とする。ここでいう阻止率の高い、低いは、相対的な阻止率の高さを意味する。
第2のRO膜装置20の透過水側Btには、水質測定手段30を有する。水質測定手段30の測定項目は、シリカ、TOC、ホウ素、尿素、等が挙げられ、それらのうちの1種以上であることが好ましい。以下、一例として、水質測定項目をホウ素として説明する。したがって、阻止率についてもホウ素阻止率として説明する。
水処理システム1Aは、水質測定手段30の測定値に応じて、第1のRO膜装置10及び第2のRO膜装置20の少なくとも一方のラインを変更するライン変更手段を有する。本発明における「ライン」とは水が通る流路を意味する。
上記ライン変更手段は、第1のRO膜装置10の供給側Asと透過水側Atとを繋ぐ第1バイパスライン15を有することが好ましい。また第2のRO膜装置20の供給側Bsと透過水側Btとを繋ぐ第2バイパスライン25を有することが好ましい。第1、第2バイパスライン15、25は、少なくとも一方が配されていることが好ましい。
したがって、第1のRO膜装置10及び第2のRO膜装置20の少なくとも一方への通水をバイパスさせることができる。ここでいうバイパスラインとは、RO膜装置の供給側に供給される供給水をRO膜装置の内部を通さず透過水側に流すラインを意味する。
このようにして、水質測定手段30の測定値に応じて、第1のRO膜装置10及び第2のRO膜装置20のいずれか一方への通水を第1バイパスライン15又は第2バイパスライン25にバイパスする。又は第1のRO膜装置10及び第2のRO膜装置20への通水を第1バイパスライン15及び第2バイパスライン25にバイパスする。このようにバイパスすることで、水処理を継続しながら当該いずれか一方のRO膜装置への通水を遮断することができる。したがって、水処理は、通水を遮断していないRO膜装置によってなされる。
本発明において「ライン変更手段」という場合、通水ラインの変更に係る流路、弁、ポンプをすべて含む意味である。このライン変更手段は通常、弁やポンプを自動ないし手動で制御する制御部を有する。具体的には、水処理システム1Aの場合、供給ライン41、接続ライン42、処理水ライン43、第1バイパスライン15、第2バイパスライン25、仕切弁V1〜V5等を含む意味であり、仕切弁V1〜V5を制御する制御部を有する。
上記第1のRO膜装置10の供給側Asには、被処理水を供給する供給ライン41が接続される。第1のRO膜装置10の透過水側Atと第2のRO膜装置20の供給側Bsとは接続ライン42によって接続され、第2のRO膜装置20の透過水側Btは処理水ライン43が接続される。第1のRO膜装置10の濃縮水側Acには濃縮水ライン44が接続され、第2のRO膜装置20の濃縮水側Bcには濃縮水ライン45が接続されることが好ましい。
第1バイパスライン15は供給ライン41から分岐して接続ライン42に接続され、第2バイパスライン25は接続ライン42から分岐して処理水ライン43に接続される。第1バイパスライン15と第2バイパスライン25は、図示したように、接続ライン42に接続する部分が共用されていてもよく、または独立してそれぞれが接続ライン42に接続されていてもよい。独立して接続される場合、第1バイパスライン15が第1のRO膜装置10側に、第2バイパスライン25が第2のRO膜装置20側に接続されることが好ましい。
供給ライン41と第1バイパスライン15との分岐点B1と、第1のRO膜装置10との間に設置する供給ライン41には仕切弁V1が配され、分岐点B1側の第1バイパスライン15には、仕切弁V2が配されることが好ましい。また接続ライン42には仕切弁V3が配され、第1バイパスライン15の接続ライン42側には、仕切弁V4が配されることが好ましい。図1において、この仕切弁V4は、第2バイパスライン25の接続ライン42側に配される仕切弁と共用される。なお、第2バイパスライン25が独立して接続ライン42に接続される場合には、第2バイパスライン25の接続ライン42側に図示していない仕切弁を配することが好ましい。第2バイパスライン25の処理水ライン43側には、仕切弁V5が配されることが好ましい。
処理水ライン43には、第2バイパスライン25の合流部C1よりも下流側から分岐した測定用ライン31が配され、その測定用ライン31には水質測定手段30が接続されることが好ましい。水質測定手段30には、例えばホウ素モニターを用いることができる。本発明における「下流側」とは水が流れ行く側を意味し、「上流側」とは水が流れ来る側を意味する。
上記水処理システム1は、被処理水が貯液される被処理水タンク(図示せず)を備えることが好ましい。被処理水タンクには被処理水が供給される供給ライン41が接続される。したがって、被処理水タンクは供給ライン41を介して第1のRO膜装置10の供給側Asが接続される。供給ライン41には加圧ポンプ(図示せず)が配されることが好ましい。したがって、被処理水タンクに貯液されている被処理水は加圧ポンプによって第1のRO膜装置10の各供給側Asに圧力をかけて供給されることが好ましい。また、第2のRO膜装置20の供給側Bsと仕切弁V3との間の接続ライン42にも加圧ポンプ(図示せず)を配することが好ましい。
上記水処理システム1Aによって水処理する場合、まず仕切弁V1、V3を開け、仕切弁V2、V4、V5を閉じて、被処理水を供給ライン41から第1のRO膜装置10に供給する。さらに第1のRO膜装置10の透過水を、接続ライン42を介して第2のRO膜装置20に供給する。このとき、第2のRO膜装置20に供給される水は第1のRO膜装置10の透過水のみである。そして、水質測定手段30によって、例えばホウ素濃度を測定する。測定したホウ素濃度が基準下限値(例えば0.02ppb)よりも低い値になっていた場合には、仕切弁V1を閉じて、仕切弁V2、V4を開ける。すなわち仕切弁V1とV5が閉じられ、仕切弁V2とV3とV4が開かれた状態とする。そして、被処理水を第1バイパスライン15に流し、その被処理水を第2のRO膜装置20によって処理する。このとき、仕切弁V1が閉じられることによって、第1のRO膜装置10への被処理水の供給が遮断され、第1のRO膜装置10の運転は停止する。そしてホウ素濃度が上昇して、基準上限値(例えば0.05ppb)よりも高い値になった場合には、再び、仕切弁V1を開けて、仕切弁V2、V4を閉じる。すなわち、仕切弁V2とV4とV5が閉じられ、仕切弁V1とV3が開かれた状態とする。そして、被処理水を第1、第2のRO膜装置10、20の両方によって処理する。このとき、第2のRO膜装置20に供給される水は第1のRO膜装置10の透過水のみである。
上記ホウ素濃度の基準上限値、下限値は、上記値に制限されることはなく、求める水質に応じて、適宜設定することができる。
または、上記運転方法において、第2バイパスライン25を用いてもよい。この場合には、上記同様に被処理水を第1のRO膜装置10と第2のRO膜装置20によって処理し、水質測定手段30によって、ホウ素濃度を測定する。測定したホウ素濃度が基準下限値よりも低い値になった場合には、仕切弁V3を閉じて、仕切弁V4、V5を開ける。すなわち、仕切弁V2とV3が閉じられ、仕切弁V1とV4とV5が開かれた状態とする。そして被処理水を第1のRO膜装置10によって処理し、第1のRO膜装置の透過水を第2バイパスライン25に流す。このとき、第2のRO膜装置20の運転は停止する。ホウ素濃度が上昇して、基準上限値よりも高くなった場合には、再び、仕切弁V3を開けて、仕切弁V4、V5を閉じる。すなわち、V2とV4とV5が閉じられ、V1とV3が開かれた状態とする。そして、被処理水を第1、第2のRO膜装置10、20の両方によって処理する。すなわち、第1のRO膜装置10に通水し、第1のRO膜装置10の透過水を第2のRO膜装置20に通水して透過水を得る。これによって、処理水のホウ素濃度を低減し、水質を向上させて基準内に収めることができる。
バイパス運転は、第1バイパスライン15を用いて第1のRO膜装置10をバイパスする方法と、第2バイパスライン25を用いて第2のRO膜装置20をバイパスする方法とを行うことができる。ホウ素濃度に応じて、1段目の第1のRO膜装置10及び2段目の第2のRO膜装置20のどちらをバイパスするか選択することができる。
例えば、ホウ素濃度が基準下限値の0.02ppbを下回ると、まず第1のRO膜装置10よりもホウ素阻止率の低い第2のRO膜装置20をバイパス運転する。すなわち、第2のRO膜装置20の運転を停止する。それでもさらにホウ素濃度が0.02ppbを下回るようであれば、第2のRO膜装置20を再起動した後、第1のRO膜装置10をバイパス運転する。すなわち、高いホウ素阻止率を有するために大きな運転動力を必要とする第1のRO膜装置10の運転を、ホウ素阻止率の低い第2のRO膜装置20の運転へと切り替える。このとき、第1のRO膜装置10の運転は停止する。
このようにして、目的の水処理を継続しつつ、水処理システム1の運転コストが削減できる。
このように、いずれの方法を用いても、少なくとも一方のRO膜装置を停止させた間は、停止させたRO膜装置のバイパスラインを通じて被処理水または処理水を流すことができる。そして、その間は、他方のRO膜装置によって被処理水を処理することができる。このため、被処理水の処理を停止することなく、少なくとも一方のRO膜装置を停止させて、運転コストを削減できる。また、上記水処理システム1Aでは、常時、水質測定手段30によって、ホウ素濃度をモニタリングして、その結果をフィードバックできる。そのため、処理水ライン43を通る処理水に高濃度のホウ素が含まれることはなく、常時、基準値内のホウ素濃度を維持することができる。このようにして、処理水の水質が維持される。
また、1段目の第1のRO膜装置10及び2段目の第2のRO膜装置20がともに運転されている時は、第2のRO膜装置20の濃縮水は被処理水に混合されることが好ましい。これによって、回収率が向上する。また、第1のRO膜装置10が第1バイパスライン15を用いてバイパス運転される時は、第2のRO膜装置20の濃縮水は、通常は系外に排出される。
なお、第1のRO膜装置10と第2のRO膜装置20とは、必ずしも阻止率が異なるものである必要はなく、阻止率が同じものでも良い。この場合、1段目の第1のRO膜装置10及び2段目の第2のRO膜装置20がともに運転されている時は、1段目の第1のRO膜装置10及び2段目の第2のRO膜装置20のいずれか一方を適宜選択してバイパス運転をすることができる。
また、第1のRO膜装置10及び第2のRO膜装置20のいずれか一方をバイパスする場合に限らず、被処理水の水質によっては、第1のRO膜装置10及び第2のRO膜装置20の両方をバイパスするようにしても良い。例えば、被処理水の水質がRO膜処理を必要としないホウ素濃度が基準値以下の水質の場合には、第1、第2のRO膜装置10、20の両方をバイパスすることができる。
次に、本発明に係る水処理システムの別の好ましい実施形態(第2実施形態)として、別のライン変更手段を備えた水処理システム1(1B)について、図2を参照して以下に説明する。水処理システム1Bの場合、ライン変更手段は、具体的には、供給ライン41、接続ライン42、処理水ライン43、濃縮水ライン44、45、第1合流ライン46、第2合流ライン47、仕切弁V6〜V7、背圧弁Vb1〜Vb2等を含む意味であり、仕切弁V6〜V7、背圧弁Vb1〜Vb2を制御する制御部を有する。
図2に示すように、水処理システム1(1B)は、第1実施形態で説明した水処理システム1Aと同様の、第1のRO膜装置10及び第2のRO膜装置20を有するRO膜システムと、水質測定手段30とを有する。
水処理システム1Bは、水質測定手段30の測定値に応じて、第1のRO膜装置10及び第2のRO膜装置20の少なくとも一方における濃縮水と透過水とを合流するライン変更手段を有する。
また第1実施形態の水処理システム1Aと同様に、供給ライン41、接続ライン42、処理水ライン43が配されている。
第1のRO膜装置10の濃縮側Acに濃縮水ライン44が接続される。この濃縮水ライン44には背圧弁Vb1が配される。また第2のRO膜装置20の濃縮側Bcに濃縮水ライン45が接続される。この濃縮水ライン45には背圧弁Vb2が配される。上記背圧弁Vb1、Vb2によって、各濃縮水側Ac、Bcの濃縮水ライン44、45内の圧力を一定の圧力範囲に保つことができる。
上記ライン変更手段は、第1ライン変更手段と第2ライン変更手段とを有する。
第1ライン変更手段は、供給ライン41、該供給ライン41に配された第1ポンプP1、第1ポンプP1の回転数を制御する第1ポンプインバータINV1を有する。また濃縮水ライン44を有し、該濃縮水ライン44から分岐して第1のRO膜装置10の透過水側Atに接続する第1合流ライン46が配されることが好ましい。この第1合流ライン46は、図示したように、濃縮水ライン44から分岐しても、濃縮水側Acに直接接続(図示せず)してもよい。さらに第1合流ライン46には仕切弁V6が配されることが好ましい。
また、上記第1ライン変更手段は、通常、弁やポンプを自動ないし手動で制御する制御部を有する。具体的には、第1ライン変更手段は、供給ライン41、接続ライン42、濃縮水ライン44、第1合流ライン46、第1ポンプP1、第1ポンプインバータINV1、仕切弁V6等を含む意味であり、第1ポンプインバータINV1、第1ポンプP1、仕切弁V6等を制御する制御部を有する。この制御部は、水質測定手段30の測定値に基づいて上記の制御を行う。
第2ライン変更手段は、接続ライン42、該接続ライン42に配された第2ポンプP2、第2ポンプP2の回転数を制御する第2ポンプインバータINV2を有する。また濃縮水ライン45を有し、該濃縮水ライン45から分岐して第2のRO膜装置20の透過水側Btに接続する第2合流ライン47が配されることが好ましい。この第2合流ライン47は、図示したように、濃縮水ライン45から分岐しても、濃縮水側Bcに直接接続(図示せず)していてもよい。さらに第2合流ライン47には仕切弁V7が配されることが好ましい。
また、上記第2ライン変更手段は、通常、弁やポンプを自動ないし手動で制御する制御部を有する。具体的には、第2ライン変更手段は、接続ライン42、濃縮水ライン45、第2合流ライン47、処理水ライン43、第2ポンプP2、第2ポンプインバータINV2、仕切弁V7等を含む意味であり、第2ポンプインバータINV2、第2ポンプP2、仕切弁V7等を制御する制御部を有する。この制御部は、水質測定手段30の測定値に基づいて上記の制御を行う。
このようにして、第1のRO膜装置10及び第2のRO膜装置20の濃縮水を透過水側に合流させるラインの形成が可能な状態となっている。
上記構成のライン変更手段により、第1ライン変更手段及び第2ライン変更手段の少なくとも一方によって、第1のRO膜装置10及び第2のRO膜装置20の少なくとも一方をフラッシング運転(低圧フラッシング運転)することが可能になる。この低圧フラッシング運転では、例えば、第1、第2のRO膜装置10、20の少なくとも一方の供給水圧を通常運転圧の50%以下、かつ、回収率を20%以下とする。そして、当該少なくとも一方のRO膜装置に対応する第1合流ライン46又は第2合流ライン47に通水させる。通常運転圧とは、第1のRO膜装置10及び第2のRO膜装置20を運転した際、第2のRO膜装置20から所望の透過水量を得るために必要な圧力と定義される。例えば第2のRO膜装置20の透過水量として20m/hが必要な場合、20m/hの透過水量を得るために、第1のRO膜装置10及び第2のRO膜装置20のそれぞれに圧力をかける。その時の第1のRO膜装置10の圧力が第1のRO膜装置10の通常運転圧であり、その時の第2のRO膜装置20の圧力が第2のRO膜装置20の通常運転圧である。使用するのが低圧RO膜であれば、通常運転圧は0.75〜1.5MPa程度になり、高圧RO膜であれば、1〜4MPa程度となる。
回収率はフラッシング運転するRO膜装置の供給水の透過水側への回収率であり、回収率(流量%)=[透過水量(流量)/RO膜装置の供給水量(流量)]×100(%)である。以下、回収率の「%」は「流量%」を示す。被処理水の回収率を高めることによって、より効率的な運転が可能になる。
回収率は、ポンプインバータの出力調整を実施することによって調整することができる。例えばポンプインバータによってポンプの出力を制御することにより、RO透過水、RO濃縮水の流量を制御して回収率を調整することができる。
ポンプの運転圧の制御は、第1、第2ポンプインバータINV1、INV2のインバータ値を調節してポンプの回転速度(単位時間当たりの回転数)を調節することによって行う。インバータ値を低周波数側に下げれば、ポンプの回転速度が低下し、運転圧が低下する。逆にインバータ値を高周波数側に上げれば、ポンプの回転速度が上昇し、運転圧が高められる。
上記運転圧は、エネルギーコスト削減という観点から、上限値が通常運転圧の50%以下であり、好ましくは20%以下であり、さらに好ましくは10%以下である。そして後段装置への送液を確実に実施するという観点から、運転圧の下限値は、通常運転圧の2%以上であり、好ましくは5%以上であり、さらに好ましくは7%以上である。
また、低圧フラッシング運転するRO膜装置の供給水の透過水側への回収率は、エネルギーコスト削減という観点から、上限値が20%以下であり、好ましくは10%以下であり、さらに好ましくは5%以下である。そして回収率の下限値は、細菌等の繁殖を防ぐという観点から、0.05%以上であり、好ましくは0.1%以上である。
そして、低圧フラッシング運転している第1のRO膜装置10又は第2のRO膜装置20は、第1合流ライン46又は第2合流ライン47によって、透過水および濃縮水を合流したのちに、後段の装置に送液する。
第1合流ライン46には仕切弁V6が配されることが好ましい。第2合流ライン47には仕切弁V7が配されることが好ましい。
処理水ライン43には第2合流ライン47の合流部C1よりも下流側から分岐した測定用ライン31が配され、その測定用ライン31には第1実施形態と同様の水質測定手段30が接続されることが好ましい。
上記水処理システム1Bは、第1実施形態と同様に、被処理水が貯液され、供給ライン41が接続される被処理水タンク(図示せず)を備えることが好ましい。これによって、被処理水は、被処理水タンクから供給ライン41を介して第1のRO膜装置10の供給側Asに供給される。また供給ライン41には第1ポンプP1が配されることが好ましい。被処理水は第1ポンプP1によって第1のRO膜装置10の供給側Asに所定の運転圧をかけて供給される。
上記水処理システム1Bの第1ライン変更手段を用いて水処理する場合、仕切弁V6、V7を閉じて、被処理水を供給ライン41から第1のRO膜装置10に供給する。このとき、第1、第2ポンプインバータINV1、INV2は通常の運転圧を得る周波数にする。さらに第1のRO膜装置10にて処理した透過水を、接続ライン42を介して第2のRO膜装置20に供給する。そして、第2のRO膜装置20にて処理した透過水のホウ素濃度を、水質測定手段30によって測定する。
水質測定手段30によって測定したホウ素濃度が基準下限値よりも低い値になった場合には、背圧弁Vb1を閉じ、仕切弁V6を開けて、被処理水を第1合流ライン46に流す。そして第1のRO膜装置10の濃縮水と透過水とを合流させ、それを第2のRO膜装置20に供給して処理する。このとき、第1ポンプインバータINV1のインバータ値を低周波数にして、第1ポンプP1の稼働を低下させ、第1のRO膜装置10の運転圧を、通常運転圧の50%以下、かつ、回収率を20%以下にする。これによって、第1のRO膜装置10の運転動力が低減され、運転コストが抑えられる。
水質測定手段30によって測定したホウ素濃度が上昇して、基準上限値よりも高くなった場合には、再び、背圧弁Vb1を開け、仕切弁V6を閉じて、被処理水を第1、第2のRO膜装置10、20の両方によって処理する。このとき、第2のRO膜装置20の供給側Bsには第1のRO膜装置10の透過水のみが供給される。また、第1、第2ポンプインバータINV1、INV2は通常運転圧となる周波数にする。このようにして処理水のホウ素濃度が基準下限値と基準上限値の間(基準値内)になるようにする。
または、上記運転方法において、第2合流ライン47を用いた第2ライン変更手段を用いてもよい。この場合は、初めは上記同様に仕切弁V6、V7を閉じて、被処理水を第1のRO膜装置10と第2のRO膜装置20とによって処理する。そして水質測定手段30によってホウ素濃度を測定する。測定したホウ素濃度の値が基準下限値よりも低くなった場合には、背圧弁Vb2を閉じ、仕切弁V7を開ける。そして被処理水を第1のRO膜装置10によって処理し、第1のRO膜装置の透過水を第2のRO膜装置20に流す。このとき、第2のRO膜装置20は、第2ポンプインバータINV2を低周波数側に調節することによって、通常運転圧の50%以下、かつ、回収率を20%以下にされる。したがって、供給水はほとんど濃縮水側Bcから濃縮水ライン45、第2合流ライン47を通って処理水ライン43に流れ込み、第2のRO膜装置20の透過水と合流する。
そしてホウ素濃度が上昇して基準上限値よりも高くなった場合には、再び、背圧弁Vb2を開け、仕切弁V7を閉じて、被処理水を第1、第2のRO膜装置10、20の両方によって処理する。このように第2のRO膜装置20も運転することによって、処理水のホウ素濃度を低減し、水質を向上させて基準値内に収めることができる。
上記水処理システム1Bの運転方法では、第1ライン変更手段及び第2ライン変更手段の少なくとも一方を用いることができる。どちらのライン変更手段を用いても、対応するRO膜装置の運転圧を低くし、回収率を低下させている間は合流ラインを通じて濃縮水を後段に流すことができる。その間は、他方のRO膜装置によって被処理水が目的の水質へと浄化される。このため、処理水の水質測定値が十分に基準を満たしている場合は、いずれかのRO膜装置の運転を抑制することができ、抑制させたRO膜装置分の運転コストの削減ができる。具体的には、インバータ値を低下させることによって、ポンプ出力を抑えて運転コストの低減を図ることができる。
例えば、水質が十分にきれいな場合(ホウ素濃度が例えば0.02ppb以下の場合)は、第1ポンプインバータINV1のインバータ値を低下させて、第1ポンプP1の運転能力を低下させ、背圧弁Vb1は閉じた状態とする。これによって、第1のRO膜装置10に供給された被処理水は、第1のRO膜装置10をわずかに通過はするが(回収率20%以下)、多くは第1のRO膜装置10の濃縮水側から排出される。第1のRO膜装置10への通水を完全に遮断することなく、被処理水が第1のRO膜装置10をわずかに透過する。これによって、第1のRO膜装置10における細菌等の繁殖を防ぐことができる。
そして、合流ライン46によって、第1のRO膜装置10の濃縮水と透過水とを合流させて、後段の第2のRO膜装置20に供給し、RO膜処理を行う。これによって、第1ポンプP1の運転が抑制されて、コストの削減になる。
第2のRO膜装置20を主に運転をしている状態で、水質が少し悪化してきた場合(ホウ素濃度が例えば0.05ppb以上になった場合)には、第2のRO膜装置20の第2ポンプインバータINV2により第2ポンプP2の可動を抑制し、背圧弁Vb2を閉じ、仕切弁V7は開いた状態にする。それとともに、背圧弁Vb1を開き、仕切弁V6を閉じ、第1のRO膜装置10の第1ポンプインバータINV1のインバータ値を高めることによって第1ポンプP1の運転圧を高めて、第1のRO膜装置10を通常運転に戻す。このようにして第1のRO膜装置10が主となる運転に切り替える。この時点では、第1のRO膜装置10の方がホウ素の阻止率が高いので、第1のRO膜装置10が主の運転でホウ素濃度が0.05ppbを下回るようにしている。こうして水質を目的の純度へと調整することができる。このとき、第2ポンプP2の稼働が抑制されて、コストの低減が可能になる。それでも水質が悪化した場合(ホウ素濃度が例えば0.05ppbを超えている場合)には、背圧弁Vb2を開き、仕切弁V7を閉じ、第2ポンプインバータINV2のインバータ値を高めて第2ポンプP2を通常運転に戻す。このようにして、ホウ素濃度が0.05ppb以下になるように第1、第2のRO膜装置10、20の両方を通常運転して、さらなる水質の向上を図ることができる。
また、第1ライン変更手段及び第2ライン変更手段のいずれか一方に通水する場合に限らず、被処理水の水質によっては、第1ライン変更手段及び第2ライン変更手段の両方に通水するようにしても良い。例えば、被処理水の水質がRO膜処理を必要としないホウ素濃度が基準値以下の水質の場合には、第1、第2ライン変更手段の両方に通水することができる。
また、上記水処理システム1A、1Bでは、常時、水質測定手段30によって、水質として、例えばホウ素濃度をモニタリングして、その結果をフィードバックしてRO膜装置の運転を制御することができる。そのため、処理水に高濃度のホウ素が含まれることはなく、常時、基準値内のホウ素濃度を維持することができる。
さらに、上記水処理システム1Bでは、第1、第2のRO膜装置10、20が常時運転されているため、ポンプ出力を高めた時の立ち上がりが良くなる。また、濃縮水が第1、第2合流ライン46,47のいずれかに流されている間であっても、第1、第2のRO膜装置10、20の各RO膜を通して透過水側にも少ないながら水が流れる。そのため、各RO膜装置内で水が滞留することがないため、各RO膜装置内において細菌等の繁殖を抑えることができる。
次に、本発明に係る水処理システムの別の好ましい実施形態(第3実施形態)として、水処理システム1(1C)について、図3を参照して以下に説明する。
水処理システム1Cは、前述の水処理システム1Aの後段の処理水ライン43に第1のイオン交換装置(IER)51を配したものであり、それ以外は水処理システム1Aと同様の構成を有するものである。この第1のイオン交換装置51は、水質測定手段30を接続する測定用ライン31の分岐点B2よりも下流側に配されることが好ましい。言い換えれば、第1のイオン交換装置51の上流側(前段)で水質測定を行うことができる。これによって、例えば、第2のRO膜装置20の透過水のホウ素濃度が多少増減しても、第1のイオン交換装置51によってホウ素を除去することができる。そのため、最終的には処理水のホウ素濃度を基準値以下へと、より確実に抑えることができる。ホウ素の除去を目的とする場合、第1のイオン交換装置51は少なくともアニオン交換樹脂もしくはホウ素選択性を持つキレート樹脂を有する。イオン交換装置としては、(1)強酸性カチオン交換樹脂が充填されたカチオン交換塔と強塩基性アニオン交換樹脂が充填されたアニオン交換塔とを直列に接続した2床2塔式再生型イオン交換装置、(2)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが別々の異なる層となるように一つの塔内に充填した2床1塔式再生型イオン交換装置、(3)強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して一つの塔内に充填した混床型再生式イオン交換装置、(4)電気再生式脱イオン装置(EDI)が好適に使用できる。
なお説明の便宜上、図3では「第1のイオン交換装置」との表現を用いているが、図3の実施形態において、備えられたイオン交換装置は「第1のイオン交換装置」1台だけでもよい。すなわち、本発明において「第1のイオン交換装置」という場合、別のイオン交換装置(例えば、第2のイオン交換装置)を有してもよいし、有していなくてもよい。
また、第2のRO膜装置20の透過水を必ずしも第1のイオン交換装置51に流す必要はない。例えば、第1のイオン交換装置51をバイパスするバイパスラインを設け、水質測定手段30の測定値に応じて、第1のイオン交換装置51をバイパスするようにしても良い。
次に、本発明に係る水処理システムの別の好ましい実施形態(第4実施形態)として、水処理システム1(1D)について、図4を参照して以下に説明する。
水処理システム1Dは、前述の水処理システム1Cの測定用ライン31に、カチオン交換樹脂を含むカチオン交換装置52及び/又は脱炭素膜を含む脱炭素装置53を配したものであり、それ以外は水処理システム1Cと同様の構成を有するものである。カチオン交換装置52は、水質測定手段30に供給される水からナトリウムイオン等を除去する。脱炭素装置53は、水質測定手段30に供給される水に溶存する酸素、二酸化炭素、等を除去する。カチオン交換装置52及び脱炭素装置53は、両方が配されていることがより好ましい。このような構成では、水質測定手段30に供給される水の比抵抗を高めることができるため、例えば、ホウ素濃度を精度よく測定することが可能になる。カチオン交換樹脂は、常時イオン交換を可能にするという観点から、電気再生式が好ましい。
カチオン交換装置52及び脱炭素装置53は、上記水処理システム1Bについても、上記と同様に適用することができる。
次に、本発明に係る水処理システムの別の好ましい実施形態(第5実施形態)として、水処理システム1(1E)について、図5を参照して以下に説明する。
水処理システム1Eは、前述の水処理システム1Cの第1のイオン交換装置51の前段(水質測定手段30の分岐点の前段)の処理水ライン43に第2のイオン交換装置54を配し、測定用ライン31を第1、第2のイオン交換装置51、54間の処理水ライン43から分岐させたものである。したがって、第1、第2のイオン交換装置51、54、測定用ライン31以外は水処理システム1Cと同様の構成を有するものである。
上記水処理システム1Eは、第1、第2のイオン交換装置51、54の間の処理水ライン43を流れる水のホウ素濃度を、水質測定手段30によって測定することができる。第2のイオン交換装置54によって水質測定手段30に供給される水からイオン等を除去することができるため、水質測定手段30に供給される水の比抵抗を高めることができ、ホウ素濃度を精度よく測定することが可能になる。また、そのホウ素濃度の測定値が高くても、後段の第1のイオン交換装置51によって、第2のイオン交換装置54の処理水に含まれるホウ素を除去する処理を行うことができる。これによって、第1のイオン交換装置51から出る処理水のホウ素濃度を十分に低減できる。したがって、第2のイオン交換装置54の処理水のホウ素濃度が多少増減しても、第1のイオン交換装置51にから出る処理水のホウ素濃度を基準値以下に抑えることができる。
第1、第2のイオン交換装置51、54は、上記水処理システム1Bについても、上記と同様に適用することができる。
次に、本発明に係る水処理システムの別の好ましい実施形態(第6実施形態)として、水処理システム1(1F)について、前述の図5を参照して以下に説明する。
水処理システム1Fは、前述の水処理システム1Eの第1のRO膜装置10のRO膜をBWROとし、第2のRO膜装置20のRO膜をSWROとした以外、水処理システム1Eと同様の構成を有するものである。BWROは、Brackish Water Reverse Osmosis Membraneの略であり、汽水用逆浸透膜である。SWROは、Sea Water Reverse Osmosis Membraneの略であり、海水用逆浸透膜である。BWROは通常は低圧RO膜であり、SWROは通常は高圧RO膜である。
上記水処理システム1Fは、1段目の第1のRO膜装置10に低圧RO膜を用い、2段目の第2のRO膜装置20に高圧RO膜を用いることによって、膜閉塞を起こすことなく、フラックス(単位膜面積・単位時間当たりの膜ろ過水量)を上げることができる。よって、ホウ素阻止率を向上させることができる。
上記のように第1のRO膜装置10のRO膜をBWROとし、第2のRO膜装置20のRO膜をSWROとすることは、上記水処理システム1Bについても、上記同様に適用することができる。
本発明で用いる低圧型RO膜装置に使用されるRO膜は、比較的低い圧力で運転が可能である低圧膜、超低圧膜が好適に使用される。低圧膜、超低圧膜としては、有効圧力1MPa、水温25℃における純水の透過流束が0.027〜0.075m/h(時間)、好ましくは0.027〜0.042m/hのものを使用することができる。
ここで、透過流束は、透過水量をRO膜面積で割ったものである。「有効圧力」とは、JIS K3802:2015「膜用語」に記載の、平均操作圧から浸透圧差及び2次側圧を差し引いた、膜に働く有効な圧である。なお、平均操作圧は、逆浸透膜の1次側における膜供給水の圧力(運転圧力)と濃縮水の圧力(濃縮水出口圧力)の平均値であり、以下の式により表される。

平均操作圧=(運転圧力+濃縮水出口圧力)/2

有効圧力1MPaあたりの透過流束は、膜メーカーのカタログに記載の情報、例えば、透過水量、膜面積、評価時の回収率、NaCl濃度等から計算することができる。また、1つ又は複数の圧力容器に同一の透過流束であるRO膜が複数本装填されている場合、圧力容器の平均操作圧/2次側圧力、被処理水水質、透過水量、膜本数等の情報より、装填された膜の透過流束を計算することができる。
本発明において、第2のRO膜装置20は、高圧型のものが用いられる。高圧型RO膜装置は、従来海水淡水化用として開発されたものであるが、塩濃度の低い被処理水に対しては、より低い運転圧力によって、効率的なイオンやTOC等の除去が可能となる。例えば、超低圧〜低圧型RO膜装置2段分の処理能力を、高圧型RO膜装置であれば1段で実現することも可能である。このようなRO膜装置を用いることで、超低圧〜低圧膜では十分に除去できなかったシリカ、ホウ素、尿素、エタノール、イソプロピルアルコールといった非解離物質の除去率を飛躍的に上昇させることが可能である。
本発明において、第2のRO膜装置20に用いられる「高圧型」の定義としては、おおよそ、次の性質を示すものを挙げることができる。すなわち、有効圧力1MPa、水温25℃における純水の透過流束が0.0083〜0.027m/hのものである。高圧型RO膜の有効圧力は、1.5〜2.0MPaであることが好ましい。有効圧力を1.5MPa以上にすることで、高圧型RO膜のホウ素阻止率を十分に高めることができる。また、有効圧力を2.0MPa以上にすることで、更なるホウ素阻止率向上の効果が見込めるが、装置の耐久圧力を高める必要があるため、設備費用が増加する場合がある。本発明におけるRO膜の相対的な阻止率は、pHが中性であり、その他(温度、圧力、等)同一条件で評価された阻止率である。
本発明の水処理システムでは、RO膜装置の前段において供給水の前処理を行ってもよい。また、後段において処理水の後処理を行ってもよい。さらに、RO膜装置の前段ないし途中において供給水に適宜、薬品を添加することもできる。
前処理としては、凝集処理、砂ろ過、膜ろ過、脱炭酸、軟化が挙げられる。
凝集処理は、正電荷を持つ凝集剤によって負に帯電している水中の微粒子の帯電を中和して凝集させて基礎フロックを生成し、ポリマー等の凝集助剤によって基礎フロックを吸着させて粗大フロックを生成して沈殿しやすくする処理である。凝集剤には、硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄、等が挙げられる。
砂ろ過は、堆積した砂をろ材に用い、その堆積した砂内に水を通すことによってろ過する処理である。
膜ろ過は、ろ過膜を通すことによって水をろ過する処理である。ろ過膜には、ろ過対象物質の大きさと、ろ過の駆動力によって、精密ろ過(MF)膜、限外ろ過(UF)膜、イオン交換膜、RO膜、等が挙げられる。
脱炭酸は、脱炭酸塔を用いて爆気することによって水中の炭酸を減らしてpHを調整する処理である。
軟化は、水中に含まれるカルシウムイオンやマグネシウムイオン等をカチオン交換樹脂によってナトリウムイオンに交換して軟水化する処理である。
後処理としては、紫外線(UV)照射、脱気、等が挙げられる。
紫外線照射は、紫外線を水に照射して、水中の微生物を紫外線によって殺菌、不活性化する処理である。また、水中の有機物を分解する処理でもある。
脱気は、水中の溶存ガス(例えば酸素、窒素、二酸化炭素、等)を除去する処理である。
薬品添加に用いる薬品としては、pHを調整する酸、アルカリ、スケールの発生を抑制、防止するスケール分散剤、殺菌作用や抗菌作用を有するスライムコントロール剤、酸化剤、還元剤、等が挙げられる。
水のpHを調整する、酸としては、塩酸、硫酸、等が挙げられ、アルカリとしては、水酸化ナトリウム、等が挙げられる。
スケール分散剤としては、水酸化ナトリウム(苛性ソーダ)、水酸化カルシウム(消石灰)、等が挙げられる。
スライムコントロール剤としては、次亜塩素酸ナトリウム、過酸化水素、等が挙げられる。
酸化剤としては、オゾン、過酸化水素、等が挙げられ、還元剤としては、過硫酸塩、次亜塩素酸塩、等が挙げられる。
次に、本発明に係る水処理システムの別の好ましい実施形態(第7実施形態)として、水処理システム1(1G)について、図6を参照して以下に説明する。
水処理システム1Gは、前述の水処理システム1Fに第3の逆浸透膜装置(第3のRO膜装置ともいう)60を配したものである。具体的には、濃縮水ライン44を介して、第1のRO膜装置10の濃縮水側Acと第3のRO膜装置60の供給側Csとを接続することが好ましい。また、濃縮水ライン45を介して、第2のRO膜装置20の濃縮水側Bcと第3のRO膜装置60の供給側Csとを接続することが好ましい。第3のRO膜装置60の供給側Csと接続する濃縮水ライン44、45は、供給側Csが共用されて供給側Csに接続されても、独立して供給側Csに接続されてもよい。第3のRO膜装置60の濃縮水側Ccには濃縮水ライン48が接続され、透過水側Ctには透過水ライン49が接続されることが好ましい。この透過水ライン49は、供給ライン41の分岐点B1よりも上流側に接続されることが好ましい。
上記第3のRO膜装置60は、上記水処理システム1Bについても、上記同様に適用することができる。
水処理システム1Gは、第1、第2のRO膜装置10、20の濃縮水を第3のRO膜装置60に供給し、第3のRO膜装置60の処理水(透過水)をRO膜システムの被処理水に合流させることから、回収率を高めることができる。また、回収率を高めるために、第1、第2のRO膜装置10、20の濃縮水を直接被処理水に戻すと、系内のホウ素濃度が高くなってしまう。そこで、第1、第2のRO膜装置10、20の濃縮水を第3のRO膜装置60にて処理し、その透過水を被処理水に戻すことによって、系内のホウ素濃度を高めることなく、回収率を向上させることが可能になる。
第3のRO膜装置60は、低圧型または高圧型のいずれであってもよいが、高圧型のものが好ましい。第3のRO膜装置60を高圧型RO膜装置にすることで、第3のRO膜装置60からの透過水23の水質が向上し、被処理水の希釈効果を高めることができる。結果として、EDI処理水の向上につながることとなる。
上記各水処理システム1(1A〜1G)は、水質測定手段30によって測定されて水質の測定値に基づいて、上記仕切弁V1〜V7及び背圧弁Vb1,Vb2の開閉動作を指示する制御部(図示せず)を備えることが好ましい。制御部によって、仕切弁V1〜V7及び背圧弁Vb1,Vb2の開閉動作をさせるために、各仕切弁V1〜V7は、電気的に開閉動作が行える、例えば電磁弁を用いることが好ましい。これによって、弁操作の自動化が行える。また、この制御部は、水質の測定値に基づいて、第1、第2ポンプインバータINV1、INV2のインバータ値を適宜変更することができる。この制御部は、本発明ではライン変更手段に含まれる。
第1、第2、第3のRO膜装置10、20、60は、バンク構成が1段であっても複数段であってもよい。また、バンクには複数のベッセルを備えることが好ましい。さらにベッセルには複数のエレメントを備えることが好ましい。
<RO膜にかかる供給水の供給圧力>
第1、第2のRO膜装置10、20に被処理水を供給する際の供給圧力を上昇させる場合には、急激な圧力上昇を避けるために流量制御装置として機能する第1ポンプインバータINV1を介して、第1ポンプP1を動作させることが好ましい。その際、急激な圧力変化が生じないように、第1ポンプインバータINV1によって、第1ポンプP1を駆動する電動機(図示せず)の出力(例えば、回転数)を制御して被処理水の流量を調節する。この流量調節によって、水圧変動を抑えることができる。第2ポンプP2についても、第1ポンプP1と同様に急激な圧力変動を避けるために、第2ポンプインバータINV2によって制御することが好ましい。
<RO膜装置>
上記第1、第2、第3のRO膜装置10、20、60は1段構成であっても、多段構成であってもよい。多段構成の場合、RO膜を直列に多段に配することが好ましい。
第1、第2、第3のRO膜装置10、20、60に使用されるRO膜は、使用用途や被処理水水質、求められる透過水水質、回収率によって同一銘柄に限らずそれぞれ最適な膜を選定することができる。たとえば、第1のRO膜装置10に低圧型逆浸透膜を使用し、第2のRO膜装置20には第1のRO膜装置10のRO膜よりも高圧で用いる高圧型逆浸透膜を使用することも好ましい。
<RO膜>
上記のRO膜装置は特に制限されず、極超低圧型、超低圧型、低圧型、中圧型、高圧型のいずれのRO膜装置であってもよい。
低圧〜超低圧型RO膜として、例えば、日東電工社製ESシリーズ(ES15−D8、ES20−U8)(商品名)、HYDRANAUTICS社製ESPAシリーズ(ESPAB、ESPA2、ESPA2−LD−MAX)(商品名)、CPAシリーズ(CPA5−MAX、CPA7−LD)(商品名)、東レ社製TMGシリーズ(TMG20−400、TMG20D−440)(商品名)、TM700シリーズ(TM720−440、TM720D−440)(商品名)、ダウケミカル社製BWシリーズ(BW30HR、BW30XFR−400/34i)、SGシリーズ(SG30LE−440、SG30−400)、FORTILIFE(登録商標)CR100などが挙げられる。
高圧型RO膜としては、例えば、HYDRANAUTICS社製SWCシリーズ(SWC4、SWC5、SWC6)(商品名)、東レ社製TM800シリーズ(TM820V、TM820M)(商品名)、ダウケミカル社製SWシリーズ(SW30HRLE、SW30ULE)(商品名)などを挙げることができる。
上記第1〜第7実施形態に係る水処理システム1A〜1Gは、純水を製造する純水製造システムとして好適に用いることができる。特に、半導体装置の製造工程等に用いられる超純水の製造に、好適に用いることができる。
続いて、本発明の水処理方法について説明する。
本発明の水処理方法では、第1のRO膜装置10と、第1のRO膜装置10の透過水側Atに配された、第1のRO膜装置10とは阻止率が異なる第2のRO膜装置20とを有する逆浸透膜システムへ被処理水を供給する。本発明の水処理方法は、この被処理水の供給に当たって、該逆浸透膜システムの透過水の水質に応じて下記(a)及び(b)の通水ラインを切り替えることを含む。
(a)被処理水を第1のRO膜装置10に供給し、第1のRO膜装置10の透過水を第2のRO膜装置20に供給して透過水を得る通水ライン。
(b)第1のRO膜装置10及び第2のRO膜装置20のいずれか一方への通水を第1バイパスライン15又は第2バイパスライン25によってバイパスすることにより当該いずれか一方のRO膜装置への通水を遮断する通水ライン(b−1)、又は、第1のRO膜装置10及び第2のRO膜装置20のいずれか一方における濃縮水と透過水とを合流する第1合流ライン46又は第2合流ライン47に通水する通水ライン(b−2)。
本発明の水処理方法は、本発明で規定すること以外は特に制限されず、例えば、上述した本発明の水処理システムを用いて実施することができる。本発明の水処理方法は、好ましくは、上記の第1〜第7実施形態に係る水処理システムを用いて実施することができる。
[実施例1]
実施例1は、前述の図6によって説明した水処理システム1Gを用いた。被処理水には、ナトリウム濃度8ppm、カルシウム濃度10ppm、炭酸水素イオン濃度1ppm、イオン状シリカ10ppm、ホウ素濃度10〜100ppbの被処理水を用いた。炭酸水素イオン濃度は炭酸カルシウム(CaCO)換算とした。第1のRO膜装置10の逆浸透膜には、BWRO(日東電工社製、製品名:CPA5−LD)を用い、第1のRO膜装置10の回収率を80%とした。第2のRO膜装置の逆浸透膜には、SWRO(日東電工社製、製品名:SWC5−MAX)を用い、第2のRO膜装置の逆浸透膜の回収率を90%とした。第3の(ブライン)RO膜装置60の逆浸透膜には、SWRO(日東電工社製、製品名:SWC5−MAX)を用い、第3のRO膜装置60の回収率を50%をとした。
第3のRO膜装置60の透過水(処理水)ライン49は合流点B1よりも上流側の被処理水を供給する供給ライン41に合流させた(1段目RO膜装置の単独運転)。第1、第2のイオン交換装置(EDI:電気式再生式純水装置)51、54にはオルガノ社製、製品名:EDI―XPを用い、その回収率は90%とした。
第1のイオン交換装置51の処理水を処理水ライン43から測定用ライン31によって分岐し、水質測定手段30でホウ素濃度を測定して監視した。水質測定手段30には、オンラインホウ素モニター(SUEZ社製、製品名:Sieversオンライン・ホウ素計)を用いた。
また、1段目の第1のRO膜装置10の供給側および2段目の第2のRO膜装置20の供給側の加圧用ポンプ(図示せず)として、多段渦巻ポンプ(グルンドフォス社製、製品名:CR10)を用いた。加圧用ポンプの運転圧は1段目の第1のRO膜装置10の供給側で0.8MPa、2段目の第2のRO膜装置20の供給側で1.4MPaに設定した。
仕切弁V1、V4、V5を開け、仕切弁V2、V3を閉じて、被処理水を第1のRO膜装置10及び第1、第2のイオン交換装置51、54で処理をした。
第1のイオン交換装置51の処理水の基準上限値を、ホウ素濃度0.05ppbとし、ホウ素濃度測定値が0.05ppbを上回った時に、仕切弁V3を開けて、仕切弁V4、V5を閉じた。そして第1のRO膜装置10の透過水を供給水とする第2のRO膜装置20を起動した。第2のRO膜装置20の透過水を第1のイオン交換装置51の処理水とした。第2のRO膜装置20の濃縮水は第1のRO膜装置10の濃縮水と合流し、第3のRO膜装置60の供給水とした(RO膜装置の2段運転)。上記運転を約2400h(時間)実施した。2400h後のEDI処理水のホウ素濃度および、運転に要したエネルギーコスト比を求めた。エネルギーコスト比は、実施例1において2400hの運転で消費した電力消費量を1とした。
なお、2400h経過時の被処理水のホウ素濃度は85ppbであった。
[実施例2]
実施例2は、前述の図6によって説明した水処理システム1Gを用いた。ホウ素濃度の基準上限値を0.05ppb、基準下限値を0.02ppbとした。加圧用ポンプの運転圧は実施例1と同様に設定した。
仕切弁V1、V4、V5を開けて、仕切弁V2、V3を閉じ、第1のRO膜装置10の単独運転を行った。
この単独運転中に第1のイオン交換装置51の処理水(以下、EDI処理水という)のホウ素濃度が0.05ppbを上回った時に、仕切弁V1、V5を閉じて、仕切弁V2、V3は開けた。これにより仕切弁V2、V3、V4が開いた状態になり、仕切弁V1、V5が閉じた状態になった。こうして、第1のRO膜装置10の運転を停止し、それとともに、第1バイパスライン15によってバイパスされた被処理水を第2のRO膜装置20に供給し、第2のRO膜装置の単独運転に切り替えた。この切り替えによりEDI処理水のホウ素濃度は0.05ppbを下回った。
RO膜装置の切り替え後、EDI処理水のホウ素濃度が再び0.05ppbを上回っていた時に、仕切弁V1を開けて、仕切弁V2、V4は閉じた。これにより仕切弁V1、V3が開いた状態になり、仕切弁V2、V4、V5が閉じた状態になった。このようにして、第1のRO膜装置10と第2のRO膜装置20とを運転する2段RO膜装置の運転に切り替えた。
この切り替えによりEDI処理水のホウ素濃度は低下し、EDI処理水のホウ素濃度が基準下限値の0.02ppbを下回っていた時に、仕切弁V1を閉じて、仕切弁V2、V4を開けた。これにより仕切弁V2、V3、V4が開いた状態になり、仕切弁V1、V5が閉じた状態になった。こうして、第1のRO膜装置10の運転を停止し、第1バイパスライン15を用いて被処理水を直接第2のRO膜装置20の供給側Bsに供給した。このようにして、第2のRO膜装置20の単独運転に切り替えた。
その後、EDI処理水のホウ素濃度が0.02ppbを下回っていたため、仕切弁V1、V5を開けて、仕切弁V2、V3は閉じた。これにより仕切弁V1、V4、V5が開いた状態になり、仕切弁V2、V3が閉じた状態になった。こうして、被処理水を第1のRO膜装置10に供給して第1のRO膜装置10の単独運転に切り替えた。この切り替えにより、第2のRO膜装置20の運転は停止し、第1のRO膜装置10の透過水は第2バイパスライン25を通して処理水ライン43に供給された。このようにして、EDI処理水のホウ素濃度が基準上限値と基準下限値との範囲内になるように制御して水処理を行った。
上記運転を約2400h実施した。2400h後のEDI処理水のホウ素濃度、および運転に要したエネルギーコスト比を求めた。以下、エネルギーコスト比は、実施例1における2400hの運転で消費した電力消費量を1.0としたときの比とした。
[比較例1]
比較例1は、ホウ素濃度の測定を被処理水で実施した以外は、前述の図6によって説明した水処理システム1を用いた。加圧用ポンプの運転圧は実施例1と同様に設定した。
先ず、仕切弁V1、V3は開けて、仕切弁V2、V4、V5は閉じて、被処理水の処理を第1のRO膜装置10及び第2のRO膜装置20の両方を用いて実施した(RO膜装置の2段運転)。そして被処理水のホウ素濃度の基準値を50ppbとし、被処理水のホウ素濃度が50ppbを下回った場合に、仕切弁V3を閉じ、仕切弁V4、V5を開けた。こうして、第2のRO膜装置20を停止させ、第2バイパスライン25を用いて第1のRO膜装置10の透過水を処理水ライン43にバイパスした。すなわち、第1のRO膜装置10の単独運転を実施した。その後、被処理水のホウ素濃度が50ppbを上回った場合、再び、仕切弁V3は開けて、仕切弁V4、V5は閉じた。そして、第2のRO膜装置20を運転に切り替え、第1のRO膜装置10及び第2のRO膜装置20の両方を運転した。このようにして、基準値を基準にして、第1のRO膜装置10の単独運転と、第1のRO膜装置10及び第2のRO膜装置20の2段運転とを切替えることによって、被処理水のホウ素濃度の変化に対応した。
上記運転を約2400h実施した。2400h後のEDI処理水のホウ素濃度および、運転に要したエネルギーコスト比を求めた。
[比較例2]
比較例2は、前述の図6によって説明した水処理システム1Gを用いた。加圧用ポンプの運転圧は実施例1と同様に設定した。
処理水のホウ素濃度にかかわらず、仕切弁V1、V3は開け、仕切弁V2、V4、V5は閉じて、第1のRO膜装置10及び第2のRO膜装置20を常時運転(RO膜装置の2段運転)した。
上記運転を約2400h実施した。2400h後のEDI処理水のホウ素濃度および、運転に要したエネルギーコスト比を求めた。
上記実施例1、2及び比較例1,2の運転時間2400h後のEDI処理水のホウ素濃度及びエネルギーコスト比の測定結果を表1に示す。エネルギーコスト比は以下の様に算出した。
エネルギーコスト比は、実施例1における2400hの運転で消費した電力消費量を1とした場合の電力消費量の比として求めた。すなわち、エネルギーコスト比=[2400h運転における電力消費量]/[2400h運転における実施例1の電力消費量]によって求めた。上記電力消費量は、ポンプの電力消費量である。
Figure 2021102191
この結果、本発明では、EDI処理水のホウ素濃度十分に低い値になり、エネルギーコスト比も低くなった。よって、水質の維持が図れるとともに、コスト削減が図れた。
1、1A〜1G 水処理システム
10 第1の逆浸透膜装置(第1のRO膜装置)
15 第1バイパスライン
20 第2の逆浸透膜装置(第2のRO膜装置)
25 第2バイパスライン
30 水質測定手段
31 測定用ライン
41 供給ライン
42 接続ライン
43 処理水ライン
44、45 濃縮水ライン
46 第1合流ライン
47 第2合流ライン
48 濃縮ライン
49 透過水ライン
51 第1のイオン交換装置(IER)
52 カチオン交換装置
53 脱炭素装置
54 第2のイオン交換装置
60 第3の逆浸透膜装置(第3のRO膜装置)
As、Bs、Cs 供給側
Ac、Bc、Cc 濃縮水側
At、Bt、Ct 透過水側
B1〜B2 分岐点
C1 合流点
INV1 第1ポンプインバータ
INV2 第2ポンプインバータ
P1 第1ポンプ
P2 第2ポンプ
V1〜V7 仕切弁
Vb1、Vb2 背圧弁
本発明の上記課題は、以下の手段によって解決された。
[1]
第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された第2の逆浸透膜装置とを有する逆浸透膜システムと、
第2の逆浸透膜装置の透過水側に配した水質測定手段と
イン変更手段とをし、
前記逆浸透膜システムは、下記ライン(I)、(II)、(III)及び(IV)を有し:
(I)第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に通水して透過水を得るライン、
(II)第1の逆浸透膜装置への通水を第1バイパスラインにバイパスすることにより当該第1の逆浸透膜装置への通水を遮断し、第1バイパスラインを通過した水を第2の逆浸透膜装置に通水して透過水を得るライン、
(III)第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水の第2の逆浸透膜装置への通水を第2バイパスラインにバイパスすることにより第2の逆浸透膜装置への通水を遮断し、第2バイパスラインを通過した第1の逆浸透膜装置の透過水を得るライン、
(IV)第1の逆浸透膜装置への通水を第1バイパスラインにバイパスすることにより当該第1の逆浸透膜装置への通水を遮断し、第1バイパスラインを通過した水の第2の逆浸透膜装置への通水を第2バイパスラインにバイパスすることにより第2の逆浸透膜装置への通水を遮断し、第2バイパスラインを通過した水を得るライン;
前記ライン変更手段は、前記水質測定手段の測定値に応じて、前記ライン(I)、(II)、(III)及び(IV)のうち、いずれか1つのラインから別の1つのラインへと変更する、水処理システム。
[2]
第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された第2の逆浸透膜装置とを有する逆浸透膜システムと、
第2の逆浸透膜装置の透過水側に配した水質測定手段と、
ライン変更手段とを有し、
前記逆浸透膜システムは、下記ライン(I)、(V)、(VI)及び(VII)を有し:
(I)第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に通水して透過水を得るライン、
(V)第1の逆浸透膜装置に通水し、第1の逆浸透膜装置における濃縮水と透過水とを合流し、この合流水を第2の逆浸透膜装置に通水して透過水を得るライン、
(VI)第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に通水し、第2の逆浸透膜装置における濃縮水と透過水とを合流した合流液を得るライン、
(VII)第1の逆浸透膜装置に通水し、第1の逆浸透膜装置における濃縮水と透過水とを合流し、この合流水を第2の逆浸透膜装置に通水し、第2の逆浸透膜装置における濃縮水と透過水とを合流した合流液を得るライン;
前記ライン変更手段は、前記水質測定手段の測定値に応じて、前記ライン(I)、(V)、(VI)及び(VII)のうち、いずれか1つのラインから別の1つのラインへと変更する、水処理システム。

前記ライン(V)における第1の逆浸透膜装置、前記ライン(VI)における第2の逆浸透膜装置、前記ライン(VII)における第1の逆浸透膜装置及び第2の逆浸透膜装置について、供給水圧を通常運転圧の50%以下、かつ、回収率を20%以下とする[2]に記載の水処理システム。

第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置である、[1]のいずれかに記載の水処理システム。

第1の逆浸透膜装置の濃縮水及び第2の逆浸透膜装置の濃縮水の少なくとも一方を処理する第3の逆浸透膜装置を有し、第3の逆浸透膜装置の透過水を前記逆浸透膜システムに供給する、[1]〜[]のいずれかに記載の水処理システム。

前記水質測定手段によって測定される成分がホウ素を含む、[1]〜[]のいずれかに記載の水処理システム。

第2の逆浸透膜装置の透過水を処理する第1のイオン交換装置を有する、[1]〜[]のいずれかに記載の水処理システム。

第1のイオン交換装置の処理水を処理する第2のイオン交換装置を有し、前記水質測定手段が、第1のイオン交換装置よりも下流側に設置される、[]に記載の水処理システム。

前記水質測定手段の前段に、カチオン交換装置及び脱気装置のいずれか一つ以上を備える、[1]〜[]のいずれかに記載の水処理システム。
10
請求項1記載の水処理システムを用いた水処理方法であって、
前記逆浸透膜システムへ被処理水を供給するに当たり、該逆浸透膜システムの透過水の水質に応じて前記ライン(I)、(II)、(III)及び(IV)のうち、いずれか1つのラインから別の1つのラインへと切り替えることを含む、水処理方
11
請求項2記載の水処理システムを用いた水処理方法であって、
前記逆浸透膜システムへ被処理水を供給するに当たり、該逆浸透膜システムの透過水の水質に応じて前記ライン(I)、(V)、(VI)及び(VII)のうち、いずれか1つのラインから別の1つのラインへと切り替えることを含む、水処理方法。
12
第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置であり、
前記水質測定手段によって測定される成分がホウ素を含む、[10又は[11]に記載の水処理方法。

Claims (10)

  1. 第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された第2の逆浸透膜装置とを有する逆浸透膜システムと、
    第2の逆浸透膜装置の透過水側に配した水質測定手段と、
    前記水質測定手段の測定値に応じて、第1の逆浸透膜装置に通水し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に通水して透過水を得るラインと、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断するライン、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流するラインと、を変更するライン変更手段と、
    を有する水処理システム。
  2. 前記ライン変更手段が、第1の逆浸透膜装置の濃縮水側と透過水側とを繋ぐ第1合流ライン及び第2の逆浸透膜装置の濃縮水側と透過水側とを繋ぐ第2合流ラインの少なくとも一方を有し、
    前記水質測定手段の測定値に応じて、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方について、供給水圧を通常運転圧の50%以下、かつ、回収率を20%以下とし、当該少なくとも一方の逆浸透膜装置に対応する第1合流ライン及び第2合流ラインの少なくとも一方に通水させる、請求項1に記載の水処理システム。
  3. 第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置である、請求項1又は2に記載の水処理システム。
  4. 第1の逆浸透膜装置の濃縮水及び第2の逆浸透膜装置の濃縮水の少なくとも一方を処理する第3の逆浸透膜装置を有し、第3の逆浸透膜装置の透過水を前記逆浸透膜システムに供給する、請求項1〜3のいずれか1項に記載の水処理システム。
  5. 前記水質測定手段によって測定される成分がホウ素を含む、請求項1〜4のいずれか1項に記載の水処理システム。
  6. 第2の逆浸透膜装置の透過水を処理する第1のイオン交換装置を有する、請求項1〜5のいずれか1項に記載の水処理システム。
  7. 第1のイオン交換装置の処理水を処理する第2のイオン交換装置を有し、前記水質測定手段が、第1のイオン交換装置よりも下流側に設置される、請求項6に記載の水処理システム。
  8. 前記水質測定手段の前段に、カチオン交換装置及び脱気装置のいずれか一つ以上を備える、請求項1〜7のいずれか1項に記載の水処理システム。
  9. 第1の逆浸透膜装置と、第1の逆浸透膜装置の透過水側に配された、第2の逆浸透膜装置とを有する逆浸透膜システムへ被処理水を供給するに当たり、該逆浸透膜システムの透過水の水質に応じて下記(a)及び(b)の通水ラインを切り替えることを含む、水処理方法:
    (a)被処理水を第1の逆浸透膜装置に供給し、第1の逆浸透膜装置の透過水を第2の逆浸透膜装置に供給して透過水を得る通水ライン、
    (b)第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方への通水をバイパスラインにバイパスすることにより当該少なくとも一方の逆浸透膜装置への通水を遮断する通水ライン(b−1)、又は、第1の逆浸透膜装置及び第2の逆浸透膜装置の少なくとも一方における濃縮水と透過水とを合流する通水ライン(b−2)。
  10. 第1の逆浸透膜装置が低圧型逆浸透膜装置であり、第2の逆浸透膜装置が高圧型逆浸透膜装置であり、
    前記水質測定手段によって測定される成分がホウ素を含む、請求項9に記載の水処理方法。

JP2019234250A 2019-12-25 2019-12-25 水処理システム及び水処理方法 Active JP6860648B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019234250A JP6860648B1 (ja) 2019-12-25 2019-12-25 水処理システム及び水処理方法
PCT/JP2020/032011 WO2021131156A1 (ja) 2019-12-25 2020-08-25 水処理システム及び水処理方法
CN202080056641.2A CN114206785B (zh) 2019-12-25 2020-08-25 水处理系统以及水处理方法
TW109130312A TWI738493B (zh) 2019-12-25 2020-09-04 水處理系統及水處理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234250A JP6860648B1 (ja) 2019-12-25 2019-12-25 水処理システム及び水処理方法

Publications (2)

Publication Number Publication Date
JP6860648B1 JP6860648B1 (ja) 2021-04-21
JP2021102191A true JP2021102191A (ja) 2021-07-15

Family

ID=75520859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234250A Active JP6860648B1 (ja) 2019-12-25 2019-12-25 水処理システム及び水処理方法

Country Status (4)

Country Link
JP (1) JP6860648B1 (ja)
CN (1) CN114206785B (ja)
TW (1) TWI738493B (ja)
WO (1) WO2021131156A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150923A (ja) * 1990-10-12 1992-05-25 Kawasaki Heavy Ind Ltd 低圧用逆浸透膜による高濃度溶液の濃縮方法及び装置
JPH0580585U (ja) * 1991-12-03 1993-11-02 株式会社オニック 造水装置
JP2002085941A (ja) * 2000-07-13 2002-03-26 Toray Ind Inc 造水方法および造水装置
JP2003200160A (ja) * 2002-01-09 2003-07-15 Toray Ind Inc 造水方法および造水装置
US20030141250A1 (en) * 2002-01-18 2003-07-31 Masahiro Kihara Desalination method and desalination apparatus
JP2005342587A (ja) * 2004-06-01 2005-12-15 Toray Ind Inc 造水方法および造水装置
JP2008132421A (ja) * 2006-11-28 2008-06-12 Kurita Water Ind Ltd 水処理装置および水処理方法
JP4172394B2 (ja) * 2002-01-22 2008-10-29 東レ株式会社 造水方法および造水装置
JP2009131785A (ja) * 2007-11-30 2009-06-18 Kobelco Eco-Solutions Co Ltd 浄化水回収装置及び浄化水の回収方法
JP2009154070A (ja) * 2007-12-26 2009-07-16 Kobelco Eco-Solutions Co Ltd 浄化水回収装置及び浄化水の回収方法
WO2012033257A1 (en) * 2010-09-09 2012-03-15 Gs Engineering & Construction Corp. Two-pass reverse osmosis desalination apparatus and method
JP2014100706A (ja) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl 特に超純水を得るための水の処理
JP2014128767A (ja) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd 純水製造システム
JP2015188767A (ja) * 2014-03-27 2015-11-02 株式会社エフテック技研 浄水装置
WO2018225277A1 (ja) * 2017-06-08 2018-12-13 シャープ株式会社 浄水装置および家庭用浄水器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580585A (ja) * 1991-03-01 1993-04-02 Kao Corp 静電荷像現像剤組成物
CA2186963C (en) * 1996-10-01 1999-03-30 Riad A. Al-Samadi High water recovery membrane purification process
JP2002001068A (ja) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd 膜分離方法および装置
EP1743689A1 (de) * 2005-07-13 2007-01-17 KRONES Aktiengesellschaft Crossflow-Membranfilteranlage sowie Verfahren
CN102745775A (zh) * 2007-10-29 2012-10-24 株式会社神钢环境舒立净 水处理方法、水处理装置、净化水的回收方法及净化水回收装置
AU2008202302A1 (en) * 2008-05-22 2009-12-10 Al-Samadi, Riad Dr High Water Recovery Membrane Purification Process
JP2014034005A (ja) * 2012-08-09 2014-02-24 Toray Ind Inc 塩水淡水化装置および造水方法
KR101929815B1 (ko) * 2012-11-08 2018-12-17 엘지전자 주식회사 복수 개의 역삼투막 장치를 이용한 수처리장치 및 수처리방법
JP6435961B2 (ja) * 2014-03-31 2018-12-12 宇部興産株式会社 ガス分離システム及び富化ガスの製造方法
JP6634918B2 (ja) * 2016-03-25 2020-01-22 栗田工業株式会社 超純水製造システム
US20180111070A1 (en) * 2016-10-25 2018-04-26 Ds Services Of America, Inc. Bypass for high demand periods for water purification system
JP6807219B2 (ja) * 2016-11-18 2021-01-06 オルガノ株式会社 逆浸透膜処理システムおよび逆浸透膜処理方法
EP3778496A4 (en) * 2018-03-27 2021-07-14 Toray Industries, Inc. WATER TREATMENT PROCESS AND WATER TREATMENT DEVICE
WO2019215971A1 (ja) * 2018-05-10 2019-11-14 シャープ株式会社 浄水装置および家庭用浄水器
CN208454565U (zh) * 2018-06-11 2019-02-01 孙凌君 反渗透即时产水系统
CN108821391A (zh) * 2018-08-21 2018-11-16 上海电力学院 一种无预处理工艺的膜法海水淡化系统

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150923A (ja) * 1990-10-12 1992-05-25 Kawasaki Heavy Ind Ltd 低圧用逆浸透膜による高濃度溶液の濃縮方法及び装置
JPH0580585U (ja) * 1991-12-03 1993-11-02 株式会社オニック 造水装置
JP2002085941A (ja) * 2000-07-13 2002-03-26 Toray Ind Inc 造水方法および造水装置
JP2003200160A (ja) * 2002-01-09 2003-07-15 Toray Ind Inc 造水方法および造水装置
US20030141250A1 (en) * 2002-01-18 2003-07-31 Masahiro Kihara Desalination method and desalination apparatus
JP4172394B2 (ja) * 2002-01-22 2008-10-29 東レ株式会社 造水方法および造水装置
JP2005342587A (ja) * 2004-06-01 2005-12-15 Toray Ind Inc 造水方法および造水装置
JP2008132421A (ja) * 2006-11-28 2008-06-12 Kurita Water Ind Ltd 水処理装置および水処理方法
JP2009131785A (ja) * 2007-11-30 2009-06-18 Kobelco Eco-Solutions Co Ltd 浄化水回収装置及び浄化水の回収方法
JP2009154070A (ja) * 2007-12-26 2009-07-16 Kobelco Eco-Solutions Co Ltd 浄化水回収装置及び浄化水の回収方法
WO2012033257A1 (en) * 2010-09-09 2012-03-15 Gs Engineering & Construction Corp. Two-pass reverse osmosis desalination apparatus and method
JP2014100706A (ja) * 2012-11-21 2014-06-05 Ovivo Luxembourg Srl 特に超純水を得るための水の処理
JP2014128767A (ja) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd 純水製造システム
JP2015188767A (ja) * 2014-03-27 2015-11-02 株式会社エフテック技研 浄水装置
WO2018225277A1 (ja) * 2017-06-08 2018-12-13 シャープ株式会社 浄水装置および家庭用浄水器

Also Published As

Publication number Publication date
TW202124032A (zh) 2021-07-01
JP6860648B1 (ja) 2021-04-21
TWI738493B (zh) 2021-09-01
CN114206785A (zh) 2022-03-18
CN114206785B (zh) 2023-08-08
WO2021131156A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
CA2663906C (en) Method and apparatus for desalination
US5651894A (en) Water purification system and method
EP1019325B1 (en) Process for desalination of sea water, having increased product yield and quality
AU2003203265B2 (en) Method of generating fresh water and fresh-water generator
EP1363856B1 (en) Method of boron removal in presence of magnesium ions
JP4917581B2 (ja) 純水製造方法
JP5834492B2 (ja) 超純水製造装置
JP2015020131A (ja) ホウ素含有水の処理方法及び装置
JP5953726B2 (ja) 超純水製造方法及び装置
JP3137831B2 (ja) 膜処理装置
JP2007307561A (ja) 高純度水の製造装置および方法
JP5238778B2 (ja) 淡水化システム
JP6860648B1 (ja) 水処理システム及び水処理方法
TWI826657B (zh) 純水製造裝置及純水之製造方法
Singh Production of high-purity water by membrane processes
JP2013202587A (ja) 超純水製造装置
JP2012192364A (ja) 水処理方法及び水処理システム
WO2021161569A1 (ja) 超純水製造装置及び超純水製造方法
US20170267550A1 (en) Ultrapure water producing method
CN216513257U (zh) 高效节能环保的水处理设备和锅炉给水系统
JP7354744B2 (ja) 排水利用システム
KR20210145125A (ko) 막 탈기 장치의 세정 방법 및 초순수 제조 시스템
JP2016187791A (ja) カルシウムイオン及び無機炭素含有水の処理方法
WO2014010075A1 (ja) 超純水製造装置
JP2023128657A (ja) 水処理システム及び水処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250