WO2021091174A1 - 리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 - Google Patents

리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 Download PDF

Info

Publication number
WO2021091174A1
WO2021091174A1 PCT/KR2020/015108 KR2020015108W WO2021091174A1 WO 2021091174 A1 WO2021091174 A1 WO 2021091174A1 KR 2020015108 W KR2020015108 W KR 2020015108W WO 2021091174 A1 WO2021091174 A1 WO 2021091174A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
positive electrode
binder
weight
Prior art date
Application number
PCT/KR2020/015108
Other languages
English (en)
French (fr)
Inventor
김봉수
김택경
김수현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200140343A external-priority patent/KR20210054989A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202080028483.XA priority Critical patent/CN113692661A/zh
Priority to EP20885146.9A priority patent/EP3951954A4/en
Priority to JP2021563685A priority patent/JP7237201B2/ja
Priority to US17/605,752 priority patent/US20220209237A1/en
Publication of WO2021091174A1 publication Critical patent/WO2021091174A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for a lithium secondary battery electrode, a positive electrode for a lithium secondary battery including the same, and a lithium secondary battery.
  • lithium secondary batteries As the application range of lithium secondary batteries has been expanded to not only portable electronic devices and communication devices, but also electric vehicles (EV) and electric storage systems (ESS), the high capacity of lithium secondary batteries used as their power sources has been improved. The demand is rising.
  • EV electric vehicles
  • ESS electric storage systems
  • Li-S battery is a battery using sulfur as a positive electrode active material and lithium as a negative electrode active material, and the conversion reaction between lithium ions and sulfur in the positive electrode (S 8 +16Li + +16e) - ⁇ 8Li 2 S), the theoretical discharge capacity reaches 1,675 mAh/g, and when lithium metal (theoretical capacity: 3,860 mAh/g) is used as the negative electrode, the theoretical energy density of 2,600 Wh/kg is shown.
  • Li-MH battery 450Wh/kg
  • Li-FeS battery 480Wh/kg
  • Li-MnO 2 battery 1,000Wh/kg
  • Na-S battery 800Wh/kg
  • commercial lithium Since it has a very high value compared to the theoretical energy density of a secondary battery (LiCoO2/graphite), it is attracting attention as a high-capacity lithium secondary battery among secondary batteries that have been developed so far, and several studies are being conducted as a next-generation battery system.
  • Sulfur which is used as a positive electrode active material in a lithium-sulfur battery, has an electrical conductivity of 5 ⁇ 10 -30 S/cm and is a non-conductor without electrical conductivity, so it is difficult to move electrons generated by an electrochemical reaction. Accordingly, it is used in combination with a conductive material such as a porous carbon material that can provide an electrochemical reaction site.
  • lithium sulfide Li 2 S
  • a method of using a lithium ionic polymer as a binder or using a material with an adsorption functional element to suppress the elution of lithium polysulfide as an intermediate product has been proposed.
  • poly(acrylic acid, PAA) or lithium-substituted polyacrylic acid (lithiated poly(acrylic acid), LiPAA) as a binder, it was possible to increase the adhesion of the electrode and facilitate the movement of lithium ions.
  • the present inventors conducted various studies to solve the above problem. As a result of adding a cationic polymer that interacts with a carboxylate group and electrostatically to a binder for a lithium secondary battery electrode, the adhesion properties of the electrode are improved, and thus the electricity of the electrode.
  • the present invention was completed by confirming that excellent battery performance can be implemented by improving chemical reactivity and stability.
  • an object of the present invention is to provide a binder for a lithium secondary battery electrode that improves the adhesion of the electrode.
  • Another object of the present invention is to provide a positive electrode for a lithium secondary battery comprising the binder.
  • Another object of the present invention is to provide a lithium secondary battery including the positive electrode.
  • the present invention is a polymer containing a carboxylate group; And a cationic polymer, wherein the content of the cationic polymer is 5 to 30% by weight based on 100% by weight of the total binder for the lithium secondary battery electrode.
  • the polymer containing the carboxylate group is polyacrylic acid, lithium polyacrylate, polymethacrylic acid, polylithium methacrylate, carboxymethyl cellulose, sodium carboxymethyl cellulose, styrene-butadiene rubber/carboxymethyl cellulose, alginic acid and sodium alginate. It may include one or more selected from the group consisting of.
  • the polymer including the carboxylate group may have a weight average molecular weight of 50,000 to 5,000,000.
  • the cationic polymer is polyquaternium, polyallylamine hydrochloride, polyethylene imine, poly4-vinylpyridine, poly3,4-ethylenedioxythiophene: polystyrenesulfonate, poly(vinylamine hydrochloride), poly(2-(dimethyl Amino) ethyl methacrylate), and poly(amido amine).
  • the cationic polymer may have a weight average molecular weight of 3,000 to 1,000,000.
  • the polymer including the carboxylate group and the cationic polymer may be included in a weight ratio of 70:30 to 95:5.
  • the present invention provides a positive electrode for a lithium secondary battery comprising the binder.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • the binder for a lithium secondary battery electrode according to the present invention contains a small amount of a cationic polymer that has an electrostatic interaction with a carboxylate group, thereby improving the adhesion of the electrode and improving the electrochemical reactivity and stability of the electrode including the same. Accordingly, stability, high capacity, and long life of the lithium secondary battery including the electrode are possible.
  • FIG. 2 is a graph showing the results of evaluating the adhesion of the positive electrodes of Examples 4 to 6 and Comparative Example 2 according to Experimental Example 1 of the present invention.
  • FIG 3 is a graph showing the results of evaluating the adhesion of the positive electrodes of Examples 7 to 9 and Comparative Example 3 according to Experimental Example 1 of the present invention.
  • Example 5 is a graph showing the results of evaluating the adhesion of the positive electrodes of Example 11 and Comparative Example 2 according to Experimental Example 1 of the present invention.
  • Example 7 is a graph showing evaluation results of life characteristics of lithium secondary batteries of Example 14 and Comparative Example 5 according to Experimental Example 2 of the present invention.
  • Lithium-sulfur batteries have a high theoretical discharge capacity and theoretical energy density among various secondary batteries, and sulfur used as a positive electrode active material is in the spotlight as a next-generation secondary battery due to the advantage of being inexpensive and environmentally friendly due to its abundant reserves.
  • sulfur which is a positive electrode active material
  • sulfur-carbon composite mixed with a porous carbon material having a large specific surface area is generally used.
  • lithium polysulfide with a high oxidation number of sulfur (Li 2 S x , usually x> 4), is a material with strong polarity and is easily dissolved in an electrolyte containing a hydrophilic organic solvent and eluted out of the reaction region of the positive electrode, resulting in a loss of sulfur that no longer participates in the electrochemical reaction.
  • Li 2 S x lithium polysulfide with a high oxidation number of sulfur
  • the problem of reducing the electrochemical reactivity and stability of the positive electrode is improved by increasing the adhesion of the electrode, especially the positive electrode, including two kinds of specific polymers that are bonded to each other through electrical interaction as a binder. Improve battery performance.
  • the binder for a lithium secondary battery electrode according to the present invention includes a polymer containing a carboxylate group; And a cationic polymer, wherein the cationic polymer is included in an amount of 5 to 30% by weight based on 100% by weight of the binder for a lithium secondary battery electrode.
  • the two kinds of polymers included in the binder of the present invention are also used in the prior art, but in the present invention, electrode adhesion through electrostatic interactions between the two kinds of polymers having different polarities. It is characterized by including a small amount of a cationic polymer as an additive that induces electrostatic interaction with a polymer containing a carboxylate group having a negative charge.
  • the polymer including the carboxylate group serves as a main binder for binding between the components constituting the electrode, specifically, between the positive electrode active material and the positive electrode active material, and between the positive electrode active material and the positive electrode current collector.
  • the polymer containing the carboxylate group not only has excellent mechanical strength, but also exhibits a negative charge, thereby facilitating the movement of positively charged lithium ions, and enhancing the adhesion of the electrode through electrostatic mutual bonding with a cationic polymer described later. I can.
  • the polymer containing the carboxylate group interacts with the cation, it also has a function of adsorbing the cation, polysulfide.
  • the polymer containing a carboxylate group may include a homopolymer containing a monomer containing a carboxylate group, a block copolymer containing a monomer containing a carboxylate group, and a mixture thereof. I can.
  • the polymer containing a carboxylate group is polyacrylic acid (poly(acrylic acid), PAA), poly(acrylic acid) lithium, LiPAA), poly(methacrylic acid), PMA), poly(methacrylic acid) lithium (LiPMA), carboxymethyl cellulose (CMC), sodium carboxymethyl cellulose, styrene-butadiene rubber/carboxymethyl cellulose butadiene rubber/carboxymethyl cellulose, SBR/CMC), alginic acid and sodium alginate.
  • the polymer containing the carboxylate group may be one or more selected from the group consisting of polyacrylic acid, sodium alginate, and carboxymethyl cellulose, and more preferably, the polymer containing the carboxylate group is polyacrylic acid.
  • the polymer containing the carboxylate group is polyacrylic acid.
  • the weight average molecular weight (M w ) of the polymer including the carboxylate group may be 50,000 to 5,000,000, preferably 100,000 to 2,000,000.
  • the weight average molecular weight of the polymer containing the carboxylate group is less than the above range, the adhesive properties of the electrode may be deteriorated, and the dispersion stability of the slurry may deteriorate.
  • it exceeds the above range it has an excessively large viscosity, making the slurry preparation process difficult and the initial dispersion of particles in the slurry is difficult.
  • the polymer including the carboxylate group may be included in an amount of 70 to 95% by weight, preferably 75 to 95% by weight, more preferably 80 to 95% by weight, based on 100% by weight of the total binder for a lithium secondary battery electrode. .
  • the content of the polymer containing the carboxylate group is less than the above range, the amount of the main binder material is insufficient, so the binding effect between the components constituting the electrode decreases, and on the contrary, when the content of the polymer containing the carboxylate group exceeds the above range, the content of the cationic polymer described later. This is relatively reduced, so that the effect of improving the adhesion does not appear. Therefore, it is desirable to determine an appropriate content within the above range.
  • the specific optimum content of the polymer containing the carboxylate group may be set differently according to the use environment and other characteristics of the positive electrode to be provided and the battery having the same, and such utilization is not meant to be limited by the above-described range. .
  • the cationic polymer includes an ionic functional group having a positive charge, and is applied as an additive to the binder for a lithium secondary battery electrode of the present invention to be used as a main binder.
  • the positive electrode active material is maintained in the positive electrode current collector, and the positive electrode active materials are organically connected to each other to further improve the binding force between them.
  • the polymer containing the carboxylate group exhibits a negative charge, and since the cationic polymer exhibiting a positive charge interacts with each other by pulling attraction and binds to each other, even if the total amount of the binder is reduced, compared to the conventional binder. It is possible to improve the energy density of the battery by minimizing the amount of the binder used, and to prevent the detachment of the electrode active material, thereby improving the capacity, life, and reliability of the battery.
  • the cationic polymer is composed of a polymer containing a cationic functional group and a polymer containing an anionic functional group paired therewith, or a cationic polymer containing a quaternary ammonium having a positive charge and a monoatomic anion that is a counter ion thereof. It may be configured.
  • the cationic polymer is polydiallyldimethylammonium chloride (poly(diallyldimethylammonium chloride), polyquaternium-6), poly(2-ethyldimethylaminoethyl methacrylate ethyl sulfate)-co-(1-vinylpyrroli Don) (poly[(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)], polyquaternium-d11), polyquaternium, poly(allylamine hydrochloride, PAH), Poly(ethylene imine), PEI), poly4-vinylpyridine (poly(4-vinylpyridine), P4VP), poly3,4-ethylenedioxythiophene: polystyrenesulfonate (poly(3,4-ethylenedioxythiophene)) :poly(styrenesulfonate),
  • the cationic polymer is polydiallyldimethylammonium chloride, poly(2-ethyldimethylaminoethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone) and poly3,4-ethylenedioxythi Offene: may be one or more selected from the group consisting of polystyrene sulfonate, more preferably, the cationic polymer is a group consisting of polydiallyldimethylammonium chloride and poly3,4-ethylenedioxythiophene:polystyrenesulfonate It may be one or more selected from.
  • the weight average molecular weight (M w ) of the cationic polymer may be 3,000 to 1,000,000, preferably 5,000 to 500,000.
  • the weight average molecular weight of the cationic polymer is less than the above range, the effect of improving the adhesion of the electrode may be insignificant.
  • the weight average molecular weight of the cationic polymer exceeds the above range, the resistance of the electrode may increase and the performance of the battery including the same may decrease.
  • the cationic polymer may be included in an amount of 5 to 30% by weight, preferably 5 to 25% by weight, more preferably 5 to 20% by weight, based on 100% by weight of the total binder for a lithium secondary battery electrode.
  • the cationic property is used to improve the adhesion properties of the electrode. A small amount of the polymer is added in the above-described range, and by securing excellent electrode adhesion through this, it is possible to improve battery performance, such as capacity retention according to charge/discharge life.
  • the specific optimal content of the cationic polymer may be set differently according to the electrode to be provided and other characteristics of the battery having the same and the use environment, and such utilization is not meant to be limited by the above-described range.
  • the weight ratio of the polymer containing the carboxylate group and the cationic polymer is 70:30 to 95:5, preferably 75:25 to It may be 95:5, more preferably 80:20 to 95:5. If the proportion of the cationic polymer is higher in the weight ratio range, the content of the main binder is relatively reduced, so that the physical properties of the manufactured electrode are deteriorated, so that the electrode active material and the conductive material can be easily removed. On the other hand, when the ratio of the cationic polymer is lowered, the effect of improving the adhesion of the electrode disappears, and thus the advantage of mixing the cationic polymer disappears.
  • the present invention provides a positive electrode for a lithium secondary battery comprising the binder for the lithium secondary battery electrode.
  • the positive electrode for a lithium secondary battery includes a positive electrode current collector and a positive electrode active material layer formed on one or both surfaces of the positive electrode current collector, and the positive electrode active material layer may include a positive electrode active material, a conductive material, and the aforementioned binder for a lithium secondary battery electrode. have.
  • the current collector is not particularly limited as long as it supports the positive electrode active material and has high conductivity without causing chemical changes to the battery.
  • copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, silver, carbon, etc., aluminum-cadmium alloy, and the like may be used.
  • the current collector may form fine irregularities on its surface to enhance the bonding strength with the positive electrode active material, and various forms such as films, sheets, foils, meshes, nets, porous bodies, foams, and nonwoven fabrics may be used.
  • the positive electrode active material may include at least one selected from the group consisting of elemental sulfur (S 8) and a sulfur-based compound.
  • the positive electrode active material may be elemental sulfur.
  • the positive electrode active material When sulfur or a sulfur-based compound is used as the positive electrode active material, it is used in combination with a conductive material because there is no electrical conductivity alone.
  • the positive electrode active material may be a sulfur-carbon composite.
  • carbon is a porous carbon material, providing a skeleton through which sulfur, which is a positive electrode active material, can be uniformly and stably fixed, and complements the electrical conductivity of sulfur so that an electrochemical reaction can proceed smoothly.
  • the porous carbon material may generally be prepared by carbonizing precursors of various carbon materials.
  • the porous carbon material includes irregular pores therein, the average diameter of the pores is in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total volume of the porosity. If the average diameter of the pores is less than the above range, the pore size is only at the molecular level and impregnation of sulfur is impossible. On the contrary, if the pore size exceeds the above range, the mechanical strength of the porous carbon is weakened, which is preferable to be applied to the manufacturing process of the electrode. I don't.
  • the porous carbon material may be spherical, rod-shaped, needle-shaped, plate-shaped, tube-shaped, or bulk-shaped, and may be used without limitation as long as it is commonly used in lithium-sulfur batteries.
  • the porous carbon material may have a porous structure or a high specific surface area, and any one that is commonly used in the art may be used.
  • the porous carbon material graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); It may be one or more selected from the group consisting of natural graphite, artificial graphite, expanded graphite, and activated carbon, but is not limited thereto.
  • the sulfur-carbon composite may contain 60 to 90 parts by weight of sulfur, preferably 65 to 85 parts by weight, more preferably 70 to 80 parts by weight, based on 100 parts by weight of the sulfur-carbon composite.
  • sulfur content is less than the above-described range, the specific surface area increases as the content of the porous carbon material in the sulfur-carbon composite is relatively increased, so that the content of the binder increases when manufacturing the positive electrode.
  • Increasing the amount of the binder used may eventually increase the sheet resistance of the positive electrode and act as an insulator to prevent electron pass, thereby deteriorating the performance of the battery.
  • the sulfur is located on at least one of the inner and outer surfaces of the porous carbon material, and at this time, less than 100%, preferably 1 to 95%, of the entire inner and outer surfaces of the porous carbon material , More preferably, it may be present in the range of 60 to 90%.
  • the sulfur is present on the inner and outer surfaces of the porous carbon material within the above range, the maximum effect may be exhibited in terms of an electron transfer area and wettability with an electrolyte.
  • the electron transfer contact area may be increased during the charging and discharging process.
  • the sulfur is located in the 100% area of the entire inner and outer surface of the porous carbon material, the carbon material is completely covered with sulfur, so that the wettability to the electrolyte decreases, and the contact with the conductive material included in the electrode decreases, thereby preventing electron transfer. They do not receive it, so they cannot participate in the electrochemical reaction.
  • the positive electrode active material may further include at least one additive selected from a transition metal element, a group IIIA element, a group IVA element, a sulfur compound of these elements, and an alloy of these elements and sulfur.
  • the transition metal element is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au, or Hg and the like are included, and the group IIIA element includes Al, Ga, In, and Ti, and the group IVA element may include Ge, Sn, Pb, and the like.
  • the positive electrode active material may be included in an amount of 50 to 95% by weight, preferably 70 to 90% by weight, and more preferably 85 to 90% by weight, based on 100% by weight of the total solid base contained in the positive electrode for a lithium secondary battery.
  • content of the electrode active material is less than the above range, it is difficult to sufficiently exhibit the electrochemical reaction of the electrode, and on the contrary, when the content of the electrode active material exceeds the above range, the content of the conductive material and the binder to be described later is relatively insufficient, so that the resistance of the electrode increases, There is a problem that the physical properties of the electrode are deteriorated.
  • the positive electrode for a lithium secondary battery of the present invention includes a conductive material for smoothly moving electrons within the positive electrode.
  • the conductive material is a material that serves as a path through which electrons move from a current collector to the positive electrode active material by electrically connecting the electrolyte and the positive electrode active material, and may be used without limitation as long as it has conductivity.
  • the conductive material includes carbon black such as Super-P (Super-P), Denka Black, acetylene black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, Summer Black, and Carbon Black; Carbon derivatives such as carbon nanotubes and fullerene; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Alternatively, conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole may be used alone or in combination.
  • carbon black such as Super-P (Super-P), Denka Black, acetylene black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, Summer Black, and Carbon Black
  • Carbon derivatives such as carbon nanotubes and fullerene
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive polymers such as polyaniline, polythiophene, polyacetylene
  • the conductive material may be 0 to 10% by weight, preferably 3 to 5% by weight, based on 100% by weight of the total solid base contained in the positive electrode for a lithium secondary battery. If the content of the conductive material is less than the above range, it is difficult to transfer electrons between the positive electrode active material and the current collector, so that voltage and capacity may decrease. On the contrary, if it exceeds the above range, since the proportion of the positive electrode active material may be relatively reduced and the total energy (charge amount) of the battery may decrease, it is preferable to determine an appropriate content within the above-described range.
  • the positive electrode for a lithium secondary battery of the present invention includes a binder to further increase the binding force between components constituting the positive electrode and between them and a current collector, and the binder includes the binder for a lithium secondary battery electrode according to the present invention described above. .
  • the binder may be 2 to 10% by weight, preferably 3 to 8% by weight, more preferably 4 to 7% by weight, based on 100% by weight of the total solid base contained in the positive electrode for a lithium secondary battery. If the content of the binder is less than the above range, the physical properties of the positive electrode may be degraded and the positive electrode active material and the conductive material may fall off, and if the content of the binder exceeds the above range, the ratio of the positive electrode active material and the conductive material in the positive electrode may be relatively reduced, thereby reducing the battery capacity. It is desirable to determine an appropriate content within the above-described range.
  • the binder is according to the present invention, and includes a polymer including a carboxylate group and a cationic polymer, wherein the content of the cationic polymer is 0.1 to 3% by weight based on the total 100% by weight of the positive electrode slurry composition for a lithium secondary battery %, preferably 0.2 to 2% by weight, more preferably 0.5 to 1.5% by weight.
  • the content of the cationic polymer is out of the above-described range, there may be a problem in that the electrode adhesion decreases and the resistance increases.
  • a known binder generally used in the relevant technical field may be additionally used.
  • a fluororesin binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); Rubber-based binders including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Poly alcohol-based binder; Polyolefin-based binders including polyethylene and polypropylene; Polyimide binders; Polyester binder; And a silane-based binder; a mixture or copolymer of two or more types selected from the group consisting of.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Rubber-based binders including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber
  • the positive electrode active material layer may further include a component commonly used for the purpose of improving its function in the relevant technical field, if necessary, in addition to the above-described components.
  • a component commonly used for the purpose of improving its function in the relevant technical field if necessary, in addition to the above-described components.
  • the additionally applicable components include viscosity modifiers, fluidizing agents, fillers, crosslinking agents, and dispersing agents.
  • the positive electrode for a lithium secondary battery may be manufactured by a method known in the art.
  • a slurry is prepared by mixing and stirring additives such as a binder, a conductive material, a solvent, and, if necessary, a filler in a positive electrode active material, and then coating (coating) it on a current collector of a metal material, compressing, and drying to prepare a positive electrode. can do.
  • the binder is dissolved in a solvent for preparing a slurry, and then a conductive material is dispersed.
  • a solvent for preparing the slurry a positive electrode active material, a binder, and a conductive material can be uniformly dispersed, and it is preferable to use one that evaporates easily.
  • the solvent is N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyllolactone, 1,2-dimethoxy ethane, tetrahydrofuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, formamide, dimethylformamide, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate tryster, trimethoxy methane , Organic solvents such as sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, methyl propionate or ethyl propionate; It may be selected from aqueous solvents such as water and mixtures thereof. Among these, when an aqueous solvent such as water is used, it may be advantageous in terms of
  • a positive electrode active material or optionally together with an additive, is uniformly dispersed again in a solvent in which the binder and the conductive material are dispersed to prepare a positive electrode slurry.
  • the slurry thus prepared is applied to a current collector and dried to form a positive electrode.
  • the slurry may be applied to the current collector in an appropriate thickness according to the viscosity of the slurry and the thickness of the positive electrode to be formed.
  • the application method is not particularly limited.
  • a method such as a doctor blade, die casting, comma coating, and screen printing may be mentioned.
  • the amount of the positive electrode slurry composition for lithium secondary batteries is not particularly limited, but the thickness of the positive electrode active material layer made of a positive electrode active material, a conductive material, a binder, etc. formed after drying and removing the solvent is usually 0.005 to 5 mm, preferably An amount of 0.01 to 2 mm is common.
  • the drying is for removing the solvent, and is performed under conditions such as temperature and time to sufficiently remove the solvent, and the conditions may vary depending on the type of solvent, and thus are not particularly limited in the present invention.
  • the drying method is also not particularly limited, and examples thereof include hot air, hot air, drying by low humid air, vacuum drying, and drying by irradiation with (far) infrared rays and electron beams.
  • the drying rate is usually adjusted so that the solvent can be removed as quickly as possible within a speed range that does not cause cracks in the positive electrode active material layer due to stress concentration or the positive electrode active material layer is peeled off from the current collector.
  • the density of the positive electrode active material in the positive electrode may be increased by pressing the current collector after drying.
  • Methods, such as a mold press and a roll press, are mentioned as a press method.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • the lithium secondary battery includes a positive electrode; It includes a negative electrode and a separator and an electrolyte interposed therebetween, and includes a positive electrode for a lithium secondary battery according to the present invention as the positive electrode.
  • the anode is as described above.
  • the negative electrode may include a negative electrode current collector and a negative active material layer applied to one or both surfaces of the negative electrode current collector.
  • the negative electrode may be a lithium metal plate.
  • the negative electrode current collector is for supporting the negative electrode active material, as described for the positive electrode.
  • the negative active material layer may include a conductive material, a binder, etc. in addition to the negative active material.
  • the conductive material and the binder follow the foregoing.
  • the negative active material is a material capable of reversibly intercalation or deintercalation of lithium (Li + ), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, a lithium metal or a lithium alloy.
  • Li + lithium
  • the material capable of reversibly inserting or deintercalating lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • the negative active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
  • a separator may be additionally included between the anode and the cathode.
  • the separator separates or insulates the positive and negative electrodes from each other and enables transport of lithium ions between the positive and negative electrodes, and may be made of a porous non-conductive or insulating material, and is usually used as a separator in a lithium secondary battery. It can be used without.
  • This separator may be an independent member such as a film, or may be a coating layer added to the anode and/or the cathode.
  • the separator has a low resistance to ion movement of the electrolyte and has excellent moisture-absorbing ability for the electrolyte.
  • the separator may be made of a porous substrate, and the porous substrate may be used as long as it is a porous substrate commonly used in a secondary battery, and a porous polymer film may be used alone or by stacking them.
  • a high melting point A nonwoven fabric or a polyolefin-based porous membrane made of glass fiber, polyethylene terephthalate fiber, or the like may be used, but is not limited thereto.
  • the material of the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in an electrochemical device may be used.
  • the porous substrate is a polyester such as polyethylene, polyolefin such as polypropylene, polyethylene terephthalate, polybutyleneterephthalate, and polyamide.
  • polyamide polyacetal, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylene sulfide ( polyphenylenesulfide), polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon (nylon), polyparaphenylene benzobisoxazole (poly(p-phenylene benzobisoxazole)) and polyarylate (polyarylate) may include at least one material selected from the group consisting of.
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the thickness range of the porous substrate is not limited to the above-described range, when the thickness is too thin than the above-described lower limit, mechanical properties are deteriorated, and the separator may be easily damaged during battery use.
  • the average diameter and porosity of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ m and 10 to 95%, respectively.
  • the electrolyte contains lithium ions, and is intended to cause an electrochemical oxidation or reduction reaction at the positive electrode and the negative electrode through this.
  • the electrolyte may be a non-aqueous electrolyte or a solid electrolyte that does not react with lithium metal, but is preferably a non-aqueous electrolyte, and includes an electrolyte salt and an organic solvent.
  • the electrolyte salt contained in the non-aqueous electrolyte solution is a lithium salt.
  • the lithium salt may be used without limitation as long as it is commonly used in an electrolyte solution for a lithium secondary battery.
  • LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, ( CF 3 SO 2 ) 2 NLi, LiN(SO 2 F) 2 , lithium chloroborane, lithium lower aliphatic carboxylic acid, lithium 4-phenyl borate, lithium imide, and the like may be used.
  • the concentration of the lithium salt depends on several factors such as the exact composition of the electrolyte solvent mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and preconditioning of the battery, the working temperature and other factors known in the lithium battery field, from 0.2 to 2 M, Specifically, it may be 0.4 to 2 M, more specifically 0.4 to 1.7 M. If the concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, resulting in a decrease in electrolyte performance, and if the concentration of the lithium salt exceeds 2 M, the viscosity of the electrolyte may increase, thereby reducing the mobility of lithium ions.
  • organic solvents included in the non-aqueous electrolyte those commonly used in electrolytes for lithium secondary batteries may be used without limitation, and for example, ether, ester, amide, linear carbonate, cyclic carbonate, etc. may be used alone or in combination of two or more. Can be used. Among them, representatively, it may include an ether-based compound.
  • the ether-based compound may include an acyclic ether and a cyclic ether.
  • the acyclic ethers include dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane, diethoxyethane, ethylene glycol ethylmethyl ether, diethylene glycol Dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methylethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methylethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, At least one selected from the group consisting of tetraethylene glycol methylethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, and polyethylene glycol methylethyl ether may be used, but is not limited thereto.
  • the cyclic ether is 1,3-dioxolane, 4,5-dimethyl-dioxolane, 4,5-diethyl-dioxolane, 4-methyl-1,3-dioxolane, 4-ethyl-1, 3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2,5-dimethoxytetrahydrofuran, 2-ethoxytetrahydrofuran, 2-methyl-1,3 -Dioxolane, 2-vinyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 2-methoxy-1,3-dioxolane, 2-ethyl-2-methyl-1, 3-dioxolane, tetrahydropyran, 1,4-dioxane, 1,2-dimethoxy benzene, 1,3-dimethoxy benzen
  • esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ - Any one selected from the group consisting of valerolactone and ⁇ -caprolactone, or a mixture of two or more of them may be used, but is not limited thereto.
  • linear carbonate compound examples include any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate, or any one of them.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and any one selected from the group consisting of halides thereof, or a mixture of two or more thereof.
  • halides include, but are not limited to, fluoroethylene carbonate (FEC).
  • the injection of the non-aqueous electrolyte may be performed at an appropriate step in the manufacturing process of the electrochemical device, depending on the manufacturing process and required physical properties of the final product. That is, it can be applied before assembling the electrochemical device or at the final stage of assembling the electrochemical device.
  • the lithium secondary battery according to the present invention in addition to winding, which is a general process, lamination and stacking of separators and electrodes and folding processes are possible.
  • the shape of the lithium secondary battery is not particularly limited, and may be in various shapes such as a cylindrical shape, a stacked type, and a coin type.
  • the present invention provides a battery module including the lithium secondary battery as a unit cell.
  • the battery module may be used as a power source for medium and large devices requiring high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium and large-sized devices include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • the prepared positive electrode slurry composition was applied to a thickness of 140 ⁇ m on a carbon-coated aluminum current collector having a thickness of 20 ⁇ m, dried at 50° C. for 12 hours, and pressed with a roll press to prepare a positive electrode.
  • the positive electrode slurry composition When preparing the positive electrode slurry composition, it was carried out in the same manner as in Example 1, except that the contents of the binders polyacrylic acid and polydiallyldimethylammonium chloride were changed from 6.5% by weight and 0.5% by weight to 6.0% by weight and 1.0% by weight, respectively. Thus, a positive electrode was prepared.
  • the positive electrode slurry composition When preparing the positive electrode slurry composition, it was carried out in the same manner as in Example 1, except that the contents of the binders polyacrylic acid and polydiallyldimethylammonium chloride were changed from 6.5% by weight and 0.5% by weight to 5.5% by weight and 1.5% by weight, respectively. Thus, a positive electrode was prepared.
  • a positive electrode was manufactured in the same manner as in Example 1, except that the current collector was changed to a copper foil having the same thickness.
  • the contents of the binders polyacrylic acid and polydiallyldimethylammonium chloride were changed from 6.5% by weight and 0.5% by weight to 6.0% by weight and 1.0% by weight, respectively, and the current collector was changed to copper foil of the same thickness. Except that, a positive electrode was manufactured in the same manner as in Example 1 above.
  • the contents of the binders polyacrylic acid and polydiallyldimethylammonium chloride were changed from 6.5% by weight and 0.5% by weight to 5.5% by weight and 1.5% by weight, respectively, and the current collector was changed to copper foil of the same thickness. Except that, a positive electrode was manufactured in the same manner as in Example 1 above.
  • polyacrylic acid M w : 1,200,000
  • polydiallyldimethylammonium chloride 0.5% by weight
  • poly3,4-ethylenedioxythiophene: polystyrenesulfonate CLEVIOS A positive electrode was manufactured in the same manner as in Example 1, except that 1.0% by weight of PH1000) was used and the current collector was changed to an aluminum foil having the same thickness.
  • polyacrylic acid (M w : 1,200,000) 6.0% by weight and poly(2-ethyldimethylaminoethyl methacrylate ethyl sulfate) instead of 6.5% by weight of polyacrylic acid and 0.5% by weight of polydiallyldimethylammonium chloride as a binder
  • a positive electrode was manufactured in the same manner as in Example 1, except that 1.0% by weight of co-(1-vinylpyrrolidone) (M w:1,000,000) was used and the current collector was changed to an aluminum foil having the same thickness. .
  • polyacrylic acid (M w : 1,200,000) 6.0% by weight and polyethylene imine (M w :250,000) 1.0% by weight instead of polyacrylic acid 6.5% by weight and polydiallyldimethylammonium chloride 0.5% by weight as a binder.
  • a positive electrode was manufactured in the same manner as in Example 1, except that the whole was changed to an aluminum foil having the same thickness.
  • the positive electrode prepared in Example 8 was positioned so as to face the negative electrode (lithium metal thin film, thickness: 45 ⁇ m), and a polyethylene separator (thickness: 20 ⁇ m, porosity: 70%) was interposed therebetween, followed by 1,
  • DOL 3-dioxolane
  • DME dimethoxyethane
  • 1.0 concentration of LiTFSI and 3.0% by weight of lithium nitrate (LiNO 3 ) 100 ⁇ l of the dissolved electrolyte was injected to prepare a lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 12, except that the positive electrode prepared in Example 10 was used.
  • a lithium secondary battery was manufactured in the same manner as in Example 12, except that the positive electrode prepared in Example 11 was used.
  • a positive electrode was manufactured in the same manner as in Example 1, except that polydiallyldimethylammonium chloride was not used as a binder and the content of polyacrylic acid was changed by 7% by weight.
  • Example 2 As in Example 1, except that polydiallyldimethylammonium chloride was not used as a binder, and the content of polyacrylic acid was changed to 7% by weight, and the current collector was changed to a copper foil having the same thickness when preparing a positive electrode slurry assembly. The same was carried out to prepare a positive electrode.
  • Example 2 As in Example 1, except that polydiallyldimethylammonium chloride was not used as a binder, the content of polyacrylic acid was changed to 7% by weight, and the current collector was changed to an aluminum foil having the same thickness when preparing a positive electrode slurry assembly. The same was carried out to prepare a positive electrode.
  • a lithium secondary battery was manufactured in the same manner as in Example 12, except that the positive electrode prepared in Comparative Example 3 was used.
  • the anodes prepared in Examples 1 to 11 and Comparative Examples 1 to 4 were dried at 50° C. for 2 hours, and then cut into a size of 15 cm ⁇ 2 cm, and then on a slide glass with double-sided tape.
  • a sample for a peel test was prepared through adhesion to the anode side and lamination. Subsequently, the sample for peeling test was loaded onto a universal testing machine (LS1, AMETEK) capable of measuring adhesion, and the peeling resistance (gf/cm) applied by performing a 90° peeling test was measured, The adhesion of each positive electrode was calculated, and the results are shown in FIGS. 1 to 5.
  • the positive electrode of the embodiment including a binder in which a small amount of cationic polymer is mixed with a polymer including a carboxylate group is a comparative example that does not contain a cationic polymer or includes a single molecule having a positive charge. It can be seen that the positive electrode adhesion is superior to that of the positive electrode.
  • FIGS. 1 to 3 show different current collectors
  • FIG. 1 shows a case in which a carbon-coated aluminum foil is used as a current collector
  • FIG. 2 is a copper foil
  • FIG. 3 is an aluminum foil. From the results of FIGS. 1 to 3, in the case of Examples 1 to 9 in which a polymer containing a carboxylate group and a cationic polymer are used together as a binder, regardless of the material of the current collector, Comparative Examples 1 to 9 not containing a cationic polymer.
  • adhesion is superior, and the adhesion is increased depending on the ratio of the cationic polymer, but from the results of Examples 3, 6 and 9, when the cationic polymer is added in a certain amount or more, the adhesion is rather reduced. I can confirm.
  • FIG. 4 shows Comparative Example 3 in which a cationic polymer was not used when an aluminum foil was used as a current collector, Comparative Example 4 using a single molecule having a positive charge instead of a cationic polymer, and a cationic polymer having the same content but different types.
  • FIG. 5 shows a relative value of the positive electrode adhesion of Example 11, assuming that the positive electrode adhesion of Comparative Example 3 without using a cationic polymer is 1, and a polymer containing a carboxylate group and a cationic polymer It can be seen that the adhesive properties of the positive electrode including together are excellent.
  • a battery comprising a binder in which a small amount of cationic polymer, specifically polyquaternium or poly3,4-ethylenedioxythiophene:polystyrenesulfonate is mixed together with a polymer containing a carboxylate group according to the present invention, is included in the positive electrode. It can be seen that the electrode adhesion was improved without deteriorating the charge/discharge characteristics of the battery compared to a battery containing no cationic polymer or polyethylene imine as a cationic polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지에 관한 것으로, 보다 상세하게는 카르복실레이트기를 포함하는 고분자와 정전기적 상호작용을 하는 양이온성 고분자를 소량 포함함으로써 전극의 접착력을 증가시킴으로써 전극의 전기화학적 반응성과 안정성을 개선하여 이를 포함하는 리튬 이차전지의 고용량화, 고안정화 및 장수명화를 가능하게 한다.

Description

리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
본 출원은 2019년 11월 06일자 한국 특허 출원 제10-2019-0140727호 및 2020년 10월 27일자 한국 특허 출원 제10-2020-0140343호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지에 관한 것이다.
리튬 이차전지의 활용 범위가 휴대용 전자기기 및 통신기기뿐만 아니라 전기자동차(electric vehicle; EV), 전력저장장치(electric storage system; ESS)에까지 확대되면서 이들의 전원으로 사용되는 리튬 이차전지의 고용량화에 대한 요구가 높아지고 있다.
여러 리튬 이차전지 중에서 리튬-황 전지(Li-S 전지)는 황을 양극 활물질로, 리튬을 음극 활물질로 사용한 전지로서, 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8+16Li++16e- → 8Li2S)으로부터 나오는 이론 방전용량이 1,675 mAh/g에 이르고, 음극으로 리튬 금속(이론 용량: 3,860 mAh/g)을 사용하는 경우 2,600 Wh/kg의 이론 에너지 밀도를 나타낸다. 이는 현재 연구되고 있는 다른 전지 시스템 (Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg) 및 상용 리튬 이차전지(LiCoO2/graphite)의 이론 에너지 밀도에 비하여 매우 높은 수치를 가지기 때문에 현재까지 개발되고 있는 이차전지 중 고용량의 리튬 이차전지로 주목받고 있으며, 차세대 전지 시스템으로 여러 연구가 이루어지고 있다.
리튬- 황 전지에서 양극 활물질로 사용되는 황은 전기 전도도가 5×10-30 S/㎝로 전기 전도성이 없는 부도체이므로 전기화학 반응으로 생성된 전자의 이동이 어려운 문제가 있다. 이에 전기화학적 반응 사이트를 제공할 수 있는 다공성의 탄소 소재와 같은 전도성 물질과 함께 복합화되어 사용되고 있다.
그러나, 리튬-황 전지의 경우, 황이 환원된 최종 반응 생성물인 리튬 설파이드(lithium sulfide, Li2S)가 황에 비해 부피가 증가하면서 양극의 구조를 변화시키고, 황의 중간 생성물인 리튬 폴리설파이드(lithium polysulfide, Li2Sx, x=2~8)는 전해질에 쉽게 용출되기 때문에 방전시 지속적으로 용출되어 양극 활물질의 양이 감소한다. 결국, 양극의 퇴화가 가속화되어 전지의 용량 및 수명 특성이 저하됨에 따라 전지의 장기적 안정성을 확보할 수 없게 된다.
이를 해결하기 위한 방안 중 하나로서, 황을 포함하는 다공성의 탄소 소재 사이의 결착력을 증가시키기 위해 다량의 바인더를 사용하는 방안이 제안되었으나, 이 경우 전자 전달을 방해하게 되어 저항이 증가함에 따라 오히려 전지의 성능이 저하된다는 문제가 있다.
또 다른 방안으로는, 바인더로 리튬 이온성 고분자를 활용하거나, 중간 생성물인 리튬 폴리설파이드의 용출을 억제하기 위해 흡착 기능성 요소를 부여한 소재를 사용하는 방법이 제안되었다. 이에, 바인더로 폴리아크릴산(poly(acrylic acid), PAA) 또는 리튬 치환 폴리아크릴산(lithiated poly(acrylic acid), LiPAA)를 사용하는 경우 전극의 접착력을 높이고, 리튬 이온의 이동을 원활하게 할 수 있었으나, 리튬 치환 폴리아크릴산과 같이 고점도의 바인더를 사용할 경우 슬러리 분산 문제가 발생할 수 있고, 이로 인해 분산제를 추가로 적용할 경우에는 전극 접착력이 저하될 우려가 있다,
따라서, 리튬-황 전지의 성능 및 안정성 향상을 위해 우수한 전극 접착력을 확보할 수 있는 최적화 방안에 대한 개발이 더욱 필요한 실정이다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제2019-0078882호, 리튬-황 전지용 바인더, 이를 포함하는 양극 및 리튬-황 전지
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 리튬 이차전지 전극용 바인더에 카르복실레이트기와 정전기 상호작용을 하는 양이온성 고분자를 첨가하는 경우 전극의 접착 특성이 향상되어 전극의 전기화학적 반응성 및 안정성이 개선됨으로써 우수한 전지 성능을 구현할 수 있음을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 전극의 접착력을 향상시키는 리튬 이차전지 전극용 바인더를 제공하는데 있다.
또한, 본 발명의 다른 목적은 상기 바인더를 포함하는 리튬 이차전지용 양극을 제공하는데 있다.
또한, 본 발명의 또 다른 목적은 상기 양극을 포함하는 리튬 이차전지를 제공하는데 있다.
상기 목적을 달성하기 위해, 본 발명은 카르복실레이트기를 포함하는 고분자; 및 양이온성 고분자를 포함하고, 상기 양이온성 고분자의 함량은 리튬 이차전지 전극용 바인더 전체 100 중량%에 대하여 5 내지 30 중량%인 리튬 이차전지 전극용 바인더를 제공한다.
상기 카르복실레이트기를 포함하는 고분자는 폴리아크릴산, 폴리아크릴산리튬, 폴리메타크릴산, 폴리메타크릴산리튬, 카르복시메틸 셀룰로오스, 카르복시메틸 셀룰로오스나트륨, 스티렌-부타디엔 고무/카르복시메틸 셀룰로오스, 알긴산 및 알긴산 나트륨으로 이루어지는 군에서 선택되는 1종 이상을 포함할 수 있다.
상기 카르복실레이트기를 포함하는 고분자는 중량평균분자량이 50,000 내지 5,000,000인 것일 수 있다.
상기 양이온성 고분자는 폴리쿼터늄, 폴리알릴아민 염산염, 폴리에틸렌 이민, 폴리4-비닐피리딘, 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트, 폴리(비닐아민 염산염), 폴리(2-(디메틸아미노)에틸 메타크릴레이트), 및 폴리(아미도 아민)으로 이루어지는 군에서 선택되는 1종 이상을 포함할 수 있다.
상기 양이온성 고분자는 중량평균분자량이 3,000 내지 1,000,000인 것일 수 있다.
상기 카르복실레이트기를 포함하는 고분자 및 양이온성 고분자는 70:30 내지 95:5의 중량비로 포함되는 것일 수 있다.
또한, 본 발명은 상기 바인더를 포함하는 리튬 이차전지용 양극을 제공한다.
아울러, 본 발명은 상기 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 이차전지 전극용 바인더는 카르복실레이트기와 정전기 상호작용을 하는 양이온성 고분자를 소량 포함함으로써 전극의 접착력을 향상시켜 이를 포함하는 전극의 전기화학적 반응성 및 안정성을 개선시킨다. 이에 따라 상기 전극을 포함하는 리튬 이차전지의 고안정화, 고용량화, 및 장수명화를 가능하게 한다.
도 1은 본 발명의 실험예 1에 따른 실시예 1 내지 3 및 비교예 1의 양극의 접착력 평가 결과를 나타내는 그래프이다.
도 2는 본 발명의 실험예 1에 따른 실시예 4 내지 6 및 비교예 2의 양극의 접착력 평가 결과를 나타내는 그래프이다.
도 3은 본 발명의 실험예 1에 따른 실시예 7 내지 9 및 비교예 3의 양극의 접착력 평가 결과를 나타내는 그래프이다.
도 4는 본 발명의 실험예 1에 따른 실시예 8 및 10과 비교예 3 및 4의 양극의 접착력 평가 결과를 나타내는 그래프이다.
도 5는 본 발명의 실험예 1에 따른 실시예 11과 비교예 2의 양극의 접착력 평가 결과를 나타내는 그래프이다.
도 6은 본 발명의 실험예 2에 따른 실시예 12, 실시예 13 및 비교예 5의 리튬 이차전지의 수명 특성 평가 결과를 나타내는 그래프이다.
도 7은 본 발명의 실험예 2에 따른 실시예 14 및 비교예 5의 리튬 이차전지의 수명 특성 평가 결과를 나타내는 그래프이다.
이하, 본 발명을 더욱 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, ‘포함하다’ 또는 ‘가지다’등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 사용되고 있는 용어 “폴리설파이드”는 “폴리설파이드 이온(Sx 2-, x = 8, 6, 4, 2))” 및 “리튬 폴리설파이드(Li2Sx 또는 LiSx -, x = 8, 6, 4, 2)”를 모두 포함하는 개념이다.
리튬-황 전지는 여러 이차전지 중에서 높은 이론 방전용량 및 이론 에너지 밀도를 가지고, 양극 활물질로 사용되는 황은 매장량이 풍부하여 저가이고, 환경친화적이라는 이점으로 인해 차세대 이차전지로 각광받고 있다.
리튬-황 전지에서 양극 활물질인 황은 부도체로, 전기 전도성이 없는 황의 전기화학적 활성도를 구현하기 위하여, 비표면적이 큰 다공성의 탄소 소재와 혼합한 황-탄소 복합체가 일반적으로 사용되고 있다.
그러나, 황은 방전시 최종적으로 리튬 설파이드로 변하면서 약 80 %의 부피 팽창이 일어나 양극 구조의 변형을 야기할 뿐만 아니라 방전 반응의 중간 생성물인 리튬 폴리설파이드 중에서, 황의 산화수가 높은 리튬 폴리설파이드(Li2Sx, 보통 x > 4)는 극성이 강한 물질로 친수성 유기 용매를 포함하는 전해질에 쉽게 녹아 양극의 반응 영역 밖으로 용출됨에 따라 더 이상 전기화학 반응에 참여하지 못하게 되는 황의 손실이 발생한다. 이로 인해 전기화학 반응에 참여하는 황의 양이 급격히 감소함에 따라 실제 구동에 있어서는 이론 용량 및 에너지 밀도 전부를 구현하지 못한다.
이를 위해 종래 기술에서는 전극 접착력, 구체적으로 양극 활물질 사이의 결착력 및 양극 활물질의 집전체에 대한 밀착력을 높이기 위해 바인더의 함량을 늘리거나, 기능화된 바인더를 사용하는 방법 등이 여러 방법이 제안되었다. 그러나, 바인더의 함량 증가는 양극의 저항이 증가시키고 전자 이동(electron pass)을 방해하여 전지의 성능 및 수명이 감소되는 문제가 있다. 한편, 바인더의 종류를 달리하는 경우 이를 포함하는 슬러리의 분산성이 저하되어 전극 접착력이 오히려 악화되는 문제가 발생한다.
이에 본 발명에서는 바인더로서 전기적 상호작용(electrical interaction)으로 서로 결합하는 2종의 특정 고분자를 포함하여 전극, 특히 양극의 접착력을 증가시킴으로써 양극의 전기화학적 반응성 및 안정성을 저하 문제를 개선하여 이를 포함하는 전지의 성능을 개선시킨다.
구체적으로, 본 발명에 따른 리튬 이차전지 전극용 바인더는 카르복실레이트기를 포함하는 고분자; 및 양이온성 고분자를 포함하고, 이때 상기 양이온성 고분자는 리튬 이차전지 전극용 바인더 전체 100 중량%에 대하여 5 내지 30 중량%로 포함한다.
본 발명의 바인더에 포함되는 2종의 고분자는 종래 기술에서도 사용하나, 본 발명에서는 서로 다른 극성의 전하를 띠는 상기 2종의 고분자들 사이에 일어나는 정전기적 상호작용(electrostatic interaction)을 통해 전극 접착력을 향상시키고자 하며, 특히 음전하를 띄는 카르복실레이트기를 포함하는 고분자와의 정전기적 상호작용을 유도하는 양이온성 고분자를 첨가제로 소량 포함함에 그 특징이 있다.
본 발명에 있어서, 상기 카르복실레이트기(carboxylate group)를 포함하는 고분자는 분자 내 음이온성의 카르복실레이트(-C(=O)O-) 구조를 포함하는 것으로, 이때 상기 카르복실레이트기는 카르복실산(-C(=O)OH)의 중성 형태인 것도 포함한다.
상기 카르복실레이트기를 포함하는 고분자는 전극을 구성하는 성분들 사이, 구체적으로는 양극 활물질과 양극 활물질 간 및 양극 활물질과 양극 집전체 사이를 결착시키는 주바인더 역할을 한다. 상기 카르복실레이트기를 포함하는 고분자는 기계적 강도가 우수할 뿐만 아니라 음전하를 나타내기 때문에 양전하의 리튬 이온의 이동을 원활하게 하며, 후술하는 양이온성 고분자와의 정전기적 상호 결합을 통하여 전극의 접착력을 높일 수 있다. 또한, 상기 카르복실레이트기를 포함하는 고분자는 양이온과 상호작용하므로 양이온인 폴리설파이드를 흡착할 수 있는 기능까지도 가지고 있다.
상기 카르복실레이트기를 포함하는 고분자는 카르복실레이트기를 포함하는 단량체를 포함하는 호모폴리머(homopolymer), 카르복실레이트기를 포함하는 단량체를 포함하는 블록 공중합체(block copolymer) 및 이들의 혼합물 등을 예시할 수 있다.
예를 들어, 상기 카르복실레이트기를 포함하는 고분자는 폴리아크릴산(poly(acrylic acid), PAA), 폴리아크릴산리튬(poly(acrylic acid) lithium, LiPAA), 폴리메타크릴산(poly(methacrylic acid), PMA), 폴리메타크릴산리튬(poly(methacrylic acid) lithium, LiPMA), 카르복시메틸 셀룰로오스(carboxymethyl cellulose, CMC), 카르복시메틸 셀룰로오스나트륨(sodium carboxymethyl cellulose), 스티렌-부타디엔 고무/카르복시메틸 셀룰로오스(styrene-butadiene rubber/carboxymethyl cellulose, SBR/CMC), 알긴산(alginic acid) 및 알긴산 나트륨 (sodium alginate)으로 이루어지는 군에서 선택되는 1종 이상을 포함할 수 있다. 바람직하기로, 상기 카르복실레이트기를 포함하는 고분자는 폴리아크릴산, 알긴산 나트륨 및 카르복시메틸 셀룰로오스로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 보다 바람직하기로, 상기 카르복실레이트기를 포함하는 고분자는 폴리아크릴산일 수 있다.
상기 카르복실레이트기를 포함하는 고분자의 중량평균분자량(Mw) 이 50,000 내지 5,000,000, 바람직하기로 100,000 내지 2,000,000일 수 있다. 상기 카르복실레이트기를 포함하는 고분자의 중량평균분자량이 상기 범위 미만인 경우 전극의 접착 특성이 저하될 수 있고, 슬러리의 분산안정성이 나빠진다. 이와 반대로 상기 범위를 초과하는 경우 지나치게 큰 점도를 가지므로 슬러리 제작 공정이 어려워지고 슬러리 내 입자의 초기 분산이 어렵다.
상기 카르복실레이트기를 포함하는 고분자는 리튬 이차전지 전극용 바인더 전체 100 중량%에 대하여 70 내지 95 중량%, 바람직하기로 75 내지 95 중량%, 보다 바람직하기로 80 내지 95 중량%로 포함할 수 있다. 상기 카르복실레이트기를 포함하는 고분자의 함량이 상기 범위 미만인 경우 주바인더 물질의 양이 부족하므로 전극을 구성하는 성분 간 결착 효과가 감소하고, 이와 반대로 상기 범위를 초과하는 경우 후술하는 양이온성 고분자의 함량이 상대적으로 감소하여 접착력 향상 효과가 나타나지 않는다. 따라서, 상기 범위 내에서 적정 함량을 결정하는 것이 바람직하다. 다만, 상기 카르복실레이트기를 포함하는 고분자의 구체적인 최적 함량은 제공하고자 하는 양극 및 이를 구비하는 전지의 기타 특성 및 사용 환경에 따라 다르게 설정될 수 있으며 이러한 활용이 전술한 범위에 의해 제한되는 의미는 아니다.
본 발명에 있어서, 상기 양이온성 고분자는 양전하를 갖는 이온성 기능기를 포함하는 것으로, 본 발명의 리튬 이차전지 전극용 바인더에 첨가제로 적용되어 주바인더로 사용되는 전술한 카르복실레이트기를 포함하는 고분자와 정전기적 상호작용을 함으로써 양극 활물질을 양극 집전체에 유지시키고, 양극 활물질 사이를 유기적으로 연결시켜 이들 간의 결착력을 보다 향상시키는 역할을 한다. 구체적으로, 전술한 바와 같이 상기 카르복실레이트기를 포함하는 고분자는 음전하를 나타내는 바, 양전하를 나타내는 양이온성 고분자와 서로 당기는 인력으로 상호작용하여 서로 결합되기 때문에 바인더의 총량을 줄이더라도 종래의 바인더에 비해 바인더의 사용량을 최소화하여 전지의 에너지 밀도를 향상시키고, 전극 활물질의 탈리를 방지하여 전지의 용량, 수명 및 신뢰성을 개선시킬 수 있다.
상기 양이온성 고분자는 양이온성 기능기를 포함하는 고분자와 이와 짝을 이루는 음이온성 기능기를 포함하는 고분자로 구성되어 있거나, 양전하를 갖는 4차 암모늄을 포함하는 양이온성 고분자와 이의 짝이온인 단원자 음이온으로 구성되어 있을 수 있다.
예를 들어, 상기 양이온성 고분자는 폴리디알릴디메틸암모늄 클로라이드 (poly(diallyldimethylammonium chloride), polyquaternium-6), 폴리(2-에틸디메틸아미노에틸 메타크릴레이트 에틸 설페이트)-코-(1-비닐피롤리돈)(poly[(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)], polyquaternium-d11) 등의 폴리쿼터늄(polyquaternium), 폴리알릴아민 염산염(poly(allylamine hydrochloride), PAH), 폴리에틸렌 이민(poly(ethylene imine), PEI), 폴리4-비닐피리딘(poly(4-vinylpyridine), P4VP), 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS), 폴리(비닐아민 염산염)(poly(vinylamine hydrochloride)), 폴리(2-(디메틸아미노)에틸 메타크릴레이트)(poly(2-(dimethylamino)ethyl methacrylate)) 및 폴리(아미도 아민)(poly(amido amine))으로 이루어지는 군에서 선택되는 1종 이상을 포함할 수 있다. 바람직하기로, 상기 양이온성 고분자는 폴리디알릴디메틸암모늄 클로라이드, 폴리(2-에틸디메틸아미노에틸 메타크릴레이트 에틸 설페이트)-코-(1-비닐피롤리돈) 및 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 보다 바람직하기로, 상기 양이온성 고분자는 폴리디알릴디메틸암모늄 클로라이드 및 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트으로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
상기 양이온성 고분자의 중량평균분자량(Mw)이 3,000 내지 1,000,000, 바람직하기로 5,000 내지 500,000일 수 있다. 상기 양이온성 고분자의 중량평균분자량이 상기 범위 미만인 경우 전극의 접착력 개선 효과가 미미할 수 있고, 이와 반대로 상기 범위를 초과하는 경우 전극의 저항을 증가하여 이를 포함하는 전지의 성능이 저하될 수 있다.
상기 양이온성 고분자는 리튬 이차전지 전극용 바인더 전체 100 중량%에 대하여 5 내지 30 중량%, 바람직하기로 5 내지 25 중량%, 보다 바람직하기로 5 내지 20 중량%로 포함할 수 있다. 전극 내 리튬 이온 전도성의 개선을 위해 바인더 전체 100 중량%를 기준으로 30 내지 70 중량%로 양이온성 고분자를 포함하는 종래 기술과는 달리, 본 발명의 경우, 전극의 접착 특성 개선을 위해 상기 양이온성 고분자를 전술한 범위로 소량 첨가하며, 이를 통해 우수한 전극 접착력을 확보함으로써 충방전 수명에 따른 용량 유지율 등 전지의 성능을 향상시킬 수 있다. 상기 양이온성 고분자의 함량이 상기 범위 미만인 경우 전극의 결착력 개선 효과가 감소하고, 이와 반대로 상기 범위를 초과하는 경우 주바인더의 함량이 상대적으로 감소됨에 따라 접착력이 감소될 수 있으므로 상기 범위 내에서 적정 함량을 결정하는 것이 바람직하다. 다만, 상기 양이온성 고분자의 구체적인 최적 함량은 제공하고자 하는 전극 및 이를 구비하는 전지의 기타 특성 및 사용 환경에 따라 다르게 설정될 수 있으며 이러한 활용이 전술한 범위에 의해 제한되는 의미는 아니다.
또한, 본 발명에 있어서, 상기 카르복실레이트기를 포함하는 고분자 및 양이온성 고분자의 중량비(카르복실레이트기를 포함하는 고분자:양이온성 고분자)는 70:30 내지 95:5, 바람직하기로 75:25 내지 95:5, 보다 바람직하기로 80:20 내지 95:5일 수 있다. 만약 상기 중량비 범위에서 양이온성 고분자의 비율이 더 높아지는 경우, 주바인더의 함량이 상대적으로 줄어 제조된 전극의 물리적 성질이 저하되어 전극 활물질과 도전재가 쉽게 탈락할 수 있다. 반면에 상기 양이온성 고분자의 비율이 더 낮아지는 경우 전극의 접착력 향상 효과가 없어지므로 양이온성 고분자 혼합의 장점이 없어진다.
또한, 본 발명은 상기 리튬 이차전지 전극용 바인더를 포함하는 리튬 이차전지용 양극을 제공한다.
상기 리튬 이차전지용 양극은 양극 집전체와 상기 양극 집전체의 일면 또는 양면에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은 양극 활물질, 도전재 및 전술한 리튬 이차전지 전극용 바인더를 포함할 수 있다.
상기 집전체는 양극 활물질을 지지하며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은, 탄소 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
상기 양극 활물질은 황 원소(S8) 및 황 계열 화합물로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 상기 황 계열 화합물은 Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하기로, 상기 양극 활물질은 황 원소일 수 있다.
상기 양극 활물질로 황 또는 황 계열 화합물을 사용하는 경우 단독으로는 전기 전도성이 없기 때문에 전도성 소재와 복합화하여 사용된다. 바람직하기로, 상기 양극 활물질은 황-탄소 복합체일 수 있다.
상기 황-탄소 복합체에서 탄소는 다공성 탄소재로 양극 활물질인 황이 균일하고 안정적으로 고정될 수 있는 골격을 제공하며, 황의 전기 전도도를 보완하여 전기화학 반응이 원활하게 진행될 수 있도록 한다.
상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며, 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공성 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 천연 흑연, 인조 흑연, 팽창 흑연 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않는다.
상기 황-탄소 복합체는 황-탄소 복합체 100 중량부를 기준으로 황을 60 내지 90 중량부, 바람직하기로 65 내지 85 중량부, 보다 바람직하기로 70 내지 80 중량부로 포함할 수 있다. 상기 황의 함량이 전술한 범위 미만인 경우 황-탄소 복합체 내 다공성 탄소재의 함량이 상대적으로 많아짐에 따라 비표면적이 증가하여 양극 제조시에 바인더의 함량이 증가한다. 이러한 바인더의 사용량 증가는 결국 양극의 면저항을 증가시키고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 전지의 성능을 저하시킬 수 있다. 이와 반대로 상기 황의 함량이 전술한 범위를 초과하는 경우 다공성 탄소재와 결합하지 못한 황 또는 황 계열 화합물이 그들끼리 뭉치거나 다공성 탄소재의 표면으로 재용출됨에 따라 전자를 받기 어려워져 전기화학적 반응에 참여하지 못하게 되어 전지의 용량 손실이 발생할 수 있다.
또한, 상기 황-탄소 복합체에서 상기 황은 전술한 다공성 탄소재의 내부 및 외부 표면 중 적어도 어느 한 곳에 위치하며 이때 상기 다공성 탄소재의 내부 및 외부 전체 표면의 100% 미만, 바람직하기로 1 내지 95 %, 보다 바람직하기로 60 내지 90 % 영역에 존재할 수 있다. 상기 황이 다공성 탄소재의 내부 및 외부 표면에 상기 범위 내로 존재할 때 전자 전달 면적 및 전해질과의 젖음성 면에서 최대 효과를 나타낼 수 있다. 구체적으로, 상기 범위 영역에서 황이 다공성 탄소재의 내부 및 외부 표면에 얇고 고르게 함침되므로 충·방전 과정에서 전자 전달 접촉 면적을 증가시킬 수 있다. 만약, 상기 황이 다공성 탄소재의 내부 및 외부 전체 표면의 100% 영역에 위치하는 경우, 상기 탄소재가 완전히 황으로 덮여 전해질에 대한 젖음성이 떨어지고 전극 내 포함되는 도전재와 접촉성이 저하되어 전자 전달을 받지 못해 전기화학 반응에 참여할 수 없게 된다.
상기 양극 활물질은 전술한 조성 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ⅢA족 원소로는 Al, Ga, In, Ti 등이 포함되며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.
상기 양극 활물질은 리튬 이차전지용 양극에 포함되는 베이스 고형분 전체 100 중량%에 대하여 50 내지 95 중량%, 바람직하기로 70 내지 90 중량%, 보다 바람직하기로 85 내지 90 중량%로 포함할 수 있다. 상기 전극 활물질의 함량이 상기 범위 미만인 경우 전극의 전기화학적 반응을 충분하게 발휘하기 어렵고, 이와 반대로 상기 범위를 초과하는 경우 후술하는 도전재와 바인더의 함량이 상대적으로 부족하여 전극의 저항이 상승하며, 전극의 물리적 성질이 저하되는 문제가 있다.
본 발명의 리튬 이차전지용 양극은 전자가 양극 내에서 원활하게 이동하도록 하기 위한 도전재를 포함한다. 상기 도전재는 전해질과 양극 활물질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 도전성을 갖는 것이라면 제한없이 사용할 수 있다.
예를 들어 상기 도전재로는 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 카본 블랙 등의 카본 블랙; 탄소 나노튜브나 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.
상기 도전재는 리튬 이차전지용 양극에 포함되는 베이스 고형분 전체 100 중량%에 대하여 0 내지 10 중량%, 바람직하기로 3 내지 5 중량%일 수 있다. 상기 도전재의 함량이 상기 범위 미만이면 양극 활물질과 집전체 간의 전자 전달이 용이하지 않아 전압 및 용량이 감소할 수 있다. 이와 반대로, 상기 범위 초과이면 상대적으로 양극 활물질의 비율이 감소하여 전지의 총 에너지(전하량)이 감소할 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
본 발명의 리튬 이차전지용 양극은 양극을 구성하는 성분들 간 및 이들과 집전체 사이의 결착력을 보다 높이기 위해 바인더를 포함하며, 상기 바인더는 앞서 설명한 본 발명에 따른 리튬 이차전지 전극용 바인더를 포함한다.
상기 바인더는 리튬 이차전지용 양극에 포함되는 베이스 고형분 전체 100 중량%에 대하여 2 내지 10 중량%, 바람직하기로 3 내지 8 중량%, 보다 바람직하기로 4 내지 7 중량%일 수 있다. 상기 바인더의 함량이 상기 범위 미만이면 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 상기 범위 초과이면 양극에서 양극 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
또한, 상기 바인더는 본 발명에 따른 것으로, 카르복실레이트기를 포함하는 고분자 및 양이온성 고분자를 포함하며, 이때 상기 양이온성 고분자의 함량은 리튬 이차전지용 양극 슬러리 조성물 전체 100 중량%에 대하여 0.1 내지 3 중량%, 바람직하기로 0.2 내지 2 중량%, 보다 바람직하기로 0.5 내지 1.5 중량%일 수 있다. 상기 양이온성 고분자의 함량이 전술한 범위를 벗어나는 경우 전극 접착력 저하와 함께 저항이 증가하는 문제가 발생할 수 있다.
본 발명의 바인더 이외, 해당 기술 분야에서 일반적으로 사용되는 공지의 바인더가 추가적으로 사용될 수 있다. 예시적인 추가 바인더로서, 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 폴리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더;로 이루어진 군으로부터 선택된 1종, 2종 이상의 혼합물 또는 공중합체를 들 수 있다.
또한, 양극 활물질층은 전술한 성분 이외에 필요에 따라 해당 기술 분야에서 그 기능의 향상을 목적으로 통상적으로 사용되는 성분을 추가로 포함할 수 있다. 상기 추가로 적용 가능한 성분으로는 점도 조정제, 유동화제, 충진제, 가교제, 분산제 등을 들 수 있다.
상기 리튬 이차전지용 양극은 해당 기술 분야에 공지된 방법에 의하여 제조될 수 있다. 일례로, 양극 활물질에 바인더, 도전재, 용매, 필요에 따라 충진제와 같은 첨가제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
예를 들어, 먼저, 슬러리를 제조하기 위한 용매에 상기 바인더를 용해시킨 다음, 도전재를 분산시킨다. 슬러리를 제조하기 위한 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다.
예를 들어, 상기 용매는 N-메틸-2-피롤리돈, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로퓨란, 2-메틸 테트라하이드로퓨란, 디메틸술폭시드, 포름아미드, 디메틸포름아미드, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로퓨란 유도체, 프로피온산 메틸 또는 프로피온산 에틸 등의 유기용매; 물 등의 수계 용매 및 이들의 혼합물로부터 선택된 것일 수 있다. 이 중, 물 등의 수계 용매를 사용하는 경우 건조 온도나 환경적인 측면에서 유리할 수 있다.
다음으로, 양극 활물질을, 또는 선택적으로 첨가제와 함께, 상기 바인더와 도전재가 분산된 용매에 다시 균일하게 분산시켜 양극 슬러리를 제조한다.
이와 같이 제조된 슬러리를 집전제체 도포하고, 건조하여 양극을 형성한다. 상기 슬러리는 슬러리의 점도 및 형성하고자 하는 양극의 두께에 따라 적절한 두께로 집전체에 도포할 수 있다.
이때 도포 방법은 특별히 제한되지 않는다. 예컨대, 예컨대, 닥터 블레이드(doctor blade), 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 들 수 있다. 이때 도포하는 상기 리튬 이차전지용 양극 슬러리 조성물의 양도 특별히 제한되지 않지만, 용매를 건조시켜 제거한 후에 형성되는 양극 활물질, 도전재, 바인더 등으로 이루어진 양극 활물질층의 두께가 통상 0.005 내지 5 ㎜, 바람직하게는 0.01 내지 2 ㎜가 되는 양이 일반적이다.
상기 건조는 용매 제거를 위한 것으로, 용매를 충분히 제거할 수 있는 온도, 시간 등의 조건에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에서 특별히 제한되지 않는다. 상기 건조 방법 또한 특별히 제한되지 않고, 예컨대 온풍, 열풍, 저습풍에 의한 건조, 진공 건조, (원)적외선 및 전자선 등의 조사에 의한 건조법을 들 수 있다. 건조 속도는 통상 응력 집중에 의해 양극 활물질층에 균열이 생기거나 양극 활물질층이 집전체로부터 박리되지 않을 정도의 속도 범위 내에서 가능한 한 빨리 용매를 제거할 수 있도록 조절한다.
추가적으로, 상기 건조 후 집전체를 프레스함으로써 양극 내 양극 활물질의 밀도를 높일 수도 있다. 프레스 방법으로는 금형 프레스 및 롤 프레스 등의 방법을 들 수 있다.
또한, 본 발명은 상기 양극을 포함하는 리튬 이차전지를 제공한다.
상기 리튬 이차전지는 양극; 음극 및 이들 사이에 개재되는 분리막 및 전해질을 포함하며, 상기 양극으로서 본 발명에 따른 리튬 이차전지용 양극을 포함한다.
상기 양극은 전술한 바를 따른다.
상기 음극은 음극 집전체 및 상기 음극집전체의 일면 또는 양면에 도포된 음극 활물질층을 포함할 수 있다. 또는 상기 음극은 리튬 금속판일 수 있다.
상기 음극 집전체는 음극 활물질의 지지를 위한 것으로, 양극에서 설명한 바와 같다.
상기 음극 활물질층은 음극 활물질 이외에 도전재, 바인더 등을 포함할 수 있다. 이때 상기 도전재 및 바인더는 전술한 바를 따른다.
상기 음극 활물질은 리튬 (Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 양극과 음극 사이에는 추가적으로 분리막이 포함될 수 있다.
상기 분리막은 상기 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있고, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하다. 이러한 분리막은 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다.
상기 분리막으로는 전해질의 이온 이동에 대하여 저저항이면서 전해질에 대한 함습 능력이 우수한 것이 바람직하다.
상기 분리막은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 이차전지에 사용되는 다공성 기재라면 모두 사용이 가능하고, 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.
상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
상기 전해질은 리튬 이온을 포함하며, 이를 매개로 양극과 음극에서 전기 화학적인 산화 또는 환원 반응을 일으키기 위한 것이다.
상기 전해질은 리튬 금속과 반응하지 않는 비수 전해액 또는 고체 전해질이 가능하나 바람직하게는 비수 전해질이고, 전해질 염 및 유기 용매를 포함한다.
상기 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다. 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬 이미드 등이 사용될 수 있다.
상기 리튬염의 농도는 전해질 용매 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 2 M, 구체적으로 0.4 내지 2 M, 더욱 구체적으로 0.4 내지 1.7 M일 수 있다. 상기 리튬염의 농도가 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소될 수 있다.
상기 비수 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 에테르계 화합물을 포함할 수 있다.
상기 에테르계 화합물은 비환형 에테르 및 환형 에테르를 포함할 수 있다.
예를 들어, 상기 비환형 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄, 디에톡시에탄, 에틸렌글리콜 에틸메틸에테르, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸에틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디에틸 에테르, 트리에틸렌 글리콜 메틸에틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디에틸 에테르, 테트라에틸렌 글리콜 메틸에틸 에테르, 폴리에틸렌 글리콜 디메틸 에테르, 폴리에틸렌 글리콜 디에틸 에테르, 폴리에틸렌 글리콜 메틸에틸 에테르로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
일례로, 상기 환형 에테르는 1,3-디옥솔란, 4,5-디메틸-디옥솔란, 4,5-디에틸-디옥솔란, 4-메틸-1,3-디옥솔란, 4-에틸-1,3-디옥솔란, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 2,5-디메틸테트라하이드로퓨란, 2,5-디메톡시테트라하이드로퓨란, 2-에톡시테트라하이드로퓨란, 2-메틸-1,3-디옥솔란, 2-비닐-1,3-디옥솔란, 2,2-디메틸-1,3-디옥솔란, 2-메톡시-1,3-디옥솔란, 2-에틸-2-메틸-1,3-디옥솔란, 테트라하이드로파이란, 1,4-디옥산, 1,2-디메톡시 벤젠, 1,3-디메톡시 벤젠, 1,4-디메톡시 벤젠, 아이소소바이드 디메틸 에테르(isosorbide dimethyl ether)로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오 네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
또한 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.
상기 비수 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.
본 발명에 따른 리튬 이차전지는 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
상기 리튬 이차전지의 형상은 특별히 제한되지 않으며 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.
또한, 본 발명은 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공한다.
상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 및 비교예
[실시예 1]
황(시그마알드리치사(Sigma Aldrich)사 제품)을 탄소나노튜브(CNano사 제품)와 함께 볼밀을 사용하여 혼합한 후, 155 ℃에서 열처리하여 황-탄소 복합체(S:CNT=75:25, 중량비)를 제조하였다.
양극 활물질로 상기 제조된 황-탄소 복합체 88 중량%, 도전재로 탄소나노튜브(CNano사 제품) 5.0 중량%, 바인더로 폴리아크릴산(Mw:1,200,000) 6.5 중량%와 폴리디알릴디메틸암모늄 클로라이드(Mw:200,000) 0.5 중량%을 혼합하고 물을 첨가하여 수계 양극 슬러리 조성물을 제조하였다.
20 ㎛ 두께의 탄소 코팅 알루미늄 집전체 상에 상기 제조된 양극 슬러리 조성물을 140 ㎛ 두께로 도포하고 50 ℃에서 12 시간 동안 건조하고 롤프레스(roll press)기기로 압착하여 양극을 제조하였다.
[실시예 2]
양극 슬러리 조성물 제조시 바인더인 폴리아크릴산과 폴리디알릴디메틸암모늄 클로라이드의 함량을 6.5 중량% 및 0.5 중량%에서 각각 6.0 중량% 및 1.0 중량%로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 3]
양극 슬러리 조성물 제조시 바인더인 폴리아크릴산과 폴리디알릴디메틸암모늄 클로라이드의 함량을 6.5 중량% 및 0.5 중량%에서 각각 5.5 중량% 및 1.5 중량%로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 4]
집전체를 동일 두께의 구리 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 5]
양극 슬러리 조성물 제조시 바인더인 폴리아크릴산과 폴리디알릴디메틸암모늄 클로라이드의 함량을 6.5 중량% 및 0.5 중량%에서 각각 6.0 중량% 및 1.0 중량%로 변경하고, 집전체를 동일 두께의 구리 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 6]
양극 슬러리 조성물 제조시 바인더인 폴리아크릴산과 폴리디알릴디메틸암모늄 클로라이드의 함량을 6.5 중량% 및 0.5 중량%에서 각각 5.5 중량% 및 1.5 중량%로 변경하고, 집전체를 동일 두께의 구리 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 7]
양극 슬러리 조성물 제조시 바인더로 폴리아크릴산 6.5 중량%과 폴리디알릴디메틸암모늄 클로라이드 0.5 중량% 대신 폴리아크릴산(Mw:1,200,000) 6.5 중량%과 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트(CLEVIOS PH1000) 0.5 중량%를 사용한 것과 집전체를 동일 두께의 알루미늄 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 8]
양극 슬러리 조성물 제조시 바인더로 폴리아크릴산 6.5 중량%과 폴리디알릴디메틸암모늄 클로라이드 0.5 중량% 대신 폴리아크릴산(Mw:1,200,000) 6.0 중량%과 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트(CLEVIOS PH1000) 1.0 중량%를 사용한 것과 집전체를 동일 두께의 알루미늄 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 9]
양극 슬러리 조성물 제조시 바인더로 폴리아크릴산 6.5 중량%과 폴리디알릴디메틸암모늄 클로라이드 0.5 중량% 대신 폴리아크릴산(Mw:1,200,000) 5.5 중량%과 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트(CLEVIOS PH1000) 1.5 중량%를 사용한 것과 집전체를 동일 두께의 알루미늄 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 10]
양극 슬러리 조성물 제조시 바인더로 폴리아크릴산 6.5 중량%과 폴리디알릴디메틸암모늄 클로라이드 0.5 중량% 대신 폴리아크릴산(Mw:1,200,000) 6.0 중량%과 폴리(2-에틸디메틸아미노에틸 메타크릴레이트 에틸 설페이트)-코-(1-비닐피롤리돈)(Mw:1,000,000) 1.0 중량%를 사용한 것과 집전체를 동일 두께의 알루미늄 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 11]
양극 슬러리 조성물 제조시 바인더로 폴리아크릴산 6.5 중량%과 폴리디알릴디메틸암모늄 클로라이드 0.5 중량% 대신 폴리아크릴산(Mw:1,200,000) 6.0 중량%과 폴리에틸렌 이민(Mw:250,000) 1.0 중량%를 사용한 것과 집전체를 동일 두께의 알루미늄 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[실시예 12]
실시예 8에서 제조한 양극을 음극(리튬 금속 박막, 두께: 45 ㎛)과 대면하도록 위치시키고, 그 사이에 폴리에틸렌 분리막(두께: 20 ㎛, 기공도: 70 %)을 개재시키고, 이어서, 1,3-디옥솔란(1,3-dioxolane, DOL)과 디메톡시에탄(dimethoxyethane, DME)의 혼합용매(DOL:DME=1:1, 부피비)에 1.0 농도의 LiTFSI와 3.0 중량%의 질산 리튬(LiNO3)를 용해시킨 전해질 100 ㎕를 주입하여 리튬 이차전지를 제조하였다.
[실시예 13]
실시예 10에서 제조한 양극을 사용한 것을 제외하고는 상기 실시예 12와 동일하게 수행하여 리튬 이차전지를 제조하였다.
[실시예 14]
실시예 11에서 제조한 양극을 사용한 것을 제외하고는 상기 실시예 12와 동일하게 수행하여 리튬 이차전지를 제조하였다.
[비교예 1]
양극 슬러리 조성물 제조시 바인더로 폴리디알릴디메틸암모늄 클로라이드를 사용하지 않고 폴리아크릴산의 함량을 7 중량%를 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[비교예 2]
양극 슬러리 조설물 제조시 바인더로 폴리디알릴디메틸암모늄 클로라이드를 사용하지 않고 폴리아크릴산의 함량을 7 중량%를 변경하고, 집전체를 동일 두께의 구리 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[비교예 3]
양극 슬러리 조설물 제조시 바인더로 폴리디알릴디메틸암모늄 클로라이드를 사용하지 않고 폴리아크릴산의 함량을 7 중량%를 변경하고, 집전체를 동일 두께의 알루미늄 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[비교예 4]
양극 슬러리 조성물 제조시 바인더로 폴리아크릴산 6.5 중량%과 폴리디알릴디메틸암모늄 클로라이드 0.5 중량% 대신 폴리아크릴산 6.5 중량%과 트리에틸렌테트라민(C6H18N4) 0.5 중량%을 사용한 것과 집전체를 동일 두께의 알루미늄 호일로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 양극을 제조하였다.
[비교예 5]
비교예 3에서 제조한 양극을 사용한 것을 제외하고는 상기 실시예 12와 동일하게 수행하여 리튬 이차전지를 제조하였다.
실험예 1. 양극 접착력 평가
상기 실시예 1 내지 11 및 비교예 1 내지 4에서 제조된 양극을 50 ℃에서 2 시간 동안 건조시키고, 이어서 15 ㎝ × 2 ㎝의 크기로 재단한 후, 양면 테이프를 붙인 슬라이드 글라스(slide glass)에 양극 면으로 접착하고 라미네이션(lamination)을 통해 박리 시험(peel test)용 샘플을 제조하였다. 계속해서, 박리 시험용 샘플을 접착력 측정이 가능한 만능재료시험기(universal testing machine, LS1, AMETEK사 제품)에 로딩(loading)하고 90 ° 박리 시험을 진행하여 걸리는 박리 저항(gf/㎝)을 측정하여, 각 양극의 접착성을 계산하였으며, 그 결과를 도 1 내지 도 5에 나타내었다.
<분석 조건>
- 샘플 폭: 20 ㎜
- 전파 속도(propagation speed): 300 ㎜/min
- 데이터 유효 계산 구간: 10 ~ 40 ㎜
도 1 내지 도 5를 통해, 카르복실레이트기를 포함하는 고분자와 함께 소량의 양이온성 고분자를 혼용한 바인더를 포함하는 실시예의 양극은 양이온성 고분자를 포함하지 않거나 양전하를 띄는 단분자를 포함하는 비교예의 양극에 비하여 양극 접착력이 우수한 것을 확인할 수 있다.
구체적으로, 도 1 내지 도 3은 각각 집전체를 달리한 것으로, 도 1은 집전체로 탄소 코팅 알루미늄 호일을, 도 2는 구리 호일을, 도 3은 알루미늄 호일을 각각 사용한 경우이다. 도 1 내지 도 3의 결과로부터 집전체의 소재에 상관없이 바인더로 카르복실레이트기를 포함하는 고분자와 양이온성 고분자를 함께 사용하는 실시예 1 내지 9의 경우 양이온성 고분자를 포함하지 않는 비교예 1 내지 3의 양극에 비해 접착력이 우수하며, 해당 접착력은 양이온성 고분자의 비율에 따라 증가하나, 실시예 3, 6 및 9의 결과로부터 양이온성 고분자를 일정 함량 이상으로 첨가하는 경우 오히려 접착력이 감소하는 것을 확인할 수 있다.
또한, 도 4는 집전체로 알루미늄 호일을 사용하는 경우 양이온성 고분자를 사용하지 않은 비교예 3, 양이온성 고분자 대신 양전하를 띄는 단분자를 사용한 비교예 4 및 함량은 동일하나 종류가 상이한 양이온성 고분자를 포함하는 실시예 8 및 10에 따른 양극의 접착력을 비교한 것으로, 비교예 4의 결과로부터 양전하를 띄는 단분자의 경우 접착 특성 개선 효과가 전혀 없으며, 실시예 8 및 10의 결과로부터 양이온성 고분자의 함량이 동일한 경우 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트의 접착 특성 개선 효과가 우수함을 알 수 있다.
또한, 도 5는 양이온성 고분자를 사용하지 않은 비교예 3의 양극 접착력을 1로 가정하고 이에 대한 실시예 11의 양극 접착력의 상대값을 도시한 것으로, 카르복실레이트기를 포함하는 고분자와 양이온성 고분자를 함께 포함하는 양극의 접착 특성이 우수한 것을 확인할 수 있다.
실험예 2. 리튬 이차전지의 성능 평가
충방전 측정 장치(LAND CT-2001A, 우한(Wuhan)사 제품)를 이용하여 실시예 12 내지 14 및 비교예 5에서 각각 제조된 리튬 이차전지의 성능을 평가하였다.
먼저, 각 리튬 이차전지에 대해서 0.1C(0.55 mA·cm-2)의 전류밀도로 충방전 특성을 측정하였으며, 그 결과를 도 6 및 도 7에 나타내었다.
도 6 및 도 7을 참조하면, 실시예와 비교예에서 제조된 전지의 충방전 특성이 동일함을 확인할 수 있다.
다만, 도 7을 통해, 양이온성 고분자로 폴리에틸렌 이민을 사용하는 경우, 전압 강하 현상이 발생함을 알 수 있다.
이러한 결과로부터 본원발명에 따른 카르복실레이트기를 포함하는 고분자와 함께 소량의 양이온성 고분자, 구체적으로 폴리쿼터늄 또는 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트을 혼용한 바인더를 양극에 포함하는 전지는, 양이온성 고분자를 포함하지 않거나 양이온성 고분자로 폴리에틸렌 이민을 포함하는 전지와 비교하여 전지의 충방전 특성에 대한 열화 없이 전극 접착력이 개선되었음을 확인할 수 있다.

Claims (15)

  1. 카르복실레이트기를 포함하는 고분자; 및 양이온성 고분자를 포함하고,
    상기 양이온성 고분자의 함량은 리튬 이차전지 전극용 바인더 전체 100 중량%에 대하여 5 내지 30 중량%인 리튬 이차전지 전극용 바인더.
  2. 제1항에 있어서,
    상기 카르복실레이트기를 포함하는 고분자는 폴리아크릴산, 폴리아크릴산리튬, 폴리메타크릴산, 폴리메타크릴산리튬, 카르복시메틸 셀룰로오스, 카르복시메틸 셀룰로오스나트륨, 스티렌-부타디엔 고무/카르복시메틸 셀룰로오스, 알긴산 및 알긴산 나트륨으로 이루어지는 군에서 선택되는 1종 이상을 포함하는, 리튬 이차전지 전극용 바인더.
  3. 제1항에 있어서,
    상기 카르복실레이트기를 포함하는 고분자는 중량평균분자량이 50,000 내지 5,000,000인, 리튬 이차전지 전극용 바인더.
  4. 제1항에 있어서,
    상기 양이온성 고분자는 폴리쿼터늄, 폴리알릴아민 염산염, 폴리에틸렌 이민, 폴리4-비닐피리딘, 폴리3,4-에틸렌디옥시티오펜:폴리스티렌설포네이트, 폴리(비닐아민 염산염), 폴리(2-(디메틸아미노)에틸 메타크릴레이트), 및 폴리(아미도 아민)으로 이루어지는 군에서 선택되는 1종 이상을 포함하는, 리튬 이차전지 전극용 바인더.
  5. 제1항에 있어서,
    상기 양이온성 고분자는 중량평균분자량이 3,000 내지 1,000,000인, 리튬 이차전지 전극용 바인더.
  6. 제1항에 있어서,
    상기 양이온성 고분자의 함량은 상기 리튬 이차전지 전극용 바인더 전체 100 중량%에 대하여 5 내지 25 중량%인, 리튬 이차전지 전극용 바인더.
  7. 제1항에 있어서,
    상기 카르복실레이트기를 포함하는 고분자 및 양이온성 고분자는 70:30 내지 95:5의 중량비로 포함되는, 리튬 이차전지 전극용 바인더.
  8. 제1항에 있어서,
    상기 전극은 양극인, 리튬 이차전지 전극용 바인더.
  9. 제8항에 있어서,
    상기 전극은 양극 활물질로 황을 포함하며, 도전재로 탄소재를 포함하는 양극인, 리튬 이차전지 전극용 바인더.
  10. 양극 활물질, 도전재 및 제1항에 따른 리튬 이차전지 전극용 바인더를 포함하는 리튬 이차전지용 양극.
  11. 제10항에 있어서,
    상기 양극 활물질은 무기 황(S8), Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 리튬 이차전지용 양극.
  12. 제11항에 있어서,
    상기 양극 활물질은 황-탄소 복합체 형태로 포함되는, 리튬 이차전지용 양극.
  13. 제10항에 있어서,
    상기 바인더의 함량은 리튬 이차전지용 양극에 포함되는 베이스 고형분 전체 100 중량%에 대하여 2 내지 10 중량%인, 리튬 이차전지용 양극.
  14. 제10항에 있어서,
    상기 바인더는 카르복실레이트기를 포함하는 고분자 및 양이온성 고분자를 포함하며,
    상기 양이온성 고분자의 함량은 리튬 이차전지용 양극에 포함되는 베이스 고형분 전체 100 중량%에 대하여 0.1 내지 3 중량%인, 리튬 이차전지용 양극 슬러리 조성물.
  15. 제10항에 따른 리튬 이차전지용 양극; 음극 및 이들 사이에 개재되는 분리막 및 전해질을 포함하는 리튬 이차전지.
PCT/KR2020/015108 2019-11-06 2020-11-02 리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 WO2021091174A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080028483.XA CN113692661A (zh) 2019-11-06 2020-11-02 锂二次电池电极用粘合剂、包含其的锂二次电池用正极和锂二次电池
EP20885146.9A EP3951954A4 (en) 2019-11-06 2020-11-02 BINDER FOR LITHIUM SECONDARY BATTERY ELECTRODE, THIS CONTAINING LITHIUM SECONDARY BATTERY POSITIVE ELECTRODE AND LITHIUM SECONDARY BATTERY
JP2021563685A JP7237201B2 (ja) 2019-11-06 2020-11-02 リチウム二次電池電極用バインダー、これを含むリチウム二次電池用正極及びリチウム二次電池
US17/605,752 US20220209237A1 (en) 2019-11-06 2020-11-02 Binder for lithium secondary battery electrode, lithium secondary battery positive electrode comprising same, and lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0140727 2019-11-06
KR20190140727 2019-11-06
KR1020200140343A KR20210054989A (ko) 2019-11-06 2020-10-27 리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR10-2020-0140343 2020-10-27

Publications (1)

Publication Number Publication Date
WO2021091174A1 true WO2021091174A1 (ko) 2021-05-14

Family

ID=75848465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015108 WO2021091174A1 (ko) 2019-11-06 2020-11-02 리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2021091174A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063060A (ko) * 2002-01-22 2003-07-28 삼성에스디아이 주식회사 리튬-황 전지용 양극
KR20040023257A (ko) * 2002-09-11 2004-03-18 삼성에스디아이 주식회사 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
KR101475763B1 (ko) * 2012-07-09 2014-12-23 부산대학교 산학협력단 리튬 설퍼 전지용 양극 및 이를 포함하는 리튬 설퍼 전지
KR20180069017A (ko) * 2015-10-28 2018-06-22 사빅 글로벌 테크놀러지스 비.브이. 리튬이온전지 전극용 바인더 조성물
KR20190011943A (ko) * 2017-07-26 2019-02-08 주식회사 엘지화학 리튬-황 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
KR20190078882A (ko) 2017-12-27 2019-07-05 주식회사 엘지화학 리튬-황 전지용 바인더, 이를 포함하는 양극 및 리튬-황 전지
KR20190140727A (ko) 2018-06-12 2019-12-20 키넷 주식회사 미세먼지 제거 기능이 탑재된 고농축 산소발생기
KR20200140343A (ko) 2018-04-06 2020-12-15 소시에떼 덱스플로와따시옹 더 쁘로뒤 뿌르 레 엥뒤스트리 쉬미끄, 에스. 에. 페. 페. 이. 세. 폴리글리세롤 에스테르를 포함하는 자가-가역성 인버스 라텍스, 증점제로서의 이의 용도, 및 이를 포함하는 화장품 조성물

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063060A (ko) * 2002-01-22 2003-07-28 삼성에스디아이 주식회사 리튬-황 전지용 양극
KR20040023257A (ko) * 2002-09-11 2004-03-18 삼성에스디아이 주식회사 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
KR101475763B1 (ko) * 2012-07-09 2014-12-23 부산대학교 산학협력단 리튬 설퍼 전지용 양극 및 이를 포함하는 리튬 설퍼 전지
KR20180069017A (ko) * 2015-10-28 2018-06-22 사빅 글로벌 테크놀러지스 비.브이. 리튬이온전지 전극용 바인더 조성물
KR20190011943A (ko) * 2017-07-26 2019-02-08 주식회사 엘지화학 리튬-황 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
KR20190078882A (ko) 2017-12-27 2019-07-05 주식회사 엘지화학 리튬-황 전지용 바인더, 이를 포함하는 양극 및 리튬-황 전지
KR20200140343A (ko) 2018-04-06 2020-12-15 소시에떼 덱스플로와따시옹 더 쁘로뒤 뿌르 레 엥뒤스트리 쉬미끄, 에스. 에. 페. 페. 이. 세. 폴리글리세롤 에스테르를 포함하는 자가-가역성 인버스 라텍스, 증점제로서의 이의 용도, 및 이를 포함하는 화장품 조성물
KR20190140727A (ko) 2018-06-12 2019-12-20 키넷 주식회사 미세먼지 제거 기능이 탑재된 고농축 산소발생기

Similar Documents

Publication Publication Date Title
WO2017131377A1 (ko) 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2019103326A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020226310A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2022035120A1 (ko) 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2021210814A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2021172879A1 (ko) 리튬 금속 음극의 제조방법, 이에 의해 제조된 리튬 금속 음극 및 이를 포함하는 리튬-황 전지
WO2019225884A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR20210054989A (ko) 리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021235760A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2022164107A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2022060021A1 (ko) 리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지
WO2020105980A1 (ko) 리튬-황 이차전지
WO2021241959A1 (ko) 프리스탠딩 필름형 리튬 이차전지용 양극재, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021010626A1 (ko) 리튬-황 이차전지
WO2018236046A1 (ko) 리튬-황 전지
WO2019225883A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2022255672A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
WO2023008783A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2022211282A1 (ko) 리튬 이차전지
WO2022149877A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2021177723A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2021091174A1 (ko) 리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022265234A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2023068621A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563685

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020885146

Country of ref document: EP

Effective date: 20211104

NENP Non-entry into the national phase

Ref country code: DE