WO2021085488A1 - リチウムイオン二次電池及びその製造方法、並びにリチウムイオン二次電池用固体電解質膜及びその製造方法 - Google Patents

リチウムイオン二次電池及びその製造方法、並びにリチウムイオン二次電池用固体電解質膜及びその製造方法 Download PDF

Info

Publication number
WO2021085488A1
WO2021085488A1 PCT/JP2020/040486 JP2020040486W WO2021085488A1 WO 2021085488 A1 WO2021085488 A1 WO 2021085488A1 JP 2020040486 W JP2020040486 W JP 2020040486W WO 2021085488 A1 WO2021085488 A1 WO 2021085488A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
secondary battery
ion secondary
particles
lithium ion
Prior art date
Application number
PCT/JP2020/040486
Other languages
English (en)
French (fr)
Inventor
真二 今井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202080066349.9A priority Critical patent/CN114514645A/zh
Priority to JP2021553661A priority patent/JP7297916B2/ja
Publication of WO2021085488A1 publication Critical patent/WO2021085488A1/ja
Priority to US17/699,183 priority patent/US20220209292A1/en
Priority to JP2023097602A priority patent/JP2023116686A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery and a method for manufacturing the same.
  • the present invention also relates to a solid electrolyte membrane for a lithium ion secondary battery and a method for producing the same.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and can be charged and discharged by reciprocating lithium ions between the two electrodes. ..
  • an organic electrolyte has been used as an electrolyte in a lithium ion secondary battery.
  • development of an all-solid secondary battery using a nonflammable inorganic solid electrolyte instead of the organic electrolyte is underway.
  • the negative electrode, electrolyte, and positive electrode are all made of solid, which can greatly improve the safety and reliability of batteries using organic electrolytes, and can also extend the service life. It is said that it will be.
  • lithium ion secondary battery In a lithium ion secondary battery, electrons move from the positive electrode to the negative electrode during charging, and at the same time, lithium ions are released from lithium oxides and the like constituting the positive electrode, and these lithium ions reach the negative electrode through an electrolyte and reach the negative electrode. It is stored in. In this way, a part of the lithium ions stored in the negative electrode takes in electrons and precipitates as metallic lithium. When this metallic lithium precipitate grows like a dendrite due to repeated charging and discharging, it eventually reaches the positive electrode, causing an internal short circuit and the like, and the battery does not function as a secondary battery.
  • Li dendrite is very thin, and causes a problem not only in a lithium ion secondary battery using an organic electrolytic solution but also in an all-solid secondary battery using a solid as an electrolyte. That is, Lidendrite can grow through the small voids between the solid particles constituting the solid electrolyte layer, such as cracks and pinholes generated in the solid electrolyte layer.
  • Patent Document 1 describes sulfur and modified sulfur in the voids between the inorganic solid electrolyte materials generated when the solid electrolyte layer of the all-solid secondary battery is formed of the inorganic solid electrolyte material. The thermal melt of the electronically insulating material such as, etc.
  • the thermal melt is spread by utilizing the capillary phenomenon, and then cooled to solidify the thermal melt, whereby the voids between the inorganic solid electrolyte materials are made of the electronically insulating material. It is described that it can be filled with a hot melt solidified product and the blocking function of dendrite by the solid electrolyte layer can be enhanced.
  • the voids between the solid particles of the solid electrolyte layer can be filled with an electronically insulating material without gaps, the growth of the lidendrite is blocked, and the all-solid state has excellent charge / discharge cycle characteristics. It is said that a secondary battery can be obtained.
  • the present inventor has found that while this technique can effectively suppress an internal short circuit due to the growth of lithium dendrite, the battery tends to have a high resistance. I came.
  • the electron insulating material filled in the voids between the inorganic solid electrolyte particles acts in an inhibitory manner on the lithium ion conduction between the inorganic solid electrolyte particles connected in the thickness direction. Can be considered.
  • An object of the present invention is to provide a lithium ion secondary battery having excellent charge / discharge cycle characteristics and also having excellent ionic conductivity, and a method for producing the same. Further, in the present invention, the lithium ion secondary battery obtained by using it as a positive / negative electrode separation membrane (separator) that insulates between the positive and negative electrodes of the lithium ion secondary battery is excellent in specifying the charge / discharge cycle and has ionic conductivity. It is an object of the present invention to provide a solid electrolyte membrane which can be excellent in the above, and a method for producing the same.
  • a lithium ion secondary battery in which the thickness of the solid electrolyte membrane is [particle size of the inorganic solid electrolyte particles ⁇ 0.7] or more [particle size of the inorganic solid electrolyte particles ⁇ 1.3] or less.
  • the electronically insulating material is at least one of sulfur and modified sulfur.
  • a solid electrolyte membrane for a lithium ion secondary battery having a thickness of [particle size of the inorganic solid electrolyte particles ⁇ 0.7] or more [particle size of the inorganic solid electrolyte particles ⁇ 1.3] or less. [11] The solid electrolyte membrane for a lithium ion secondary battery according to [10], wherein the electronically insulating material contains sulfur.
  • a composition containing an electronically insulating material that is solid at 100 ° C. and thermally melts in a temperature range of 200 ° C. or lower a layer in which the electronically insulating material is thermally melted is formed, and under pressure of 100 MPa or more.
  • a method for producing a lithium ion secondary battery which comprises arranging the solid electrolyte membrane for a lithium ion secondary battery according to any one of [10] to [12] between a positive electrode and a negative electrode.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the lithium ion secondary battery of the present invention is excellent in charge / discharge cycle characteristics and also excellent in ionic conductivity.
  • the solid electrolyte membrane for a lithium ion secondary battery of the present invention can be used as a positive / negative electrode separating film for insulating the positive and negative electrodes of a lithium ion secondary battery, thereby specifying the charge / discharge cycle of the obtained lithium ion secondary battery. It can be excellent and also excellent in ionic conductivity. Further, according to the method for manufacturing a lithium ion secondary battery of the present invention, it is possible to obtain a lithium ion secondary battery having excellent charge / discharge cycle characteristics and also excellent ionic conductivity.
  • a lithium ion secondary battery obtained by using it as a positive / negative electrode separating film that insulates between the positive and negative electrodes of the lithium ion secondary battery can be used. It is possible to obtain a solid electrolyte membrane that is excellent in specifying the charge / discharge cycle and also has excellent ionic conductivity.
  • FIG. 1 is a cross-sectional view schematically showing a general layer structure of an all-solid-state Li-ion secondary battery, which is a form of a Li-ion secondary battery.
  • the all-solid Li-ion secondary battery 10 shown in FIG. 1 is also referred to as a negative electrode collector 1 and a negative electrode active material layer 2 (the negative electrode current collector 1 and the negative electrode active material layer 2 are collectively referred to as a negative electrode layer) when viewed from the negative electrode side.
  • the solid electrolyte layer 3, the positive electrode active material layer 4, and the positive electrode current collector 5 are laminated in this order.
  • the adjacent layers are in direct contact with each other.
  • Such structure By adopting, during charging electrons through the circuit wiring 7 and from the positive electrode side to the negative electrode side (e -) is supplied with the Li ions are released from the positive electrode active material layer 4, the Li The ions pass through the solid electrolyte layer 3 (Li ion conduction), move to the negative electrode side, and are accumulated in the negative electrode active material layer 2.
  • Li ions accumulated in the negative electrode active material layer 2 are released, and these Li ions pass through the solid electrolyte layer 3 and are returned to the positive electrode side, and are accumulated in the positive electrode active material layer 4.
  • electrons move from the negative electrode side to the positive electrode side via the circuit wiring 7, and the electrons are supplied to the operating portion 6.
  • a light bulb is used for the operating portion 6, and the light bulb is turned on by electric discharge.
  • the all-solid-state Li-ion secondary battery may be in a form in which the solid electrolyte layer 3 and the negative electrode current collector 1 are in direct contact with each other without having the negative electrode active material layer 2.
  • a phenomenon is utilized in which a part of Li ions accumulated in the negative electrode during charging is combined with electrons and precipitated as metallic lithium (metal Li) on the surface of the negative electrode current collector. That is, in this form of the all-solid-state secondary battery, the metal Li deposited on the surface of the negative electrode functions as the negative electrode active material layer.
  • metallic Li is said to have a theoretical capacity 10 times or more that of graphite, which is widely used as a negative electrode active material.
  • the all-solid Li-ion secondary battery having no negative electrode active material layer means that the negative electrode active material layer is not formed in the layer forming step in battery manufacturing, and is charged as described above.
  • a negative electrode active material layer is formed between the solid electrolyte layer and the negative electrode current collector by (repetition of charging and discharging).
  • the all-solid-state Li-ion secondary battery may be in a form in which a layer of metallic lithium such as a lithium foil is provided with both functions of a negative electrode current collector and a negative electrode active material layer. That is, the negative electrode layer can be a single layer of the metallic lithium layer.
  • the layer structure and operating mechanism of a general Li-ion secondary battery have been described using an all-solid-state Li secondary battery as an example.
  • the solid electrolyte layer 3 has Li-ion conductivity and functions as a positive-negative electrode separation membrane (separator) that insulates between the positive and negative electrodes of the Li-ion secondary battery.
  • Li-ion secondary battery of the present invention a preferred embodiment of the Li-ion secondary battery of the present invention will be described.
  • the Li-ion secondary battery of the present invention is characterized by a separator configuration. That is, the Li-ion secondary battery of the present invention employs a solid electrolyte membrane having a specific configuration as a separator.
  • the Li-ion secondary battery of the present invention is configured by combining the specific materials specified in the present invention and adopts a solid electrolyte film having a specific thickness specified in the present invention as a separator.
  • the battery is not limited to the all-solid-state Li-ion secondary battery, and may be a Li-ion secondary battery (electrolytic solution Li-ion secondary battery) using an electrolytic solution.
  • the "electrolyte solution Li ion secondary battery” broadly includes a secondary battery using an electrolytic solution.
  • an electrolytic solution and an electrode active material (positive electrode active material or negative electrode active material) or the like are mixed to prepare a viscous slurry, which is thickly coated to form a semi-solid electrode active material layer (positive electrode active material layer or negative electrode active material layer or).
  • a so-called semi-solid battery forming the negative electrode active material layer) is also included in the "electrolyte secondary battery” of the present invention.
  • the formation of such a semi-solid electrode itself is known, and for example, Japanese Patent Application Laid-Open No. 2016-511521 can be referred to.
  • the semi-solid electrode active material layer can be thickened, which is advantageous in increasing the energy density of the battery.
  • the thickness of the semi-solid electrode active material layer can be, for example, about 200 to 2000 ⁇ m.
  • one of the positive electrode active material layer and the negative electrode active material layer has a form containing an electrolytic solution (preferably a semi-solid electrode), and the other has a form not containing an electrolytic solution (all solid electrode). ) Is also preferable.
  • the positive electrode active material layer may be in a form containing an electrolytic solution, and the negative electrode active material layer may not be provided.
  • the negative electrode active material layer made of metal Li can be formed between the solid electrolyte layer and the negative electrode current collector by charging. It is also preferable that the negative electrode layer is made of metal Li.
  • Each material, electrolytic solution, layer component composition or laminated structure, members, and manufacturing method of the Li-ion secondary battery used in the Li-ion secondary battery of the present invention are particularly described except for the structure of the solid electrolyte film used as the separator. Not limited. As these materials, electrolytic solutions, members and the like, those used for ordinary Li-ion secondary batteries can be appropriately applied. Further, as the method for producing the Li ion secondary battery of the present invention, a normal method can be appropriately adopted except for the configuration of the solid electrolyte membrane used as the separator. For example, International Publication No. 2018/164051, Japanese Patent Application Laid-Open No. 2016-201308, Japanese Patent Application Laid-Open No. 2019-12688, and the like can be appropriately referred to.
  • the solid electrolyte membrane which is a characteristic configuration of the Li ion secondary battery of the present invention, will be described below. Hereinafter, this solid electrolyte membrane is also referred to as "the solid electrolyte membrane of the present invention.
  • the electron-insulating inorganic particles, the inorganic solid electrolyte particles having electrolytic solution resistance and Li ion conductivity, and the thermal melting temperature that fills the voids between these particles are specified. It contains a hot melt solidified product of an electron insulating material within the temperature range of. It is preferable that the "electron-insulating inorganic particles", the “inorganic solid electrolyte particles”, and the “electron-insulating material” contained in the solid electrolyte membrane of the present invention are made of different materials.
  • the particle size of the "electron-insulating inorganic particles" contained in the solid electrolyte membrane of the present invention is 10 to 500 nm, and the particle size of the "inorganic solid electrolyte particles” is larger than the particle size of the "electron-insulating inorganic particles”. Is also big.
  • the thickness of the solid electrolyte film of the present invention is [particle size of the inorganic solid electrolyte particles ⁇ 0.7] or more [particle size of the inorganic solid electrolyte particles ⁇ 1.3] or less. That is, in the solid electrolyte membrane of the present invention, the inorganic solid electrolyte particles are substantially arranged in a single layer (one layer) in the plane direction.
  • the Li ion conduction in the thickness direction of the solid electrolyte layer can be completed by the ion conduction in a single particle. Therefore, the resistance of the battery can be suppressed low.
  • the voids between the particles of the inorganic solid electrolyte particles are filled with electron-insulating inorganic particles having a particle size smaller than that of the inorganic solid electrolyte particles and a heat-melt coagulated product of the electron-insulating material. It is in a state of being.
  • the growth of Lidendrite is sufficient by using it as a separator for a Li ion secondary battery. It is possible to provide a Li-ion secondary battery which can be blocked and has excellent charge / discharge cycle characteristics.
  • the electron-insulating inorganic particles contained in the solid electrolyte membrane of the present invention have a particle size of 10 to 500 nm, which is smaller than the inorganic solid electrolyte particles. Therefore, the electron-insulating inorganic particles can enter the voids between the inorganic solid electrolytes. Further, when the above-mentioned electron-insulating material is thermally melted in a state where the electron-insulating inorganic particles are contained in the voids between the inorganic solid electrolytes, the thermal melt moves to the voids between the solid particles due to the capillary phenomenon.
  • the voids between the solid particles can be sufficiently filled with the thermal melt of the electron insulating material without any gaps. Furthermore, when the thermal melt is cooled (when it is released from the heated state), the electron-insulating inorganic particles restrict the movement of the thermal melt by its cohesive force and the like, and crystallize the thermal melt. It can be suppressed (maintaining a predetermined amorphous state). That is, in the coagulated product (fused deposition coagulated product) obtained by cooling after hot melting, it is possible to suppress the generation of slight pores through which the lidendrite can penetrate.
  • the hot melt becomes amorphous. It can be kept better and solidified.
  • the electron-insulating inorganic particles themselves have an action of blocking the growth of dendrites. Electron-insulating inorganic particles usually do not have lithium ion conductivity. In the solid electrolyte membrane of the present invention, it is substantially inorganic solid electrolyte particles that are responsible for Li ion conductivity. However, the electron-insulating inorganic particles may have lithium ion conductivity as long as the effects of the present invention are not impaired.
  • the electron-insulating inorganic particles may have a particle size of 10 to 500 nm, they may have Li-ion conductivity, and their cohesive force suppresses crystallization during solidification of the thermal melt. If the electron-insulating inorganic particles and the inorganic solid electrolyte particles have the same composition, the slurry solvent can be easily selected and the cost can be reduced.
  • the term "solid particles" in a solid electrolyte membrane is used to mean both inorganic solid electrolyte particles and electron-insulating inorganic particles.
  • the fused deposition model of the electronically insulating material is in an amorphous state can be determined by micro-Raman spectroscopy.
  • the sample is in an amorphous state by observing the sample surface with a resolution of 3 ⁇ m using a microscopic Raman spectroscope.
  • the electronically insulating material is sulfur
  • it has a peak in the Raman shift bandwidth of 3.8 to 4.0 cm -1 , which is detected in crystalline sulfur, but in amorphous sulfur, the bandwidth is 4.5 to 5. It has a peak at 2 cm -1. Therefore, when it has a peak in the Raman shift bandwidth of 4.5 to 5.2 cm -1 , it can be judged to be in an amorphous state.
  • the electronically insulating material is other than sulfur, whether or not it is in the amorphous state by examining in advance the bandwidth in which the peak exists in the crystalline state and the bandwidth in which the peak exists in the amorphous state. Can be determined.
  • the particle size of the electron-insulating inorganic particles is preferably 15 to 400 nm, more preferably 20 to 300 nm, still more preferably 20 to 200 nm, still more preferably 25 to 150 nm, and 25 to 100 nm. Especially preferable.
  • the relationship between the particle size of the electron-insulating inorganic particles and the inorganic solid electrolyte particles described in detail later is that [particle size of the inorganic solid electrolyte particles] / [particle size of the electron-insulating inorganic particles] ⁇ 5. It is preferable that [particle size of inorganic solid electrolyte particles] / [particle size of electron-insulating inorganic particles] ⁇ 10.
  • the relationship between the particle sizes of the electron-insulating inorganic particles and the inorganic solid electrolyte particles is as follows.
  • the constituent material of the electron-insulating inorganic particles is not particularly limited as long as it is an electron-insulating inorganic particle.
  • "electronic insulation” means that the electron conductivity is 10-9 S / cm or less at a measurement temperature of 25 ° C.
  • the electron-insulating inorganic particles include, but are not limited to, aluminum oxide, silicon oxide, boron nitride, cerium oxide, diamond, and zeolite.
  • Metal oxides are preferable as the electron-insulating inorganic particles, and aluminum oxide is particularly preferable from the viewpoint of producing fine particles of about 50 nm with high purity and at low cost.
  • the content of the electron-insulating inorganic particles in the solid electrolyte membrane of the present invention is preferably 5 to 45% by volume, more preferably 10 to 40% by volume, and even more preferably 20 to 30% by volume.
  • the inorganic solid electrolyte particles contained in the solid electrolyte membrane of the present invention are Li ion-conducting inorganic particles made of a material different from the electron-insulating inorganic particles. As described above, the particle size is larger than that of the electron-insulating inorganic particles.
  • the particle size of the inorganic solid electrolyte particles is preferably 0.1 ⁇ m or more, and preferably 0.5 ⁇ m or more. Further, the particle size is usually 200 ⁇ m or less, and preferably 100 ⁇ m or less.
  • the preferable range of the particle size of the inorganic solid electrolyte particles is preferably 0.1 to 200 ⁇ m, more preferably 0.2 to 100 ⁇ m, further preferably 0.4 to 80 ⁇ m, still more preferably 0.8 to 50 ⁇ m. It is more preferably 1 to 40 ⁇ m, more preferably 1 to 30 ⁇ m, and preferably 1 to 20 ⁇ m. Further, it is preferable that the inorganic solid electrolyte particles have electrolyte resistance. Since the inorganic solid electrolyte particles have electrolyte resistance, the inorganic solid electrolyte particles are less likely to cause side reactions, decomposition, etc.
  • the oxide-based inorganic solid electrolyte particles described below can be preferably applied.
  • the oxide-based inorganic solid electrolyte itself is known and is widely used as a solid electrolyte for all-solid secondary batteries.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has Li ion conductivity.
  • the oxide-based inorganic solid electrolyte is preferably an electron-insulating compound.
  • nb (M bb is at least one element of Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, xb satisfies 5 ⁇ xb ⁇ 10, and yb is 1 ⁇ yb.
  • ⁇ 4 was filled, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, nb satisfies 5 ⁇ nb ⁇ 20.), Li xc B yc M cc zc O nc (M cc is At least one or more elements of C, S, Al, Si, Ga, Ge, In, Sn, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ .
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of oxygen of lithium phosphate is replaced with nitrogen
  • LiPOD 1 Li is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr. , Nb, Mo, Ru, Ag, Ta, W, Pt, Au and the like (at least one selected from) and the like.
  • LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga and the like
  • a 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga and the like
  • the content of the inorganic solid electrolyte particles in the solid electrolyte membrane of the present invention is preferably 10 to 90% by volume, more preferably 20 to 80% by volume, further preferably 30 to 70% by volume, further preferably 40 to 60% by volume. preferable.
  • the solid electrolyte membrane of the present invention contains a hot melt coagulated product of an electron insulating material.
  • the voids between the solid particles contained in the solid electrolyte membrane of the present invention are in a state of being filled with the hot melt solidified product of the electron insulating material.
  • the state of being filled with the thermal melt solidified product of the electron insulating material means that the electron insulating material exists in the voids between the solid particles with virtually no gaps along the shape between the solid particles, and the solid. It means that the electron-insulating material existing in the voids between the particles has a history of thermal melting (it is cooled and solidified after being thermally melted).
  • the electron-insulating material spreads through the voids between the solid particles by capillarity and / or pressure, and by solidifying in that state, the voids between the solid particles are thermally melt-solidified in the electron-insulating material. It can be filled with an object.
  • the electronically insulating material a material that is solid at 100 ° C. (that is, has a melting point exceeding 100 ° C.) and has physical properties that are hot-melted in a temperature range of 200 ° C. or lower (that is, has a melting point of 200 ° C. or lower) is used.
  • Solid at 100 ° C.” means solid at 100 ° C. under 1 atm.
  • hot melting in a temperature range of 200 ° C. or lower means hot melting in a temperature range of 200 ° C. or lower under 1 atm.
  • the temperature at which the electron-insulating material melts during or after layer formation using a mixture containing the electron-insulating inorganic particles, the inorganic solid electrolyte particles, and the electron-insulating material is used. This heating allows the molten filler to move into the voids between the solid particles by capillarity and / or pressure.
  • cooling and solidifying the electronically insulating material it is possible to create a state in which the hot melt solidified product of the electronically insulating material is embedded with virtually no gaps along the shape between the solid particles.
  • the electronically insulating material is preferably a material that is harder than dendrite in the solid state in order to block the growth of dendrite.
  • sulfur, modified sulfur, iodine, a mixture of sulfur and iodine can be mentioned, and among them, sulfur and / or modified sulfur can be preferably used.
  • Sulfur that can be used as an electronically insulating material means elemental sulfur (including sulfur itself and those existing in multimers).
  • the modified sulfur is obtained by kneading sulfur and a modifier.
  • pure sulfur and an olefin compound which is a modifying additive can be kneaded to obtain modified sulfur in which a part of sulfur is modified into a sulfur polymer.
  • the presence of sulfur or modified sulfur as a thermal melt solidified product between the solid particles without gaps makes it possible to physically block the lidendrite that has grown between the solid particles.
  • the contact between dendrite and sulfur may cause a reaction between lidendrite and sulfur.
  • the reaction of 2Li + S ⁇ Li 2 S occurs, is considered a growth of Li dendrite stops.
  • the reaction product also coexists between the solid particles. Since this reaction product is an electron-insulating compound that is harder than Li-dendrite, it is thought that it can block the growth of Li-dendrite.
  • the reaction between lithium and sulfur expands the volume of the electron-insulating material between the solid particles, and can be expected to have the effect of more reliably closing the voids remaining between the solid particles.
  • the content of the hot melt coagulated product of the electronic insulating material is preferably 5 to 45% by volume, more preferably 10 to 40% by volume, and even more preferably 20 to 30% by volume.
  • an organic binder may be contained between the solid particles.
  • an organic binder usually used for the solid electrolyte layer of the secondary battery can be appropriately adopted.
  • the method for producing a solid electrolyte membrane of the present invention is not particularly limited as long as a solid electrolyte membrane satisfying the provisions of the present invention can be obtained.
  • An example of the method for producing the solid electrolyte membrane of the present invention will be described below.
  • At least the electron-insulating inorganic particles, the inorganic solid electrolyte particles, and the electron-insulating material are kneaded to prepare a composition. This kneading is preferably performed at a temperature equal to or higher than the hot melting temperature of the electronically insulating material.
  • the kneaded product is stretched at a temperature equal to or higher than the hot melting temperature of the electronic insulating material using a roller machine or the like to form a thin sheet having a thickness specified in the present invention.
  • the electron-insulating material is solidified from the heat-melted state, and a solid electrolyte film in a state in which the hot-melted solidified product of the electron-insulating material is filled between the solid particles can be obtained.
  • the solidification of the electronically insulating material from the hot-melted state is preferably performed under pressure.
  • heat is obtained by cooling and solidifying the hot melt of the electronically insulating material under a pressure of 100 MPa or more (preferably 140 MPa or more, more preferably 160 MPa or more, further preferably 200 MPa or more, usually 1000 MPa or less).
  • the molten electronically insulating material can be solidified while sufficiently maintaining the amorphous state. That is, it is possible to suppress the crystallization of the heat-melted coagulated product of the electronically insulating material that fills the voids between the solid particles, and it is possible to effectively suppress the generation of slight voids that can serve as a path for lithium dendrite, the electrolytic solution, and the like.
  • the thickness of the solid electrolyte film thus obtained is [particle size of inorganic solid electrolyte particles ⁇ 0.7] or more and [particle size of inorganic solid electrolyte particles ⁇ 1.3] or less. Even if the thickness of the solid electrolyte film is larger than the particle size of the inorganic solid electrolyte particles, since this "particle size" is the average primary particle size as described above, the particle size of the inorganic solid electrolyte particles x 1.3. If it is the following, a sufficient number of inorganic solid electrolyte particles can be in contact with both the positive electrode and the negative electrode with one particle. As a result, Li ion conduction can be smoothly performed.
  • the thickness of the solid electrolyte film is preferably [particle size of inorganic solid electrolyte particles ⁇ 1.2] or less, and is preferably [particle size of inorganic solid electrolyte particles ⁇ 1.15] or less. It is also preferable that it is [particle size of inorganic solid electrolyte particles ⁇ 1.1] or less, and it is also preferable that it is [particle size of inorganic solid electrolyte particles ⁇ 1.0] or less.
  • the thickness of the solid electrolyte membrane is a value obtained by measuring the thickness of the solid electrolyte membrane at 50 points at intervals of 10 ⁇ m with respect to the cross section of the solid electrolyte membrane and arithmetically averaging them. The thickness can be measured by observing the cross section of the solid electrolyte membrane with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a semi-solid positive electrode active material layer 21 containing an electrolytic solution is used as the positive electrode active material layer.
  • the solid electrolyte film 22 of the present invention containing the inorganic solid electrolyte particles 25, the electron-insulating inorganic particles 26, and the heat-melted solidified product 27 of the electron-insulating material is provided, and the solid is provided.
  • a solid electrolyte layer 23 containing sulfide-based inorganic solid electrolyte particles is laminated in contact with the electrolyte film 22.
  • This sulfide-based inorganic solid electrolyte has a smaller lithium ion trapping action and higher Li ion conductivity than the oxide-based inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte causes a side reaction when it comes into contact with the electrolytic solution, and is liable to cause decomposition and the like.
  • the negative electrode 24 of the metal Li is provided on the solid electrolyte layer 23.
  • the solid electrolyte layer 23 can contain various components that can be contained in the solid electrolyte layer of a normal all-solid secondary battery, in addition to the sulfide-based inorganic solid electrolyte particles.
  • an organic binder such as an organic polymer, an ionic conductive auxiliary agent, and the like can be mentioned.
  • the solid particles of the solid electrolyte layer 23 may be filled with a hot melt coagulated product of an electron insulating material as in the solid electrolyte film 22.
  • the semi-solid positive electrode active material layer 21 containing the electrolytic solution is adopted.
  • the inorganic solid electrolyte particles 25 constituting the solid electrolyte film 22 in contact with the semi-solid positive electrode active material layer 21 are composed of an oxide-based inorganic solid electrolyte or the like having electrolyte solution resistance. Therefore, the solid electrolyte membrane 22 can be directly laminated on the semi-solid positive electrode active material layer 21. Further, in the solid electrolyte membrane 22, the voids between the solid particles are filled with the hot melt coagulated product 27 of the electron insulating material without any gaps, and the coagulated product 27 is also suppressed from crystallization.
  • the solid electrolyte membrane 22 is a thin separator in which inorganic solid electrolyte particles are substantially arranged in a single layer, it can effectively block lidendrites growing from the negative electrode.
  • the semi-solid positive electrode active material layer 21 is adopted, and the positive electrode active material layer can be thickened. Therefore, high energy density can be achieved.
  • the negative electrode is formed of a metal Li having a large theoretical capacity, which also contributes to high energy density.
  • the sulfide-based inorganic solid electrolyte constituting the solid electrolyte layer 23 will be described.
  • the sulfide-based inorganic solid electrolyte itself is known, and those widely used as solid electrolytes for all-solid secondary batteries can be used without particular limitation.
  • the sulfide-based inorganic solid electrolyte preferably contains a sulfur atom (S), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table, and has electronic insulation. ..
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity, but may contain elements other than Li, S and P depending on the purpose. It may be included.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (I).
  • L represents an element selected from Li, Na and K, with Li being preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfy 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3.
  • the d1 is further preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is further preferably 0 to 5, more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass-ceramic), or only a part thereof may be crystallized.
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramics containing Li, P and S can be used.
  • Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example). It can be produced by the reaction of at least two or more raw materials in sulfides of LiI, LiBr, LiCl) and the element represented by M (for example, SiS 2 , SnS, GeS 2).
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ It is 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 -4 S / cm or more, and more preferably 1 ⁇ 10 -3 S / cm or more. There is no particular upper limit, but it is practical that it is 1 ⁇ 10 -1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -H 2 S, Li 2 S-P 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 O-P 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 O-P 2 S 5 , Li 2 S-Li 3 PO 4- P 2 S 5 , Li 2 S-P 2 S 5- P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2 -LiCl, Li 2 SP 2 S 5- SnS, Li 2 SP 2 S 5 -Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method and a melt quenching method. This is because processing at room temperature is possible and the manufacturing process can be simplified.
  • the semi-solid positive electrode active material layer 31 and the solid electrolyte film 32 are the same as the semi-solid positive electrode active material layer 21 and the solid electrolyte film 22 of the first embodiment, respectively.
  • the semi-solid negative electrode active material layer 33 containing an electrolyte is arranged in contact with the solid electrolyte membrane 32 on the negative electrode side thereof.
  • the solid electrolyte membrane of the present invention is arranged as a separator between the positive and negative electrodes, and the lid dendrite growing from the negative electrode is effective even though it is a thin separator in which the inorganic solid electrolyte particles are substantially arranged in a single layer. Can be blocked.
  • the semi-solid positive electrode active material layer 31 and the semi-solid negative electrode active material layer 33 are adopted, and both electrode active material layers can be thickened. Therefore, high energy density can be achieved.
  • the electrolytic solution of the semi-solid positive electrode active material layer 31 and the electrolytic solution of the semi-solid negative electrode active material layer 33 are separated by the solid electrolyte membrane 32 and do not intersect with each other. Therefore, the electrolytic solution of the semi-solid positive electrode active material layer 31 and the electrolytic solution of the semi-solid negative electrode active material layer 33 can be different electrolytic solutions. This expands the range of choices of active materials used for the positive and negative electrodes.
  • the third embodiment shown in FIG. 4 is a so-called all-solid-state Li-ion secondary battery.
  • the solid electrolyte membrane 42 of the present invention is arranged as an inorganic solid electrolyte layer arranged between the positive electrode active material layer 41 and the negative electrode active material layer 43.
  • the solid electrolyte membrane 42 is the same as the solid electrolyte membrane 22 of the first embodiment.
  • the Li-ion secondary battery of the fourth embodiment shown in FIG. 5 has a configuration in which a separator sheet 28 is further arranged between the semi-solid positive electrode active material layer 21 and the solid electrolyte membrane 22 in the first embodiment.
  • a separator usually used in an electrolytic solution Li-ion secondary battery can be widely applied.
  • the constituent material of the separator sheet 28 include a porous polymer material, an inorganic material, an organic-inorganic hybrid material, and glass fiber.
  • the volume ratio occupied by the gaps in the separator sheet 28, that is, the porosity is preferably 20% to 90%, more preferably 35% to 80%.
  • Examples of the polymer material include cellulose non-woven fabric, polyethylene, polypropylene and the like, and a separator sheet in which these are used in combination can also be used. It is also preferable that two or more kinds of microporous films having different pore diameters, porosities, pore closing temperatures, etc. are laminated.
  • Examples of the inorganic material include oxides such as alumina and silicon dioxide; nitrides such as aluminum nitride and silicon nitride; and sulfates such as barium sulfate and calcium sulfate.
  • the Li-ion secondary battery of the fifth embodiment shown in FIG. 6 has a configuration in which a separator sheet 37 is further arranged between the semi-solid positive electrode active material layer 31 and the solid electrolyte membrane 32 in the second embodiment.
  • the separator sheet 37 is the same as the separator sheet 28 described in the fourth embodiment.
  • a separator sheet 37 is further arranged between the semi-solid positive electrode active material layer 31 and the solid electrolyte film 32, and the solid electrolyte is further arranged.
  • a separator sheet 38 is also arranged between the film 32 and the semi-solid negative electrode active material layer 33.
  • the separator sheet 37 and the separator sheet 38 are the same as the separator sheet 28 described in the fourth embodiment.
  • the separator sheet 38 between the semi-solid negative electrode active material layer 33 and the solid electrolyte film 32, the negative electrode active material, the conductive auxiliary agent, and the electronic insulating material are thermally melted in the presence of the electrolytic solution. It is possible to prevent the coexistence of a solidified product (sulfur) and the like, and it is possible to prevent a side reaction between the negative electrode active material or the conductive auxiliary agent and the thermal melt solidified product (sulfur) of the electronic insulating material.
  • the Li-ion secondary battery of the present invention may have a plurality of solid electrolyte membranes of the present invention.
  • the solid electrolyte membrane of the present invention can be laminated in two layers and used as a separator.
  • the lithium ion secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, but for example, when it is mounted on an electronic device, it is a notebook computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone slave unit, a pager, a handy terminal, a mobile fax, or a mobile phone. Copies, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini discs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, mobile tape recorders, radios, backup power supplies, memory cards, etc. Be done.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). Furthermore, it can be used for various munitions and space. It can also be combined with a solar cell.
  • Example 1 ⁇ Example 1-1> Preparation of solid electrolyte membrane (separator) 50% by volume of LLZ (Li 7 La 3 Zr 2 O 12 , particle size 3.0 ⁇ m, manufactured by Toyoshima Seisakusho) as an oxide-based inorganic solid electrolyte, Al 2 O 3 (particle size 50 nm, manufactured by SkySpring Nanomaterials) was mixed at a ratio of 25% by volume, and sulfur (S, manufactured by Aldrich, purity> 99.98%) was mixed at a ratio of 25% by volume and kneaded at 140 ° C.
  • LLZ Li 7 La 3 Zr 2 O 12 , particle size 3.0 ⁇ m, manufactured by Toyoshima Seisakusho
  • Al 2 O 3 particle size 50 nm, manufactured by SkySpring Nanomaterials
  • S sulfur
  • Example 1-2 Preparation of Li-ion secondary battery ⁇ Preparation of positive electrode sheet> LPS (sulfide-based inorganic solid electrolyte) synthesized by the method described in [Reference Example 1] of International Publication No. 2018/164051 by putting 180 zirconia beads having a diameter of 5 mm into a 45 mL container made of zirconia (manufactured by Fritsch). ) 2.0 g, 0.1 g of styrene-butadiene rubber (commodity code 182907, manufactured by Aldrich), and 22 g of octane as a dispersion medium were added.
  • LPS sulfide-based inorganic solid electrolyte synthesized by the method described in [Reference Example 1] of International Publication No. 2018/164051 by putting 180 zirconia beads having a diameter of 5 mm into a 45 mL container made of zirconia (manufactured by Fritsch).
  • this container was set in a planetary ball mill P-7 manufactured by Fritsch, and stirred at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours. Then, 7.9 g of the positive electrode active material LiNi 0.85 Co 0.10 Al 0.05 O 2 (lithium nickel cobalt aluminate) was put into a container, and this container was set in the planetary ball mill P-7 again, and the temperature was 25. Mixing was continued for 15 minutes at ° C. and 100 rpm. In this way, a composition for a positive electrode was obtained.
  • LiNi 0.85 Co 0.10 Al 0.05 O 2 lithium nickel cobalt aluminate
  • the positive electrode composition obtained above was applied to an aluminum foil having a thickness of 20 ⁇ m as a current collector with a baker-type applicator, and heated at 80 ° C. for 2 hours to dry the positive electrode composition. .. Then, using a heat press machine, the composition for the positive electrode layer dried to a predetermined density was pressurized (600 MPa, 1 minute) while heating (120 ° C.). In this way, a positive electrode sheet having a positive electrode active material layer having a film thickness of 110 ⁇ m was produced.
  • the positive electrode sheet was laminated on the surface of the solid electrolyte membrane of Example 1-1 so that the positive electrode active material layer was in contact with the surface. Further, a lithium foil was laminated on the side of the solid electrolyte membrane opposite to the positive electrode sheet side.
  • a restraining plate and a screw as a restraining member are used, and the tightening force of the screw is adjusted with a torque wrench to set the restraining pressure to 8 MPa, and the all-solid-state Li-ion secondary battery of Example 1-2 is used.
  • Example 2 ⁇ Example 2-1> Preparation of solid electrolyte membrane (separator) In the same manner as in Example 1-1, except that the particle size of the LLZ used in Example 1-1 was changed to 8.0 ⁇ m. A solid electrolyte membrane (thickness 8.5 ⁇ m) of Example 2-1 was obtained.
  • Example 2-2 Preparation of Li-ion secondary battery Using the solid electrolyte membrane of Example 2-1, the all-solid-state Li-ion secondary battery of Example 2-2 was used in the same manner as in Example 1-2. Obtained.
  • Comparative Example 2 In ⁇ Comparative Example 2-1> Preparation Comparative Example 1-1 of the solid electrolyte membrane (a separator), those having a particle diameter of 50nm as Al 2 O 3 except for using (same as in Example 1-1), Comparative Example A solid electrolyte membrane (thickness 100 ⁇ m) of Comparative Example 2-1 was obtained in the same manner as in 1-1.
  • Comparative Example 3 ⁇ Comparative Example 3-1> Preparation of Solid Electrolyte Membrane (Separator) In Example 1-1, except that stretching by a roll press was performed at 150 ° C. and 24 MPa, and hot water hot pressing was not performed. A solid electrolyte membrane (thickness 3.5 ⁇ m) of Comparative Example 3-1 was obtained in the same manner as in 1-1.
  • the solid electrolyte membrane of the present invention is formed as an ultrathin film in which inorganic solid electrolyte particles are substantially arranged in a single layer to suppress battery resistance, but Li ions using this as a separator are used.
  • the secondary battery had excellent charge / discharge cycle characteristics.
  • the solid electrolyte membrane of the present invention uses an inorganic solid electrolyte having electrolyte resistance. Therefore, the solid electrolyte membrane of the present invention can be applied as a separator regardless of the form of the Li ion secondary battery such as the electrolytic solution secondary battery and the all-solid secondary battery, and the obtained Li ion secondary battery battery. It can be seen that the cycle characteristics of the Li-ion secondary battery can be further improved while suppressing the resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

粒子径が10~500nmの電子絶縁性無機粒子(26)と、 電子絶縁性無機粒子(26)より大きく、電解液耐性とイオン伝導性とを有する無機固体電解質粒子(25)と、 固体粒子間の空隙を埋める、特定温度領域で熱溶融する電子絶縁性材料の熱溶融凝固物(27)とを有する固体電解質膜(22)と; 正極層と; 負極層と; を有し、 電子絶縁性材料の熱溶融凝固物(27)がアモルファス状態にあり、 固体電解質膜(22)は無機固体電解質粒子(25)が実質的に単層に配されたリチウムイオン二次電池及びその製造方法、並びにこの電池のセパレータとして好適な固体電解質膜及びその製造方法。

Description

リチウムイオン二次電池及びその製造方法、並びにリチウムイオン二次電池用固体電解質膜及びその製造方法
 本発明は、リチウムイオン二次電池及びその製造方法に関する。また本発明は、リチウムイオン二次電池用固体電解質膜及びその製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極と正極との間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充電と放電を可能とした蓄電池である。リチウムイオン二次電池には従来から、電解質として有機電解液が用いられてきた。また、信頼性と安全性のさらなる向上のために、有機電解液に代えて、不燃性の無機固体電解質を用いた全固体二次電池の開発が進められている。全固体二次電池は負極、電解質及び正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。
 リチウムイオン二次電池は、充電時には正極から負極へと電子が移動し、同時に正極を構成するリチウム酸化物等からリチウムイオンが放出され、このリチウムイオンは電解質を通って負極へと到達して負極に溜め込まれる。こうして負極に溜め込まれたリチウムイオンの一部は電子を取り込み金属リチウムとして析出する現象が生じる。この金属リチウムの析出物が充放電の繰り返しによりデンドライト状に成長してしまうと、やがて正極へと達し、内部短絡が生じるなどして二次電池として機能しなくなってしまう。このデンドライト(Liデンドライト)は非常に細く、有機電解液を用いたリチウムイオン二次電池に限らず、電解質として固体を用いる全固体二次電池においても問題となる。すなわちLiデンドライトは、固体電解質層に生じた亀裂、ピンホール等の、固体電解質層を構成する固体粒子間のわずかな空隙であっても、この空隙通って成長しうる。
 デンドライトによる内部短絡の問題に対処すべく特許文献1には、全固体二次電池の固体電解質層を無機固体電解質材料で形成した場合に生じる無機固体電解質材料間の空隙に、硫黄、改質硫黄等の電子絶縁性材料の熱溶融物を毛細管現象を利用して行き亘らせ、次いで冷却して熱溶融物を固化すること、これにより、無機固体電解質材料間の空隙を電子絶縁性材料の熱溶融凝固物で埋めることができ、固体電解質層によるデンドライトのブロック機能を強化できることが記載されている。
国際公開第2018/164051号
 上記特許文献1記載の技術によれば、固体電解質層の固体粒子間の空隙を電子絶縁性材料で隙間なく埋めることができ、Liデンドライトの成長をブロックして充放電サイクル特性に優れた全固体二次電池が得られるとされる。
 本発明者は、特許文献1記載の技術に関しさらに検討を重ねた結果、この技術によりLiデンドライトの成長による内部短絡を効果的に抑制できる一方で、電池が高抵抗化しやすい傾向にあることがわかってきた。この理由は定かではないが、厚さ方向に連なる無機固体電解質粒子間のリチウムイオン伝導に対し、無機固体電解質粒子間の空隙に充填された電子絶縁性材料が阻害的に作用していることなどが考えられる。
 本発明は、充放電サイクル特性に優れ、またイオン伝導性にも優れたリチウムイオン二次電池、及びその製造方法を提供することを課題とする。
 また、本発明は、リチウムイオン二次電池の正負極間を絶縁する正負極分離膜(セパレータ)として用いることにより、得られるリチウムイオン二次電池を、充放電サイクル特定に優れ、またイオン伝導性にも優れたものとすることができる固体電解質膜、及びその製造方法を提供することを課題とする。
 本発明の上記の課題は下記手段により解決された。
〔1〕
 粒子径が10~500nmの電子絶縁性無機粒子と、
 粒子径が上記電子絶縁性無機粒子よりも大きく、電解液耐性とイオン伝導性とを有する無機固体電解質粒子と、
 上記粒子間の空隙を埋める、100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性材料の熱溶融凝固物とを有する固体電解質膜と;
 上記固体電解質膜の一方の側に配された正極層と;
 上記固体電解質膜の、上記正極層が配された側とは反対側に配された負極層と;
を有し、
 上記の電子絶縁性材料の熱溶融凝固物がアモルファス状態にあり、
 上記固体電解質膜の厚さが、[上記無機固体電解質粒子の粒子径×0.7]以上[上記無機固体電解質粒子の粒子径×1.3]以下である、リチウムイオン二次電池。
〔2〕
 上記正極層を構成する正極活物質層が電解液を含み、この正極活物質層の厚さが200~2000μmである、〔1〕に記載のリチウムイオン二次電池。
〔3〕
 上記負極層を構成する負極活物質が金属リチウムを含む、〔1〕又は〔2〕に記載のリチウムイオン二次電池。
〔4〕
 上記負極層全体が金属リチウム層で構成され、この金属リチウム層と上記固体電解質膜との間に硫化物系無機固体電解質層を有する、〔1〕~〔3〕のいずれかに記載のリチウムイオン二次電池。
〔5〕
 上記負極層を構成する負極活物質層が電解液を含む、〔1〕又は〔2〕に記載のリチウムイオン二次電池。
〔6〕
 上記リチウムイオン二次電池が全固体リチウムイオン二次電池である、〔1〕に記載のリチウムイオン二次電池。
〔7〕
 上記電子絶縁性材料が硫黄を含む、〔1〕~〔7〕のいずれか1項記載のリチウムイオン二次電池。
〔8〕
 上記電子絶縁性材料が、硫黄及び改質硫黄の少なくとも1種である、〔7〕に記載のリチウムイオン二次電池。
〔9〕
 上記電子絶縁性無機粒子の粒子径と上記無機固体電解質粒子の粒子径とが下記式を満たす、〔1〕~〔8〕のいずれかに記載のリチウムイオン二次電池。
 5≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]
〔10〕
 粒子径が10~500nmの電子絶縁性無機粒子と、
 粒子径が上記電子絶縁性無機粒子よりも大きく、電解液耐性とイオン伝導性とを有する無機固体電解質粒子と、
 上記粒子間の空隙を埋める、100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性材料の熱溶融凝固物とを有し、
 上記の電子絶縁性材料の熱溶融凝固物がアモルファス状態にあり、
 厚さが[上記無機固体電解質粒子の粒子径×0.7]以上[上記無機固体電解質粒子の粒子径×1.3]以下である、リチウムイオン二次電池用固体電解質膜。
〔11〕
 上記電子絶縁性材料が硫黄を含む、〔10〕に記載のリチウムイオン二次電池用固体電解質膜。
〔12〕
 上記電子絶縁性材料が、硫黄及び改質硫黄の少なくとも1種である、請求項11に記載のリチウムイオン二次電池用固体電解質膜。
〔13〕
 粒子径が10~500nmの電子絶縁性無機粒子と
 粒子径が上記電子絶縁性無機粒子よりも大きく、電解液耐性とLiイオン伝導性とを有する無機固体電解質粒子と、
 100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性材料と
を含有する組成物を用いて上記電子絶縁性材料が熱溶融した状態の層を形成し、100MPa以上の加圧下で上記電子絶縁性材料の熱溶融物を凝固させることを含む、〔10〕~〔12〕のいずれかに記載のリチウムイオン二次電池用固体電解質膜の製造方法。
〔14〕
 〔10〕~〔12〕のいずれかに記載のリチウムイオン二次電池用固体電解質膜を正極と負極との間に配することを含む、リチウムイオン二次電池の製造方法。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明のリチウムイオン二次電池は、充放電サイクル特性に優れ、またイオン伝導性にも優れる。また本発明のリチウムイオン二次電池用固体電解質膜は、リチウムイオン二次電池の正負極間を絶縁する正負極分離膜として用いることにより、得られるリチウムイオン二次電池を、充放電サイクル特定に優れ、またイオン伝導性にも優れたものとすることができる。
 また本発明のリチウムイオン二次電池の製造方法によれば、充放電サイクル特性に優れ、またイオン伝導性にも優れたリチウムイオン二次電池を得ることができる。また本発明のリチウムイオン二次電池用固体電解質膜の製造方法によれば、リチウムイオン二次電池の正負極間を絶縁する正負極分離膜として用いることにより、得られるリチウムイオン二次電池を、充放電サイクル特定に優れ、またイオン伝導性にも優れたものとすることができる固体電解質膜を得ることができる。
リチウムイオン二次電池の一実施形態である全固体リチウムイオン二次電池の基本構造を模式化して示す縦断面図である。 本発明のリチウムイオン二次電池の好ましい積層形態を模式化して示す縦断面図である。 本発明のリチウムイオン二次電池の別の好ましい積層形態を模式化して示す縦断面図である。 本発明のリチウムイオン二次電池の別の好ましい積層形態を模式化して示す縦断面図である。 本発明のリチウムイオン二次電池の別の好ましい積層形態を模式化して示す縦断面図である。 本発明のリチウムイオン二次電池の別の好ましい積層形態を模式化して示す縦断面図である。 本発明のリチウムイオン二次電池の別の好ましい積層形態を模式化して示す縦断面図である。
[リチウムイオン二次電池]
 最初に、一般的なリチウムイオン(Liイオン)二次電池の作動機構について、図1に示す全固体Liイオン二次電池の形態を例にして説明する。図1は、Liイオン二次電池の一形態である全固体Liイオン二次電池について、一般的な層構成を模式化して示す断面図である。図1に示す全固体Liイオン二次電池10は、負極側からみて、負極集電体1、負極活物質層2(負極集電体1と負極活物質層2を合わせて負極層とも称す。)、固体電解質層3、正極活物質層4及び正極集電体5(正極活物質層4と正極集電体5を合わせて正極層とも称す。)をこの順に積層してなる構造を有しており、隣接する層同士は直に接触している。このような構造を採用することで、充電時には正極側から負極側へと回路配線7を介して電子(e)が供給され、正極活物質層4からはLiイオンが放出されて、このLiイオンは固体電解質層3を通過(Liイオン伝導)して負極側へと移動し、負極活物質層2へと蓄積される。
 一方、放電時には、負極活物質層2に蓄積されたLiイオンが放出され、このLiイオンは固体電解質層3を通過して正極側に戻され、正極活物質層4に蓄積される。このとき、負極側から正極側へと回路配線7を介して電子が移動し、これにより作動部位6に電子が供給される。図示した全固体Liイオン二次電池10では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 また、全固体Liイオン二次電池は、負極活物質層2を有さずに、固体電解質層3と負極集電体1とが直に接する形態とすることもできる。この形態の全固体Liイオン二次電池では、充電時に負極に蓄積したLiイオンの一部が電子と結合し、金属リチウム(金属Li)として負極集電体表面に析出する現象を利用する。すなわち、この形態の全固体二次電池は、負極表面に析出した金属Liを負極活物質層として機能させる。例えば金属Liは、負極活物質として汎用されている黒鉛に比べて10倍以上の理論容量を有するとされている。したがって、負極に金属Liを析出させてこの析出した金属Liに固体電解質層を押しつけた形態とすることにより、集電体表面に金属リチウムの層を形成することができ、高エネルギー密度の二次電池を実現することが可能になる。
 また、負極活物質層を取り除いた形態の全固体二次電池は、電池の厚さが薄くなるために、電池をロール状に巻いた形態とする場合には、固体電解質層の亀裂等の発生をより抑えることが可能になる利点もある。
 なお、本明細書において負極活物質層を有しない形態の全固体Liイオン二次電池とは、あくまで電池製造における層形成工程において負極活物質層を形成しないことを意味し、上記の通り、充電(充放電の繰り返し)により固体電解質層と負極集電体との間に負極活物質層が形成されるものである。
 また、全固体Liイオン二次電池は、リチウム箔等の金属リチウムの層に、負極集電体と負極活物質層の両機能を担わせる形態とすることもできる。すなわち、負極層を金属リチウム層の一層とすることができる。
 上記では一般的なLiイオン二次電池の層構成と作動機構について、全固体Li二次電池を例に説明した。上記の形態において固体電解質層3はLiイオン伝導性を有し、かつ、Liイオン二次電池の正負極間を絶縁する正負極分離膜(セパレータ)として機能する。
 続いて、本発明のLiイオン二次電池の好ましい実施形態について説明する。
 本発明のLiイオン二次電池は、セパレータの構成に特徴を有する。すなわち、本発明のLiイオン二次電池は、セパレータとして特定構成の固体電解質膜を採用する。
 ここで、本発明のLiイオン二次電池は、本発明で規定する特定の材料を組合せて構成され且つ本発明で規定する特定の厚さを有する固体電解質膜をセパレータとして採用する形態であれば、全固体Liイオン二次電池に限られず、電解液を用いるLiイオン二次電池(電解液Liイオン二次電池)であってもよい。本発明において「電解液Liイオン二次電池」には、電解液を用いた二次電池が広く包含される。例えば、電解液と電極活物質(正極活物質又は負極活物質)等を混合して粘性のあるスラリーを調製し、これを厚塗りして半固体状の電極活物質層(正極活物質層又は負極活物質層)を形成するいわゆる半固体電池も、本発明の「電解液二次電池」に包含される。このような半固体電極の形成それ自体は公知であり、例えば、特表2016-511521号公報を参照することができる。半固体状の電極活物質層は厚膜化でき、電池の高エネルギー密度化において有利である。半固体状の電極活物質層の厚さは、例えば、200~2000μm程度とすることができる。
 また、本発明のLiイオン二次電池は、正極活物質層と負極活物質層の一方を電解液を含む形態(好ましくは半固体電極)とし、他方を電解液を含まない形態(全固体電極)とすることも好ましい。
 また、正極活物質層を電解液を含む形態とし、負極活物質層を設けない形態とすることもできる。この場合、上述したように、充電により固体電解質層と負極集電体との間に金属Liによる負極活物質層が形成される形態とすることができる。また、負極層を金属Liで構成することも好ましい。
 本発明のLiイオン二次電池に用いる各材料、電解液、層の成分組成ないし積層構成、部材、並びにLiイオン二次電池の製造方法等は、セパレータとして用いる固体電解質膜の構成を除いて特に制限されない。これらの材料、電解液、部材等は、通常のLiイオン二次電池に用いられるものを適宜に適用することができる。また、本発明のLiイオン二次電池の作製方法についても、セパレータとして用いる固体電解質膜の構成を除いては、通常の方法を適宜に採用することができる。例えば、国際公開第2018/164051号、特開2016-201308号公報、特開2019-12688号公報等を適宜に参照することができる。
 本発明のLiイオン二次電池の特徴的な構成である固体電解質膜について以下に説明する。以降、この固体電解質膜を「本発明の固体電解質膜」とも称す。
<固体電解質膜(セパレータ)>
 本発明の固体電解質膜の一形態では、電子絶縁性無機粒子と、電解液耐性とLiイオン伝導性とを兼ね備えた無機固体電解質粒子と、これらの粒子間の空隙を埋める、熱溶融温度が特定の温度範囲内にある電子絶縁性材料の熱溶融凝固物とを含有する。
 本発明の固体電解質膜が有する「電子絶縁性無機粒子」と、「無機固体電解質粒子」と、「電子絶縁性材料」とは、互いに異なる材料で構成されていることが好ましい。
 本発明の固体電解質膜が有する上記「電子絶縁性無機粒子」の粒子径は10~500nmであり、上記「無機固体電解質粒子」の粒子径は、上記「電子絶縁性無機粒子」の粒子径よりも大きい。
 本発明の固体電解質膜の厚さは、[上記無機固体電解質粒子の粒子径×0.7]以上[上記無機固体電解質粒子の粒子径×1.3]以下である。すなわち、本発明の固体電解質膜において、上記無機固体電解質粒子は面方向に、実質的に単層(一層)に配されている。そのため、この固体電解質層をセパレータとして配したLiイオン二次電池は、固体電解質層の厚さ方向のLiイオン伝導を単一粒子内のイオン伝導で完結することができる。したがって、電池の抵抗を低く抑えることができる。
 また、本発明の固体電解質膜は、無機固体電解質粒子の粒子間の空隙に、無機固体電解質粒子よりも小粒径の電子絶縁性無機粒子と、電子絶縁性材料の熱溶融凝固物とが充填された状態にある。そのゆえ、無機固体電解質粒子が面方向に実質的に単層(一層)に配された薄層であるにもかかわらず、Liイオン二次電池のセパレータとして用いることにより、Liデンドライトの成長を十分にブロックすることができ、充放電サイクル特性にも優れたLiイオン二次電池を提供することができる。
 本発明の固体電解質膜の形成材料について順に説明する。
- 電子絶縁性無機粒子 -
 本発明の固体電解質膜に含まれる電子絶縁性無機粒子は、粒子径が10~500nmであり、無機固体電解質粒子よりも粒子径が小さい。それゆえ、電子絶縁性無機粒子は無機固体電解質間の空隙に入り込むことができる。さらに、無機固体電解質間の空隙に電子絶縁性無機粒子が入り込んだ状態で、上述の電子絶縁性材料を熱溶融させた際には、この熱溶融物は毛細管現象により固体粒子間の空隙に移動しやすくなり、固体粒子間の空隙を、電子絶縁性材料の熱溶融物により十分に隙間なく埋めることができる。さらに、この熱溶融物が冷却された際(加熱状態から解放された際)には、電子絶縁性無機粒子がその凝集力等によって熱溶融物の動きを制限し、熱溶融物の結晶化を抑える(所定のアモルファス状態を保つ)ことができる。つまり、熱溶融後、冷却して得られる凝固物(熱溶融凝固物)において、Liデンドライトが貫通し得るわずかな空孔の発生も抑えることができる。電子絶縁性材料の溶融と固化を高圧下(例えば100MPa以上、好ましくは140MPa以上、より好ましくは160MPa以上、さらに好ましくは200MPa以上、通常は1000MPa以下)で行うことにより、熱溶融物はアモルファス状態をより良好に保って凝固することができる。なお、電子絶縁性無機粒子はそれ自体も、デンドライトの成長をブロックする作用を有する。
 電子絶縁性無機粒子は、通常は、リチウムイオン伝導性を有しない。本発明の固体電解質膜においてLiイオン伝導性を担うのは、実質的に無機固体電解質粒子である。しかし、本発明の効果を損なわない範囲で、電子絶縁性無機粒子はリチウムイオン伝導性を有してもよい。すなわち、電子絶縁性無機粒子が粒子径10~500nmであれば、Liイオン伝導性を有してもよく、その凝集力によって熱溶融物の凝固の際の結晶化が抑えられる。電子絶縁性無機粒子と無機固体電解質粒子が同じ組成であれば、スラリー溶媒の選択が容易となり低コスト化できる。
 本明細書において、固体電解質膜における「固体粒子」との用語は、無機固体電解質粒子と電子絶縁性無機粒子の両方を指す意味で用いる。
 本発明において「電子絶縁性材料の熱溶融凝固物がアモルファス状態にある」ことは、顕微ラマン分光法により決定することができる。具体的には、顕微ラマン分光装置を用いて、分解能を3μmとして試料表面を観察することにより、アモルファス状態であるか否かを決定することができる。例えば、電子絶縁性材料が硫黄の場合には、結晶硫黄では検出されるラマンシフトのバンド幅3.8~4.0cm-1にピークを持つが、アモルファス硫黄ではバンド幅4.5~5.2cm-1にピークを持つ。したがって、ラマンシフトのバンド幅4.5~5.2cm-1にピークを持つ場合に、アモルファス状態と判断することができる。電子絶縁性材料が硫黄以外の場合も同様に、結晶状態の場合にピークが存するバンド幅と、アモルファス状態の場合にピークが存するバンド幅とを予め調べておくことにより、アモルファス状態であるか否かを決定することができる。
 上記電子絶縁性無機粒子の粒子径は、好ましくは15~400nmであり、より好ましくは20~300nmであり、さらに好ましくは20~200nmであり、さらに好ましくは25~150nmであり、25~100nmが特に好ましい。
 電子絶縁性無機粒子と、後で詳述する無機固体電解質粒子の各粒子径の関係は、[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≧5であることが好ましく、[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≧10がより好ましい。
 電子絶縁性無機粒子と無機固体電解質粒子の各粒子径の関係は、
5≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦10000
が好ましく、
5≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦8000
がより好ましく、
5≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦6000
がより好ましく、
5≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦4000
がより好ましく、
5≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦2000
がより好ましく、
5≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦1000
がより好ましく、
10≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦600
がより好ましく、
10≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦400
がより好ましく、
20≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦300
とすることも好ましく、
20≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]≦200
とすることも好ましい。
 本発明において「粒子径」は、平均一次粒子径を意味する。この平均一次粒子径は、体積基準のメディアン径(d50)である。
 電子絶縁性無機粒子の構成材料は、電子絶縁性を有する無機粒子であれば特に制限されない。本発明において「電子絶縁性」とは、測定温度25℃において電子導電率が10-9S/cm以下であることを意味する。電子絶縁性無機粒子の例としては、酸化アルミニウム、酸化ケイ素、窒化ホウ素、酸化セリウム、ダイヤモンド、ゼオライト等を挙げることができるが、本発明はこれらに限定されるものではない。電子絶縁性無機粒子は金属酸化物が好ましく、なかでも50nm程度の微粒子を高純度で安価に製造できる観点から酸化アルミニウムが好適である。
 本発明の固体電解質膜中、電子絶縁性無機粒子の含有量は、5~45体積%が好ましく、10~40体積%がより好ましく、20~30体積%がさらに好ましい。
- 無機固体電解質粒子 -
 本発明の固体電解質膜に含まれる無機固体電解質粒子は、電子絶縁性無機粒子とは異なる材料で構成されたLiイオン伝導性の無機粒子である。その粒子径は上述した通り、電子絶縁性無機粒子よりも大きい。無機固体電解質粒子の粒子径は、0.1μm以上が好ましく、0.5μm以上とすることも好ましい。また、この粒子径は通常は200μm以下であり、100μm以下とすることも好ましい。
 無機固体電解質粒子の粒子径の好ましい範囲を具体的に示すと、0.1~200μmが好ましく、0.2~100μmがより好ましく、0.4~80μmがさらに好ましく0.8~50μmがさらに好ましく、1~40μmがさらに好ましく、1~30μmとすることも好ましく、1~20μmとすることも好ましい。
 また、上記無機固体電解質粒子は電解液耐性を有することが好ましい。無機固体電解質粒子が電解液耐性を有することにより、正極層ないし負極層が電解液を有するLiイオン二次電池のセパレータとして用いても、無機固体電解質粒子は副反応、分解等を生じにくい。このような無機固体電解質粒子として、下記で説明する酸化物系無機固体電解質の粒子を好ましく適用することができる。酸化物系無機固体電解質それ自体は公知であり、全固体二次電池の固体電解質として広く用いられている。
(酸化物系無機固体電解質)
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、Liイオン伝導性を有する。酸化物系無機固体電解質は電子絶縁性の化合物が好ましい。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 本発明の固体電解質膜中、無機固体電解質粒子の含有量は、10~90体積%が好ましく、20~80体積%がより好ましく、30~70体積%がさらに好ましく、40~60体積%がさらに好ましい。
- 電子絶縁性材料の熱溶融凝固物 -
 本発明の固体電解質膜には、電子絶縁性材料の熱溶融凝固物が含まれる。本発明の固体電解質膜に含まれる固体粒子間の空隙は、電子絶縁性材料の熱溶融凝固物により埋められた状態にある。「電子絶縁性材料の熱溶融凝固物により埋められた状態にある」とは、固体粒子間の形状に沿って、固体粒子間の空隙に事実上隙間なく電子絶縁性材料が存在し、かつ固体粒子間の空隙に存在する電子絶縁性材料が熱溶融履歴を有していること(熱溶融した後に冷却されて固化したものであること)を意味する。電子絶縁性材料は熱溶融した状態で固体粒子間の空隙に毛細管現象、および/または圧力により行き亘り、その状態で固化させることにより、固体粒子間の空隙を、電子絶縁性材料の熱溶融凝固物により充填することができる。
 上記電子絶縁性材料としては、100℃において固体(すなわち融点が100℃越え)である一方、200℃以下の温度領域において熱溶融する(すなわち融点が200℃以下)物性のものを用いる。「100℃において固体」とは、1気圧下において100℃で固体状であることを意味する。また、「200℃以下の温度領域で熱溶融する」とは、1気圧下において、200℃以下の温度領域で熱溶融することを意味する。このような電子絶縁性材料を用いることにより、電子絶縁性無機粒子と無機固体電解質粒子と電子絶縁性材料とを含む混合物を用いた層形成時又は層形成後に、電子絶縁性材料が溶融する温度まで容易に加熱することができ、この加熱により、溶融した充填材を毛細管現象、および/または圧力によって固体粒子間の空隙へと移動させることができる。その後冷却して電子絶縁性材料を固化させることにより、固体粒子間の形状に沿って事実上隙間なく、電子絶縁性材料の熱溶融凝固物を埋め込んだ状態を作り出すことができる。
 上記電子絶縁性材料としては、デンドライトの成長をブロックするために、固体状態においてデンドライトよりも硬い材料であることが好ましい。例えば、硫黄、改質硫黄、ヨウ素、硫黄とヨウ素の混合物等を挙げることができ、なかでも硫黄及び/又は改質硫黄を好適に用いることができる。電子絶縁性材料として用いうる硫黄は単体硫黄(硫黄そのもののほか多量体で存在するものも含む。)を意味する。
 また、改質硫黄は、硫黄と改質剤とを混練して得られるものである。例えば、純硫黄と改質添加剤であるオレフィン系化合物とを混練し、硫黄の一部を硫黄ポリマーに改質した改質硫黄を得ることができる。固体粒子間に硫黄ないし改質硫黄が熱溶融凝固物として隙間なく存在することにより、固体粒子間を成長してきたLiデンドライトを物理的にブロックすることができる。
 また、デンドライトと硫黄とが接触することにより、Liデンドライトと硫黄との反応も生じ得る。Liデンドライトと硫黄とが接触すると、2Li+S→LiSの反応が生じ、Liデンドライトの成長が止まると考えられる。このような反応が生じると、固体粒子間には反応生成物も共存した状態となる。この反応生成物はLiデンドライトよりも硬い電子絶縁性の化合物であるため、Liデンドライトの成長をブロックすることができると考えられる。Liデンドライトと硫黄との反応により、固体粒子間の電子絶縁性材料の体積が広がり、固体粒子間にわずかに残っていた空隙をより確実に塞ぐ効果も期待できる。
 本発明の固体電解質膜中、電子絶縁性材料の熱溶融凝固物の含有量は、5~45体積%が好ましく、10~40体積%がより好ましく、20~30体積%がさらに好ましい。
 本発明の固体電解質膜において、固体粒子間には有機バインダーが含有されてもよい。このような有機バインダーとして、二次電池の固体電解質層に通常用いられる有機バインダーを適宜に採用することができる。
<固体電解質膜(セパレータ)の製造>
 本発明の固体電解質膜の製造方法は、本発明の規定を満たす固体電解質膜が得られれば特に制限されない。本発明の固体電解質膜の製造方法の一例を以下に説明する。
 少なくとも上記電子絶縁性無機粒子と、上記無機固体電解質粒子と、上記電子絶縁性材料とを混練して組成物を調製する。この混練は、電子絶縁性材料の熱溶融温度以上とすることが好ましい。その後、混練物を、電子絶縁性材料の熱溶融温度以上の温度で、ローラー機等を用いて延伸し、本発明で規定する厚さの薄層シートを形成する。その後、冷却することにより、電子絶縁性材料が熱溶融状態から凝固して、固体粒子間に電子絶縁性材料の熱溶融凝固物が充填された状態の固体電解質膜を得ることができる。
 電子絶縁性材料の熱溶融状態からの凝固は、加圧下で行うことが好ましい。例えば、100MPa以上(好ましくは140MPa以上、より好ましくは160MPa以上、さらに好ましくは200MPa以上、通常は1000MPa以下)の加圧下で、電子絶縁性材料の熱溶融物を冷却して凝固させることにより、熱溶融した電子絶縁性材料のアモルファス状態を十分に維持した状態で凝固させることができる。すなわち、固体粒子間の空隙を埋める電子絶縁性材料の熱溶融凝固物の結晶化を抑制でき、Liデンドライト、電解液などの通り道となり得るわずかな空隙の発生も、効果的に抑えることができる。
 こうして得られる固体電解質膜の厚さは、[無機固体電解質粒子の粒子径×0.7]以上[無機固体電解質粒子の粒子径×1.3]以下である。なお、固体電解質膜の厚さが無機固体電解質粒子の粒子径よりも大きくても、この「粒子径」は上記の通り平均一次粒子径であるため、無機固体電解質粒子の粒子径×1.3以下であれば、十分な数の無機固体電解質粒子が1粒子で正極と負極の両方に接することができる。これにより、Liイオン伝導をスムーズに行うことができる。
 Liイオン伝導性をより高める観点から、固体電解質膜の厚さは[無機固体電解質粒子の粒子径×1.2]以下が好ましく、[無機固体電解質粒子の粒子径×1.15]以下とすることも好ましく、[無機固体電解質粒子の粒子径×1.1]以下とすることも好ましく、[無機固体電解質粒子の粒子径×1.0]以下とすることも好ましい。
 本発明において固体電解質膜の厚さは、固体電解質膜の断面について10μm間隔で50ヶ所の厚さを測定し、それらを算術平均した値とする。固体電解質膜の断面を走査型電子顕微鏡(SEM)で観察することにより、厚さを測定することができる。
<リチウムイオン二次電池の層構成>
 本発明のLiイオン二次電池には、本発明の固体電解質膜をセパレータとして有する限り、上述した通り種々の電池形態が含まれる。本発明のLiイオン二次電池の好ましい実施形態について図面を参照して説明する。なお、下記で言及する図面では、特段の断りのない限り、正極集電体と負極集電体を省略している。また、各図面は、本発明の理解を容易にするための模式図であり、各部材のサイズないし相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。また、本発明で規定する事項以外はこれらの図面に示された外形、形状に限定されるものでもない。
- 実施形態-1 -
 図2に示す実施形態-1のLiイオン二次電池では、正極活物質層として、電解液を含む半固体状の正極活物質層21を採用している。この半固体正極活物質層21に接して、無機固体電解質粒子25、電子絶縁性無機粒子26及び電子絶縁性材料の熱溶融凝固物27を含む本発明の固体電解質膜22が設けられ、この固体電解質膜22に接して、硫化物系無機固体電解質粒子を含有する固体電解質層23が積層されている。この硫化物系無機固体電解質は、酸化物系無機固体電解質に比べてリチウムイオンの捕捉作用が小さくLiイオン伝導性が高い。他方、硫化物系無機固体電解質は電解液と接触すると副反応を生じ、分解等を生じやすいものである。
 実施形態-1では、固体電解質層23の上に金属Liの負極24を設けている。金属リチウム負極24と固体電解質膜22との間に固体電解質層23を設けることにより、金属Li負極との接触抵抗が低く、Liデンドライト耐性に優れた電池とすることができる。
 固体電解質層23は、硫化物系無機固体電解質粒子の他、通常の全固体二次電池の固体電解質層に含まれ得る各種成分を含有することができる。例えば、有機ポリマー等の有機バインダー、イオン導電助剤等を挙げることができる。また、固体電解質層23の固体粒子間に、固体電解質膜22と同様に電子絶縁性材料の熱溶融凝固物を充填した形態としてもよい。
 この実施形態-1では、上記の通り、電解液を含む半固体正極活物質層21を採用している。他方、半固体正極活物質層21に接する固体電解質膜22を構成する無機固体電解質粒子25は、電解液耐性を有する酸化物系無機固体電解質等により構成されている。したがって、半固体正極活物質層21に直接、固体電解質膜22を積層した形態とすることができる。また、固体電解質膜22は、固体粒子間の空隙が電子絶縁性材料の熱溶融凝固物27で隙間なく充填されており、この凝固物27は結晶化も抑えられている。それゆえ半固体正極活物質層21から負極側への電解液の透過をより確実にブロックすることができ、その上の固体電解質層23を構成する硫化物系無機固体電解質と電解液との副反応を防ぐことができる。
 また、固体電解質膜22は無機固体電解質粒子が事実上単層に配された薄いセパレータでありながらも、負極から成長するLiデンドライトを効果的にブロックすることができる。
 実施形態-1では、半固体正極活物質層21を採用しており、正極活物質層を厚くすることができる。それゆえ高エネルギー密度を実現できる。また、負極を理論容量の大きな金属Liにより形成しており、この点も高エネルギー密度化に寄与する。
 上記固体電解質層23を構成する硫化物系無機固体電解質について説明する。硫化物系無機固体電解質自体は公知であり、全固体二次電池の固体電解質として広く用いられているものを特に制限なく用いることができる。硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、SおよびPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的に応じて、Li、SおよびP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質としては、例えば、下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1はさらに、1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1はさらに、2.5~10が好ましく、3.0~8.5がより好ましい。e1はさらに、0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、PおよびSを含有するLi-P-S系ガラス、またはLi、PおよびSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。たとえばLiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法および溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
- 実施形態-2 -
 図3に示す実施形態-2のLiイオン二次電池において、半固体正極活物質層31及び固体電解質膜32は、それぞれ実施形態-1の半固体正極活物質層21及び固体電解質膜22と同じである。この実施形態-2では、固体電解質膜32に接して、その負極側に電解質を含む半固体負極活物質層33が配されている。
 実施形態-2では、正負極間に本発明の固体電解質膜がセパレータとして配され、無機固体電解質粒子が事実上単層に配された薄いセパレータでありながらも、負極から成長するLiデンドライトを効果的にブロックすることができる。
 実施形態-2では、半固体正極活物質層31と半固体負極活物質層33を採用しており、両電極活物質層を厚くすることができる。それゆえ、高エネルギー密度を実現できる。また、半固体正極活物質層31の電解液と半固体負極活物質層33の電解液は、固体電解質膜32により分離されており、交り合うことがない。したがって、半固体正極活物質層31の電解液と半固体負極活物質層33の電解液とを異なる電解液とすることができる。これにより、正極および負極に使用する活物質の選択の幅が広がる。
- 実施形態-3 -
 図4に示す実施形態-3は、いわゆる全固体Liイオン二次電池である。正極活物質層41と負極活物質層43との間に配する無機固体電解質層として、本発明の固体電解質膜42が配されている。固体電解質膜42は、実施形態-1の固体電解質膜22と同じである。
- 実施形態-4 -
 図5に示す実施形態-4のLiイオン二次電池は、実施形態-1において、半固体正極活物質層21と固体電解質膜22との間にさらにセパレータシート28を配した構成をとる。このセパレータシート28は、電解液Liイオン二次電池において通常用いられるセパレータを広く適用することができる。セパレータシート28の構成材料として、例えば、多孔質のポリマー材料、無機材料、有機無機ハイブリッド材料またはガラス繊維などが挙げられる。セパレータシート28の隙間の占める体積比率、すなわち気孔率は、20%~90%が好ましく、35%~80%がより好ましい。
 上記ポリマー材料としては、例えば、セルロース不織布、ポリエチレン、ポリプロピレンなどが挙げられ、これらを併用したセパレータシートを用いることもできる。孔径、気孔率、孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したものも好ましい。
 上記無機材料としては、例えば、アルミナ、二酸化珪素等の酸化物; 窒化アルミ、窒化珪素等の窒化物; 硫酸バリウム、硫酸カルシウム等の硫酸塩が挙げられる。
 半固体正極活物質層21と固体電解質膜22との間にさらにセパレータシート28を配することにより、電解液の存在下で正極活物質、導電助剤、電子絶縁性材料の熱溶融凝固物(硫黄)等が共存した状態ができるのを防ぐことができ、正極活物質ないし導電助剤と電子絶縁性材料の熱溶融凝固物(硫黄)との副反応を防ぐことができる。
- 実施形態-5 -
 図6に示す実施形態-5のLiイオン二次電池は、実施形態-2において、半固体正極活物質層31と固体電解質膜32との間にさらにセパレータシート37を配した構成をとる。このセパレータシート37は、実施形態-4で説明したセパレータシート28と同じである。
 半固体正極活物質層31と固体電解質膜32との間にさらにセパレータシート37を配することにより、電解液の存在下で正極活物質、導電助剤、電子絶縁性材料の熱溶融凝固物(硫黄)等が共存した状態ができるのを防ぐことができ、正極活物質ないし導電助剤と電子絶縁性材料の熱溶融凝固物(硫黄)との副反応を防ぐことができる。
- 実施形態-6 -
 図7に示す実施形態-6のLiイオン二次電池は、実施形態-2において、半固体正極活物質層31と固体電解質膜32との間にさらにセパレータシート37を配し、かつ、固体電解質膜32と半固体負極活物質層33との間にもセパレータシート38を配した構成をとる。これらのセパレータシート37とセパレータシート38は、実施形態-4で説明したセパレータシート28と同じである。
 半固体正極活物質層31と固体電解質膜32との間にさらにセパレータシート37を配することにより、電解液の存在下で正極活物質、導電助剤、電子絶縁性材料の熱溶融凝固物(硫黄)等が共存した状態ができるのを防ぐことができ、正極活物質ないし導電助剤と電子絶縁性材料の熱溶融凝固物(硫黄)との副反応を防ぐことができる。
 同様に、半固体負極活物質層33と固体電解質膜32との間にさらにセパレータシート38を配することにより、電解液の存在下で負極活物質、導電助剤、電子絶縁性材料の熱溶融凝固物(硫黄)等が共存した状態ができるのを防ぐことができ、負極活物質ないし導電助剤と電子絶縁性材料の熱溶融凝固物(硫黄)との副反応を防ぐことができる。
 本発明のLiイオン二次電池の好ましい実施形態について図面を参照して説明してきたが、本発明は、本発明で規定すること以外、これらの形態に限定されない。例えば、本発明のLiイオン二次電池は本発明の固体電解質膜を複数有していてもよい。例えば、本発明の固体電解質膜を2層に積層して、セパレータとして用いることもできる。
<リチウムイオン二次電池の用途>
 本発明のリチウムイオン二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 なかでも、高容量かつ高レート放電特性が要求されるアプリケーションに適用することが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定される。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。
 本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。
[実施例1]
<実施例1-1> 固体電解質膜(セパレータ)の調製
 酸化物系無機固体電解質としてLLZ(LiLaZr12、粒子径3.0μm、豊島製作所製)を50体積%、Al(粒子径50nm、SkySpring Nanomaterials社製)を25体積%、硫黄(S、Aldrich社製、純度>99.98%)を25体積%の割合で混ぜて、140℃で混練した。150℃に加熱されたローラー機で、2枚のアルミニウム箔で混練物を挟んだ状態で、160MPaでロールプレスして延伸し、アルミニウム箔を除いた部分の厚さが3.5μmのシートを作製した。このシートを160℃、550MPaの条件で温水熱間プレスし、次いで冷却して実施例1-1の固体電解質膜を得た。得られた固体電解質膜の厚さは3.0μmであった。
<実施例1-2> Liイオン二次電池の調製
<正極シートの作製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、国際公開第2018/164051号の[参考例1]に記載の方法で合成したLPS(硫化物系無機固体電解質)2.0gと、スチレンブタジエンゴム(商品コード182907、アルドリッチ社製)0.1gと、分散媒としてオクタン22gとを投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7にセットし、温度25℃で、回転数300rpmで2時間攪拌した。その後、正極活物質LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム)7.9gを容器に投入し、再びこの容器を遊星ボールミルP-7にセットし、温度25℃、回転数100rpmで15分間混合を続けた。このようにして、正極用組成物を得た。
 次に、集電体となる厚み20μmのアルミ箔状に、上記で得られた正極用組成物をベーカー式アプリケーターにより塗布し、80℃で2時間加熱して、正極用組成物を乾燥させた。その後、ヒートプレス機を用いて、所定の密度になるように乾燥させた正極層用組成物を加熱(120℃)しながら加圧(600MPa、1分)した。こうして、膜厚110μmの正極活物質層を有する正極シートを作製した。
 実施例1-1の固体電解質膜の表面に、上記正極シートを、正極活物質層が接するように重ねた。また、固体電解質膜の、正極シート側とは反対側にはリチウム箔を重ねた。こうして得られた積層体に、拘束部材となる拘束板とネジを使い、トルクレンチでネジの締付力を調整して拘束圧を8MPaとし、実施例1-2の全固体Liイオン二次電池を得た。
[実施例2]
<実施例2-1> 固体電解質膜(セパレータ)の調製
 実施例1-1において、使用するLLZの粒子径を8.0μmに変更したこと以外は、実施例1-1と同様にして、実施例2-1の固体電解質膜(厚さ8.5μm)を得た。
<実施例2-2> Liイオン二次電池の調製
 実施例2-1の固体電解質膜を用いて、実施例1-2と同様にして実施例2-2の全固体Liイオン二次電池を得た。
[比較例1]
<比較例1-1> 固体電解質膜(セパレータ)の調製
 酸化物系無機固体電解質としてLLZ(LiLaZr12、粒子径3.0μm、豊島製作所製)を50体積%、Al(粒子径500nm、SkySpring Materials社製)を25体積%、硫黄(S、Aldrich社製、純度>99.98%)を25体積%の割合で混ぜて、140℃で混練した。150℃に加熱されたローラー機で、2枚のアルミニウム箔で混練物を挟んだ状態で、24MPaでロールプレスして延伸し、アルミニウム箔を除いた部分の厚さが100μmのシートを作製した。得られたシートを冷却し、アルミニウム箔を剥がして、比較例1-1の固体電解質膜を得た。
<比較例1-2> Liイオン二次電池の調製
 比較例1-1の固体電解質膜を用いて、実施例1-2と同様にして比較例1-2の全固体Liイオン二次電池を得た。
[比較例2]
<比較例2-1> 固体電解質膜(セパレータ)の調製
 比較例1-1において、Alとして粒子径50nmのもの(実施例1-1と同じ)を用いたこと以外は、比較例1-1と同様にして比較例2-1の固体電解質膜(厚さ100μm)を得た。
<比較例2-2> Liイオン二次電池の調製
 比較例2-1の固体電解質膜を用いて、実施例1-2と同様にして比較例1-2の全固体Liイオン二次電池を得た。
[比較例3]
<比較例3-1> 固体電解質膜(セパレータ)の調製
 実施例1-1において、ロールプレスによる延伸を、150℃、24MPaの条件とし、温水熱間プレスは行わなかったこと以外は、実施例1-1と同様にして比較例3-1の固体電解質膜(厚さ3.5μm)を得た。
<比較例3-2> Liイオン二次電池の調製
 比較例3-1の固体電解質膜を用いて、実施例1-2と同様にして比較例3-2の全固体Liイオン二次電池を得た。
[試験例]
<硫黄の熱溶融凝固物の状態の評価>
 上述した顕微ラマン分光法により、固体粒子間を埋める硫黄の熱溶融凝固物がアモルファス状態であるか、結晶化状態であるかを調べた。
<充放電サイクル特性の評価>
 上記で作製した各全固体Liイオン二次電池を用いて、下記条件により充放電を行い、充放電サイクル特性試験を実施した。充電1回とそれに続く放電1回で1サイクルとした。
(条件)
 30℃、電流密度0.09mA/cm(0.05Cに相当)、4.2V、一定電流条件(0.36mA/cm)で充放電
 内部短絡が生じた場合は充電が完了しないため、50時間で充電を終了させ、放電させた。内部短絡の有無は、充電時の急激な電圧降下の有無により判断した。
 下記評価基準に基づき、充放電サイクル特性を評価した。
-充放電サイクル特性評価基準-
 A:3サイクル以上でも短絡なし
 B:2サイクル以上3サイクル未満で短絡
 C:1サイクル以上2サイクル未満で短絡
 D:1サイクル未満で短絡
 結果を下表に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表に示される通り、本発明の固体電解質膜は、無機固体電解質粒子を事実上単層に並べた極薄膜状として電池抵抗を抑えているにもかかわらず、これをセパレータとして用いたLiイオン二次電池は充放電サイクル特性に優れていた。
 本発明の固体電解質膜は無機固体電解質として電解質耐性を有するものを用いている。したがって、本発明の固体電解質膜は、電解液二次電池、全固体二次電池といったLiイオン二次電池の形態を問わずにセパレータとして適用することができ、得られるLiイオン二次電池の電池抵抗を抑えながら、Liイオン二次電池のサイクル特性をより高めることができることがわかる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2019年10月30日に日本国で特許出願された特願2019-197748に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
10        全固体二次電池
1         負極集電体
2         負極活物質層
3         固体電解質層
4         正極活物質層
5         正極集電体
6         作動部位
21、31     半固体正極活物質層
22、32、42  固体電解質膜(セパレータ)
23        固体電解質層(硫化物系無機固体電解質含有層)
24        金属リチウム層(Li箔)
25、34、44  無機固体電解質粒子
26、35、45  電子絶縁性無機粒子
27、36、46  電子絶縁性材料の熱溶融凝固物
28、37、38  セパレータシート
33        半固体負極活物質層
41        全固体正極活物質層
43        全固体負極活物質層
 

Claims (14)

  1.  粒子径が10~500nmの電子絶縁性無機粒子と、
     粒子径が該電子絶縁性無機粒子よりも大きく、電解液耐性とイオン伝導性とを有する無機固体電解質粒子と、
     前記粒子間の空隙を埋める、100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性材料の熱溶融凝固物とを有する固体電解質膜と;
     前記固体電解質膜の一方の側に配された正極層と;
     前記固体電解質膜の、前記正極層が配された側とは反対側に配された負極層と;
    を有し、
     前記の電子絶縁性材料の熱溶融凝固物がアモルファス状態にあり、
     前記固体電解質膜の厚さが、[前記無機固体電解質粒子の粒子径×0.7]以上[前記無機固体電解質粒子の粒子径×1.3]以下である、リチウムイオン二次電池。
  2.  前記正極層を構成する正極活物質層が電解液を含み、該正極活物質層の厚さが200~2000μmである、請求項1に記載のリチウムイオン二次電池。
  3.  前記負極層を構成する負極活物質が金属リチウムを含む、請求項1又は2に記載のリチウムイオン二次電池。
  4.  前記負極層全体が金属リチウム層で構成され、該金属リチウム層と前記固体電解質膜との間に硫化物系無機固体電解質層を有する、請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
  5.  前記負極層を構成する負極活物質層が電解液を含む、請求項1又は2に記載のリチウムイオン二次電池。
  6.  前記リチウムイオン二次電池が全固体リチウムイオン二次電池である、請求項1に記載のリチウムイオン二次電池。
  7.  前記電子絶縁性材料が硫黄を含む、請求項1~7のいずれか1項記載のリチウムイオン二次電池。
  8.  前記電子絶縁性材料が、硫黄及び改質硫黄の少なくとも1種である、請求項7に記載のリチウムイオン二次電池。
  9.  前記電子絶縁性無機粒子の粒子径と前記無機固体電解質粒子の粒子径とが下記式を満たす、請求項1~8のいずれか1項に記載のリチウムイオン二次電池。
     5≦[無機固体電解質粒子の粒子径]/[電子絶縁性無機粒子の粒子径]
  10.  粒子径が10~500nmの電子絶縁性無機粒子と、
     粒子径が該電子絶縁性無機粒子よりも大きく、電解液耐性とイオン伝導性とを有する無機固体電解質粒子と、
     前記粒子間の空隙を埋める、100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性材料の熱溶融凝固物とを有し、
     前記の電子絶縁性材料の熱溶融凝固物がアモルファス状態にあり、
     厚さが[前記無機固体電解質粒子の粒子径×0.7]以上[前記無機固体電解質粒子の粒子径×1.3]以下である、リチウムイオン二次電池用固体電解質膜。
  11.  前記電子絶縁性材料が硫黄を含む、請求項10に記載のリチウムイオン二次電池用固体電解質膜。
  12.  前記電子絶縁性材料が、硫黄及び改質硫黄の少なくとも1種である、請求項11に記載のリチウムイオン二次電池用固体電解質膜。
  13.  粒子径が10~500nmの電子絶縁性無機粒子と
     粒子径が該電子絶縁性無機粒子よりも大きく、電解液耐性とLiイオン伝導性とを有する無機固体電解質粒子と、
     100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性材料と
    を含有する組成物を用いて前記電子絶縁性材料が熱溶融した状態の層を形成し、100MPa以上の加圧下で前記電子絶縁性材料の熱溶融物を凝固させることを含む、請求項10~12のいずれか1項記載のリチウムイオン二次電池用固体電解質膜の製造方法。
  14.  請求項10~12のいずれか1項記載のリチウムイオン二次電池用固体電解質膜を正極と負極との間に配することを含む、リチウムイオン二次電池の製造方法。
     
PCT/JP2020/040486 2019-10-30 2020-10-28 リチウムイオン二次電池及びその製造方法、並びにリチウムイオン二次電池用固体電解質膜及びその製造方法 WO2021085488A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080066349.9A CN114514645A (zh) 2019-10-30 2020-10-28 锂离子二次电池及其制造方法、以及锂离子二次电池用固体电解质膜及其制造方法
JP2021553661A JP7297916B2 (ja) 2019-10-30 2020-10-28 リチウムイオン二次電池及びその製造方法、並びにリチウムイオン二次電池用固体電解質膜及びその製造方法
US17/699,183 US20220209292A1 (en) 2019-10-30 2022-03-21 Lithium ion secondary battery and manufacturing method therefor, and solid electrolyte membrane for lithium ion secondary battery and manufacturing method therefor
JP2023097602A JP2023116686A (ja) 2019-10-30 2023-06-14 リチウムイオン二次電池及びその製造方法、並びにリチウムイオン二次電池用固体電解質膜及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019197748 2019-10-30
JP2019-197748 2019-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/699,183 Continuation US20220209292A1 (en) 2019-10-30 2022-03-21 Lithium ion secondary battery and manufacturing method therefor, and solid electrolyte membrane for lithium ion secondary battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2021085488A1 true WO2021085488A1 (ja) 2021-05-06

Family

ID=75716009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040486 WO2021085488A1 (ja) 2019-10-30 2020-10-28 リチウムイオン二次電池及びその製造方法、並びにリチウムイオン二次電池用固体電解質膜及びその製造方法

Country Status (4)

Country Link
US (1) US20220209292A1 (ja)
JP (2) JP7297916B2 (ja)
CN (1) CN114514645A (ja)
WO (1) WO2021085488A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793976A (zh) * 2021-09-08 2021-12-14 远景动力技术(江苏)有限公司 半固态锂离子电池及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080540A (zh) * 2023-08-17 2023-11-17 高能时代(珠海)新能源科技有限公司 一种低孔隙率的电解质复合材料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378405A (ja) * 1986-09-19 1988-04-08 松下電器産業株式会社 異方性イオン伝導体
JP2001351615A (ja) * 2000-06-08 2001-12-21 Sumitomo Electric Ind Ltd リチウム二次電池負極
JP2015527722A (ja) * 2012-08-29 2015-09-17 コーニング インコーポレイテッド イオン伝導性複合電解質
JP2016511521A (ja) * 2013-03-15 2016-04-14 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. 半固体正極及び高エネルギー密度負極を有する非対称型電池
JP2017183111A (ja) * 2016-03-30 2017-10-05 旭化成株式会社 セパレータおよびその製造方法
WO2018164051A1 (ja) * 2017-03-07 2018-09-13 富士フイルム株式会社 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777593B2 (ja) * 2002-11-29 2011-09-21 株式会社オハラ リチウムイオン二次電池の製造方法
EP1732152B1 (en) * 2004-04-01 2014-03-05 Sumitomo Electric Industries, Ltd. Negative electrode member for secondary lithium battery and process for producing the same
JP5515665B2 (ja) * 2009-11-18 2014-06-11 ソニー株式会社 固体電解質電池、正極活物質および電池
CN102859780B (zh) * 2010-02-26 2015-07-01 日本瑞翁株式会社 全固体二次电池及全固体二次电池的制造方法
WO2017099247A1 (ja) * 2015-12-11 2017-06-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
EP3389129B8 (en) * 2015-12-11 2023-10-11 FUJIFILM Corporation Solid electrolyte composition, binder particles, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing same
CN109478685B (zh) * 2016-06-03 2022-03-25 富士胶片株式会社 固体电解质组合物、以及含固体电解质的片材、全固态二次电池、电极片及它们的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378405A (ja) * 1986-09-19 1988-04-08 松下電器産業株式会社 異方性イオン伝導体
JP2001351615A (ja) * 2000-06-08 2001-12-21 Sumitomo Electric Ind Ltd リチウム二次電池負極
JP2015527722A (ja) * 2012-08-29 2015-09-17 コーニング インコーポレイテッド イオン伝導性複合電解質
JP2016511521A (ja) * 2013-03-15 2016-04-14 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. 半固体正極及び高エネルギー密度負極を有する非対称型電池
JP2017183111A (ja) * 2016-03-30 2017-10-05 旭化成株式会社 セパレータおよびその製造方法
WO2018164051A1 (ja) * 2017-03-07 2018-09-13 富士フイルム株式会社 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793976A (zh) * 2021-09-08 2021-12-14 远景动力技术(江苏)有限公司 半固态锂离子电池及其制备方法
CN113793976B (zh) * 2021-09-08 2024-05-17 远景动力技术(江苏)有限公司 半固态锂离子电池及其制备方法

Also Published As

Publication number Publication date
US20220209292A1 (en) 2022-06-30
JPWO2021085488A1 (ja) 2021-05-06
JP7297916B2 (ja) 2023-06-26
JP2023116686A (ja) 2023-08-22
CN114514645A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6895533B2 (ja) 電極積層体、全固体積層型二次電池及びその製造方法
JP2023116686A (ja) リチウムイオン二次電池及びその製造方法、並びにリチウムイオン二次電池用固体電解質膜及びその製造方法
JP6431707B2 (ja) 全固体電池用電極層および全固体電池
JP6966502B2 (ja) 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池、並びに、これらの製造方法
JP7064613B2 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
CN111971758B (zh) 固体电解质片、全固态二次电池用负极片及全固态二次电池的制造方法
JP6799714B2 (ja) 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池の製造方法
DE102019111405A1 (de) Sulfid- und oxysulfidglas und glaskeramische festkörperelektrolyte für elektrochemische zellen
WO2020196040A1 (ja) 全固体リチウムイオン二次電池とその製造方法、及び負極用積層シート
JP6948382B2 (ja) 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シート
JP7119214B2 (ja) 全固体二次電池及びその製造方法
WO2018164050A1 (ja) 無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法
JP6920413B2 (ja) 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法
KR102657585B1 (ko) 고체전해질 및 이를 포함한 전지
JP7508037B2 (ja) 2種の固体電解質層を含む全固体電池
WO2023239215A1 (ko) 황화물계 고체 전해질, 황화물계 고체 전해질의 제조 방법, 및 황화물계 고체 전해질을 포함하는 전고체 전지
WO2022202901A1 (ja) 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法
KR20240027207A (ko) 리튬금속전지용 양극-다공성막 조립체, 이를 포함하는 리튬금속전지, 및 리튬금속전지용 양극-다공성막 조립체 제조방법
JP2023181101A (ja) 正極合材
KR20220135535A (ko) 2종의 고체전해질층을 포함하는 전고체전지
CA3240307A1 (en) Solid material comprising li, mg, p, s and halogen elements
KR20240065893A (ko) 데칼코마니형 박형 전고체 전지 제조방법
JP2023096783A (ja) 硫化物系固体電解質及び硫化物系固体電解質の製造方法
JP2023530328A (ja) 多孔性集電体を含む全固体電池及びこれを含む電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882272

Country of ref document: EP

Kind code of ref document: A1