WO2020226310A1 - 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지 - Google Patents

리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지 Download PDF

Info

Publication number
WO2020226310A1
WO2020226310A1 PCT/KR2020/005460 KR2020005460W WO2020226310A1 WO 2020226310 A1 WO2020226310 A1 WO 2020226310A1 KR 2020005460 W KR2020005460 W KR 2020005460W WO 2020226310 A1 WO2020226310 A1 WO 2020226310A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
montmorillonite
separator
sulfur battery
ions
Prior art date
Application number
PCT/KR2020/005460
Other languages
English (en)
French (fr)
Inventor
김명성
한승훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200047143A external-priority patent/KR20200127864A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021560881A priority Critical patent/JP7176135B2/ja
Priority to US17/605,308 priority patent/US20220200095A1/en
Priority to EP20802758.1A priority patent/EP3944361A4/en
Priority to CN202080028481.0A priority patent/CN113711434B/zh
Publication of WO2020226310A1 publication Critical patent/WO2020226310A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a lithium-sulfur battery and a lithium-sulfur battery including the same.
  • lithium secondary batteries As the scope of use of lithium secondary batteries has expanded to not only portable electronic devices and communication devices, but also electric vehicles (EVs) and electric storage systems (ESSs), the high capacity of lithium secondary batteries used as power sources has been improved. The demand is increasing.
  • EVs electric vehicles
  • ESSs electric storage systems
  • a lithium-sulfur battery uses a sulfur-based material containing a sulfur-sulfur bond as a positive electrode active material, and lithium metal, a carbon-based material in which lithium ions are inserted/deinserted, or lithium It is a secondary battery that uses silicon or tin, which forms an alloy with, as an anode active material.
  • sulfur which is the main material of the positive electrode active material, has a low weight per atom, rich in resources, easy supply and demand, inexpensive, non-toxic, and has the advantage of being an environmentally friendly material.
  • a lithium-sulfur battery is a lithium ion and the sulfur conversion (conversion) reaction at the anode - the theoretical discharge capacity resulting from (S 8 + 16Li + + 16e ⁇ 8Li 2 S) reached 1,675 mAh / g, a lithium metal as a negative electrode ( Theoretical capacity: 3,860 mAh/g) shows a theoretical energy density of 2,600 Wh/kg.
  • Li-MH battery 450Wh/kg
  • Li-FeS battery 480Wh/kg
  • Li-MnO 2 battery 1,000Wh/kg
  • Na-S battery 800Wh/kg
  • commercial lithium Since it has a very high value compared to the theoretical energy density of a secondary battery (LiCoO 2 /graphite), it is attracting attention as a high-capacity, eco-friendly, and inexpensive lithium secondary battery among secondary batteries being developed so far. Is losing.
  • lithium-sulfur battery when discharging, sulfur accepts electrons from the positive electrode and undergoes a reduction reaction, while the negative electrode undergoes an oxidation reaction in which lithium is ionized.
  • the positive electrode which is dissolved in the electrolyte and eluted from the positive electrode, so that the reversible capacity of the positive electrode is greatly reduced.
  • the dissolved lithium polysulfide diffuses to the negative electrode, causing various side reactions.
  • the lithium polysulfide causes a shuttle reaction, which greatly reduces charging and discharging efficiency.
  • Korean Patent Application Publication No. 2018-0020096 discloses that by including a separator on which a catalyst layer containing a transition metal compound is formed, it is possible to improve the capacity and cycle characteristics of a battery by suppressing the shuttle reaction due to elution of lithium polysulfide. have.
  • Korean Patent Application Publication No. 2016-0046775 provides a positive electrode coating layer made of an amphiphilic polymer on a portion of the positive electrode active part including a sulfur-carbon composite to prevent the elution of lithium polysulfide and facilitate the movement of lithium ions. It discloses that the cycle characteristics of a battery can be improved.
  • Korean Patent Laid-Open No. 2016-0037084 discloses that by coating graphene on a carbon nanotube aggregate containing sulfur, it blocks the dissolution of lithium polysulfide, and increases the conductivity of the sulfur-carbon nanotube composite and the loading amount of sulfur. Disclosed that you can.
  • the present inventors conducted various studies to solve the above problem, and as a result of introducing an inorganic coating layer containing modified montmorillonite in which monovalent or divalent cation of montmorillonite is substituted with a specific ion on the substrate of the separator, lithium-sulfur battery
  • the present invention was completed by confirming that the performance and life of the lithium-sulfur battery can be improved by solving the problem of the elution of lithium polysulfide.
  • an object of the present invention is to provide a separator for a lithium-sulfur battery that improves capacity and life characteristics of a lithium-sulfur battery by solving the problem of lithium polysulfide elution.
  • Another object of the present invention is to provide a lithium-sulfur battery including the separator.
  • the present invention is a porous substrate; And an inorganic coating layer formed on at least one surface of the porous substrate,
  • the inorganic coating layer is for a lithium-sulfur battery comprising a modified montmorillonite in which the cation of montmorillonite is substituted with one or more ions selected from hydrogen ions, lithium ions, potassium ions, rubidium ions, cesium ions, iron ions, manganese ions and nickel ions Provide a separator.
  • the montmorillonite may include at least one selected from the group consisting of sodium montmorillonite, calcium montmorillonite, and magnesium montmorillonite.
  • the modified montmorillonite may have an exfoliated layered structure.
  • the modified montmorillonite may be in the form of a nanosheet.
  • the modified montmorillonite has diffraction peaks that appear in the ranges of 7.0 ⁇ 1.0°, 9.0 ⁇ 1.0°, 20.0 ⁇ 1.0°, 26.5 ⁇ 1.0°, and 28.0 ⁇ 0.5° when measuring X-ray diffraction (XRD). It may be to include.
  • the inorganic coating layer may have a thickness of 0.1 to 10 ⁇ m.
  • the present invention provides a lithium-sulfur battery including the separator for the lithium-sulfur battery.
  • the separator according to the present invention includes an inorganic coating layer containing modified montmorillonite substituted with a specific ion, wherein the modified montmorillonite exhibits the form of a nanosheet formed by exfoliating the interlayer structure, thereby being uniformly coated on a porous substrate, thereby providing excellent lithium poly It exhibits a sulfide adsorption effect and improves the capacity and life characteristics of a lithium-sulfur battery including the same.
  • a lithium-sulfur battery provided with a separator having an inorganic coating layer including the modified montmorillonite does not cause a decrease in sulfur capacity, so that a high-capacity battery can be implemented, and sulfur can be stably applied by high loading.
  • such a lithium-sulfur battery has an advantage in that the charging/discharging efficiency of the battery is high and life characteristics are improved.
  • SEM scanning electron microscope
  • Example 5 is a graph showing evaluation results of lifespan characteristics of the batteries of Example 3, Example 4, Comparative Example 5, and Comparative Example 8 according to Experimental Example 4 of the present invention.
  • porosity used in the present invention means the ratio of the volume occupied by pores to the total volume in a structure, and uses% as its unit, and can be used interchangeably with terms such as porosity and porosity. I can.
  • the measurement of the porosity is not particularly limited, for example, the size (micro) and mesopore volume by a BET (Brunauer-Emmett-Teller) measurement method or a mercury permeation method (Hg porosimeter). ) Can be measured.
  • Lithium-sulfur batteries have a high theoretical discharge capacity and theoretical energy density among various secondary batteries, and sulfur used as a positive electrode active material is in the spotlight as a next-generation secondary battery due to the advantage of being inexpensive and environmentally friendly due to its abundant reserves.
  • lithium polysulfide which is an intermediate product of the sulfur reduction reaction, lithium polysulfide (Li 2 S x , usually x> 4) with a high oxidation number of sulfur is a material with strong polarity and is easily dissolved in an electrolyte containing a hydrophilic organic solvent to react with the anode. There is a loss of sulfur that elutes out of the domain and no longer participates in the electrochemical reaction.
  • a material capable of suppressing the elution of lithium polysulfide is introduced into the anode or separator in the form of an additive or a polymer coating layer containing the same, the composition of the electrolyte is changed, or a protective layer or a solid electrolyte interface is applied to the surface of the cathode.
  • SEI electrolyte interphase
  • lithium-polysulfide having an excellent effect of inhibiting elution of lithium polysulfide is excellent by forming an inorganic coating layer of modified montmorillonite having a layered structure that is separated so that the lithium polysulfide adsorbent material is evenly distributed to exhibit uniform adsorption performance. It provides a separator for sulfur batteries.
  • the separator for a lithium-sulfur battery according to the present invention comprises a porous substrate; And an inorganic coating layer formed on at least one surface of the porous substrate, wherein the inorganic coating layer includes modified montmorillonite in which cations of montmorillonite are substituted with specific ions.
  • the porous substrate constituting the separator for a lithium-sulfur battery of the present invention enables transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the negative electrode and the positive electrode from each other.
  • the separator of the present invention is porous and may be made of a non-conductive or insulating material.
  • the separator may be an independent member such as a film.
  • a porous polymer film may be used alone or by stacking them, and for example, a nonwoven fabric or a polyolefin-based porous film made of high melting point glass fibers, polyethylene terephthalate fibers, etc. may be used, but limited thereto. It does not become.
  • the material of the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in an electrochemical device may be used.
  • the porous substrate is a polyester such as polyethylene, polyolefin such as polypropylene, polyethylene terephthalate, polybutyleneterephthalate, and polyamide.
  • polyamide polyacetal, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylene sulfide polyphenylenesulfide), polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon (nylon), polyparaphenylene benzobisoxazole (poly(p-phenylene benzobisoxazole)) and polyarylate (polyarylate) may include at least one material selected from the group consisting of.
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the thickness range of the porous substrate is not limited to the above-described range, when the thickness is too thin than the above-described lower limit, mechanical properties are deteriorated and the separator may be easily damaged during battery use.
  • the average diameter and pores of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ m and 10 to 95%, respectively.
  • the inorganic coating layer is formed on at least one surface of the above-described porous substrate, and includes modified montmorillonite.
  • the modified montmorillonite of the present invention is substituted with a specific ion, and specifically, a monovalent or trivalent cation present between the layers of bare montmorillonite (MMT) is treated with a compound capable of ion exchange reaction with the corresponding cation.
  • MMT bare montmorillonite
  • One is a modified montmorillonite.
  • the pure montmorillonite is a type of smectite, a clay mineral, and has a formula represented by (Na,Ca) 0.33 (Al,Mg) 2 (Si 4 O 10 )(OH) 2 ⁇ nH 2 O.
  • the pure montmorillonite is composed of a combination of a silica tetrahedral sheet and an alumina octahedral sheet, and two silica tetrahedral sheets and one alumina octahedral sheet form a layered structure through a hydroxyl condensation reaction. do.
  • the pure montmorillonite has magnesium ions (Mg 2 + ) and iron ions (Fe 2 + , Fe 3+ ) instead of aluminum ions (Al 3 + ) in the alumina octahedral sheet, and silica ions (Si 4 ) on the silicate tetrahedral sheet.
  • the aluminum ions (Al + 3) will take on the whole, a negative charge is substituted instead +). Accordingly, it contains exchangeable cations and water molecules between layers in order to balance the overall charge.
  • montmorillonite used in the prior art is pure montmorillonite that has not been modified, or has a layered structure in a form modified with ammonium ions (NH 4 + ), and has a swelling property in which the volume expands by sucking water present between the layers due to its strong polarity. Insufficient tissue is created due to (swelling), and such a loose tissue causes shape deformation by repetitive contraction and expansion processes when the battery is driven, resulting in a problem of greatly deteriorating the performance and stability of the battery.
  • modified montmorillonite modified montmorillonite substituted with one or more ions selected from.
  • the modified montmorillonite according to the present invention can be uniformly and densely coated on the porous substrate by having a more appropriate microstructure and reducing the thickness as the multi-layer layered structure is peeled off and formed in the form of nanosheets. have. Accordingly, montmorillonite, a lithium polysulfide adsorption material, is evenly distributed in the inorganic coating layer to effectively adsorb lithium polysulfide, resulting in the loss of sulfur caused by the elution of lithium polysulfide in the conventional lithium-sulfur battery and the resulting capacity loss. By solving the solution, it is possible to improve the capacity and life of the lithium-sulfur battery, and it is possible to stably drive even during high loading of sulfur.
  • the modified montmorillonite of the present invention binds lithium polysulfide to the inorganic coating layer of the separator, thereby reacting side reactions on the negative electrode surface caused by the shuttle effect of lithium polysulfide, for example, lithium metal used as the negative electrode. It is possible to improve the coulomb efficiency and lifespan of the battery by forming a high-resistance layer of Li 2 S at the interface or solving the problem of lithium dendrite growth in which lithium is deposited at the anode interface.
  • the montmorillonite is classified according to the type of cations present between the layers, and may include at least one selected from the group consisting of sodium montmorillonite, calcium montmorillonite, and magnesium montmorillonite. It may preferably include sodium montmorillonite.
  • the cations present between the layers are substituted with one or more ions selected from hydrogen ions, lithium ions, potassium ions, rubidium ions, cesium ions, iron ions, manganese ions and nickel ions, and lithium ion conductivity.
  • it may be preferably substituted with one or more ions selected from hydrogen ions and lithium ions. More preferably, it may be substituted with lithium ions.
  • the content of sodium ions (in terms of Na 2 O) in the modified montmorillonite included in the inorganic coating layer of the present invention is 0.4% or less, preferably 0.01 to Can be 0.05%.
  • the content of calcium ions (in terms of CaO) in the modified montmorillonite included in the inorganic coating layer of the present invention is 0.2% or less, preferably 0.01 to 0.05. It can be %.
  • the modified montmorillonite of the present invention may have an exfoliated layered structure. This means that pure montmorillonite having a layered structure in which a plurality of layers are stacked is separated as a result of separation between a plurality of layers by a modification treatment that replaces cations as described above to form a nanosheet form.
  • the thickness of the nanosheet may be 3 to 100 nm, preferably 10 to 20 nm.
  • the length of the longest side of the nanosheet may be 1 to 15 ⁇ m, preferably 1 to 5 ⁇ m.
  • the average particle diameter (D50) of the montmorillonite may be 1 ⁇ m to 15 ⁇ m.
  • the average particle diameter (D50) of the montmorillonite falls within the above range, an appropriate exfoliated layered structure can be obtained, and the effect of using the montmorillonite can be obtained more effectively.
  • the average particle diameter (D50) means the diameter of particles having a cumulative volume of 50% by volume in a particle size distribution.
  • a significant or effective peak means a peak that is detected repeatedly in a substantially the same pattern in XRD data without being significantly affected by the analysis conditions or the person performing the analysis. It may be 1.5 times or more compared to the (backgound level), and preferably refers to a peak having a height, intensity, intensity, etc. of 2 times or more, more preferably 2.5 times or more.
  • Modified montmorillonite of the present invention is a result of X-ray diffraction (XRD) analysis using Cu-K ⁇ X-ray wavelength, diffraction angle (2 ⁇ ) 7.0 ⁇ 1.0°, 9.0 ⁇ 1.0°, 20.0 ⁇ 1.0°, 26.5 ⁇ 1.0° and It includes the effective peaks each appearing in the range of 28.0 ⁇ 0.5°, and at this time, it is possible to check whether or not the modification has been made through the presence or absence of the effective peaks appearing at a diffraction angle of 7.0 ⁇ 1.0°.
  • XRD X-ray diffraction
  • the cation exchange capacity (CEC) of the modified montmorillonite may be 90 to 150 mmol/100g, preferably 100 to 145 mmol/100g.
  • the cation exchange capacity is defined as the degree (unit: mmol/100kg) that montmorillonite can adsorb and exchange cations including exchangeable salt radicals and exchangeable hydrogens.
  • the cation exchange capacity is determined by the method of determining the cation exchange capacity of montmorillonite using the cobaltihexamine chloride ion exchange method, that is, [Co(NH 3 ) 6 ] 3+ as an exchangeable cation. Determined by
  • the thickness of the inorganic coating layer is not particularly limited, and has a range that does not increase the internal resistance of the battery while securing the above-described effects.
  • the thickness of the inorganic coating layer may be 0.1 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m, more preferably 0.1 to 1 ⁇ m.
  • the thickness of the inorganic coating layer is less than the above range, the function as the inorganic coating layer cannot be performed.
  • the thickness of the inorganic coating layer exceeds the above range, interfacial resistance increases, which may lead to an increase in internal resistance during battery operation.
  • the manufacturing method of the separator for a lithium-sulfur battery presented in the present invention is not particularly limited, and a known method or various methods of modifying it may be used by a person skilled in the art.
  • the method of manufacturing a separator for a lithium-sulfur battery As an example, the method of manufacturing a separator for a lithium-sulfur battery,
  • step (b) preparing a coating composition comprising the modified montmorillonite of step (a), and
  • step (a) the preparation of montmorillonite substituted with a specific cation in step (a), that is, modified montmorillonite may be carried out by a reaction of pure montmorillonite and a modifier.
  • the modified montmorillonite when it is a modified montmorillonite substituted with a hydrogen ion, it can be prepared by acid treatment of pure montmorillonite with a hydrogen modifier.
  • the acid treatment may be performed using a conventional method.
  • the pure montmorillonite may include at least one selected from the group consisting of sodium montmorillonite, calcium montmorillonite, and magnesium montmorillonite. Preferably, it may be sodium montmorillonite.
  • the hydrogen modifier may be at least one selected from the group consisting of inorganic acids and organic acids.
  • the inorganic acid may be at least one selected from the group consisting of hydrochloric acid, nitric acid, hydrobromic acid, hydrofluoric acid, sulfuric acid, and sulfonic acid.
  • the organic acids include acetic acid, oxalic acid, citric acid, succinic acid, formic acid, propanoic acid, butyric acid, propanedioic acid, butanedioic acid, pyruvic acid, glutamic acid, tartaric acid, malic acid, lactic acid, fumaric acid, itaconic acid, ascorbic acid, fumaric acid and ⁇ -keto. It may be one or more selected from the group consisting of glutaric acid.
  • the hydrogen modifier may be sulfuric acid.
  • the concentration of the hydrogen modifier may be 0.1 to 10 M, preferably 0.5 to 8 M, more preferably 0.8 to 5 M.
  • the pure montmorillonite and a hydrogen modifier are added to an aqueous solvent such as deionized water, and the mixture is stirred for 12 to 24 hours to react with an acid treatment.
  • the mass ratio of the pure montmorillonite and the hydrogen modifier may be 1.0:1.0 to 1.0:8.0, preferably 1.0:2.0 to 1.0:5.0.
  • the mass ratio of the pure montmorillonite and the acid is less than the above range, there may be an incomplete cation exchange reaction problem, and on the contrary, when the mass ratio of the pure montmorillonite and acid is less than the above range, a problem of collapse of the montmorillonite crystal structure may occur.
  • the acid treatment may be performed several times, preferably 1 to 10 times, more preferably 2 to 8 times.
  • the hydrogen modifier may be removed by centrifugation or filtration.
  • modified montmorillonite specifically hydrogen-modified montmorillonite (H-MMT).
  • H-MMT hydrogen-modified montmorillonite
  • the manufacturing method thereof comprises the steps of acid treatment of pure montmorillonite with a hydrogen modifier and hydrogen-modified montmorillonite (H-MMT) obtained through the acid treatment It may include the step of adding a lithium modifier to the solution.
  • H-MMT hydrogen-modified montmorillonite
  • the step of acid treating pure montmorillonite with a hydrogen modifier is as described above.
  • the lithium modifier is of various types, such as lithium hydroxide, lithium nitrate, lithium chloride, and lithium sulfate, but lithium hydroxide may be preferably used in consideration of reaction conditions.
  • the concentration of the lithium modifier may be 0.1 to 10 M, preferably 0.5 to 8 M, more preferably 0.8 to 5 M.
  • a lithium modifier is added to the solution containing the hydrogen-modified montmorillonite (H-MMT), and reacted by stirring for 12 to 24 hours.
  • H-MMT hydrogen-modified montmorillonite
  • the mass ratio of the hydrogen-modified montmorillonite (H-MMT) and the lithium modifier may be 1.0:1.0 to 1.0:8.0, preferably 1.0:2.0 to 1.0:5.0.
  • the mass ratio of the acid-treated montmorillonite and the lithium modifier is less than the above range, the cation exchange reaction may be incomplete, and on the contrary, when it exceeds the above range, the montmorillonite crystal structure may be collapsed.
  • the lithium modifier may be removed by centrifugation or filtration.
  • washing may be performed several times using water and ethanol.
  • the final product obtained from the reaction with the lithium modifier is dried at 60 to 90°C to obtain a modified montmorillonite, specifically lithium-modified montmorillonite (Li-MMT).
  • the drying is preferably performed under vacuum conditions for 12 to 24 hours.
  • step (b) of preparing a coating composition containing modified montmorillonite substituted with a specific cation prepared by the above-described manufacturing method is performed.
  • the coating composition may further include a solvent other than the modified montmorillonite substituted with a specific cation as described above, and the solvent is not particularly limited as long as it can dissolve the modified montmorillonite.
  • the solvent may be a mixed solvent of water and alcohol, or a mixture of one or more organic solvents, and in this case, the alcohol may be a lower alcohol having 1 to 6 carbon atoms, preferably methanol, ethanol, propanol, isopropanol, etc. have.
  • polar solvents such as acetic acid, dimethyl formamide (DMF), N-methyl-2-pyrrolidone (NMP) dimethyl sulfoxide (DMSO), etc., Acetonitrile, ethyl acetate, methyl acetate, fluoroalkane, pentane, 2,2,4-trimethylpentane, decane, cyclohexane, cyclopentane, diisobutylene, 1-pentene, 1-chlorobutane, 1-chloropentane , o-xylene, diisopropyl ether, 2-chloropropane, toluene, 1-chloropropane, chlorobenzene, benzene, diethyl ether, diethyl sulfide, chloroform, dichloromethane, 1,2-dichloroethane, aniline,
  • Non-polar solvents such as diethylamine, ether, carbon tetrach
  • the content of the solvent may be contained at a level having a concentration that can facilitate coating, and the specific content varies depending on the coating method and apparatus.
  • the modified montmorillonite may be dispersed in a solvent and then mixed to prepare a coating composition, wherein the concentration of the final coating composition is adjusted to be in the range of 0.1 to 10% by weight (solid content), and then coating is Perform.
  • the coating composition may further include a binder to increase the bonding force of the modified montmorillonite to the porous substrate during the coating process.
  • the binder may be polyvinylidene fluoride, polyvinyl alcohol, polyvinyl chloride, polyvinyl fluoride, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyethylene, polypropylene, and the like.
  • step (c) of applying the above-described coating composition to at least one surface of the porous substrate is performed.
  • step (c) is not particularly limited in the present invention, and any known wet coating method may be used.
  • any known wet coating method may be used.
  • a method of uniformly dispersing using a doctor blade, etc., die casting, comma coating, screen printing, vacuum filtration coating, etc. Method, etc. are mentioned.
  • a drying process for removing the solvent may be further performed.
  • the drying process is performed at a temperature and time at a level that can sufficiently remove the solvent, and the conditions may vary depending on the type of solvent, and thus are not specifically mentioned in the present invention.
  • drying may be performed in a vacuum oven at 30 to 200° C., and drying methods such as hot air, hot air, drying by low humid air, and vacuum drying may be used.
  • it does not specifically limit about the drying time, it is normally performed in the range of 30 seconds-24 hours.
  • the thickness of the finally formed inorganic coating layer can be adjusted.
  • the present invention provides a lithium-sulfur battery including the separator.
  • the lithium-sulfur battery includes a positive electrode; cathode; It includes a separator and an electrolyte interposed therebetween, and includes the separator according to the present invention as the separator.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material applied to one or both surfaces of the positive electrode current collector.
  • the positive electrode current collector supports a positive electrode active material and is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • a positive electrode active material for example, copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, silver, etc., aluminum-cadmium alloy, and the like may be used.
  • the positive electrode current collector may form fine irregularities on its surface to enhance the bonding strength with the positive electrode active material, and various forms such as films, sheets, foils, meshes, nets, porous bodies, foams, and nonwoven fabrics may be used.
  • the positive electrode active material may include a positive electrode active material and optionally a conductive material and a binder.
  • a sulfur-based compound is included as the positive electrode active material.
  • inorganic sulfur (S 8 ) may be used.
  • the sulfur-based compound alone has no electrical conductivity, it is used in combination with a conductive material.
  • the positive electrode active material may be a sulfur-carbon composite.
  • carbon is a porous carbon material, providing a skeleton through which sulfur, which is a positive electrode active material, can be uniformly and stably fixed, and complements the electrical conductivity of sulfur so that an electrochemical reaction can proceed smoothly.
  • the porous carbon material may generally be prepared by carbonizing precursors of various carbon materials.
  • the porous carbon material includes irregular pores therein, the average diameter of the pores is in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total volume of the porosity. If the average diameter of the pores is less than the above range, the pore size is only at the molecular level and impregnation of sulfur is impossible. Conversely, if the pore size exceeds the above range, the mechanical strength of the porous carbon is weakened, which is preferable to be applied to the manufacturing process of the electrode. Not.
  • the porous carbon material may be spherical, rod-shaped, needle-shaped, plate-shaped, tube-shaped, or bulk-shaped, and may be used without limitation as long as it is commonly used in lithium-sulfur batteries.
  • the porous carbon material may have a porous structure or a high specific surface area, so long as it is commonly used in the art.
  • the porous carbon material graphite; Graphene; Carbon blacks such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Carbon nanotubes (CNT) such as single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT); Carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); It may be one or more selected from the group consisting of natural graphite, artificial graphite, expanded graphite, and activated carbon, but is not limited thereto.
  • the porous carbon material may be a carbon nanotube.
  • the sulfur-carbon composite may contain 60 to 90 parts by weight of sulfur, preferably 65 to 85 parts by weight, more preferably 70 to 80 parts by weight, based on 100 parts by weight of the sulfur-carbon composite.
  • the sulfur content is less than the above-described range, the specific surface area increases as the content of the porous carbon material in the sulfur-carbon composite is relatively increased, so that the content of the binder increases when preparing the slurry.
  • Increasing the amount of the binder used may eventually increase the sheet resistance of the positive electrode and act as an insulator to prevent electron pass, thereby deteriorating the performance of the battery.
  • the positive electrode active material may further include at least one additive selected from a transition metal element, a group IIIA element, a group IVA element, a sulfur compound of these elements, and an alloy of these elements and sulfur.
  • the transition metal element is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au, or Hg and the like are included, and the group IIIA element includes Al, Ga, In, and Ti, and the group IVA element may include Ge, Sn, and Pb.
  • the positive electrode active material may be included in an amount of 50 to 95 parts by weight, preferably 70 to 90 parts by weight, based on 100 parts by weight of the positive electrode slurry composition.
  • the content of the positive electrode active material is less than the above range, it is difficult to sufficiently exhibit the electrochemical reaction of the positive electrode, and on the contrary, when the content of the positive electrode active material exceeds the above range, the content of the conductive material and binder described below is relatively insufficient, and the resistance of the positive electrode increases, There is a problem that the physical properties of the anode are deteriorated.
  • the positive electrode may further include a conductive material, and the conductive material is a material that serves as a path through which electrons move from a current collector to the positive electrode active material by electrically connecting the electrolyte and the positive electrode active material.
  • the conductive material is a material that serves as a path through which electrons move from a current collector to the positive electrode active material by electrically connecting the electrolyte and the positive electrode active material.
  • any one having conductivity can be used without limitation.
  • a carbon-based material having a porosity may be used as the conductive material, and examples of such a carbon-based material include carbon black, graphite, graphene, activated carbon, carbon fiber, etc., and metallic fibers such as metal mesh; Metallic powders such as copper, silver, nickel, and aluminum; Or an organic conductive material such as a polyphenylene derivative.
  • the conductive materials may be used alone or in combination.
  • the conductive material may be included in an amount of 1 to 10 parts by weight, preferably 5 parts by weight, based on 100 parts by weight of the positive electrode slurry composition. If the content of the conductive material is less than the above range, the non-reacting portion of sulfur in the positive electrode increases, resulting in a decrease in capacity. On the contrary, if it exceeds the above range, it is preferable to determine an appropriate content within the above-described range since it adversely affects the high-efficiency discharge characteristics and charge/discharge cycle life.
  • the positive electrode may further include a binder, and the binder further enhances binding strength between components constituting the positive electrode and between them and a current collector, and any binder known in the art may be used.
  • the binder may include a fluororesin binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); A rubber-based binder including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; Cellulose-based binders including carboxyl methyl cellulose (CMC), starch, hydroxy propyl cellulose, and regenerated cellulose; Poly alcohol-based binder; Polyolefin-based binders including polyethylene and polypropylene; Polyimide binder; Polyester binder; And a silane-based binder; one, two or more mixtures or copolymers selected from the group consisting of may be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • a rubber-based binder including styrene-butadiene rubber (SBR), acrylon
  • the binder may be included in an amount of 1 to 10 parts by weight, preferably about 5 parts by weight, based on 100 parts by weight of the positive electrode slurry composition. If the content of the binder is less than the above range, the physical properties of the positive electrode may be deteriorated and the positive electrode active material and the conductive material may be eliminated, and if the content of the binder exceeds the above range, the ratio of the active material and the conductive material in the positive electrode may be relatively reduced, thereby reducing the battery capacity. It is desirable to determine the appropriate content within one range.
  • the positive electrode can be manufactured by a conventional method known in the art. For example, after preparing a slurry by mixing and stirring a solvent, a binder, a conductive material, and a dispersant as necessary in a positive electrode active material, it is applied (coated) to a current collector of a metal material, compressed, and dried to prepare a positive electrode have.
  • a positive electrode active material, a binder, and a conductive material may be uniformly dispersed.
  • water is most preferred as an aqueous solvent, and in this case, water may be distilled water or deionzied water.
  • the present invention is not limited thereto, and if necessary, lower alcohol that can be easily mixed with water may be used. Examples of the lower alcohol include methanol, ethanol, propanol, isopropanol, butanol, and the like, and preferably, they may be used by mixing with water.
  • the porosity of the positive electrode, specifically the positive electrode active material layer, prepared by the above-described composition and manufacturing method may be 60 to 75%, preferably 60 to 70%.
  • the filling degree of the positive electrode slurry composition including the positive electrode active material, the conductive material, and the binder becomes too high, so that a sufficient electrolyte solution capable of showing ionic conduction and/or electrical conduction between the positive electrode active materials is provided. Since it cannot be maintained, the output characteristics or cycle characteristics of the battery may be deteriorated, and there is a problem that the overvoltage and discharge capacity of the battery are severely reduced.
  • the porosity of the positive electrode exceeds 75% and has an excessively high porosity, there is a problem that the physical and electrical connection with the current collector is lowered, resulting in a decrease in adhesion and difficulty in reaction, and the increased porosity is filled with an electrolyte solution. Since there is a problem that the energy density of may be lowered, it is appropriately adjusted within the above range.
  • the negative electrode is a material capable of reversibly intercalating or deintercalating lithium (Li + ) as a negative active material, a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or lithium It may contain an alloy.
  • the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • the negative active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
  • the negative electrode current collector is as described in the positive electrode current collector.
  • the negative electrode may further include additives such as a binder, a conductive material and a thickener, and is not particularly limited as long as it is a conventional one used in manufacturing the negative electrode.
  • the binder and the conductive material are as described in the positive electrode.
  • the separator is as described above.
  • the electrolyte contains lithium ions, and is for causing an electrochemical oxidation or reduction reaction at the anode and the cathode through this.
  • the electrolyte may be a non-aqueous electrolyte or a solid electrolyte that does not react with lithium metal, but is preferably a non-aqueous electrolyte, and includes an electrolyte salt and an organic solvent.
  • the electrolyte salt contained in the non-aqueous electrolyte solution is a lithium salt.
  • the lithium salt may be used without limitation as long as it is commonly used in an electrolyte for a lithium secondary battery.
  • LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, ( CF 3 SO 2 ) 2 NLi, LiN(SO 2 F) 2 , lithium chloroborane, lithium lower aliphatic carboxylic acid, lithium 4-phenyl borate, lithium imide, and the like may be used.
  • the concentration of the lithium salt depends on several factors such as the exact composition of the electrolyte solvent mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and preconditioning of the battery, the working temperature and other factors known in the lithium battery field, from 0.2 to 2 M, Specifically, it may be 0.4 to 2 M, more specifically 0.4 to 1.7 M. If the concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, resulting in deterioration of electrolyte performance, and if the concentration of the lithium salt exceeds 2 M, the viscosity of the electrolyte may increase, thereby reducing the mobility of lithium ions.
  • organic solvents included in the non-aqueous electrolyte those commonly used in electrolytes for lithium secondary batteries can be used without limitation, for example, ether, ester, amide, linear carbonate, cyclic carbonate, etc., alone or in combination of two or more Can be used. Among them, representatively, an ether-based compound may be included.
  • the ether compound may include an acyclic ether and a cyclic ether.
  • the acyclic ether includes dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, diethylene glycol Dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methylethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methylethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, At least one selected from the group consisting of tetraethylene glycol methylethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, and polyethylene glycol methylethyl ether may be used, but is not limited thereto.
  • the cyclic ether is 1,3-dioxolane, 4,5-dimethyl-dioxolane, 4,5-diethyl-dioxolane, 4-methyl-1,3-dioxolane, 4-ethyl-1, 3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2,5-dimethoxytetrahydrofuran, 2-ethoxytetrahydrofuran, 2-methyl-1,3 -Dioxolane, 2-vinyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 2-methoxy-1,3-dioxolane, 2-ethyl-2-methyl-1, 3-dioxolane, tetrahydropyran, 1,4-dioxane, 1,2-dimethoxy benzene, 1,3-dimethoxy benzen
  • esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ - Any one selected from the group consisting of valerolactone and ⁇ -caprolactone, or a mixture of two or more of them may be used, but is not limited thereto.
  • linear carbonate compound examples include any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate, or any one of them.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and any one selected from the group consisting of halides thereof, or a mixture of two or more thereof.
  • halides include, for example, fluoroethylene carbonate (FEC), but are not limited thereto.
  • the injection of the non-aqueous electrolyte may be performed at an appropriate step in the manufacturing process of the electrochemical device according to the manufacturing process and required physical properties of the final product. That is, it can be applied before assembling the electrochemical device or at the final stage of assembling the electrochemical device.
  • the lithium secondary battery according to the present invention in addition to winding, which is a general process, lamination and stacking of a separator and an electrode and folding are possible.
  • the shape of the lithium secondary battery is not particularly limited and may be in various shapes such as a cylindrical shape, a stacked type, and a coin type.
  • the present invention provides a battery module including the lithium-sulfur battery as a unit cell.
  • the battery module can be used as a power source for medium and large-sized devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium and large-sized devices include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • H-MMT hydrogen-modified montmorillonite
  • H-MMT hydrogen-modified montmorillonite
  • Li-MMT lithium-modified montmorillonite
  • sodium montmorillonite (K 10, manufactured by Sigma Aldrich) was dried in an oven at 155° C. for 1 hour to obtain pure montmorillonite without modification.
  • H-MMT hydrogen-modified montmorillonite
  • ammonium-modified montmorillonite (NH 4 -MMT).
  • a 20 ⁇ m polyethylene (porosity 68%) film was prepared as a porous substrate.
  • a coating composition containing 1% by weight of hydrogen-modified montmorillonite (H-MMT) obtained in Preparation Example 1 was applied to ethanol to form an inorganic coating layer on the porous substrate, and then dried at 60° C. for 12 hours to 1 ⁇ m
  • a separator for a lithium-sulfur battery having a thick inorganic coating layer was prepared.
  • Li-MMT Lithium-modified montmorillonite obtained in Preparation Example 2 of the same amount was used instead of the hydrogen-modified montmorillonite (H-MMT) of Preparation Example 1 as a coating composition.
  • a separator for a sulfur battery was prepared.
  • the prepared positive electrode slurry composition was applied on an aluminum current collector, dried at 50° C. for 12 hours, and compressed with a roll press to prepare a positive electrode.
  • the loading amount of the obtained positive electrode was 5.4 mAh/cm 2, and the porosity was 68%.
  • LiTFSI bis(trifluoromethanesulfonyl)imide
  • LiNO 3 lithium nitrate
  • the prepared positive electrode and the negative electrode were positioned to face each other, and the separator obtained in Example 1 was placed therebetween, and 0.1 ml of the prepared electrolyte was injected to prepare a lithium-sulfur battery.
  • a lithium-sulfur battery was manufactured in the same manner as in Example 3, except that the separator obtained in Example 2 was used.
  • the porous substrate of Example 1 was prepared as a separator for a lithium-sulfur battery.
  • a separator for a lithium-sulfur battery was prepared in the same manner as in Example 1, except that pure montmorillonite obtained in Preparation Example 3 of the same content was used instead of the hydrogen-modified montmorillonite (H-MMT) of Preparation Example 1 as a coating composition. .
  • NH 4 -MMT ammonium-modified montmorillonite
  • H-MMT hydrogen-modified montmorillonite
  • Li-MMT lithium-modified montmorillonite
  • NMP N-methyl-2-pyrrolidone
  • M w weight average molecular weight
  • Sigma Aldrich Sigma Aldrich (manufactured by Sigma Aldrich)
  • a lithium-sulfur battery was manufactured in the same manner as in Example 3, except that the separator obtained in Comparative Example 1 was used.
  • a lithium-sulfur battery was manufactured in the same manner as in Example 3, except that the separator obtained in Comparative Example 2 was used.
  • a lithium-sulfur battery was manufactured in the same manner as in Example 3, except that the separator obtained in Comparative Example 3 was used.
  • a lithium-sulfur battery was manufactured in the same manner as in Example 3, except that the separator obtained in Comparative Example 4 was used.
  • the montmorillonite according to Preparation Examples 1 to 4 was observed with a scanning electron microscope (SEM). As a scanning electron microscope, Hitachi's S-4800 was used. The results obtained at this time are shown in FIG. 1.
  • the montmorillonite according to Preparation Examples 1 to 4 was subjected to X-ray diffraction (XRD) analysis.
  • the XRD apparatus used for the analysis was a Rigaku MiniFlex 600 X-ray diffraction analysis equipment using a 1.5418 ⁇ Cu-K ⁇ X-ray wavelength as a solid-state detector. The results obtained at this time are shown in FIG. 2.
  • the batteries prepared in Examples 3 and 4 and Comparative Examples 5 to 8 were discharged and charged three times at a current density of 0.1 C, and then discharged and charged three times at a current density of 0.2 C, and then 0.5 C. While discharging and charging at 0.3 C, the discharge capacity and Coulomb efficiency were measured to evaluate the life characteristics of the battery. The results obtained at this time are shown in FIGS. 4 and 5.
  • Comparative Example 7 including the separator of Comparative Example 4 in which a coating layer containing a polymer serving as a binder was formed, the initial discharge capacity characteristics were excellent, but the discharge capacity rapidly decreased in the vicinity of 30 cycles, so the lifespan characteristics were reduced. It can be confirmed that it is inferior.
  • the separator including the inorganic coating layer according to the present invention when used, the modified montmorillonite uniformly distributed in the inorganic coating layer, and lithium polysulfide eluted from the positive electrode, is adsorbed to the inorganic coating layer, thereby improving the capacity characteristics of the lithium-sulfur battery. At the same time, it can be seen that the life characteristics are also improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지에 관한 것으로, 보다 상세하게는 다공성 기재; 및 상기 다공성 기재의 적어도 일면에 형성된 무기 코팅층을 포함하되, 상기 무기 코팅층은 특정 이온으로 치환된 개질 몬모릴로나이트를 포함하는 리튬-황 전지용 분리막에 관한 것이다. 본 발명의 리튬-황 전지용 분리막은 개질 몬모릴로나이트를 포함하여 균일한 무기 코팅층을 포함함으로써 리튬 폴리설파이드를 흡착하여 리튬-황 전지의 용량 및 수명 특성을 향상시킨다.

Description

리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
본 출원은 2019년 05월 03일자 한국 특허 출원 제10-2019-0052470호 및 2020년 04월 20일자 한국 특허 출원 제10-2020-0047143호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지에 관한 것이다.
리튬 이차전지의 활용 범위가 휴대용 전자기기 및 통신기기뿐만 아니라 전기자동차(electric vehicle; EV), 전력저장장치(electric storage system; ESS)에까지 확대되면서 이들의 전원으로 사용되는 리튬 이차전지의 고용량화에 대한 요구가 높아지고 있다.
여러 리튬 이차전지 중에서 리튬-황 전지는 황-황 결합(sulfur-sulfur bond)을 포함하는 황 계열 물질을 양극 활물질로 사용하며, 리튬 금속, 리튬 이온의 삽입/탈삽입이 일어나는 탄소계 물질 또는 리튬과 합금을 형성하는 실리콘이나 주석 등을 음극 활물질로 사용하는 이차전지이다.
리튬-황 전지에서 양극 활물질의 주재료인 황은 낮은 원자당 무게를 가지며, 자원이 풍부하여 수급이 용이하며 값이 저렴하고, 독성이 없으며, 환경친화적 물질이라는 장점이 있다.
또한, 리튬-황 전지는 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8+16Li++16e- → 8Li2S)으로부터 나오는 이론 방전용량이 1,675 mAh/g에 이르고, 음극으로 리튬 금속(이론 용량: 3,860 mAh/g)을 사용하는 경우 2,600 Wh/kg의 이론 에너지 밀도를 나타낸다. 이는 현재 연구되고 있는 다른 전지 시스템 (Ni-MH 전지: 450Wh/kg, Li-FeS 전지: 480Wh/kg, Li-MnO2 전지: 1,000Wh/kg, Na-S 전지: 800Wh/kg) 및 상용 리튬 이차전지(LiCoO2/graphite)의 이론 에너지 밀도에 비하여 매우 높은 수치를 가지기 때문에 현재까지 개발되고 있는 이차전지 중 고용량, 친환경 및 저가의 리튬 이차전지로 주목받고 있으며, 차세대 전지 시스템으로 여러 연구가 이루어지고 있다.
리튬-황 전지는 방전시 양극(positive electrode)에서는 황이 전자를 받아들여 환원 반응이, 음극(negative electrode)에서는 리튬이 이온화되는 산화 반응이 각각 진행된다. 이러한 리튬-황 전지의 방전 도중에 양극에서는 리튬 폴리설파이드(lithium polysulfide, Li2Sx, x=2~8)가 생성되고, 이는 전해질에 용해되어 양극으로부터 용출됨에 따라 양극의 가역 용량이 크게 줄어들 뿐만 아니라 용해된 리튬 폴리설파이드는 음극으로 확산되어 여러 가지 부반응(side reaction)을 일으키게 된다. 또한, 충전과정 중 상기 리튬 폴리설파이드는 셔틀 반응(shuttle reaction)을 일으켜 충방전 효율을 크게 저하시킨다.
이러한 리튬 폴리설파이드의 용출은 전지의 용량 및 수명 특성에 악영향을 미치는 바, 리튬 폴리설파이드 문제를 해결하기 위한 다양한 기술이 제안되었다.
일례로, 대한민국 공개특허 제2018-0020096호는 전이금속 화합물을 포함하는 촉매층이 형성된 분리막을 포함함으로써 리튬 폴리설파이드 용출로 인한 셔틀 반응을 억제하여 전지의 용량 및 사이클 특성을 개선할 수 있음을 개시하고 있다.
또한, 대한민국 공개특허 제2016-0046775호는 황-탄소 복합체를 포함하는 양극 활성부의 일부 표면에 양친매성 고분자로 이루어진 양극 코팅층을 구비하여 리튬 폴리설파이드의 용출 억제와 함께 리튬 이온의 이동을 용이하게 하여 전지의 사이클 특성을 향상시킬 수 있음을 개시하고 있다.
또한, 대한민국 공개특허 제2016-0037084호는 황을 포함하는 탄소나노튜브 응집체에 그래핀을 코팅함으로써 리튬 폴리설파이드가 녹아나오는 것을 차단하고, 황-탄소나노튜브 복합체의 도전성 및 황의 로딩양을 증가시킬 수 있음을 개시하고 있다.
이들 특허들은 리튬 폴리설파이드 흡착 능력이 있는 물질을 양극 또는 분리막에 도입함으로써 황의 손실을 방지하여 리튬-황 전지의 성능 또는 수명 저하 문제를 어느 정도 개선하였으나 그 효과가 충분치 않다. 또한, 새로이 도입된 물질로 인해 열화 문제가 발생할 수 있고, 이들 특허에서 제시하는 방법은 다소 복잡할 뿐만 아니라 양극의 조성을 변경 시 양극 활물질인 황을 넣을 수 있는 양(즉, 로딩양)이 제한된다는 문제가 있다. 따라서, 리튬 폴리설파이드 용출 문제를 해결하여 우수한 성능을 갖는 리튬-황 전지의 개발이 더욱 필요한 실정이다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제2018-0020096호(2018.02.27), 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지
대한민국 공개특허 제2016-0046775호(2016.04.29), 리튬-황 전지용 양극 및 이의 제조방법
대한민국 공개특허 제2016-0037084호(2016.04.05), 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 분리막의 기재 상에 몬모릴로나이트의 1가 또는 2가 양이온이 특정 이온으로 치환된 개질 몬모릴로나이트를 포함하는 무기 코팅층을 도입함으로써 리튬-황 전지의 리튬 폴리설파이드 용출의 문제를 해결하여 리튬-황 전지의 성능 및 수명을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 리튬 폴리설파이드 용출에 의한 문제를 해결하여 리튬-황 전지의 용량 및 수명 특성을 개선시키는 리튬-황 전지용 분리막을 제공하는데 있다.
또한, 본 발명의 다른 목적은 상기 분리막을 포함하는 리튬-황 전지를 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은 다공성 기재; 및 상기 다공성 기재의 적어도 일면에 형성된 무기 코팅층을 포함하되,
상기 무기 코팅층은 몬모릴로나이트의 양이온이 수소 이온, 리튬 이온, 칼륨 이온, 루비듐 이온, 세슘 이온, 철 이온, 망간 이온 및 니켈 이온 중에서 선택되는 1종 이상의 이온으로 치환된 개질 몬모릴로나이트를 포함하는 리튬-황 전지용 분리막을 제공한다.
상기 몬모릴로나이트는 소듐 몬모릴로나이트, 칼슘 몬모릴로나이트 및 마그네슘 몬모릴로나이트로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
상기 개질 몬모릴로나이트는 박리된 층상 구조인 것일 수 있다.
상기 개질 몬모릴로나이트는 나노시트 형태인 것일 수 있다.
상기 개질 몬모릴로나이트는 X선 회절(XRD) 측정시, 회절 각도(2θ)가 7.0±1.0°, 9.0±1.0°, 20.0±1.0°, 26.5±1.0° 및 28.0±0.5°인 범위에서 각각 나타나는 회절 피크를 포함하는 것일 수 있다.
상기 무기 코팅층은 두께가 0.1 내지 10 ㎛일 수 있다.
또한, 본 발명은 상기 리튬-황 전지용 분리막을 포함하는 리튬-황 전지를 제공한다.
본 발명에 따른 분리막은 특정 이온으로 치환된 개질 몬모릴로나이트를 포함하는 무기 코팅층을 포함하며, 이때 상기 개질 몬모릴로나이트는 층간 구조가 박리되어 형성된 나노시트 형태를 나타냄으로써 다공성 기재 상에 균일하게 코팅됨으로써 우수한 리튬 폴리설파이드 흡착 효과를 나타내어 이를 포함하는 리튬-황 전지의 용량 및 수명 특성을 향상시킨다.
따라서, 상기 개질 몬모릴로나이트를 포함하는 무기 코팅층이 형성된 분리막이 구비된 리튬-황 전지는 황의 용량 저하가 발생하지 않아 고용량 전지 구현이 가능하고, 황을 고로딩으로 안정적으로 적용 가능하다. 더불어, 이러한 리튬-황 전지는 전지의 충방전 효율이 높고 수명 특성이 개선되는 이점을 갖는다.
도 1은 본 발명의 제조예 1 내지 4에 따른 몬모릴로나이트의 주사 전자 현미경(SEM) 이미지이다(a): 제조예 1, b) 제조예 2, c) 제조예 3, d) 제조예 4).
도 2는 본 발명의 실험예 2에 따른 제조예 1 내지 4의 X-선 회절 분석 결과를 나타내는 그래프이다.
도 3은 본 발명의 실시예 및 비교예에 따른 분리막의 주사 전자 현미경(SEM) 이미지이다(a): 비교예 6, b) 비교예 7, c) 실시예 3, d) 실시예 4).
도 4는 본 발명의 실험예 4에 따른 실시예 3, 실시예 4 및 비교예 5 내지 7의 전지의 수명 특성 평가 결과를 나타내는 그래프이다.
도 5는 본 발명의 실험예 4에 따른 실시예 3, 실시예 4, 비교예 5 및 비교예 8의 전지의 수명 특성 평가 결과를 나타내는 그래프이다.
이하, 본 발명을 더욱 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, ‘포함하다’ 또는 ‘가지다’등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명에서 사용되고 있는 용어 “기공도(porosity)”는 어느 구조체에서 전체 부피에 대해 기공이 차지하는 부피의 비율을 의미하고, 그의 단위로서 %를 사용하며, 공극률, 다공도 등의 용어와 상호 교환하여 사용할 수 있다. 본 발명에 있어서, 상기 기공도의 측정은 특별히 한정되지 않으며, 예를 들어 BET(Brunauer-Emmett-Teller) 측정법 또는 수은 침투법 (Hg porosimeter)에 의해 크기(micro) 및 메조 세공 부피(meso pore volume)를 측정할 수 있다.
리튬-황 전지는 여러 이차전지 중에서 높은 이론 방전용량 및 이론 에너지 밀도를 가지고, 양극 활물질로 사용되는 황은 매장량이 풍부하여 저가이고, 환경친화적이라는 이점으로 인해 차세대 이차전지로 각광받고 있다.
리튬-황 전지에서 양극 활물질로 사용되는 황은 환형의 S8에서 환원 반응에 의해 선형 구조의 리튬 폴리설파이드(lithium polysulfide, Li2Sx, x = 8, 6, 4, 2)로 변환되게 되며, 이러한 리튬 폴리설파이드가 완전히 환원되면 최종적으로 리튬 설파이드(lithium sulfide, Li2S)가 생성되게 된다. 이러한 황의 환원 반응의 중간 생성물인 리튬 폴리설파이드 중에서, 황의 산화수가 높은 리튬 폴리설파이드(Li2Sx, 보통 x > 4)는 극성이 강한 물질로 친수성 유기 용매를 포함하는 전해질에 쉽게 녹아 양극의 반응 영역 밖으로 용출되어 더 이상 전기화학 반응에 참여하지 못하게 되는 황의 손실이 발생한다.
이러한 황의 유출로 인해 전기화학 반응에 참여하는 황의 양이 급격히 줄어들어 리튬-황 전지는 전술한 장점에도 불구하고 실제 구동에 있어서는 이론 용량 및 에너지 밀도 전부를 구현하지 못한다. 이에 더해서, 음극으로 사용하는 리튬 금속과 리튬 폴리설파이드의 부반응으로 인해 일정 사이클 이후에는 초기 용량 및 사이클 특성의 저하가 가속화되는 문제가 있다.
이를 위해 종래 기술에서는 리튬 폴리설파이드의 용출을 억제할 수 있는 물질을 첨가제 또는 이를 포함하는 고분자 코팅층의 형태로 양극이나 분리막에 도입, 전해질의 조성 변경 또는 음극 표면에 보호층 또는 고체 전해질 계면(solid-electrolyte interphase; SEI)층 형성 등의 방법이 제안되었으나, 리튬 폴리설파이드의 용출 개선 효과가 미미하였을 뿐만 아니라 황의 로딩양에 제한이 있으며, 전지의 안정성에 심각한 문제를 야기하거나 공정 측면에서 비효율적이라는 단점이 있다.
이에 본 발명에서는 리튬 폴리설파이드 흡착물질이 고르게 분포되어 균일한 흡착 성능을 나타낼 수 있도록 박리된 층상 구조를 갖는 개질 몬모릴로나이트(modified montmorillonite)으로 무기 코팅층을 형성함으로써 리튬 폴리설파이드의 용출 억제 효과가 우수한 리튬-황 전지용 분리막을 제공한다.
구체적으로, 본 발명에 따른 리튬-황 전지용 분리막은 다공성 기재; 및 상기 다공성 기재의 적어도 일면에 형성된 무기 코팅층을 포함하되, 상기 무기 코팅층은 몬모릴로나이트의 양이온이 특정 이온으로 치환된 개질 몬모릴로나이트(modified montmorillonite)을 포함한다.
본 발명의 리튬-황 전지용 분리막을 구성하는 다공성 기재는 음극과 양극을 서로 분리 또는 절연시키면서 상기 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 따라서, 본 발명의 분리막은 다공성이고 비전도성 또는 절연성 물질로 이루어질 수 있다. 또한, 상기 분리막은 필름과 같은 독립적인 부재일 수 있다.
구체적으로, 상기 다공성 기재는 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.
상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
본 발명에 있어서, 상기 무기 코팅층은 전술한 다공성 기재의 적어도 일면에 형성되고, 개질 몬모릴로나이트(modified montmorillonite)을 포함한다.
본 발명의 개질 몬모릴로나이트는 특정 이온으로 치환된 것으로, 구체적으로 순수(bare) 몬모릴로나이트(montmorillonite; MMT)의 층간에 존재하는 1가 또는 3가의 양이온을 해당 양이온과 이온 교환 반응을 할 수 있는 화합물로 처리한 개질 몬모릴로나이트(modified montmorillonite)이다.
상기 순수 몬모릴로나이트는 점토 광물인 스멕타이트(smectite)의 한 종류로, (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O로 표현되는 화학식을 가지고 있다. 상기 순수 몬모릴로나이트는 실리카 사면체(silica tetrahedral) 시트와 알루미나 팔면체(alumina octahedral) 시트의 조합으로 이루어져 있으며, 두 개의 실리카 사면체 시트와 하나의 알루미나 팔면체 시트가 수산화기 축합 반응을 거쳐 층상 구조(layered structure)를 이루게 된다. 상기 순수 몬트모릴로나이트는 알루미나 팔면체 시트에서 알루미늄 이온(Al3 +) 대신에 마그네슘 이온(Mg2 +), 철 이온(Fe2 +, Fe3+)이, 실리케이트 사면체 시트에 실리카 이온(Si4 +) 대신에 알루미늄 이온(Al3 +)이 치환된 구조로서, 전체적으로 음전하량을 띠게 된다. 이에 따라 전체적인 전하의 평형을 맞추기 위하여 층 사이에 교환 가능한 양이온과 물 분자를 함유하고 있다.
전술한 바와 같이 상기 순수 몬모릴로나이트의 표면에는 수산기(OH- radical) 또는 산소기(O- radical)가 주로 분포되어 있으며, 이를 통해 리튬 폴리설파이드를 흡착할 수 있기 때문에 종래 기술에서도 사용되고 있다. 그러나, 종래 기술에서 사용되는 몬모릴로나이트는 개질 처리되지 않은 순수 몬모릴로나이트이거나 암모늄 이온(NH4 +)으로 개질된 형태로 여전히 층상 구조를 가지며, 극성이 강해 층간에 존재하는 물을 빨아 들여 부피가 팽창하는 팽윤성(swelling)으로 인해 치밀하지 못한 조직이 만들어지고, 이와 같이 성긴 조직은 전지 구동시 반복적인 수축 및 팽창 과정에 의해 형태 변형을 유발하여 결과적으로는 전지의 성능과 안정성을 크게 저하시키는 문제가 있다.
이에 본 발명에서는 순수 몬모릴로나이트의 층 구조 사이에 포함된 1가 또는 2가의 양이온을 이온 교환 반응을 통해 특정 양이온으로 치환하는 개질 처리를 하는 경우 층 간격을 확장되며, 최종적으로 층상을 층별로 분리되어 박리(exfoliation)시킬 수 있음을 착안하여, 순수 몬모릴로나이트의 층간에 존재하는 소듐 이온(Na+), 마그네슘 이온(Mg2 +), 칼슘 이온(Ca2 +) 등의 양이온을 개질제를 통해 수소 이온(H+), 리튬 이온(Li+), 칼륨 이온(K+), 루비듐 이온(Rb+), 세슘 이온(Cs+), 철 이온(Fe2 +), 망간 이온(Mn2 +) 및 니켈 이온(Ni2 +) 중에서 선택되는 1종 이상의 이온으로 치환한 개질 몬모릴로나이트(modified montmorillonite)로 무기 코팅층을 형성한다.
즉, 본 발명에 따른 개질 몬모릴로나이트는 다층(multi-layer)의 층상 구조가 박리되어 나노시트 형태로 형성됨에 따라 보다 적절한 미세구조를 가지고 두께가 감소됨으로써 상기 다공성 기재 상에 균일하고 치밀하게 코팅될 수 있다. 이에 따라 리튬 폴리설파이드 흡착물질인 몬모릴로나이트가 무기 코팅층 내에 고르게 분포되어 리튬 폴리설파이드를 효과적으로 흡착함으로써 종래 리튬-황 전지에서 리튬 폴리설파이드의 용출로 인해 발생하는 황의 유실 및 이로 인한 용량 감소(capacity loss) 문제를 해결하여 리튬-황 전지의 용량 및 수명을 향상시킬 수 있고, 황의 고로딩시에도 안정적으로 구동이 가능하다.
또한, 본 발명의 개질 몬모릴로나이트는 리튬 폴리설파이드를 분리막의 무기 코팅층에 구속함으로써 리튬 폴리설파이드의 셔틀 효과(shuttle effect)에 의해 발생하는 음극 표면에서의 부반응, 일례로 음극으로 사용되는 리튬 금속과 반응하여 계면에 Li2S의 고저항층을 형성하거나 음극 계면에 리튬이 석출되는 리튬 덴드라이트 성장 문제를 해소하여 전지의 쿨롱 효율(coulomb efficiency)과 수명을 개선시킬 수 있다.
상기 몬모릴로나이트는 층간에 존재하는 양이온의 종류에 따라 구분되며, 소듐 몬모릴로나이트, 칼슘 몬모릴로나이트 및 마그네슘 몬모릴로나이트로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 바람직하기로는 소듐 몬모릴로나이트를 포함할 수 있다.
상기 개질 몬모릴로나이트는 층간에 존재하는 양이온이 수소 이온, 리튬 이온, 칼륨 이온, 루비듐 이온, 세슘 이온, 철 이온, 망간 이온 및 니켈 이온 중에서 선택되는 1종 이상의 이온으로 치환된 것이며, 리튬 이온 전도성 등을 고려할 때 바람직하게는 수소 이온 및 리튬 이온 중에서 선택되는 1종 이상의 이온으로 치환된 것일 수 있다. 보다 바람직하게는 리튬 이온으로 치환된 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 몬모릴로나이트가 소듐 몬모릴로나이트인 경우 본 발명의 무기 코팅층에 포함되는 개질 몬모릴로나이트 중 소듐 이온의 함량(Na2O로 환산한 값)은 0.4 % 이하, 바람직하게는 0.01 내지 0.05 %일 수 있다.
본 발명의 다른 일 구현예에 있어서, 상기 몬모릴로나이트가 칼슘 몬모릴로나이트인 경우 본 발명의 무기 코팅층에 포함되는 개질 몬모릴로나이트 중 칼슘 이온의 함량(CaO로 환산한 값)은 0.2 % 이하, 바람직하게는 0.01 내지 0.05 %일 수 있다.
본 발명의 개질 몬모릴로나이트는 박리된(exfoliated) 층상 구조일 수 있다. 이는, 다수의 층들이 적층된 층상 구조의 순수 몬모릴로나이트가 전술한 바의 양이온을 치환하는 개질 처리에 의해 다수의 층들 사이에 분리가 일어남에 따라 박리되어 나노시트 형태로 형성된 것을 의미한다. 이때 상기 나노시트는 두께는 3 내지 100 ㎚, 바람직하게는 10 내지 20 ㎚일 수 있다. 또한, 상기 나노시트의 가장 긴 변의 길이는 1 내지 15 ㎛, 바람직하게는 1 내지 5 ㎛일 수 있다.
상기 몬모릴로나이트의 평균 입경(D50)은 1 ㎛ 내지 15 ㎛일 수 있다. 상기 몬모릴로나이트의 평균 입경(D50)이 상기 범위에 포함되는 경우에, 적절한 박리된 층상 구조를 얻을 수 있고, 이에 상기 몬모릴로나이트를 사용함에 따른 효과를 보다 효과적으로 얻을 수 있다. 본 발명에서 별도의 정의가 없는 한, 평균 입자 직경(D50)은 입도 분포에서 누적 체적이 50 부피%인 입자의 지름을 의미한다.
본 발명의 개질 몬모릴로나이트의 개질 여부는 X선 회절(XRD) 측정을 통해 확인할 수 있다. X-선 회절(XRD) 분석에서 유효(significant or effective) 피크란 XRD 데이터에서 분석 조건이나 분석 수행자에 크게 영향을 받지 않고 실질적으로 동일한 패턴으로 반복 검출되는 피크를 의미하고, 이를 달리 표현하면 백그라운드 수준(backgound level) 대비 1.5배 이상일 수 있고, 바람직하게는 2배 이상, 더욱 바람직하게는 2.5배 이상의 높이, 세기, 강도 등을 갖는 피크를 의미한다.
본 발명의 개질 몬모릴로나이트는 Cu-Kα X-선 파장을 이용한 X-선 회절(XRD) 분석 결과, 회절 각도(2θ) 7.0±1.0°, 9.0±1.0°, 20.0±1.0°, 26.5±1.0° 및 28.0±0.5°인 범위에서 각각 나타나는 유효 피크를 포함하는데, 이때 회절 각도 7.0±1.0°에서 나타나는 유효 피크의 유무를 통해 개질 여부를 확인할 수 있다.
상기 개질 몬모릴로나이트의 양이온 교환 용량(cation exchange capacity; CEC)은 90 내지 150 mmol/100g, 바람직하게는 100 내지 145 mmol/100g일 수 있다. 본 발명에 있어서, 양이온 교환 용량은 교환 가능한 염 라디칼과 교환 가능한 수소를 포함하는 양이온을 몬모릴로나이트가 흡착하고 교환할 수 있는 정도(단위; mmol/100kg)로 정의된다. 본 발명에서 별도의 정의가 없는 한, 양이온 교환 용량은 코발티헥사민 클로라이드 이온교환법, 즉 교환가능한 양이온으로서 [Co(NH3)6]3+를 사용하여 몬모릴로나이트의 양이온 교환 용량을 판정하는 방법에 의해 결정된다.
본 발명에 따른 리튬-황 전지용 분리막에서 상기 무기 코팅층의 두께는 특별히 한정하지 않으며, 전술한 바의 효과를 확보하면서도 전지의 내부 저항을 높이지 않는 범위를 가진다. 일례로, 상기 무기 코팅층의 두께는 0.1 내지 10 ㎛, 바람직하기로 0.1 내지 5 ㎛, 보다 바람직하기로 0.1 내지 1 ㎛일 수 있다. 상기 무기 코팅층의 두께가 상기 범위 미만인 경우 무기 코팅층으로서의 기능을 수행할 수 없고, 이와 반대로 상기 범위를 초과하면 계면 저항이 높아져 전지 구동시 내부 저항의 증가를 초래할 수 있다.
본 발명에서 제시하는 리튬-황 전지용 분리막의 제조방법은 특별히 한정하지 않으며, 통상의 기술자에 의해 공지의 방법 또는 이를 변형하는 다양한 방법이 사용 가능하다.
일례로, 상기 리튬-황 전지용 분리막의 제조방법은,
(a) 특정 양이온으로 치환된 개질 몬모릴로나이트를 제조하는 단계
(b) 상기 (a) 단계의 개질 몬모릴로나이트를 포함하는 코팅용 조성물을 제조하는 단계 및
(c) 상기 코팅용 조성물을 다공성 기재의 적어도 일면에 도포하는 단계를 포함한다.
먼저, 상기 단계 (a)의 특정 양이온으로 치환된 몬모릴로나이트, 즉 개질 몬모릴로나이트의 제조는 순수 몬모릴로나이트와 개질제의 반응에 의해 진행될 수 있다.
일례로, 상기 개질 몬모릴로나이트가 수소 이온으로 치환된 개질 몬모릴로나이트인 경우, 이는 순수 몬모릴로나이트를 수소 개질제로 산 처리함으로써 제조할 수 있다. 이때 산 처리는 통상의 방법을 사용할 수 있다.
상기 순수 몬모릴로나이트는 소듐 몬모릴로나이트, 칼슘 몬모릴로나이트 및 마그네슘 몬모릴로나이트로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 바람직하기로, 소듐 몬모릴로나이트일 수 있다.
상기 수소 개질제는 무기산 및 유기산으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 예를 들어 상기 무기산으로는 염산, 질산, 브롬화수소산, 불화수소산, 황산 및 설폰산으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 상기 유기산으로는 아세트산, 옥살산, 시트르산, 숙신산, 포름산, 프로판산, 부티르산, 프로판디오산, 부탄디오산, 피루브산, 글루탐산, 타르타르산, 말산, 락트산, 푸마르산, 이타콘산, 아스코르브산, 푸마르산 및 α-케토글루타르산으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 바람직하게 상기 수소 개질제는 황산을 사용할 수 있다.
상기 수소 개질제의 농도는 0.1 내지 10 M, 바람직하게는 0.5 내지 8 M, 보다 바람직하게는 0.8 내지 5 M일 수 있다.
상기 순수 몬모릴로나이트와 수소 개질제를 탈이온수(deionized water) 등의 수계 용매에 투입하고, 12 내지 24시간 동안 교반하여 반응시켜 산 처리한다.
이때, 상기 순수 몬모릴로나이트와 수소 개질제의 질량비는 1.0:1.0 내지 1.0:8.0, 바람직하게는 1.0:2.0 내지 1.0:5.0일 수 있다. 상기 순수 몬모릴로나이트와 산의 질량비가 상기 범위 미만인 경우, 불완전한 양이온 교환 반응 문제가 있을 수 있으며, 이와 반대로 상기 범위를 초과하는 경우 -몬모릴로나이트 결정구조가 붕괴되는 문제가 발생할 수 있다.
상기 산 처리는 여러 번 수행될 수 있고, 바람직하게는 1∼10회, 보다 바람직하게는 2∼8회 수행될 수 있다.
상기 산 처리 이후 상기 수소 개질제는 원심분리 또는 여과에 의해 제거할 수 있다.
또한, 상기 산 처리 이후 물과 에탄올을 이용하여 수차례 세척하는 과정을 거칠 수 있다.
다음으로 상기 산 처리의 최종 생성물을 60 내지 90 ℃에서 건조하여 개질 몬모릴로나이트, 구체적으로는 수소 개질 몬모릴로나이트(H-MMT)을 수득한다. 상기 건조는 12 내지 24 시간 동안 진공 조건에서 진행하는 것이 바람직하다.
다른 일례로, 상기 개질 몬모릴로나이트가 리튬 이온으로 치환된 개질 몬모릴로나이트인 경우, 이의 제조방법은 순수 몬모릴로나이트를 수소 개질제로 산 처리하는 단계 및 상기 산 처리를 통해 얻어진 수소 개질 몬모릴로나이트(H-MMT)를 포함하는 용액에 리튬 개질제를 첨가하는 단계를 포함할 수 있다.
순수 몬모릴로나이트를 수소 개질제로 산처리하는 단계는 전술한 바를 따른다.
상기 리튬 개질제는 수산화리튬, 질산리튬, 염화리튬 및 황산리튬 등 그 종류가 다양하나, 반응 조건을 고려할 때 바람직하게는 수산화리튬을 사용할 수 있다.
상기 리튬 개질제의 농도는 0.1 내지 10 M, 바람직하게는 0.5 내지 8 M, 보다 바람직하게는 0.8 내지 5 M일 수 있다.
상기 수소 개질 몬모릴로나이트(H-MMT)를 포함하는 용액에 리튬 개질제를 투입하고, 12 내지 24시간 동안 교반하여 반응시킨다.
상기 리튬 개질제를 첨가하는 단계에서 상기 수소 개질 몬모릴로나이트(H-MMT)와 리튬 개질제의 질량비는 1.0:1.0 내지 1.0:8.0, 바람직하게는 1.0:2.0 내지 1.0:5.0일 수 있다. 상기 산처리된 몬모릴로나이트와 리튬 개질제의 질량비가 상기 범위 미만인 경우, 양이온 교환 반응이 불완전한 문제가 있을 수 있으며, 이와 반대로 상기 범위를 초과하는 경우 몬모릴로나이트 결정구조가 붕괴되는 문제가 발생할 수 있다.
상기 리튬 개질제와의 반응 후 상기 리튬 개질제는 원심분리 또는 여과에 의해 제거할 수 있다.
또한, 상기 리튬 개질제와의 반응 이후 물과 에탄올을 이용하여 수차례 세척하는 과정을 거칠 수 있다.
다음으로, 상기 리튬 개질제와의 반응으로부터 얻어진 최종 생성물을 60 내지 90 ℃에서 건조하여 개질 몬모릴로나이트, 구체적으로는 리튬 개질 몬모릴로나이트(Li-MMT)을 수득한다. 상기 건조는 12 내지 24 시간 동안 진공 조건에서 진행하는 것이 바람직하다.
이어서, 전술한 바의 제조방법에 의해 제조된 특정 양이온으로 치환된 개질 몬모릴로나이트를 포함하는 코팅용 조성물을 제조하는 단계 (b)를 수행한다.
상기 코팅용 조성물은 전술한 바의 특정 양이온으로 치환된 개질 몬모릴로나이트 이외에 용매를 더 포함할 수 있으며, 상기 용매는 상기 개질 몬모릴로나이트를 용해시킬 수 있는 것이라면 특별히 한정하지 않는다. 일례로, 상기 용매는 물과 알코올의 혼합 용매, 또는 하나 혹은 그 이상의 유기용매 혼합물일 수 있으며, 이 경우 상기 알코올은 탄소수 1 내지 6의 저급 알코올, 바람직하게는 메탄올, 에탄올, 프로판올, 이소프로판올 등일 수 있다. 유기 용매로는 아세트산, 디메틸포름아미드(dimethyl formamide; DMF), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone; NMP) 디메틸술폭시드(dimethyl sulfoxide; DMSO) 등의 극성 용매, 아세토니트릴, 에틸 아세테이트, 메틸 아세테이트, 플루오로알칸, 펜탄, 2,2,4-트리메틸펜탄, 데칸, 사이클로헥산, 사이클로펜탄, 디이소부틸렌, 1-펜텐, 1-클로로부탄, 1-클로로펜탄, o-자일렌, 디이소프로필 에테르, 2-클로로프로판, 톨루엔, 1-클로로프로판, 클로로벤젠, 벤젠, 디에틸 에테르, 디에틸 설파이드, 클로로포름, 디클로로메탄, 1,2-디클로로에탄, 아닐린, 디에틸아민, 에테르, 사염화탄소, 메틸렌 클로라이드(methylene chloride) 및 테트라하이드로퓨란(tetrahydrofuran; THF) 등의 비극성 용매를 사용할 수도 있다. 바람직하기로는 디메틸포름아미드, 메틸렌 클로라이드 및 N-메틸-2-피롤리돈으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 용매의 함량은 코팅을 용이하게 할 수 있는 정도의 농도를 갖는 수준으로 함유될 수 있으며, 구체적인 함량은 코팅 방법 및 장치에 따라 달라진다. 일례로, 상기 개질 몬모릴로나이트를 용매에 분산시킨 후 이를 혼합하여 코팅용 조성물을 제조할 수 있으며, 이때 최종 코팅용 조성물의 농도가 0.1 내지 10 중량% (고형분 함량)의 범위가 되도록 조절한 다음 코팅을 수행한다.
추가적으로, 상기 코팅용 조성물은 코팅 과정에서 다공성 기재에 대한 개질 몬모릴로나이트의 결합력을 높이기 위하여 바인더를 더 포함할 수 있다. 예를 들어, 상기 바인더는 폴리비닐리덴 플루오라이드, 폴리비닐알콜, 폴리비닐클로라이드, 폴리비닐플루오라이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌 등일 수 있다.
이어서, 전술한 바의 코팅용 조성물을 다공성 기재의 적어도 일면에 도포하는 단계 (c)를 수행한다.
상기 단계 (c)에서의 도포는 본 발명에서 특별히 한정하지 않으며, 공지의 습식 코팅 방식이면 어느 것이든 가능하다. 일례로, 닥터 블레이드(Doctor blade) 등을 사용하여 균일하게 분산시키는 방법, 다이 캐스팅(Die casting), 콤마 코팅(Comma coating), 스크린 프린팅(Screen printing), 감압 여과 코팅(vacuum filtration coating) 등의 방법 등을 들 수 있다.
추가적으로, 상기 단계 (c) 이후 용매 제거를 위한 건조 공정을 더 수행할 수 있다. 상기 건조 공정은 용매를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에서 특별히 언급하지는 않는다. 일례로, 건조는 30 내지 200 ℃의 진공 오븐에서 수행할 수 있고, 건조 방법으로는 온풍, 열풍, 저습풍에 의한 건조, 진공 건조 등의 건조법을 사용할 수 있다. 건조 시간에 대해서는 특별히 한정되지 않지만, 통상적으로 30초 내지 24시간의 범위에서 행해진다.
본 발명에 따른 코팅용 조성물의 농도 또는 코팅 횟수 등을 조절하여 최종적으로 형성되는 무기 코팅층의 두께를 조절할 수 있다.
또한, 본 발명은 상기 분리막을 포함하는 리튬-황 전지를 제공한다.
상기 리튬-황 전지는 양극; 음극; 이들 사이에 개재되는 분리막 및 전해질을 포함하며, 상기 분리막으로서 본 발명에 따른 분리막을 포함한다.
상기 양극은 양극 집전체와 상기 양극 집전체의 일면 또는 양면에 도포된 양극 활물질을 포함할 수 있다.
상기 양극 집전체는 양극 활물질을 지지하며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
상기 양극 활물질은 양극 활물질과 선택적으로 도전재 및 바인더를 포함할 수 있다.
상기 양극 활물질로 황 계열 화합물을 포함한다. 상기 황 계열 화합물은 무기 황(S8), Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 바람직하게는 무기 황(S8)을 사용할 수 있다.
상기 황 계열 화합물은 단독으로는 전기 전도성이 없기 때문에 도전재와 복합화하여 사용된다. 바람직하기로, 상기 양극 활물질은 황-탄소 복합체일 수 있다.
상기 황-탄소 복합체에서 탄소는 다공성 탄소재로 양극 활물질인 황이 균일하고 안정적으로 고정될 수 있는 골격을 제공하며, 황의 전기 전도도를 보완하여 전기화학 반응이 원활하게 진행될 수 있도록 한다.
상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며, 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공성 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 천연 흑연, 인조 흑연, 팽창 흑연 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않는다. 바람직하게 상기 다공성 탄소재는 탄소나노튜브일 수 있다.
본 발명에 있어서, 상기 황-탄소 복합체는 황-탄소 복합체 100 중량부를 기준으로 황을 60 내지 90 중량부, 바람직하게는 65 내지 85 중량부, 보다 바람직하게는 70 내지 80 중량부로 포함할 수 있다. 상기 황의 함량이 전술한 범위 미만인 경우 황-탄소 복합체 내 다공성 탄소재의 함량이 상대적으로 많아짐에 따라 비표면적이 증가하여 슬러리 제조시에 바인더의 함량이 증가한다. 이러한 바인더의 사용량 증가는 결국 양극의 면저항을 증가시키고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 전지의 성능을 저하시킬 수 있다. 이와 반대로 상기 황의 함량이 전술한 범위를 초과하는 경우 다공성 탄소재와 결합하지 못한 황 또는 황 화합물이 그들끼리 뭉치거나 다공성 탄소재의 표면으로 재용출됨에 따라 전자를 받기 어려워져 전기화학적 반응에 참여하지 못하게 되어 전지의 용량 손실이 발생할 수 있다.
상기 양극 활물질은 전술한 조성 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ⅢA족 원소로는 Al, Ga, In, Ti 등이 포함되며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.
상기 양극 활물질은 양극 슬러리 조성물 100 중량부를 기준으로 50 내지 95 중량부, 바람직하기로 70 내지 90 중량부로 포함할 수 있다. 상기 양극 활물질의 함량이 상기 범위 미만인 경우 양극의 전기화학적 반응을 충분하게 발휘하기 어렵고, 이와 반대로 상기 범위를 초과하는 경우 후술하는 도전재와 바인더의 함량이 상대적으로 부족하여 양극의 저항이 상승하며, 양극의 물리적 성질이 저하되는 문제가 있다.
또한, 상기 양극은 도전재를 더 포함할 수 있으며, 상기 도전재는 전해질과 양극 활물질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 다공성 및 도전성을 갖는 것이라면 제한없이 사용할 수 있다.
예를 들어 상기 도전재로는 다공성을 갖는 탄소계 물질을 사용할 수 있으며, 이와 같은 탄소계 물질로는 카본 블랙, 그라파이트, 그래핀, 활성탄, 탄소 섬유 등이 있고, 금속 메쉬 등의 금속성 섬유; 구리, 은, 니켈, 알루미늄 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료가 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다.
상기 도전재는 양극 슬러리 조성물 100 중량부를 기준으로 1 내지 10 중량부, 바람직하기로 5 중량부 내외로 포함할 수 있다. 상기 도전재의 함량이 상기 범위 미만이면 양극 내 황 중 반응하지 못하는 부분이 증가하게 되고, 결국은 용량 감소를 일으키게 된다. 이와 반대로, 상기 범위 초과이면 고효율 방전 특성과 충, 방전 사이클 수명에 악영향을 미치게 되므로 상술한 범위 내에 서 적정 함량을 결정하는 것이 바람직하다.
또한, 상기 양극은 바인더를 추가로 포함할 수 있으며, 상기 바인더는 양극을 구성하는 성분들 간 및 이들과 집전체 간의 결착력을 보다 높이는 것으로, 당해 업계에서 공지된 모든 바인더를 사용할 수 있다.
예를 들어 상기 바인더는 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(carboxyl methyl cellulose, CMC), 전분, 히드록시 프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴 리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더;로 이루어진 군으로부터 선택된 1종, 2종 이상의 혼합물 또는 공중합체를 사용할 수 있다.
상기 바인더는 양극 슬러리 조성물 100 중량부를 기준으로 1 내지 10 중량부, 바람직하기로 5 중량부 내외로 포함할 수 있다. 상기 바인더의 함량이 상기 범위 미만이면 양극의 물리적 성질이 저하되어 양극 활물질과 도전재가 탈락할 수 있고, 상기 범위 초과이면 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소될 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
상기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 증류수(distilled water), 탈이온수(deionzied water)일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.
전술한 조성 및 제조방법으로 제조된 상기 양극, 구체적으로 양극 활물질층의 기공도는 60 내지 75 %, 바람직하기로 60 내지 70 %일 수 있다. 상기 양극의 기공도가 60 %에 미치지 못하는 경우에는 양극 활물질, 도전재 및 바인더를 포함하는 양극 슬러리 조성물의 충진도가 지나치게 높아져서 양극 활물질 사이에 이온전도 및/또는 전기 전도를 나타낼 수 있는 충분한 전해액이 유지될 수 없게 되어 전지의 출력특성이나 사이클 특성이 저하될 수 있으며, 전지의 과전압 및 방전용량 감소가 심하게 되는 문제가 있다. 이와 반대로 상기 양극의 기공도가 75 % 를 초과하여 지나치게 높은 기공도를 갖는 경우 집전체와 물리적 및 전기적 연결이 낮아져 접착력이 저하되고 반응이 어려워지는 문제가 있으며, 높아진 기공도를 전해액이 충진되어 전지의 에너지 밀도가 낮아질 수 있는 문제가 있으므로 상기 범위에서 적절히 조절한다.
상기 음극은 음극 활물질로 리튬 (Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 음극 집전체는 양극 집전체에서 설명한 바와 같다.
또한, 상기 음극은 바인더, 도전재 및 증점제 등의 첨가제들을 추가로 포함할 수 있으며, 음극 제조시 사용되는 통상적인 것이라면 특별히 제한되지 않는다. 상기 바인더 및 도전재는 양극에서 설명한 바와 같다.
상기 분리막은 전술한 바를 따른다.
상기 전해질은 리튬 이온을 포함하며, 이를 매개로 양극과 음극에서 전기 화학적인 산화 또는 환원 반응을 일으키기 위한 것이다.
상기 전해질은 리튬 금속과 반응하지 않는 비수 전해액 또는 고체 전해질이 가능하나 바람직하게는 비수 전해질이고, 전해질 염 및 유기 용매를 포함한다.
상기 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다. 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬 이미드 등이 사용될 수 있다.
상기 리튬염의 농도는 전해질 용매 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 2 M, 구체적으로 0.4 내지 2 M, 더욱 구체적으로 0.4 내지 1.7 M일 수 있다. 상기 리튬염의 농도가 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M 을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소될 수 있다.
상기 비수 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 에테르계 화합물을 포함할 수 있다.
상기 에테르계 화합물은 비환형 에테르 및 환형 에테르를 포함할 수 있다.
예를 들어, 상기 비환형 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄, 디에톡시에탄, 메톡시에톡시에탄, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸에틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디에틸 에테르, 트리에틸렌 글리콜 메틸에틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디에틸 에테르, 테트라에틸렌 글리콜 메틸에틸 에테르, 폴리에틸렌 글리콜 디메틸 에테르, 폴리에틸렌 글리콜 디에틸 에테르, 폴리에틸렌 글리콜 메틸에틸 에테르로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
일례로, 상기 환형 에테르는 1,3-디옥솔란, 4,5-디메틸-디옥솔란, 4,5-디에틸-디옥솔란, 4-메틸-1,3-디옥솔란, 4-에틸-1,3-디옥솔란, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 2,5-디메틸테트라하이드로퓨란, 2,5-디메톡시테트라하이드로퓨란, 2-에톡시테트라하이드로퓨란, 2-메틸-1,3-디옥솔란, 2-비닐-1,3-디옥솔란, 2,2-디메틸-1,3-디옥솔란, 2-메톡시-1,3-디옥솔란, 2-에틸-2-메틸-1,3-디옥솔란, 테트라하이드로파이란, 1,4-디옥산, 1,2-디메톡시 벤젠, 1,3-디메톡시 벤젠, 1,4-디메톡시 벤젠, 아이소소바이드 디메틸 에테르(isosorbide dimethyl ether)로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오 네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
또한 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.
상기 비수 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.
본 발명에 따른 리튬 이차전지는 일반적인 공정인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
상기 리튬 이차전지의 형상은 특별히 제한되지 않으며 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.
또한, 본 발명은 상기 리튬-황 전지를 단위전지로 포함하는 전지모듈을 제공한다.
상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
제조예
[제조예 1]
소듐 몬모릴로나이트(K 10, 시그마 알드리치(sigma aldrich)사 제품) 50 g을 1.0 M의 황산 용액 1 L에 투입하고 상온(25 ℃)에서 24 시간 동안 교반하였다.
상기 교반하여 얻어진 용액을 원심분리를 통하여 용매를 제거하고, 80 ℃ 오븐에서 12 시간 동안 건조하여 수소 개질 몬모릴로나이트(H-MMT)를 제조하였다.
[제조예 2]
상기 제조예 1로부터 수득된 수소 개질 몬모릴로나이트(H-MMT) 50 g을 1.0 M의 수산화리튬 용액 1 L에 투입하고 상온(25 ℃)에서 24 시간 동안 교반하였다.
상기 교반하여 얻어진 용액을 원심분리를 통하여 용매를 제거하고, 80 ℃ 오븐에서 12 시간 동안 건조하여 리튬 개질 몬모릴로나이트(Li-MMT)를 제조하였다.
[제조예 3]
소듐 몬모릴로나이트(K 10, 시그마 알드리치(sigma aldrich)사 제품) 50 g을 155 ℃ 오븐에서 1 시간 동안 건조하여 개질 처리되지 않은 순수 몬모릴로나이트를 얻었다.
[제조예 4]
상기 제조예 1로부터 수득된 수소 개질 몬모릴로나이트(H-MMT) 50 g을 1.0 M의 수산화 암모늄 용액 1 L에 투입하고 상온(25 ℃)에서 24 시간 동안 교반하였다.
상기 교반하여 얻어진 용액을 원심분리를 통하여 용매를 제거하고, 80 ℃ 오븐에서 12 시간 동안 건조하여 암모늄 개질 몬모릴로나이트(NH4-MMT)를 제조하였다.
실시예 및 비교예
[실시예 1]
다공성 기재로 20 ㎛의 폴리에틸렌(기공도 68 %) 필름을 준비하였다.
에탄올에 제조예 1에서 얻어진 수소 개질 몬모릴로나이트(H-MMT)를 1 중량%로 포함하는 코팅용 조성물을 상기 다공성 기재 상에 도포하여 무기 코팅층을 형성한 후, 60 ℃에서 12 시간 동안 건조하여 1 ㎛ 두께의 무기 코팅층이 형성된 리튬-황 전지용 분리막을 제조하였다.
[실시예 2]
코팅용 조성물로 제조예 1의 수소 개질 몬모릴로나이트(H-MMT) 대신 동일 함량의 제조예 2에서 얻어진 리튬 개질 몬모릴로나이트(Li-MMT)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지용 분리막을 제조하였다.
[실시예 3]
양극 활물질로 황-탄소 복합체(S/C 7:3 중량부)를 90 중량부, 도전재로 덴카블랙을 5 중량부, 바인더로 스티렌 부타디엔 고무/카르복시메틸 셀룰로오스(SBR/CMC 7:3) 5 중량부를 투입하고 믹싱하여 양극 슬러리 조성물을 제조하였다.
이어서 상기 제조된 양극 슬러리 조성물을 알루미늄 집전체 상에 도포하고 50 ℃에서 12 시간 동안 건조하고 롤프레스(roll press)기기로 압착하여 양극을 제조하였다. 얻어진 양극의 로딩양은 5.4 mAh/㎠이고, 기공도는 68 %였다.
상기 양극과 함께, 음극으로 35 ㎛ 두께의 리튬 금속 박막을 사용하였고, 전해질로 1,3-디옥솔란과 디메틸 에테르(DOL:DME=1:1(부피비))로 이루어진 유기 용매에 1M 농도의 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI)와 1 중량%의 질산 리튬(LiNO3)를 용해시킨 혼합액을 사용하였다.
구체적으로, 상기 제조된 양극과 음극을 대면하도록 위치시키고 그 사이에 실시예 1에서 얻어진 분리막을 게재한 후, 상기 제조된 전해질 0.1 ㎖을 주입하여 리튬-황 전지를 제조하였다.
[실시예 4]
실시예 2에서 얻어진 분리막을 사용한 것을 제외하고는 상기 실시예 3과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[비교예 1]
무기 코팅층을 형성하지 않은 것을 제외하고는 상기 실시예 1의 다공성 기재를 리튬-황 전지용 분리막으로 준비하였다.
[비교예 2]
코팅용 조성물로 제조예 1의 수소 개질 몬모릴로나이트(H-MMT) 대신 동일 함량의 제조예 3에서 얻어진 순수 몬모릴로나이트를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지용 분리막을 제조하였다.
[비교예 3]
코팅용 조성물로 제조예 1의 수소 개질 몬모릴로나이트(H-MMT) 대신 동일 함량의 제조예 4에서 얻어진 암모늄 개질 몬모릴로나이트(NH4-MMT)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지용 분리막을 제조하였다.
[비교예 4]
N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP)에 제조예 2에서 얻어진 리튬 개질 몬모릴로나이트(Li-MMT) 90 중량%, 폴리비닐리덴 플루오라이드(중량평균분자량(Mw): 534,000, 시그마 알드리치(sigma aldrich)사 제품) 10 중량%을 포함하는 코팅용 조성물을 20 ㎛의 폴리에틸렌(기공도 68 %) 필름을 포함하는 다공성 기재 상에 도포하여 코팅층을 형성한 후, 80 ℃에서 12 시간 동안 건조하여 10 ㎛ 두께의 코팅층이 형성된 리튬-황 전지용 분리막을 제조하였다.
[비교예 5]
비교예 1에서 얻어진 분리막을 사용한 것을 제외하고는 상기 실시예 3과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[비교예 6]
비교예 2에서 얻어진 분리막을 사용한 것을 제외하고는 상기 실시예 3과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[비교예 7]
비교예 3에서 얻어진 분리막을 사용한 것을 제외하고는 상기 실시예 3과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[비교예 8]
비교예 4에서 얻어진 분리막을 사용한 것을 제외하고는 상기 실시예 3과 동일하게 수행하여 리튬-황 전지를 제조하였다.
실험예 1. 주사 전자 현미경 분석
제조예 1 내지 4에 따른 몬모릴로나이트에 대하여 주사 전자 현미경(scanning electron microscope; SEM)으로 관찰하였다. 주사 전자 현미경으로는 히타치(hitachi)사의 S-4800을 이용하였다. 이때 얻어진 결과는 도 1에 나타내었다.
도 1을 참조하면, 제조예 1 및 2에 따라 제조된 개질 몬모릴로나이트의 경우(도 1의 a) 및 b) 참조) 층간 구조가 박리되어 얇은 나노시트(sheet) 형태를 가지는 것을 확인할 수 있다. 이와 비교하여, 제조예 3에 따른 미개질된 몬모릴로나이트의 경우(도 1의 c) 참조) 전혀 박리되지 않았으며, 제조예 4에 따른 암모늄 개질 몬모릴로나이트의 경우(도 1의 d) 참조) 박리 정도가 제조예 1 및 2에 비해 현저히 낮음을 확인할 수 있다.
실험예 2. X-선 회절 분석
제조예 1 내지 4에 따른 몬모릴로나이트에 대하여 X-선 회절(X-ray diffraction, XRD) 분석을 실시하였다. 분석에 이용된 XRD 장치는 고체상 검출기로 1.5418 Å Cu-Kα X-선 파장을 사용하는 Rigaku MiniFlex 600 X-선 회절 분석 장비이었다. 이때 얻어진 결과를 도 2에 나타내었다.
도 2를 참조하면, 제조예 1 및 2의 경우 회절 각도(2θ) 7.0±1.0°에서 유효 피크가 관찰되어 본 발명에 따른 개질 몬모릴로나이트가 제조되었음을 확인할 수 있다.
실험예 3. 주사 전자 현미경 분석
실시예 3 및 4와 비교예 6 및 7에서 제조한 분리막에 대하여 주사 전자 현미경(scanning electron microscope; SEM)으로 관찰하였다. 주사 전자 현미경으로는 히타치(hitachi)사의 S-4800을 이용하였다. 이때 얻어진 결과는 도 3에 나타내었다.
도 3을 통해 실시예 3 및 4의 경우(도 3의 c) 및 d) 참조) 무기 코팅층에 박리가 충분히 된 개질 몬모릴로나이트를 포함함으로써 다공성 기재의 표면이 드러나지 않고 균일하게 형성된 무기 코팅층이 형성됨을 확인할 수 있다. 이와 비교하여 비교예 6 및 7의 경우(도 3의 a) 및 b) 참조) 실시예 1 및 2와 단위면적당 코팅량이 동일함에도 불구하고 분리막 표면, 즉 다공성 기재의 표면이 노출됨을 확인할 수 있으며, 이는 무기 코팅층에 박리가 불충분한 몬모릴로나이트를 포함함에 따른 것으로, 박리 정도에 따라 코팅의 균일도가 상이함을 확인할 수 있다.
실험예 4. 전지의 수명 특성 평가
상기 실시예 3 및 4와 및 비교예 5 내지 8에서 제조된 전지를 0.1 C의 전류밀도로 방전과 충전을 3 회 반복한 후 0.2 C의 전류밀도로 방전과 충전을 3회 진행한 후 0.5 C 방전과 0.3 C 충전을 진행하면서 방전 용량 및 쿨롱 효율을 측정하여 전지의 수명 특성을 평가하였다. 이때 얻어진 결과를 도 4 및 5에 나타내었다.
도 4 및 5에 나타낸 바와 같이, 실시예에 따른 전지의 방전 용량의 수치가 비교예에 비해 높을 뿐만 아니라 쿨롱 효율 또한 우수하여 수명 특성이 보다 향상됨을 알 수 있다.
도 5와 같이, 바인더 역할을 하는 고분자를 함께 포함하는 코팅층이 형성된 비교예 4의 분리막을 포함하는 비교예 7의 경우 초기 방전 용량 특성은 우수하나 30 사이클 부근에서 방전 용량이 급격히 감소하므로 수명 특성이 열위함을 확인할 수 있다.
이와 같은 결과로부터, 본 발명에 따른 무기 코팅층을 포함하는 분리막을 사용하는 경우 무기 코팅층에 균일하게 분포된 개질 몬모릴로나이트가 양극에서 용출된 리튬 폴리설파이드가 무기 코팅층에 흡착됨으로써 리튬-황 전지의 용량 특성이 우수한 동시에 수명 특성 또한 개선됨을 확인할 수 있다.

Claims (10)

  1. 다공성 기재; 및
    상기 다공성 기재의 적어도 일면에 형성된 무기 코팅층을 포함하되,
    상기 무기 코팅층은 몬모릴로나이트의 양이온이 수소 이온, 리튬 이온, 칼륨 이온, 루비듐 이온, 세슘 이온, 철 이온, 망간 이온 및 니켈 이온 중에서 선택되는 1종 이상의 이온으로 치환된 개질 몬모릴로나이트를 포함하는 리튬-황 전지용 분리막.
  2. 제1항에 있어서,
    상기 몬모릴로나이트는 소듐 몬모릴로나이트, 칼슘 몬모릴로나이트 및 마그네슘 몬모릴로나이트로 이루어진 군에서 선택되는 1종 이상을 포함하는, 리튬-황 전지용 분리막.
  3. 제2항에 있어서,
    상기 몬모릴로나이트는 소듐 몬모릴로나이트를 포함하는, 리튬-황 전지용 분리막.
  4. 제1항에 있어서,
    상기 개질 몬모릴로나이트는 수소 이온 및 리튬 이온 중에서 선택되는 1종 이상의 이온으로 치환된 것인, 리튬-황 전지용 분리막.
  5. 제1항에 있어서,
    상기 개질 몬모릴로나이트는 박리된 층상 구조인, 리튬-황 전지용 분리막.
  6. 제5항에 있어서,
    상기 개질 몬모릴로나이트는 나노시트 형태인, 리튬-황 전지용 분리막.
  7. 제6항에 있어서,
    상기 개질 몬모릴로나이트는 두께가 3 내지 100 ㎚인, 리튬-황 전지용 분리막.
  8. 제1항에 있어서,
    상기 개질 몬모릴로나이트는 X선 회절(XRD) 측정시, 회절 각도(2θ)가 7.0±1.0°, 9.0±1.0°, 20.0±1.0°, 26.5±1.0° 및 28.0±0.5°인 범위에서 각각 나타나는 회절 피크를 포함하는, 리튬-황 전지용 분리막.
  9. 제1항에 있어서,
    상기 무기 코팅층은 두께가 0.1 내지 10 ㎛인, 리튬-황 전지용 분리막.
  10. 양극; 음극; 이들 사이에 개재되는 분리막 및 전해질을 포함하는 리튬-황 전지에 있어서,
    상기 분리막은 제1항에 따른 분리막을 포함하는 리튬-황 전지.
PCT/KR2020/005460 2019-05-03 2020-04-24 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지 WO2020226310A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021560881A JP7176135B2 (ja) 2019-05-03 2020-04-24 リチウム-硫黄電池用分離膜及びこれを含むリチウム-硫黄電池
US17/605,308 US20220200095A1 (en) 2019-05-03 2020-04-24 Separator for lithium-sulfur battery, and lithium-sulfur battery comprising same
EP20802758.1A EP3944361A4 (en) 2019-05-03 2020-04-24 CATHODE FOR LITHIUM-SULFUR BATTERY AND LITHIUM-SULFUR BATTERY WITH IT
CN202080028481.0A CN113711434B (zh) 2019-05-03 2020-04-24 锂硫电池用隔膜和包含所述隔膜的锂硫电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190052470 2019-05-03
KR10-2019-0052470 2019-05-03
KR1020200047143A KR20200127864A (ko) 2019-05-03 2020-04-20 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR10-2020-0047143 2020-04-20

Publications (1)

Publication Number Publication Date
WO2020226310A1 true WO2020226310A1 (ko) 2020-11-12

Family

ID=73051527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005460 WO2020226310A1 (ko) 2019-05-03 2020-04-24 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지

Country Status (4)

Country Link
US (1) US20220200095A1 (ko)
EP (1) EP3944361A4 (ko)
JP (1) JP7176135B2 (ko)
WO (1) WO2020226310A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864527A (zh) * 2021-04-02 2021-05-28 衢州德联环保科技有限公司 一种Mxene/PVDF锂-硫电池隔膜的制备方法
CN113381120A (zh) * 2021-06-11 2021-09-10 中国科学院兰州化学物理研究所 一种氮掺杂黏土矿物负载钴杂化材料改性锂-硫电池隔膜的制备方法
WO2023056825A1 (zh) * 2021-10-09 2023-04-13 宁德时代新能源科技股份有限公司 一种隔离膜、含有其的二次电池和用电装置
KR20230067211A (ko) 2021-11-09 2023-05-16 공주대학교 산학협력단 이온 차폐성 분리막 및 이를 포함하는 리튬-황 전지

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020020312A (ko) * 2000-09-08 2002-03-15 김순택 몬트모릴로나이트/설퍼 복합 화합물, 그 제조방법, 이를포함하는 캐소드 활물질 및 상기 캐소드 활물질을채용하고 있는 리튬 2차전지
KR20080017110A (ko) * 2006-08-21 2008-02-26 주식회사 엘지화학 점토 광물이 코팅되어 있는 시트형 분리막 및 이를 사용한전기화학 셀
KR20140124336A (ko) * 2013-04-15 2014-10-24 백승대 나노 복합체, 이의 제조방법, 이를 이용한 전지용 멤브레인 및 그 제조방법
JP2015115321A (ja) * 2013-12-10 2015-06-22 財團法人工業技術研究院Industrial Technology Research Institute リチウム電池用有機‐無機複合層および電極モジュール
KR20160037084A (ko) 2014-09-26 2016-04-05 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
KR20160046775A (ko) 2013-08-01 2016-04-29 주식회사 엘지화학 리튬-황 전지용 양극 및 이의 제조방법
KR20180020096A (ko) 2016-08-17 2018-02-27 부산대학교 산학협력단 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지
KR20180031609A (ko) * 2016-09-19 2018-03-28 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR20190052470A (ko) 2017-11-08 2019-05-16 한국표준과학연구원 온도 감응형 피동 밸브
KR20200047143A (ko) 2018-10-26 2020-05-07 공주대학교 산학협력단 유리판 접합장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196969B2 (ja) * 2007-11-22 2013-05-15 旭化成イーマテリアルズ株式会社 多層多孔膜
EP2597702B1 (en) * 2008-03-05 2016-04-27 EaglePicher Technologies, LLC Lithium-sulfur battery and cathode therefore
WO2012014852A1 (ja) * 2010-07-26 2012-02-02 株式会社アルバック 活物質-電解質複合体及びその作製方法、並びに全固体型リチウム-硫黄二次電池
JP5664138B2 (ja) * 2010-11-08 2015-02-04 ソニー株式会社 耐収縮性微多孔膜、電池用セパレータ及びリチウムイオン二次電池
CN105917513B (zh) * 2014-01-20 2018-12-07 株式会社村田制作所 电池、电池组、电子装置、电动车辆、储电设备及电力系统
JP6096395B2 (ja) * 2015-03-24 2017-03-15 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020020312A (ko) * 2000-09-08 2002-03-15 김순택 몬트모릴로나이트/설퍼 복합 화합물, 그 제조방법, 이를포함하는 캐소드 활물질 및 상기 캐소드 활물질을채용하고 있는 리튬 2차전지
KR20080017110A (ko) * 2006-08-21 2008-02-26 주식회사 엘지화학 점토 광물이 코팅되어 있는 시트형 분리막 및 이를 사용한전기화학 셀
KR20140124336A (ko) * 2013-04-15 2014-10-24 백승대 나노 복합체, 이의 제조방법, 이를 이용한 전지용 멤브레인 및 그 제조방법
KR20160046775A (ko) 2013-08-01 2016-04-29 주식회사 엘지화학 리튬-황 전지용 양극 및 이의 제조방법
JP2015115321A (ja) * 2013-12-10 2015-06-22 財團法人工業技術研究院Industrial Technology Research Institute リチウム電池用有機‐無機複合層および電極モジュール
KR20160037084A (ko) 2014-09-26 2016-04-05 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
KR20180020096A (ko) 2016-08-17 2018-02-27 부산대학교 산학협력단 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지
KR20180031609A (ko) * 2016-09-19 2018-03-28 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR20190052470A (ko) 2017-11-08 2019-05-16 한국표준과학연구원 온도 감응형 피동 밸브
KR20200047143A (ko) 2018-10-26 2020-05-07 공주대학교 산학협력단 유리판 접합장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944361A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112864527A (zh) * 2021-04-02 2021-05-28 衢州德联环保科技有限公司 一种Mxene/PVDF锂-硫电池隔膜的制备方法
CN113381120A (zh) * 2021-06-11 2021-09-10 中国科学院兰州化学物理研究所 一种氮掺杂黏土矿物负载钴杂化材料改性锂-硫电池隔膜的制备方法
CN113381120B (zh) * 2021-06-11 2022-07-12 中国科学院兰州化学物理研究所 一种氮掺杂黏土矿物负载钴杂化材料改性锂-硫电池隔膜的制备方法
WO2023056825A1 (zh) * 2021-10-09 2023-04-13 宁德时代新能源科技股份有限公司 一种隔离膜、含有其的二次电池和用电装置
KR20230067211A (ko) 2021-11-09 2023-05-16 공주대학교 산학협력단 이온 차폐성 분리막 및 이를 포함하는 리튬-황 전지

Also Published As

Publication number Publication date
EP3944361A1 (en) 2022-01-26
US20220200095A1 (en) 2022-06-23
JP2022529150A (ja) 2022-06-17
EP3944361A4 (en) 2022-05-18
JP7176135B2 (ja) 2022-11-21

Similar Documents

Publication Publication Date Title
WO2020226310A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2020045854A1 (ko) 이황화몰리브덴을 포함하는 탄소나노구조체의 제조방법, 이로부터 제조된 이황화몰리브덴을 포함하는 탄소나노구조체를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2019088475A1 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2019225884A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2019177355A1 (ko) 세리아-탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022035120A1 (ko) 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬-황 전지
KR20200127864A (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2020105980A1 (ko) 리튬-황 이차전지
WO2021010626A1 (ko) 리튬-황 이차전지
WO2020166871A1 (ko) 리튬 이차전지용 양극 활물질
WO2020013482A1 (ko) 옥시수산화질산철의 제조방법, 이로부터 제조된 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2020226321A1 (ko) 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
WO2020060199A1 (ko) 황화철의 제조방법, 이로부터 제조된 황화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2020009333A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2019225883A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2019198949A1 (ko) 인화철의 제조방법, 인화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2019212161A1 (ko) 리튬-황 전지용 양극 활물질 및 그 제조방법
WO2022255672A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
WO2022019698A1 (ko) 리튬-황 전지용 음극 및 이를 포함하는 리튬-황 전지
WO2022019605A1 (ko) 다공성 복합체, 이를 포함하는 음극과 리튬전지, 및 그 제조방법
WO2020060084A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021137635A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021091174A1 (ko) 리튬 이차전지 전극용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020802758

Country of ref document: EP

Effective date: 20211019