WO2021079737A1 - 積層型lcフィルタ - Google Patents

積層型lcフィルタ Download PDF

Info

Publication number
WO2021079737A1
WO2021079737A1 PCT/JP2020/037927 JP2020037927W WO2021079737A1 WO 2021079737 A1 WO2021079737 A1 WO 2021079737A1 JP 2020037927 W JP2020037927 W JP 2020037927W WO 2021079737 A1 WO2021079737 A1 WO 2021079737A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
laminated
capacitor
side via
resonator
Prior art date
Application number
PCT/JP2020/037927
Other languages
English (en)
French (fr)
Inventor
圭介 小川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021554247A priority Critical patent/JP7322968B2/ja
Priority to CN202080071740.8A priority patent/CN114586115B/zh
Publication of WO2021079737A1 publication Critical patent/WO2021079737A1/ja
Priority to US17/696,390 priority patent/US20220209736A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • H03H7/0161Bandpass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1708Comprising bridging elements, i.e. elements in a series path without own reference to ground and spanning branching nodes of another series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the present invention relates to a laminated LC filter in which a plurality of LC resonators are formed on a laminated body in which a plurality of insulator layers are laminated.
  • Patent Document 1 discloses such a laminated LC filter.
  • FIG. 16 shows the laminated LC filter 1000 disclosed in Patent Document 1.
  • the laminated LC filter 1000 includes a laminated body 101 in which a plurality of insulator layers 101a to 101d are laminated.
  • the laminated body 101 has a rectangular parallelepiped shape.
  • a ground electrode 102 is formed on the main surface of the insulator layer 101a.
  • a plurality of capacitor electrodes 103 are formed on the main surface of the insulator layer 101b.
  • a plurality of planar electrodes 104 are formed on the main surface of the insulator layer 101c.
  • the insulator layer 101d is a protective layer, and no electrode is formed.
  • the capacitor electrode 103 and one end of the planar electrode 104 are connected by an open side via electrode 105b formed so as to penetrate the insulator layer 101c.
  • the other end of the flat electrode 104 and the ground electrode 102 are connected by a short-circuit side via electrode 105a formed through the insulator layers 101b and 101c.
  • An inductor is formed by a conductive path from the capacitor electrode 103 to the ground electrode 102 via the open side via electrode 105b, the flat electrode 104, and the short-circuit side via electrode 105a.
  • a capacitor is formed by the capacitance formed between the ground electrode 102 and the capacitor electrode 103.
  • An inductor and a capacitor are connected in parallel to form an LC resonator.
  • a plurality of LC resonators are formed so as to be arranged in parallel with each other between a pair of opposite end faces of the laminated body 1. Adjacent LC resonators are electromagnetically coupled to each other.
  • the laminated LC filter 1000 since a plurality of LC resonators are arranged adjacent to each other in parallel between a pair of opposite end faces of the laminated body 1, when the size is reduced or the number of stages is increased. , There is a problem that the distance between the LC resonators becomes short and the Q value of the LC resonator deteriorates. Then, there is a problem that the frequency characteristic and the insertion loss of the laminated LC filter 1000 are deteriorated due to the deterioration of the Q value of the LC resonator.
  • an object of the present invention is to review the structure of the LC resonator and provide a laminated LC filter in which the characteristics are improved while maintaining the product size.
  • the laminated LC filter includes a laminated body in which a plurality of insulating layers are laminated, and at least one ground electrode formed between layers of the insulating layers. , A plurality of capacitor electrodes formed between the layers of the insulator layer, at least one planar electrode formed between the layers of the insulator layer, and a plurality of via electrodes formed through the insulator layer.
  • the laminated body has a rectangular shape, and has a height direction which is a stacking direction of the insulator layer, a length direction orthogonal to the height direction, and a width direction orthogonal to the height direction and the length direction, respectively.
  • the via electrode includes an open side via electrode connecting the capacitor electrode and the planar electrode and a short-circuit side via electrode connecting the planar electrode and the ground electrode, and from the capacitor electrode, the open side via electrode, the planar electrode, and the like.
  • An inductor is formed by a conductive path leading to the ground electrode via the short-circuit side via electrode, a capacitor is formed by the capacitance formed between the ground electrode and the capacitor electrode, and the inductor and the capacitor are connected in parallel.
  • the short-circuit side via electrode of all the LC resonators formed in the laminated body is shared.
  • the Q value of the LC resonator is improved and the characteristics are improved.
  • FIG. 1A is a perspective view of the laminated LC filter 100 according to the first embodiment as viewed from the top surface side.
  • FIG. 1B is a perspective view of the laminated LC filter 100 as viewed from the mounting surface side.
  • FIG. 2A is a perspective view of the laminated LC filter 100 as viewed in the width direction W.
  • FIG. 2B is a perspective view of the laminated LC filter 100 as viewed in the length direction L.
  • It is an exploded perspective view of the laminated type LC filter 1100 which concerns on a comparative example.
  • FIG. 1A is a perspective view of the laminated LC filter 100 according to the first embodiment as viewed from the top surface side.
  • FIG. 1B is a perspective view of the laminated LC filter 100 as viewed from the mounting surface side.
  • FIG. 2A is a perspective view of the laminated
  • FIG. 6A is a graph showing the attenuation characteristics and the reflection characteristics of Example 1 and Comparative Example 1.
  • FIG. 6B is a graph showing the insertion loss characteristics of Example 1 and Comparative Example 1.
  • 7 (A) and 7 (B) are explanatory views showing Experiment 2, respectively. It is an exploded perspective view of the laminated type LC filter 200 which concerns on 2nd Embodiment. It is an equivalent circuit diagram of a laminated LC filter 200. It is an exploded perspective view of the laminated type LC filter 300 which concerns on 3rd Embodiment. It is an equivalent circuit diagram of a laminated LC filter 300. It is a graph which shows the attenuation characteristic and the reflection characteristic of Example 2 and Example 2.
  • FIG. 13A is an explanatory diagram of the laminated LC filter 400 according to the fourth embodiment.
  • FIG. 13B is an explanatory diagram of the laminated LC filter 500 according to the fifth embodiment.
  • FIG. 14A is an explanatory diagram of the laminated LC filter 600 according to the sixth embodiment.
  • FIG. 14B is an explanatory diagram of the laminated LC filter 700 according to the seventh embodiment.
  • FIG. 14C is an explanatory diagram of the laminated LC filter 800 according to the eighth embodiment.
  • FIG. 5 is an exploded perspective view of a main part of the laminated LC filter 900 according to the ninth embodiment. It is an exploded perspective view of the laminated LC filter 1000 disclosed in Patent Document 1.
  • each embodiment exemplifies the embodiment of the present invention, and the present invention is not limited to the content of the embodiment. It is also possible to combine the contents described in different embodiments, and the contents of the embodiment are also included in the present invention.
  • the drawings are for the purpose of assisting the understanding of the specification, and may be drawn schematically, and the drawn components or the ratio of dimensions between the components are described in the specification. It may not match the ratio of those dimensions.
  • the components described in the specification may be omitted in the drawings, or may be drawn by omitting the number of components.
  • the height direction T, the length direction L, and the width direction W of the laminated LC filter 100 may be indicated by arrows, and these directions may be referred to in the following description.
  • the height direction T is the direction in which the insulator layers 1a to 1l, which will be described later, are laminated.
  • the length direction L is the direction in which the first input / output terminal T1 and the second input / output terminal T2, which will be described later, are arranged.
  • the width direction W is a direction orthogonal to the height direction T and the length direction L, respectively.
  • the height direction T, the length direction L, and the width direction W of the laminated LC filter 100 are also the height direction T, the length direction L, and the width direction W of the laminated body 1, which will be described later.
  • FIG. 1A is a perspective view of the laminated LC filter 100 as viewed from the top surface side.
  • FIG. 1B is a perspective view of the laminated LC filter 100 as viewed from the mounting surface side.
  • FIG. 2A is a perspective view of the laminated LC filter 100 as viewed in the width direction W.
  • FIG. 2B is a perspective view of the laminated LC filter 100 as viewed in the length direction L.
  • FIGS. 2A and 2B when a plurality of components overlap, the component having the higher importance is shown in the explanation using the figure, and the component having the lower importance is shown. It may be omitted.
  • FIG. 3 is an exploded perspective view of the laminated LC filter 100.
  • FIG. 4 is an equivalent circuit diagram of the laminated LC filter 100.
  • the laminated LC filter 100 includes a laminated body 1.
  • the laminated body 1 is composed of one in which insulator layers 1a to 1l are laminated.
  • the laminate 1 (insulator layers 1a to 1l) can be formed of, for example, low-temperature co-fired ceramics.
  • the material of the laminate 1 is not limited to low-temperature co-fired ceramics, and may be other types of ceramics, resins, or the like.
  • a first input / output terminal T1, a second input / output terminal T2, and a ground terminal TG are formed on the lower main surface of the insulator layer 1a.
  • the first input / output terminal T1, the second input / output terminal T2, and the ground terminal TG are shown by a broken line apart from the insulator layer 1a.
  • Via electrodes 4a, 4b, 4c, 4d, 4e, and 4f are formed so as to penetrate between both main surfaces of the insulator layer 1a.
  • the ground electrode 5 and the capacitor electrodes 6a and 6b are formed on the upper main surface of the insulator layer 1a.
  • Common short-circuit side via electrodes 7a and 7b are formed so as to penetrate between both main surfaces of the insulator layer 1b.
  • Capacitor electrodes 6c, 6d, 6e, 6f are formed on the upper main surface of the insulator layer 1b.
  • the above-mentioned common short-circuit side via electrodes 7a and 7b are formed so as to penetrate between both main surfaces of the insulator layer 1c. Further, the open side via electrodes 8a, 8b, 8c, and 8d are newly formed so as to penetrate between both main surfaces of the insulator layer 1c.
  • Capacitor electrodes 6g, 6h, 6i, 6j are formed on the upper main surface of the insulator layer 1c.
  • the above-mentioned common short-circuit side via electrodes 7a and 7b and open side via electrodes 8a, 8b, 8c and 8d are formed so as to penetrate between both main surfaces of the insulator layer 1d.
  • the above-mentioned common short-circuit side via electrodes 7a and 7b and open side via electrodes 8a, 8b, 8c and 8d are formed so as to penetrate between both main surfaces of the insulator layer 1e.
  • the above-mentioned common short-circuit side via electrodes 7a and 7b and open side via electrodes 8a, 8b, 8c and 8d are formed so as to penetrate between both main surfaces of the insulator layer 1f.
  • the above-mentioned common short-circuit side via electrodes 7a and 7b and open side via electrodes 8a, 8b, 8c and 8d are formed so as to penetrate between both main surfaces of the insulator layer 1 g.
  • the above-mentioned common short-circuit side via electrodes 7a and 7b and open side via electrodes 8a, 8b, 8c and 8d are formed so as to penetrate between both main surfaces of the insulator layer 1h.
  • the above-mentioned common short-circuit side via electrodes 7a and 7b and open side via electrodes 8a, 8b, 8c and 8d are formed so as to penetrate between both main surfaces of the insulator layer 1i.
  • the above-mentioned common short-circuit side via electrodes 7a and 7b and open side via electrodes 8a, 8b, 8c and 8d are formed so as to penetrate between both main surfaces of the insulator layer 1j.
  • the above-mentioned common short-circuit side via electrodes 7a and 7b and open side via electrodes 8a, 8b, 8c and 8d are formed so as to penetrate between both main surfaces of the insulator layer 1k.
  • a rectangular flat electrode 9 is formed on almost the entire upper surface of the insulator layer 1k.
  • the insulator layer 1l is a protective layer, and no electrode is formed.
  • Each material of the plane electrode 9 is arbitrary, but for example, copper, silver, aluminum, etc., or an alloy thereof can be used as a main component.
  • a plating layer may be formed on the surfaces of the first input / output terminal T1, the second input / output terminal T2, and the ground terminal TG.
  • the laminated LC filter 100 can be manufactured by a manufacturing method conventionally used for manufacturing a laminated LC filter.
  • the first input / output terminal T1 the second input / output terminal T2, the ground terminal TG, the via electrodes 4a to 4f, the ground electrode 5, the capacitor electrodes 6a to 6j, and the common short-circuit side via electrode 7a. , 7b, the open side via electrodes 8a to 8d, and the plane electrode 9 will be described.
  • the first input / output terminal T1 is connected to the capacitor electrode 6a by the via electrode 4a.
  • the second input / output terminal T2 is connected to the capacitor electrode 6b by the via electrode 4b.
  • the ground terminal TG is connected to the ground electrode 5 by the via electrodes 4c to 4f.
  • the capacitor electrode 6c is connected to the flat electrode 9 by the open side via electrode 8a.
  • the capacitor electrode 6d is connected to the planar electrode 9 by the open side via electrode 8b.
  • the capacitor electrode 6e is connected to the planar electrode 9 by the open side via electrode 8c.
  • the capacitor electrode 6f is connected to the planar electrode 9 by the open side via electrode 8d.
  • the flat electrode 9 is connected to the ground electrode 5 by the common short-circuit side via electrodes 7a and 7b.
  • the laminated LC filter 100 having the above structure includes the equivalent circuit shown in FIG.
  • the laminated LC filter 100 includes a first input / output terminal T1, a second input / output terminal T2, and a ground terminal TG.
  • the ground terminal TG is connected to the ground when the laminated LC filter 100 is used.
  • Capacitors C01, C12, C23, C34, and C40 are connected in this order between the first input / output terminal T1 and the second input / output terminal T2.
  • Capacitor C14 is connected between the connection point between the capacitor C01 and the capacitor C12 and the connection point between the capacitor C34 and the capacitor C40.
  • the first LC resonator LC1 formed by connecting the inductor L1 and the capacitor C1 in parallel is connected between the connection point between the capacitor C01 and the capacitor C12 and the ground (ground terminal TG).
  • a second LC resonator LC2 formed by connecting the inductor L2 and the capacitor C2 in parallel is connected between the connection point between the capacitor C12 and the capacitor C23 and the ground.
  • a third LC resonator LC3 formed by connecting the inductor L3 and the capacitor C3 in parallel is connected between the connection point between the capacitor C23 and the capacitor C34 and the ground.
  • a fourth LC resonator LC4 formed by connecting the inductor L4 and the capacitor C4 in parallel is connected between the connection point between the capacitor C34 and the capacitor C40 and the ground.
  • the first LC resonator LC1 and the second LC resonator LC2 are electromagnetically coupled.
  • the second LC resonator LC2 and the third LC resonator LC3 are electromagnetically coupled.
  • the third LC resonator LC3 and the fourth LC resonator LC4 are electromagnetically coupled.
  • the laminated LC filter 100 is provided with the above equivalent circuit to form a four-stage bandpass type LC filter.
  • the capacitor C01 and the capacitor C40 can be omitted, respectively.
  • the first input / output terminal T1 is connected to the capacitor electrode 6a by the via electrode 4a.
  • the capacitor C01 is formed by the capacitance formed between the capacitor electrode 6a and the capacitor electrode 6c.
  • the capacitor C12 is formed by the capacitance formed between the capacitor electrode 6c and the capacitor electrode 6g and the capacitance formed between the capacitor electrode 6g and the capacitor electrode 6d, which are connected in series with each other. ..
  • the capacitor C23 is formed by the capacitance formed between the capacitor electrode 6d and the capacitor electrode 6h and the capacitance formed between the capacitor electrode 6h and the capacitor electrode 6e, which are connected in series with each other. ..
  • the capacitor C34 is formed by the capacitance formed between the capacitor electrode 6e and the capacitor electrode 6i and the capacitance formed between the capacitor electrode 6i and the capacitor electrode 6f, which are connected in series with each other. ..
  • the capacitor C14 is formed by the capacitance formed between the capacitor electrode 6c and the capacitor electrode 6j and the capacitance formed between the capacitor electrode 6j and the capacitor electrode 6f, which are connected in series with each other. ..
  • the capacitor C40 is formed by the capacitance formed between the capacitor electrode 6f and the capacitor electrode 6b. As described above, the capacitor electrode 6b is connected to the second input / output terminal T2 by the via electrode 4b.
  • the inductor L1 is formed by a conductive path from the capacitor electrode 6c to the ground electrode 5 via the open side via electrode 8a, the flat electrode 9, and the common short-circuit side via electrodes 7a and 7b.
  • the capacitor C1 is formed by the capacitance formed between the capacitor electrode 6c and the ground electrode 5. As described above, the inductor L1 and the capacitor C1 form the first LC resonator LC1.
  • the inductor L2 is formed by a conductive path from the capacitor electrode 6d to the ground electrode 5 via the open side via electrode 8b, the flat electrode 9, and the common short-circuit side via electrodes 7a and 7b.
  • the capacitor C2 is formed by the capacitance formed between the capacitor electrode 6d and the ground electrode 5. As described above, the inductor L2 and the capacitor C2 form the second LC resonator LC2.
  • the inductor L3 is formed by a conductive path from the capacitor electrode 6e to the ground electrode 5 via the open side via electrode 8c, the flat electrode 9, and the common short-circuit side via electrodes 7a and 7b.
  • the capacitor C3 is formed by the capacitance formed between the capacitor electrode 6e and the ground electrode 5. As described above, the inductor L3 and the capacitor C3 form the third LC resonator LC3.
  • the inductor L4 is formed by a conductive path from the capacitor electrode 6f to the ground electrode 5 via the open side via electrode 8d, the flat electrode 9, and the common short-circuit side via electrodes 7a and 7b.
  • the capacitor C4 is formed by the capacitance formed between the capacitor electrode 6f and the ground electrode 5.
  • the fourth LC resonator LC4 is formed by the inductor L4 and the capacitor C4.
  • the ground electrode 15 is connected to the ground terminal TG by the via electrodes 4c to 4f.
  • the structure of the laminated LC filter 100 shown in FIGS. 2 (A), 2 (B), and 3 constitutes an equivalent circuit of the laminated LC filter 100 shown in FIG.
  • the laminated LC filter 100 has a common short-circuit side via electrode 7a between the open side via electrodes 8a and 8b and the open side via electrodes 8c and 8d in the length direction L. , 7b are arranged. Further, as shown in FIG. 2B, the laminated LC filter 100 has a common short-circuit side via electrode between the open side via electrodes 8a and 8d and the open side via electrodes 8b and 8c in the width direction W. 7a and 7b are arranged.
  • the four open side via electrodes 8a to 8d are located at the four corners inside the laminated body 1. They are arranged separately, and common short-circuit side via electrodes 7a and 7b are arranged between them.
  • the laminated LC filter 100 includes a short-circuit side via electrode of the first LC resonator LC1, a short-circuit side via electrode of the second LC resonator LC2, a short-circuit side via electrode of the third LC resonator LC3, and a short circuit of the fourth LC resonator LC4.
  • the Q values of the first LC resonator LC1, the second LC resonator LC2, the third LC resonator LC3, and the fourth LC resonator LC4 can be changed. Each is improving. The reason for this will be briefly explained below.
  • the short-circuit side via electrodes of the first LC resonator LC1 to the fourth LC resonator LC4 are shared to form the common short-circuit side via electrodes 7a and 7b, so that the electrodes inside the laminate 1 are electrode.
  • the stacking body 1 has an improved degree of freedom of arrangement. It is possible to divide it into four corners and arrange them separately inside. Therefore, in the laminated LC filter 100, the Q values of the first LC resonator LC1 to the fourth LC resonator LC4 are improved, respectively.
  • the short-circuit side via electrodes of the first LC resonator LC1 to the fourth LC resonator LC4 are shared to form the common short-circuit side via electrodes 7a and 7b, so that the first LC resonator LC1 to the first LC resonator LC1 to No.
  • the common short-circuit side via electrodes 7a and 7b are also short-circuit side via electrodes of other LC resonators, but since they are their own short-circuit side via electrodes, they do not cause deterioration of the Q value. Therefore, in the laminated LC filter 100, the Q values of the first LC resonator LC1 to the fourth LC resonator LC4 are improved, respectively.
  • the common short-circuit side via electrodes of the first LC resonator LC1 to the fourth LC resonator LC4 are composed of two common short-circuit side via electrodes 7a and 7b to reduce the resistance. Therefore, the Q values of the first LC resonator LC1 to the fourth LC resonator LC4 are improved, respectively.
  • the degree of freedom in arranging the electrodes inside the laminated body 1 is improved, so that the common short-circuit side via electrodes 7a and 7b can be connected to the central portion of the ground electrode 5. ing. Therefore, for example, in the inductor L1 of the first LC resonator LC1, the current flowing from the capacitor electrode 6c to the ground electrode 5 via the open side via electrode 8a, the planar electrode 9, and the common short-circuit side via electrode 7a, 7b is It is possible to flow from the central portion of the ground electrode 5 in the entire circumferential direction (all directions over 360 °). This also reduces the resistance and improves the Q value of the first LC resonator LC1. For the same reason, the Q values of the second LC resonator LC2 to the fourth LC resonator LC4 are also improved.
  • the laminated LC filter 100 has excellent frequency characteristics and a small insertion loss because the Q values of the first LC resonator LC1 to the fourth LC resonator LC4 are improved respectively.
  • the short-circuit side via electrodes of the first LC resonator LC1 to the fourth LC resonator LC4 are shared to form common short-circuit side via electrodes 7a and 7b, so that the electrodes inside the laminated body 1 are formed.
  • the capacitor electrode 6j on the upper main surface of the insulator layer 1c, it is possible to skip between the first LC resonator LC1 and the fourth LC resonator LC4, which has been difficult until now.
  • Capacitor C14 for coupling can be easily formed.
  • Example 1 a laminated LC filter equivalent to the laminated LC filter 100 according to the first embodiment described above was created.
  • Comparative Example 1 a laminated LC filter 1100 having a conventional structure and having the same equivalent circuit as the laminated LC filter 100 (see FIG. 4) was created.
  • the structure of the LC filter 1100 is shown in FIG.
  • FIG. 5 is an exploded perspective view of the laminated LC filter 1100.
  • the laminated LC filter 1100 according to Comparative Example 1 includes a laminated body 11 in which insulator layers 11a to 11l are laminated.
  • a first input / output terminal T1, a second input / output terminal T2, and a ground terminal TG are formed on the lower main surface of the insulator layer 11a. This is the same as the laminated LC filter 100 according to the first embodiment.
  • Via electrodes 14a to 14f are formed so as to penetrate between both main surfaces of the insulator layer 11a.
  • the ground electrode 15 and the capacitor electrodes 16a and 16b are formed on the upper main surface of the insulator layer 11a.
  • Short-circuit side via electrodes 17a, 17b, 17c, 17d are formed so as to penetrate between both main surfaces of the insulator layer 11b.
  • Capacitor electrodes 16c, 16d, 16e, 16f are formed on the upper main surface of the insulator layer 11b.
  • the short-circuit side via electrodes 17a, 17b, 17c, and 17d described above are formed so as to penetrate between both main surfaces of the insulator layer 11c. Further, open side via electrodes 18a, 18b, 18c, and 18d are newly formed so as to penetrate between both main surfaces of the insulator layer 11c.
  • Capacitor electrodes 16g and 16h are formed on the upper main surface of the insulator layer 11c.
  • the short-circuit side via electrodes 17a, 17b, 17c, 17d and the open side via electrodes 18a, 18b, 18c, 18d described above are formed so as to penetrate between both main surfaces of the insulator layer 11d.
  • a capacitor electrode 16i is formed on the upper main surface of the insulator layer 11d.
  • the short-circuit side via electrodes 17a, 17b, 17c, 17d and the open side via electrodes 18a, 18b, 18c, 18d described above are formed in the insulator layers 11e to 11k, respectively, penetrating between the two main surfaces. ..
  • Plane electrodes 19a, 19b, 19c, 19d are formed on the upper main surface of the insulator layer 11k.
  • the insulator layer 11l is a protective layer, and no electrode is formed.
  • the first input / output terminal T1 is connected to the capacitor electrode 16a by the via electrode 14a.
  • the second input / output terminal 12b is connected to the capacitor electrode 16b by the via electrode 14b.
  • the ground terminal TG is connected to the ground electrode 15 by via electrodes 14c to 14f.
  • the capacitor electrode 16c is connected to one end of the flat electrode 19a by the open side via electrode 18a.
  • the capacitor electrode 16d is connected to one end of the flat electrode 19b by the open side via electrode 18b.
  • the capacitor electrode 16e is connected to one end of the flat electrode 19c by the open side via electrode 18c.
  • the capacitor electrode 16f is connected to one end of the flat electrode 19d by the open side via electrode 18d.
  • the other end of the flat electrode 19a is connected to the ground electrode 15 by the short-circuit side via electrode 17a.
  • the other end of the flat electrode 19b is connected to the ground electrode 15 by the short-circuit side via electrode 17b.
  • the other end of the flat electrode 19c is connected to the ground electrode 15 by the short-circuit side via electrode 17c.
  • the other end of the flat electrode 19d is connected to the ground electrode 15 by the short-circuit side via electrode 17d.
  • the laminated LC filter 1100 according to Comparative Example 1 having the above structure includes the equivalent circuit shown in FIG. 4, similarly to the laminated LC filter 110 according to Example 1.
  • the first input / output terminal T1 is connected to the capacitor electrode 16a by the via electrode 14a.
  • the capacitor C01 is formed by the capacitance formed between the capacitor electrode 16a and the capacitor electrode 16c.
  • the capacitor C12 is formed by the capacitance formed between the capacitor electrode 16g and the capacitor electrode 16d.
  • the capacitor C23 is formed by the capacitance formed between the capacitors 16h and the capacitance formed between the capacitor electrode 16h and the capacitor electrode 16e.
  • the capacitor C34 is formed by the capacitance formed between the capacitor electrode 16e and the capacitor electrode 16h.
  • the capacitor C14 is formed by the capacitance formed between the capacitor electrode 16g and the capacitor electrode 16i and the capacitance formed between the capacitor electrode 16i and the capacitor electrode 16h, which are connected in series with each other. ..
  • the capacitor C40 is formed by the capacitance formed between the capacitor electrode 16f and the capacitor electrode 16b. As described above, the capacitor electrode 16b is connected to the second input / output terminal T2 by the via electrode 14b.
  • the inductor L1 is formed by a conductive path from the capacitor electrode 16c to the ground electrode 15 via the open side via electrode 18a, the flat electrode 19a, and the short-circuit side via electrode 17a.
  • the capacitor C1 is formed by the capacitance formed between the capacitor electrode 16c and the ground electrode 15. As described above, the inductor L1 and the capacitor C1 form the first LC resonator LC1.
  • the inductor L2 is formed by a conductive path from the capacitor electrode 16d to the ground electrode 15 via the open side via electrode 18b, the flat electrode 19b, and the short-circuit side via electrode 17b.
  • the capacitor C2 is formed by the capacitance formed between the capacitor electrode 16d and the ground electrode 15. As described above, the inductor L2 and the capacitor C2 form the second LC resonator LC2.
  • the inductor L3 is formed by a conductive path from the capacitor electrode 16e to the ground electrode 15 via the open side via electrode 18c, the flat electrode 19c, and the short-circuit side via electrode 17c.
  • the capacitor C3 is formed by the capacitance formed between the capacitor electrode 16e and the ground electrode 15. As described above, the inductor L3 and the capacitor C3 form the third LC resonator LC3.
  • the inductor L4 is formed by a conductive path from the capacitor electrode 16f to the ground electrode 15 via the open side via electrode 18d, the flat electrode 19d, and the short-circuit side via electrode 17d.
  • the capacitor C4 is formed by the capacitance formed between the capacitor electrode 16f and the ground electrode 15.
  • the fourth LC resonator LC4 is formed by the inductor L4 and the capacitor C4.
  • the ground electrode 15 is connected to the ground terminal TG by the via electrodes 14c to 14f.
  • the laminated LC filter 1100 according to Comparative Example 1 also has the same equivalent circuit as the laminated LC filter 100 shown in FIG.
  • FIG. 6A shows the respective attenuation characteristics and reflection characteristics.
  • FIG. 6B shows the characteristics of each insertion loss.
  • the first input / output terminal T1 of the laminated LC filter 100 is the first terminal
  • the second input / output terminal T2 is the second terminal
  • the first input / output terminal T1 of the laminated LC filter 1100 is the third terminal and the second input.
  • the output terminal T2 is used as the fourth terminal.
  • the laminated LC filter 100 according to the first embodiment and the laminated LC filter 1100 according to the comparative example 1 have substantially the same reflection characteristics and substantially the same attenuation characteristics outside the pass band. And have.
  • the laminated LC filter 100 according to the first embodiment has a smaller insertion loss than the laminated LC filter 1100 according to the first comparative example. Specifically, the laminated LC filter 100 has an insertion loss improved by about 0.24 dB as compared with the laminated LC filter 1100. From the above, the effectiveness of the laminated LC filter according to the present invention was confirmed.
  • FIG. 7A shows a laminated LC filter according to Sample 1.
  • FIG. 7B shows a laminated LC filter according to Sample 2.
  • each of the four LC resonators has an independent short-circuit side via electrode.
  • the short-circuit side via electrode is shared in all the LC resonators in the first to fourth stages.
  • the Q value of the LC resonator in the second stage of each laminated LC filter was measured.
  • the Q value of the LC resonator in the second stage of the laminated LC filter according to Sample 1 was 140.
  • the Q value of the LC resonator in the second stage of the laminated LC filter according to the sample 2 was 205.
  • FIG. 8 and 9 show the laminated LC filter 200 according to the second embodiment.
  • FIG. 8 is an exploded perspective view of the laminated LC filter 200.
  • FIG. 9 is an equivalent circuit diagram of the laminated LC filter 200.
  • the laminated LC filter 200 according to the second embodiment has changed a part of the configuration of the laminated LC filter 100 according to the first embodiment described above. Specifically, in the laminated LC filter 100, the first LC resonator LC1 and the second LC resonator LC2 are electromagnetically coupled, the second LC resonator LC2 and the third LC resonator LC3 are electromagnetically coupled, and the third LC The resonator LC3 and the fourth LC resonator LC4 were electromagnetically coupled to each other in a four-stage bandpass filter, but the laminated LC filter 200 changed this and changed the first LC resonator LC1 and the second LC resonator LC2. A two-stage bandpass filter in which and was electromagnetically coupled.
  • the laminated LC filter 200 includes a laminated body 21.
  • the laminated body 21 is formed by laminating insulator layers 21a to 21l.
  • a first input / output terminal T1, a second input / output terminal T2, and a ground terminal TG are formed on the lower main surface of the insulator layer 21a.
  • Via electrodes 24a, 24b, 24c, 24d, 24e, 24f are formed so as to penetrate between both main surfaces of the insulator layer 21a.
  • the ground electrode 25 and the capacitor electrodes 26a and 26b are formed on the upper main surface of the insulator layer 21a.
  • Common short-circuit side via electrodes 27a and 27b are formed so as to penetrate between both main surfaces of the insulator layer 21b.
  • Capacitor electrodes 26c and 26d are formed on the upper main surface of the insulator layer 21b.
  • the above-mentioned common short-circuit side via electrodes 27a and 27b are formed so as to penetrate between both main surfaces of the insulator layer 21c. Further, open side via electrodes 28a and 28b are newly formed so as to penetrate between both main surfaces of the insulator layer 21c.
  • a capacitor electrode 26e is formed on the upper main surface of the insulator layer 21c.
  • the insulator layers 21d to 21k are formed with the above-mentioned common short-circuit side via electrodes 27a and 27b and open side via electrodes 28a and 28b, respectively, penetrating between both main surfaces.
  • a flat electrode 29 is formed on the upper main surface of the insulator layer 21k.
  • the insulator layer 21l is a protective layer, and no electrode is formed.
  • the first input / output terminal T1 is connected to the capacitor electrode 26a by the via electrode 24a.
  • the second input / output terminal T2 is connected to the capacitor electrode 6b by the via electrode 24b.
  • the ground terminal TG is connected to the ground electrode 25 by the via electrodes 24c to 24f.
  • the capacitor electrode 26c is connected to the flat electrode 29 by the open side via electrode 28a.
  • the capacitor electrode 26d is connected to the flat electrode 29 by the open side via electrode 28b.
  • the flat electrode 29 is connected to the ground electrode 25 by the common short-circuit side via electrodes 27a and 27b.
  • the laminated LC filter 200 having the above structure includes the equivalent circuit shown in FIG.
  • the laminated LC filter 200 includes a first input / output terminal T1, a second input / output terminal T2, and a ground terminal TG.
  • Capacitors C01, C12, and C20 are connected in this order between the first input / output terminal T1 and the second input / output terminal T2.
  • the first LC resonator LC1 formed by connecting the inductor L1 and the capacitor C1 in parallel is connected between the connection point between the capacitor C01 and the capacitor C12 and the ground (ground terminal TG).
  • a second LC resonator LC2 formed by connecting the inductor L2 and the capacitor C2 in parallel is connected between the connection point between the capacitor C12 and the capacitor C20 and the ground.
  • the first LC resonator LC1 and the second LC resonator LC2 are electromagnetically coupled.
  • the first input / output terminal T1 is connected to the capacitor electrode 26a by the via electrode 24a.
  • the capacitor C01 is formed by the capacitance formed between the capacitor electrode 26a and the capacitor electrode 26c.
  • the capacitor C12 is formed by the capacitance formed between the capacitor electrode 26c and the capacitor electrode 26e and the capacitance formed between the capacitor electrode 26e and the capacitor electrode 26d, which are connected in series with each other. ..
  • the capacitor C20 is formed by the capacitance formed between the capacitor electrode 26d and the capacitor electrode 26b. As described above, the capacitor electrode 26b is connected to the second input / output terminal T2 by the via electrode 24b.
  • the inductor L1 is formed by a conductive path from the capacitor electrode 26c to the ground electrode 25 via the open side via electrode 28a, the flat electrode 29, and the common short-circuit side via electrodes 27a and 27b.
  • the capacitor C1 is formed by the capacitance formed between the capacitor electrode 26c and the ground electrode 25. As described above, the inductor L1 and the capacitor C1 form the first LC resonator LC1.
  • the inductor L2 is formed by a conductive path from the capacitor electrode 26d to the ground electrode 25 via the open side via electrode 28b, the flat electrode 29, and the common short-circuit side via electrodes 27a and 27b.
  • the capacitor C2 is formed by the capacitance formed between the capacitor electrode 26d and the ground electrode 25. As described above, the inductor L2 and the capacitor C2 form the second LC resonator LC2.
  • the ground electrode 15 is connected to the ground terminal TG by the via electrodes 24c to 24f.
  • the structure of the laminated LC filter 200 shown in FIG. 8 constitutes the equivalent circuit of the laminated LC filter 200 shown in FIG.
  • the laminated LC filter 200 has a common short-circuit side via electrode of a plurality of LC resonators, so that the Q value of the LC resonator is improved. That is, in the laminated LC filter 200, the short-circuit side via electrode of the first LC resonator LC1 and the short-circuit side via electrode of the second LC resonator LC2 are shared to form the common short-circuit side via electrodes 27a and 27b. The Q values of the first LC resonator LC1 and the second LC resonator LC2 are improved, respectively.
  • the laminated LC filter 200 has excellent frequency characteristics and a small insertion loss because the Q values of the first LC resonator LC1 and the second LC resonator LC2 are improved respectively.
  • FIG. 10 and 11 show the laminated LC filter 300 according to the third embodiment.
  • FIG. 10 is an exploded perspective view of the laminated LC filter 300.
  • FIG. 11 is an equivalent circuit diagram of the laminated LC filter 300.
  • the laminated LC filter 300 according to the third embodiment has a new configuration added to the laminated LC filter 100 according to the first embodiment described above.
  • new via electrodes 34a and 34b that penetrate between both main surfaces of the insulator layer 1a are added to the laminated LC filter 100.
  • new capacitor electrodes 36a and 36b are added to the upper main surface of the insulator layer 1a with respect to the laminated LC filter 100.
  • the capacitor electrode 36a is connected to the first input / output terminal T1 by the via electrode 34a.
  • the capacitor electrode 36b is connected to the second input / output terminal T2 by the via electrode 34b.
  • the capacitor C02 is formed by the capacitance formed between the capacitor electrode 36a and the capacitor electrode 6d.
  • the capacitor C30 is formed by the capacitance formed between the capacitor electrode 36b and the capacitor electrode 6e.
  • the laminated LC filter 300 includes the equivalent circuit shown in FIG. That is, the capacitor C02 is connected between the first input / output terminal T1 and the second LC resonator LC2. Further, a capacitor C30 is connected between the third LC resonator LC3 and the second input / output terminal T2.
  • the laminated LC filter 300 adjusts the size and shape of the capacitor electrode 36a to adjust the capacitance value of the capacitor C02, and adjusts the size and shape of the capacitor electrode 36b to adjust the capacitance value of the capacitor C30.
  • the frequency characteristics can be adjusted by. In order to clarify this, the following experiment 3 was carried out.
  • Example 3 The size and shape of the capacitor electrode 36a and the capacitor electrode 36b are changed from those shown in FIG. 10, and the capacitance value of the capacitor C02 and the capacitance value of the capacitor C30 are adjusted to stack the capacitors according to the second embodiment having different frequency characteristics.
  • a type LC filter 300 and a laminated type LC filter 300 according to Example 3 were produced. The positions and diameters of the via electrodes 34a and 34b were not changed.
  • the capacitance value of the capacitor C02 and the capacitance value of the capacitor C30 are larger in the second embodiment than in the third embodiment, respectively.
  • FIG. 12 shows the attenuation characteristics and the reflection characteristics of the laminated LC filter 300 according to the second embodiment and the laminated LC filter 300 according to the third embodiment, respectively.
  • the stacked LC filter 300 according to the second embodiment which has a large capacitance value of the capacitor C02 and a large capacitance value of the capacitor C30, has a gentle but deep attenuation toward the low frequency side of the pass band.
  • the stacked LC filter 300 according to the third embodiment which has a small capacitance value of the capacitor C02 and a small capacitance value of the capacitor C30, has a shallow but steep attenuation on the low frequency side of the pass band.
  • the frequency characteristics can be easily adjusted by adjusting the size and shape of the capacitor electrodes.
  • FIG. 13A shows the laminated LC filter 400 according to the fourth embodiment.
  • FIG. 13A shows the shape of the planar electrode 49 of the laminated LC filter 400, the formation positions of the first LC resonator LC1 to the fourth LC resonator LC4, and the open side via electrodes 8a, 8b, 8c, and 8d. It is explanatory drawing which showed each formation position, each formation position of common short-circuit side via electrode 7a, 7b.
  • the laminated LC filter 400 according to the fourth embodiment has changed a part of the configuration of the laminated LC filter 100 according to the first embodiment described above. Specifically, the planar electrode 9 of the laminated LC filter 100 had a rectangular shape, but the laminated LC filter 400 changed this and formed two slits 49a and 49b in the planar electrode 49.
  • the flat electrode 9 is a common flat electrode of the first LC resonator LC1 to the fourth LC resonator LC4 included in the laminated LC filter 100, and the flat electrode 49 is also included in the laminated LC filter 400.
  • the plane electrodes of the first LC resonator LC1 to the fourth LC resonator LC4 are shared.
  • the slit 49a is formed between the first LC resonator LC1 and the second LC resonator LC2. Further, the slit 49b is formed between the third LC resonator LC3 and the fourth LC resonator LC4. As a result, in the laminated LC filter 400, the coupling between the first LC resonator LC1 and the second LC resonator LC2 is weakened, and the coupling between the third LC resonator LC3 and the fourth LC resonator LC4 is weakened.
  • the coupling between the resonators is adjusted. Can be (weakened).
  • the formation of slits in the common planar electrode can be used to adjust the frequency characteristics of the laminated LC filter.
  • FIG. 13B shows the laminated LC filter 500 according to the fifth embodiment.
  • FIG. 13B shows the shape of the planar electrode 59 of the laminated LC filter 500, the formation positions of the first LC resonator LC1 to the fourth LC resonator LC4, and the open side via electrodes 8a, 8b, 8c, and 8d. It is explanatory drawing which showed each formation position, each formation position of common short-circuit side via electrode 7a, 7b.
  • the laminated LC filter 500 according to the fifth embodiment is further modified from the laminated LC filter 400 according to the fourth embodiment described above. Specifically, in the laminated LC filter 500, a slit 59a is formed between the first LC resonator LC1 and the second LC resonator LC2 of the planar electrode 59, and the second LC resonator LC2 and the third LC resonator LC3 are combined.
  • a slit 59b is formed between them, a slit 59c is formed between the third LC resonator LC3 and the fourth LC resonator LC4, and a slit 59d is formed between the fourth LC resonator LC4 and the first LC resonator LC1.
  • the laminated LC filter 500 includes a coupling between the first LC resonator LC1 and the second LC resonator LC2, a coupling between the second LC resonator LC2 and the third LC resonator LC3, and a coupling between the third LC resonator LC3 and the fourth LC resonator LC4. Coupling, the coupling between the 4th LC resonator LC4 and the 1st LC resonator LC1 is weakened, respectively.
  • FIG. 14A shows the laminated LC filter 600 according to the sixth embodiment.
  • FIG. 14A shows the shape of the planar electrode 9 of the laminated LC filter 600, the formation positions of the first LC resonator LC1 to the fourth LC resonator LC4, and the open side via electrodes 8a, 8b, 8c, and 8d. It is explanatory drawing which showed each formation position, each formation position of common short-circuit side via electrode 67a, 67b.
  • the laminated LC filter 600 according to the sixth embodiment has changed a part of the configuration of the laminated LC filter 100 according to the first embodiment described above. Specifically, in the laminated LC filter 100, the common short-circuit side via electrodes 7a and 7b are formed near the center of the flat electrode 9. The laminated LC filter 600 was modified so that the common short-circuit side via electrodes 67a and 67b were formed so as to be unevenly distributed between the second LC resonator LC2 and the third LC resonator LC3 on the planar electrode 9.
  • the coupling between the second LC resonator LC2 and the third LC resonator LC3 is weakened.
  • FIG. 14B shows the laminated LC filter 700 according to the seventh embodiment.
  • FIG. 14B shows the shape of the planar electrode 9 of the laminated LC filter 700, the formation positions of the first LC resonator LC1 to the fourth LC resonator LC4, and the open side via electrodes 8a, 8b, 8c, and 8d. It is explanatory drawing which showed each formation position, each formation position of common short-circuit side via electrode 77a, 77b, 77c, 77d.
  • the laminated LC filter 700 according to the seventh embodiment has a part of the configuration of the laminated LC filter 100 according to the first embodiment described above. Specifically, in the laminated LC filter 100, two common short-circuit side via electrodes 7a and 7b were formed near the center of the flat electrode 9. In the laminated LC filter 700, the four common short-circuit side via electrodes 77a, 77b, 77c, and 77d are changed to the first LC resonator LC1 and the second LC resonator LC2 and the third LC resonator in the planar electrode 9. It was formed between LC3 and the fourth LC resonator LC4.
  • the coupling between the first LC resonator LC1 and the fourth LC resonator LC4 and the coupling between the second LC resonator LC2 and the third LC resonator LC3 are weakened.
  • FIG. 14C shows the laminated LC filter 800 according to the eighth embodiment.
  • FIG. 14C shows the shape of the planar electrode 9 of the laminated LC filter 800, the formation positions of the first LC resonator LC1 to the fourth LC resonator LC4, and the open side via electrodes 8a, 88b, 88c, and 8d. It is explanatory drawing which showed each formation position, each formation position of common short-circuit side via electrode 7a, 7b.
  • the laminated LC filter 800 according to the eighth embodiment has changed a part of the configuration of the laminated LC filter 100 according to the first embodiment described above. Specifically, in the laminated LC filter 100, the four open side via electrodes 8a, 8b, 8c, and 8d of the first LC resonator LC1 to the fourth LC resonator LC4 are separated into four corners inside the laminated body 1. It was placed.
  • the laminated LC filter 800 was modified so that the open side via electrode 88b of the second LC resonator LC2 and the open side via electrode 88c of the third LC resonator LC3 were arranged close to each other.
  • the formation position of the open side via electrode 8a of the first LC resonator LC1 and the formation position of the open side via electrode 8d of the fourth LC resonator LC4 were not changed.
  • the coupling between the second LC resonator LC2 and the third LC resonator LC3 is strengthened. Instead of bringing the open-side via electrode of the second LC resonator LC2 and the open-side via electrode of the third LC resonator LC3 close to each other, the open-side via electrode of the first LC resonator LC1 and the fourth LC resonator LC4 The distance from the open side via electrode may be shortened.
  • FIG. 15 shows the laminated LC filter 900 according to the ninth embodiment. However, FIG. 15 is an exploded perspective view of a main part of the laminated LC filter 900.
  • the laminated LC filter 900 according to the ninth embodiment has changed a part of the configuration of the laminated LC filter 100 according to the first embodiment described above. Specifically, in the laminated LC filter 100, one planar electrode 9 is formed on the insulator layer 1k, and four open side via electrodes 8a of the first LC resonator LC1 to the fourth LC resonator LC4 are formed on the planar electrode 9. , 8b, 8c, 8d and all of the two common short-circuit side via electrodes 7a, 7b were connected. The laminated LC filter 900 was modified to form one planar electrode 99a on the insulator layer 1j and another planar electrode 99b on the insulator layer 1k.
  • the open side via electrode 98a of the first LC resonator LC1 and the open side via electrode 98d of the fourth LC resonator LC4 are connected to the flat electrode 99a, and the open side via electrode 98b of the second LC resonator LC2 is connected to the flat electrode 99b.
  • the open side via electrode 98c of the third LC resonator LC3 was connected.
  • the two common short-circuit side via electrodes 97a and 97b were connected to the flat electrode 99a and the flat electrode 99b, respectively.
  • the coupling between the first LC resonator LC1 and the second LC resonator LC2 and the coupling between the third LC resonator LC3 and the fourth LC resonator LC4 are weakened, respectively.
  • the open side via electrode connected to the flat electrode 99a and the flat electrode 99b may be changed from the above to another. Further, the formation positions of the flat electrode 99a and the flat electrode 99b may be exchanged, the flat electrode 99b may be formed on the insulator layer 1j, and the flat electrode 99a may be formed on the insulator layer 1k.
  • the number of planar electrodes is not limited to one, and a plurality of planar electrodes may be formed. Further, the planar electrodes may be formed in different layers of the insulator layer. Further, the common short-circuit side via electrode may be connected to the plane electrodes formed in different layers.
  • the laminated LC filters 100, 200, 300, 400, 500, 600, 700, 800, 900 according to the first to seventh embodiments have been described above.
  • the present invention is not limited to the above-mentioned contents, and various modifications can be made in accordance with the gist of the invention.
  • the capacitor C01 is connected between the first input / output terminal T1 and the first LC resonator LC1, and the fourth LC resonator LC4 (second LC resonator LC2) and the first insert are connected.
  • the capacitor C40 (capacitor C20) was connected to the output terminal T1
  • the capacitor C01 and the capacitor C40 can be omitted.
  • the laminated LC filters 100 and 300 to 900 are four-stage bandpass filters, and the laminated LC filter 200 is a two-stage bandpass filter, but the number of stages of the filter can be increased or decreased as appropriate. .. Further, the type of filter is not limited to the bandpass filter, and can be changed to a lowpass filter, a highpass filter, or the like.
  • the laminated LC filter according to the embodiment of the present invention is as described in the column of "Means for solving the problem".
  • all LC resonances between the open side via electrode of at least one LC resonator and the open side via electrode of the other at least one LC resonator in the length direction of the laminated body It is also preferable that a common short-circuit side via electrode of the vessel is arranged. Further, in the width direction of the laminated body, all the LC resonators are standardized between the open side via electrode of at least one LC resonator and the open side via electrode of the other at least one LC resonator. It is also preferable that the short-circuit side via electrode is arranged. In these cases, the Q value of each LC resonator is improved.
  • each LC resonator is formed on the laminated body, and when viewed in the stacking direction of the insulator layer, the open side via electrodes of the four LC resonators are arranged at four corners inside the laminated body. It is also preferable to be done. In this case, the Q value of each LC resonator is improved.
  • the common short-circuit side via electrode of all LC resonators is composed of a plurality of via electrodes. In this case, since the resistance is low, the Q value of each LC resonator is improved.
  • a plurality of via electrodes constituting the common short-circuit side via electrode are arranged evenly spaced in the width direction. In this case, the coupling between the LC resonators on both sides of the common short-circuit side via electrode can be weakened. Alternatively, it is also preferable that a plurality of via electrodes constituting the common short-circuit side via electrode are unevenly distributed in the width direction. In this case as well, the coupling between the LC resonators on both sides of the common short-circuit side via electrode can be weakened.
  • planar electrodes of all LC resonators are shared.
  • the short-circuit side via electrode of each LC resonator can be easily shared.
  • the common planar electrode of all LC resonators has a rectangular shape when viewed in the stacking direction of the insulator layer.
  • the width dimension of the planar electrode can be increased, and the Q value of each LC resonator can be improved.
  • a slit is formed in a rectangular flat electrode having a common shape.
  • the coupling between the LC resonators on both sides of the slit can be weakened.
  • n LC resonators are formed on the laminate, and the n LC resonators are They are coupled in order, the first input / output terminal and the second stage LC resonator are connected via a capacitor, and the (n-1) stage LC resonator and the second stage LC resonator connect the capacitor. It is also preferable to be connected via.
  • LC resonators are formed in the laminate, the four LC resonators are coupled in order, and the first input / output terminal and the second stage LC resonator are connected via a capacitor, and 3 It is also preferable that the LC resonator of the stage and the second input / output terminal are connected via a capacitor. In this case, the frequency characteristics of the stacked LC filter can be adjusted by adjusting the capacitance value of the connected capacitor.
  • planar electrodes are formed between different layers of the insulator layer, at least one open side via electrode is connected to one planar electrode, and at least one other open side via electrode is formed between different layers. It is also preferable that the short-circuit side via electrode connected to the other one planar electrode formed therein is connected to all the planar electrodes formed between different layers. In this way, the frequency characteristics of the laminated LC filter can be adjusted by changing the number and formation positions of the planar electrodes and selecting the open side via electrodes connected to the planar electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

隣接する他のLC共振器による、LC共振器のインダクタの磁界形成の阻害が抑制された積層型LCフィルタを提供する。 複数の絶縁体層1a~1lが積層された積層体1と、グランド電極5と、複数のキャパシタ電極6a~6jと、平面電極9と、複数のビア電極と、を備え、ビア電極は、キャパシタ電極6c~6fと平面電極9とを繋ぐ開放側ビア電極8a~8dと、平面電極9とグランド電極5とを繋ぐ短絡側ビア電極7a、7bとを含み、キャパシタ電極6c~6fから、開放側ビア電極8a~8dと、平面電極9と、短絡側ビア電極7a、7bとを経由して、グランド電極5に至る導電路によってインダクタLが形成され、グランド電極5とキャパシタ電極6c~6fとの間に形成される容量によってキャパシタCが形成され、インダクタLとキャパシタCとが並列に接続されてLC共振器LC1~LC4が形成された積層型LCフィルタであって、積層体1に形成された全てのLC共振器LC1~LC4の短絡側ビア電極7a、7bが、共通化されたものとする。

Description

積層型LCフィルタ
 本発明は、複数の絶縁体層が積層された積層体に、複数のLC共振器が形成された積層型LCフィルタに関する。
 複数の絶縁体層が積層された積層体に、複数のLC共振器が形成された積層型LCフィルタが、通信機器などの電子機器に広く使用されている。たとえば、特許文献1(WO2007/119356A1公報)に、このような積層型LCフィルタが開示されている。図16に、特許文献1に開示された積層型LCフィルタ1000を示す。
 積層型LCフィルタ1000は、複数の絶縁体層101a~101dが積層された積層体101を備えている。積層体101は、直方体形状をしている。
 絶縁体層101aの主面に、グランド電極102が形成されている。絶縁体層101bの主面に、複数のキャパシタ電極103が形成されている。絶縁体層101cの主面に、複数の平面電極104が形成されている。絶縁体層101dは保護層であり、電極は形成されていない。
 キャパシタ電極103と平面電極104の一端とが、絶縁体層101cを貫通して形成された開放側ビア電極105bによって接続されている。平面電極104の他端とグランド電極102とが、絶縁体層101b、101cを貫通して形成された短絡側ビア電極105aによって接続されている。キャパシタ電極103から、開放側ビア電極105bと、平面電極104と、短絡側ビア電極105aとを経由して、グランド電極102に至る導電路によってインダクタが形成されている。
 グランド電極102とキャパシタ電極103との間に形成される容量によって、キャパシタが形成されている。
 インダクタとキャパシタとが並列に接続されてLC共振器が形成されている。積層体1の対向する1対の端面の間に、複数のLC共振器が、相互に平行に配置して形成されている。隣接するLC共振器が、相互に電磁界結合されている。
WO2007/119356A1公報
 積層型LCフィルタ1000は、積層体1の対向する1対の端面の間に、複数のLC共振器が相互に平行に隣接して配置されているため、小型化した場合や多段化した場合に、LC共振器間の距離が近くなり、LC共振器のQ値が劣化するという問題があった。そして、LC共振器のQ値が劣化することによって、積層型LCフィルタ1000の周波数特性や挿入損失が劣化するという問題があった。
 そこで、本発明は、LC共振器の構造を見直し、製品サイズを維持した状態で特性の改善が実現された、積層型LCフィルタを提供することを目的とする。
 本発明の一実施態様にかかる積層型LCフィルタは、上述した課題を解決するため、複数の絶縁体層が積層された積層体と、絶縁体層の層間に形成された少なくとも1つのグランド電極と、絶縁体層の層間に形成された複数のキャパシタ電極と、絶縁体層の層間に形成された少なくとも1つの平面電極と、絶縁体層を貫通して形成された複数のビア電極と、を備え、積層体は、直方体形状からなり、絶縁体層の積層方向である高さ方向と、高さ方向に直交する長さ方向と、高さ方向および長さ方向にそれぞれ直交する幅方向とを有し、ビア電極は、キャパシタ電極と平面電極とを繋ぐ開放側ビア電極と、平面電極とグランド電極とを繋ぐ短絡側ビア電極とを含み、キャパシタ電極から、開放側ビア電極と、平面電極と、短絡側ビア電極とを経由して、グランド電極に至る導電路によってインダクタが形成され、グランド電極とキャパシタ電極との間に形成される容量によってキャパシタが形成され、インダクタとキャパシタとが並列に接続されてLC共振器が形成され、積層体に複数のLC共振器が形成された積層型LCフィルタであって、積層体に形成された全てのLC共振器の前記短絡側ビア電極が、共通化されたものとする。
 本発明の一実施態様にかかる積層型LCフィルタは、LC共振器のQ値が改善され、特性が改善されている。
図1(A)は、天面側から見た第1実施形態に係る積層型LCフィルタ100の斜視図である。図1(B)は、実装面側から見た積層型LCフィルタ100の斜視図である。 図2(A)は、幅方向Wに見た積層型LCフィルタ100の透視図である。図2(B)は、長さ方向Lに見た積層型LCフィルタ100の透視図である。 積層型LCフィルタ100の分解斜視図である。 積層型LCフィルタ100の等価回路図である。 比較例に係る積層型LCフィルタ1100の分解斜視図である。 図6(A)は、実施例1と比較例1の減衰特性と反射特性とを示すグラフである。図6(B)は、実施例1と比較例1の挿入損失特性を示すグラフである。 図7(A)、(B)は、それぞれ、実験2を示す説明図である。 第2実施形態に係る積層型LCフィルタ200の分解斜視図である。 積層型LCフィルタ200の等価回路図である。 第3実施形態に係る積層型LCフィルタ300の分解斜視図である。 積層型LCフィルタ300の等価回路図である。 実施例2と実施例2の減衰特性と反射特性とを示すグラフである。 図13(A)は、第4実施形態に係る積層型LCフィルタ400の説明図である。図13(B)は、第5実施形態に係る積層型LCフィルタ500の説明図である。 図14(A)は、第6実施形態に係る積層型LCフィルタ600の説明図である。図14(B)は、第7実施形態に係る積層型LCフィルタ700の説明図である。図14(C)は、第8実施形態に係る積層型LCフィルタ800の説明図である。 第9実施形態に係る積層型LCフィルタ900の要部分解斜視図である。 特許文献1に開示された積層型LCフィルタ1000の分解斜視図である。
 以下、図面とともに、本発明を実施するための形態について説明する。
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、明細書の理解を助けるためのものであって、模式的に描画されている場合があり、描画された構成要素または構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。
 [第1実施形態]
 図1(A)、(B)、図2(A)、(B)、図3、図4に、第1実施形態に係る積層型LCフィルタ100を示す。
 なお、図に、積層型LCフィルタ100の高さ方向T、長さ方向L、幅方向Wを矢印で示している場合があり、以下の説明において、これらの方向に言及する場合がある。なお、高さ方向Tとは、後述する絶縁体層1a~1lが積層された方向である。長さ方向Lとは、後述する第1入出力端子T1と第2入出力端子T2とが配置される方向である。幅方向Wとは、高さ方向Tと長さ方向Lに各々直交する方向である。なお、積層型LCフィルタ100の高さ方向T、長さ方向L、幅方向Wは、後述する積層体1の高さ方向T、長さ方向L、幅方向Wでもある。
 図1(A)は、天面側から見た積層型LCフィルタ100の斜視図である。図1(B)は、実装面側から見た積層型LCフィルタ100の斜視図である。図2(A)は、幅方向Wに見た積層型LCフィルタ100の透視図である。図2(B)は、長さ方向Lに見た積層型LCフィルタ100の透視図である。なお、図2(A)、(B)において、複数の構成要素が重なった場合、当該図を使った説明において、重要度の高い方の構成要素を示し、重要度の低い方の構成要素を省略している場合がある。図3は、積層型LCフィルタ100の分解斜視図である。図4は、積層型LCフィルタ100の等価回路図である。
 積層型LCフィルタ100は、積層体1を備えている。積層体1は、絶縁体層1a~1lが積層されたものからなる。積層体1(絶縁体層1a~1l)は、たとえば、低温同時焼成セラミックスにより形成することができる。ただし、積層体1の材質は低温同時焼成セラミックスに限定されず、他の種類のセラミックスや、樹脂等であってもよい。 
 以下に、絶縁体層1a~1l、それぞれの構成について説明する。
 絶縁体層1aの下側主面に、第1入出力端子T1、第2入出力端子T2、グランド端子TGが形成されている。なお、図3においては、描画の便宜上、第1入出力端子T1、第2入出力端子T2、グランド端子TGを、絶縁体層1aから離して、破線で示している。
 絶縁体層1aの両主面間を貫通して、ビア電極4a、4b、4c、4d、4e、4fが形成されている。
 絶縁体層1aの上側主面に、グランド電極5、キャパシタ電極6a、6bが形成されている。
 絶縁体層1bの両主面間を貫通して、共通短絡側ビア電極7a、7bが形成されている。
 絶縁体層1bの上側主面に、キャパシタ電極6c、6d、6e、6fが形成されている。
 絶縁体層1cの両主面間を貫通して、上述した共通短絡側ビア電極7a、7bが形成されている。また、絶縁体層1cの両主面間を貫通して、新たに開放側ビア電極8a、8b、8c、8dが形成されている。
 絶縁体層1cの上側主面に、キャパシタ電極6g、6h、6i、6jが形成されている。
 絶縁体層1dの両主面間を貫通して、上述した共通短絡側ビア電極7a、7b、開放側ビア電極8a、8b、8c、8dが形成されている。
 絶縁体層1eの両主面間を貫通して、上述した共通短絡側ビア電極7a、7b、開放側ビア電極8a、8b、8c、8dが形成されている。
 絶縁体層1fの両主面間を貫通して、上述した共通短絡側ビア電極7a、7b、開放側ビア電極8a、8b、8c、8dが形成されている。
 絶縁体層1gの両主面間を貫通して、上述した共通短絡側ビア電極7a、7b、開放側ビア電極8a、8b、8c、8dが形成されている。
 絶縁体層1hの両主面間を貫通して、上述した共通短絡側ビア電極7a、7b、開放側ビア電極8a、8b、8c、8dが形成されている。
 絶縁体層1iの両主面間を貫通して、上述した共通短絡側ビア電極7a、7b、開放側ビア電極8a、8b、8c、8dが形成されている。
 絶縁体層1jの両主面間を貫通して、上述した共通短絡側ビア電極7a、7b、開放側ビア電極8a、8b、8c、8dが形成されている。
 絶縁体層1kの両主面間を貫通して、上述した共通短絡側ビア電極7a、7b、開放側ビア電極8a、8b、8c、8dが形成されている。
 絶縁体層1kの上側主面のほぼ全面に、矩形形状の平面電極9が形成されている。
 絶縁体層1lは保護層であり、電極は形成されていない。
 第1入出力端子T1、第2入出力端子T2、グランド端子TG、ビア電極4a~4f、グランド電極5、キャパシタ電極6a~6j、共通短絡側ビア電極7a、7b、開放側ビア電極8a~8d、平面電極9の各材質は任意であるが、たとえば、銅、銀、アルミニウム等、あるいは、これらの合金を主成分として用いることができる。なお、第1入出力端子T1、第2入出力端子T2、グランド端子TGの表面には、めっき層を形成してもよい。
 積層型LCフィルタ100は、従来から積層型LCフィルタの製造に使用されている製造方法によって、製造することができる。
 次に、積層型LCフィルタ100における、第1入出力端子T1、第2入出力端子T2、グランド端子TG、ビア電極4a~4f、グランド電極5、キャパシタ電極6a~6j、共通短絡側ビア電極7a、7b、開放側ビア電極8a~8d、平面電極9の接続関係について説明する。
 第1入出力端子T1が、ビア電極4aによって、キャパシタ電極6aに接続されている。第2入出力端子T2が、ビア電極4bによって、キャパシタ電極6bに接続されている。グランド端子TGが、ビア電極4c~4fによって、グランド電極5に接続されている。
 キャパシタ電極6cが、開放側ビア電極8aによって、平面電極9に接続されている。キャパシタ電極6dが、開放側ビア電極8bによって、平面電極9に接続されている。キャパシタ電極6eが、開放側ビア電極8cによって、平面電極9に接続されている。キャパシタ電極6fが、開放側ビア電極8dによって、平面電極9に接続されている。
 平面電極9が、共通短絡側ビア電極7a、7bによって、グランド電極5に接続されている。
 以上の構造を備えた積層型LCフィルタ100は、図4に示す等価回路からなる。
 積層型LCフィルタ100は、第1入出力端子T1と第2入出力端子T2とグランド端子TGとを備えている。なお、グランド端子TGは、積層型LCフィルタ100を使用するときには、グランドに接続される。
 第1入出力端子T1と第2入出力端子T2との間に、キャパシタC01、C12、C23、C34、C40が、この順番に接続されている。
 キャパシタC01とキャパシタC12との接続点と、キャパシタC34とキャパシタC40との接続点との間に、キャパシタC14が接続されている。
 キャパシタC01とキャパシタC12との接続点と、グランド(グランド端子TG)との間に、インダクタL1とキャパシタC1とが並列に接続されて形成された第1LC共振器LC1が接続されている。
 キャパシタC12とキャパシタC23との接続点と、グランドとの間に、インダクタL2とキャパシタC2とが並列に接続されて形成された第2LC共振器LC2が接続されている。
 キャパシタC23とキャパシタC34との接続点と、グランドとの間に、インダクタL3とキャパシタC3とが並列に接続されて形成された第3LC共振器LC3が接続されている。
 キャパシタC34とキャパシタC40との接続点と、グランドとの間に、インダクタL4とキャパシタC4とが並列に接続されて形成された第4LC共振器LC4が接続されている。
 第1LC共振器LC1と第2LC共振器LC2とが、電磁界結合している。第2LC共振器LC2と第3LC共振器LC3とが、電磁界結合している。第3LC共振器LC3と第4LC共振器LC4とが、電磁界結合している。
 積層型LCフィルタ100は、以上の等価回路を備えることにより、4段のバンドパス型のLCフィルタを構成している。なお、キャパシタC01とキャパシタC40とは、それぞれ、省略することも可能である。
 次に、図2(A)、(B)、図3に示した積層型LCフィルタ100の構造と、図4に示した積層型LCフィルタ100の等価回路との関係について説明する。
 上述したとおり、第1入出力端子T1が、ビア電極4aによって、キャパシタ電極6aに接続されている。キャパシタ電極6aとキャパシタ電極6cとの間に形成される容量によって、キャパシタC01が形成されている。
 相互に直列に接続された、キャパシタ電極6cとキャパシタ電極6gとの間に形成される容量と、キャパシタ電極6gとキャパシタ電極6dとの間に形成される容量とによって、キャパシタC12が形成されている。
 相互に直列に接続された、キャパシタ電極6dとキャパシタ電極6hとの間に形成される容量と、キャパシタ電極6hとキャパシタ電極6eとの間に形成される容量とによって、キャパシタC23が形成されている。
 相互に直列に接続された、キャパシタ電極6eとキャパシタ電極6iとの間に形成される容量と、キャパシタ電極6iとキャパシタ電極6fとの間に形成される容量とによって、キャパシタC34が形成されている。
 相互に直列に接続された、キャパシタ電極6cとキャパシタ電極6jとの間に形成される容量と、キャパシタ電極6jとキャパシタ電極6fとの間に形成される容量とによって、キャパシタC14が形成されている。
 キャパシタ電極6fとキャパシタ電極6bとの間に形成される容量によって、キャパシタC40が形成されている。上述したとおり、キャパシタ電極6bが、ビア電極4bによって、第2入出力端子T2に接続されている。
 キャパシタ電極6cから、開放側ビア電極8aと、平面電極9と、共通短絡側ビア電極7a、7bとを経由して、グランド電極5に至る導電路によってインダクタL1が形成されている。キャパシタ電極6cとグランド電極5との間に形成される容量によって、キャパシタC1が形成されている。上述したとおり、インダクタL1とキャパシタC1とで、第1LC共振器LC1が形成されている。
 キャパシタ電極6dから、開放側ビア電極8bと、平面電極9と、共通短絡側ビア電極7a、7bとを経由して、グランド電極5に至る導電路によってインダクタL2が形成されている。キャパシタ電極6dとグランド電極5との間に形成される容量によって、キャパシタC2が形成されている。上述したとおり、インダクタL2とキャパシタC2とで、第2LC共振器LC2が形成されている。
 キャパシタ電極6eから、開放側ビア電極8cと、平面電極9と、共通短絡側ビア電極7a、7bとを経由して、グランド電極5に至る導電路によってインダクタL3が形成されている。キャパシタ電極6eとグランド電極5との間に形成される容量によって、キャパシタC3が形成されている。上述したとおり、インダクタL3とキャパシタC3とで、第3LC共振器LC3が形成されている。
 キャパシタ電極6fから、開放側ビア電極8dと、平面電極9と、共通短絡側ビア電極7a、7bとを経由して、グランド電極5に至る導電路によってインダクタL4が形成されている。キャパシタ電極6fとグランド電極5との間に形成される容量によって、キャパシタC4が形成されている。上述したとおり、インダクタL4とキャパシタC4とで、第4LC共振器LC4が形成されている。
 上述したとおり、グランド電極15が、ビア電極4c~4fによって、グランド端子TGに接続されている。
 以上のように、図2(A)、(B)、図3に示した積層型LCフィルタ100の構造によって、図4に示した積層型LCフィルタ100の等価回路が構成されている。
 積層型LCフィルタ100は、図2(A)に示すように、長さ方向Lにおいて、開放側ビア電極8a、8bと、開放側ビア電極8c、8dとの間に、共通短絡側ビア電極7a、7bが配置されている。また、積層型LCフィルタ100は、図2(B)に示すように、幅方向Wにおいて、開放側ビア電極8a、8dと、開放側ビア電極8b、8cとの間に、共通短絡側ビア電極7a、7bが配置されている。この結果、積層型LCフィルタ100は、高さ方向T(絶縁体層1a~1lの積層方向)に見たとき、4つの開放側ビア電極8a~8dが、積層体1の内部において4隅に分けて配置され、それらの間に、共通短絡側ビア電極7a、7bが配置されている。
 積層型LCフィルタ100は、第1LC共振器LC1の短絡側ビア電極と、第2LC共振器LC2の短絡側ビア電極と、第3LC共振器LC3の短絡側ビア電極と、第4LC共振器LC4の短絡側ビア電極とを共通化させ、共通短絡側ビア電極7a、7bとしたことにより、第1LC共振器LC1、第2LC共振器LC2、第3LC共振器LC3、第4LC共振器LC4のQ値が、それぞれ、向上している。以下に、その理由を簡単に説明する。
 すなわち、積層型LCフィルタ100は、第1LC共振器LC1~第4LC共振器LC4の短絡側ビア電極を共通化させて共通短絡側ビア電極7a、7bとしたことにより、積層体1の内部における電極の配置自由度が向上しており、上述したとおり、4つの第1LC共振器LC1~第4LC共振器LC4の開放側ビア電極8a~8dを、高さ方向Tに見たとき、積層体1の内部において4隅に分けて離して配置することが可能になっている。そのため、積層型LCフィルタ100は、第1LC共振器LC1~第4LC共振器LC4のQ値が、それぞれ、向上している。
 また、積層型LCフィルタ100は、第1LC共振器LC1~第4LC共振器LC4の短絡側ビア電極を共通化させて共通短絡側ビア電極7a、7bとしたことにより、第1LC共振器LC1~第4LC共振器LC4にとって、共通短絡側ビア電極7a、7bは、他のLC共振器の短絡側ビア電極でもあるが、自身の短絡側ビア電極であるため、Q値を劣化させる要因にならない。したがって、積層型LCフィルタ100は、第1LC共振器LC1~第4LC共振器LC4のQ値が、それぞれ、向上している。
 また、積層型LCフィルタ100は、第1LC共振器LC1~第4LC共振器LC4の共通化した短絡側ビア電極を、2つの共通短絡側ビア電極7a、7bで構成し、抵抗を小さくしているため、第1LC共振器LC1~第4LC共振器LC4のQ値が、それぞれ、向上している。
 また、積層型LCフィルタ100は、積層体1の内部における電極の配置自由度が向上したことにより、共通短絡側ビア電極7a、7bを、グランド電極5の中央部分に接続することが可能になっている。そのため、たとえば、第1LC共振器LC1のインダクタL1において、キャパシタ電極6cから、開放側ビア電極8a、平面電極9、共通短絡側ビア電極7a、7bを経由してグランド電極5に流れた電流は、グランド電極5の中央部分から、全周方向(360°にわたる全ての方向)に流れることが可能になっている。このことによっても、抵抗が減少し、第1LC共振器LC1はQ値が向上している。同様の理由により、第2LC共振器LC2~第4LC共振器LC4のQ値も、それぞれ、向上している。
 積層型LCフィルタ100は、第1LC共振器LC1~第4LC共振器LC4のQ値が、それぞれ、向上しているため、優れた周波数特性を備え、かつ、挿入損失が小さくなっている。
 また、積層型LCフィルタ100は、第1LC共振器LC1~第4LC共振器LC4の短絡側ビア電極を共通化させて共通短絡側ビア電極7a、7bとしたことにより、積層体1の内部における電極の配置自由度が向上しており、たとえば、絶縁体層1cの上側主面にキャパシタ電極6jを形成することにより、これまで難しかった第1LC共振器LC1と第4LC共振器LC4との間の飛ばし結合用のキャパシタC14を、容易に形成することができる。
 (実験1)
 本発明の有効性を確認するため、シミュレーターを使用して、以下の実験をおこなった。
 まず、実施例1として、上述した第1実施形態に係る積層型LCフィルタ100と同等の積層型LCフィルタを作成した。
 また、比較例1として、従来の構造で、積層型LCフィルタ100と同じ等価回路(図4参照)を備えた、積層型LCフィルタ1100を作成した。LCフィルタ1100の構造を、図5に示す。ただし、図5は、積層型LCフィルタ1100の分解斜視図である。
 比較例1に係る積層型LCフィルタ1100は、絶縁体層11a~11lが積層された積層体11を備えている。
 絶縁体層11aの下側主面に、第1入出力端子T1、第2入出力端子T2、グランド端子TGが形成されている。これは、実施例1に係る積層型LCフィルタ100と同じである。
 絶縁体層11aの両主面間を貫通して、ビア電極14a~14fが形成されている。
 絶縁体層11aの上側主面に、グランド電極15、キャパシタ電極16a、16bが形成されている。
 絶縁体層11bの両主面間を貫通して、短絡側ビア電極17a、17b、17c、17dが形成されている。
 絶縁体層11bの上側主面に、キャパシタ電極16c、16d、16e、16fが形成されている。
 絶縁体層11cの両主面間を貫通して、上述した短絡側ビア電極17a、17b、17c、17dが形成されている。また、絶縁体層11cの両主面間を貫通して、新たに開放側ビア電極18a、18b、18c、18dが形成されている。
 絶縁体層11cの上側主面に、キャパシタ電極16g、16hが形成されている。
 絶縁体層11dの両主面間を貫通して、上述した短絡側ビア電極17a、17b、17c、17d、開放側ビア電極18a、18b、18c、18dが形成されている。
 絶縁体層11dの上側主面に、キャパシタ電極16iが形成されている。
 絶縁体層11e~11kには、それぞれ、両主面間を貫通して、上述した短絡側ビア電極17a、17b、17c、17d、開放側ビア電極18a、18b、18c、18dが形成されている。
 絶縁体層11kの上側主面に、平面電極19a、19b、19c、19dが形成されている。
 絶縁体層11lは保護層であり、電極は形成されていない。
 第1入出力端子T1が、ビア電極14aによって、キャパシタ電極16aに接続されている。第2入出力端子12bが、ビア電極14bによって、キャパシタ電極16bに接続されている。グランド端子TGが、ビア電極14c~14fによって、グランド電極15に接続されている。
 キャパシタ電極16cが、開放側ビア電極18aによって、平面電極19aの一端に接続されている。キャパシタ電極16dが、開放側ビア電極18bによって、平面電極19bの一端に接続されている。キャパシタ電極16eが、開放側ビア電極18cによって、平面電極19cの一端に接続されている。キャパシタ電極16fが、開放側ビア電極18dによって、平面電極19dの一端に接続されている。
 平面電極19aの他端が、短絡側ビア電極17aによって、グランド電極15に接続されている。平面電極19bの他端が、短絡側ビア電極17bによって、グランド電極15に接続されている。平面電極19cの他端が、短絡側ビア電極17cによって、グランド電極15に接続されている。平面電極19dの他端が、短絡側ビア電極17dによって、グランド電極15に接続されている。
 以上の構造を備えた比較例1に係る積層型LCフィルタ1100は、実施例1に係る積層型LCフィルタ110と同様に、図4に示す等価回路を備えている。
 すなわち、上述したとおり、第1入出力端子T1が、ビア電極14aによって、キャパシタ電極16aに接続されている。キャパシタ電極16aとキャパシタ電極16cとの間に形成される容量によって、キャパシタC01が形成されている。
 キャパシタ電極16gとキャパシタ電極16dとの間に形成される容量によって、キャパシタC12が形成されている。
 相互に直列に接続された、キャパシタ電極16dとキャパシタ電極16gとの間に形成される容量と、キャパシタ電極16gとキャパシタ電極16iとの間に形成される容量と、キャパシタ電極16iとキャパシタ電極16hとの間に形成される容量と、キャパシタ電極16hとキャパシタ電極16eとの間に形成される容量とによって、キャパシタC23が形成されている。
 キャパシタ電極16eとキャパシタ電極16hとの間に形成される容量によって、キャパシタC34が形成されている。
 相互に直列に接続された、キャパシタ電極16gとキャパシタ電極16iとの間に形成される容量と、キャパシタ電極16iとキャパシタ電極16hとの間に形成される容量とによって、キャパシタC14が形成されている。
 キャパシタ電極16fとキャパシタ電極16bとの間に形成される容量によって、キャパシタC40が形成されている。上述したとおり、キャパシタ電極16bが、ビア電極14bによって、第2入出力端子T2に接続されている。
 キャパシタ電極16cから、開放側ビア電極18aと、平面電極19aと、短絡側ビア電極17aとを経由して、グランド電極15に至る導電路によってインダクタL1が形成されている。キャパシタ電極16cとグランド電極15との間に形成される容量によって、キャパシタC1が形成されている。上述したとおり、インダクタL1とキャパシタC1とで、第1LC共振器LC1が形成されている。
 キャパシタ電極16dから、開放側ビア電極18bと、平面電極19bと、短絡側ビア電極17bとを経由して、グランド電極15に至る導電路によってインダクタL2が形成されている。キャパシタ電極16dとグランド電極15との間に形成される容量によって、キャパシタC2が形成されている。上述したとおり、インダクタL2とキャパシタC2とで、第2LC共振器LC2が形成されている。
 キャパシタ電極16eから、開放側ビア電極18cと、平面電極19cと、短絡側ビア電極17cとを経由して、グランド電極15に至る導電路によってインダクタL3が形成されている。キャパシタ電極16eとグランド電極15との間に形成される容量によって、キャパシタC3が形成されている。上述したとおり、インダクタL3とキャパシタC3とで、第3LC共振器LC3が形成されている。
 キャパシタ電極16fから、開放側ビア電極18dと、平面電極19dと、短絡側ビア電極17dとを経由して、グランド電極15に至る導電路によってインダクタL4が形成されている。キャパシタ電極16fとグランド電極15との間に形成される容量によって、キャパシタC4が形成されている。上述したとおり、インダクタL4とキャパシタC4とで、第4LC共振器LC4が形成されている。
 上述したとおり、グランド電極15が、ビア電極14c~14fによって、グランド端子TGに接続されている。
 以上のように、比較例1に係る積層型LCフィルタ1100も、図4に示した積層型LCフィルタ100と同じ等価回路を備えている。
 実施例1に係る積層型LCフィルタ100、比較例1に係る積層型LCフィルタ1100、それぞれにつき、周波数特性を測定した。図6(A)に、それぞれの減衰特性と反射特性とを示す。図6(B)に、それぞれの挿入損失特性を示す。ただし、積層型LCフィルタ100の第1入出力端子T1を第1端子、第2入出力端子T2を第2端子、積層型LCフィルタ1100の第1入出力端子T1を第3端子、第2入出力端子T2を第4端子とした。
 図6(A)から分かるように、実施例1に係る積層型LCフィルタ100と比較例1に係る積層型LCフィルタ1100とは、ほぼ同等の反射特性と、ほぼ同等の通過帯域外における減衰特性とを備えている。
 一方、図6(B)から分かるように、実施例1に係る積層型LCフィルタ100は、比較例1に係る積層型LCフィルタ1100に比べて、挿入損失が小さい。具体的には、積層型LCフィルタ100は、積層型LCフィルタ1100に比べて、挿入損失が約0.24dB改善している。以上より、本発明に係る積層型LCフィルタの有効性が確認できた。
 (実験2)
 シミュレーターを使用して、次の実験をおこなった。
 試料1、試料2に係る2つの積層型LCフィルタを作成した。2つの積層型LCフィルタは、いずれも、4つのLC共振器が電磁界結合された4段のバンドパスフィルタである。積層型LCフィルタの寸法は、高さ方向Tを0.6mm、長さ方向Lを1.6mm、幅方向Wを0.8mmとした。図7(A)に、試料1に係る積層型LCフィルタを示す。図7(B)に、試料2に係る積層型LCフィルタを示す。
 試料1の積層型LCフィルタは、4つのLC共振器が、それぞれ、独立した短絡側ビア電極を備えている。試料2の積層型LCフィルタは、第1段~第4段の全てのLC共振器において、短絡側ビア電極が共通化されている。
 シミュレーターを使用して、各積層型LCフィルタの第2段のLC共振器のQ値を測定した。試料1に係る積層型LCフィルタの第2段のLC共振器のQ値は、140であった。試料2に係る積層型LCフィルタの第2段のLC共振器のQ値は、205であった。
 以上の結果より、本発明のように、積層型LCフィルタに含まれるLC共振器の短絡側ビア電極を共通化することにより、各LC共振器のQ値を改善できることが確認できた。
 [第2実施形態]
 図8、図9に、第2実施形態に係る積層型LCフィルタ200を示す。ただし、図8は、積層型LCフィルタ200の分解斜視図である。図9は、積層型LCフィルタ200の等価回路図である。
 第2実施形態に係る積層型LCフィルタ200は、上述した第1実施形態に係る積層型LCフィルタ100の構成の一部を変更した。具体的には、積層型LCフィルタ100は、第1LC共振器LC1と第2LC共振器LC2とが電磁界結合し、第2LC共振器LC2と第3LC共振器LC3とが電磁界結合し、第3LC共振器LC3と第4LC共振器LC4とが電磁界結合した、4段のバンドパスフィルタであったが、積層型LCフィルタ200は、これを変更し、第1LC共振器LC1と第2LC共振器LC2とが電磁界結合した、2段のバンドパスフィルタとした。
 積層型LCフィルタ200は、積層体21を備えている。積層体21は、絶縁体層21a~21lが積層されたものからなる。
 以下に、絶縁体層21a~21l、それぞれの構成について説明する。
 絶縁体層21aの下側主面に、第1入出力端子T1、第2入出力端子T2、グランド端子TGが形成されている。
 絶縁体層21aの両主面間を貫通して、ビア電極24a、24b、24c、24d、24e、24fが形成されている。
 絶縁体層21aの上側主面に、グランド電極25、キャパシタ電極26a、26bが形成されている。
 絶縁体層21bの両主面間を貫通して、共通短絡側ビア電極27a、27bが形成されている。
 絶縁体層21bの上側主面に、キャパシタ電極26c、26dが形成されている。
 絶縁体層21cの両主面間を貫通して、上述した共通短絡側ビア電極27a、27bが形成されている。また、絶縁体層21cの両主面間を貫通して、新たに開放側ビア電極28a、28bが形成されている。
 絶縁体層21cの上側主面に、キャパシタ電極26eが形成されている。
 絶縁体層21d~21kには、それぞれ、両主面間を貫通して、上述した共通短絡側ビア電極27a、27b、開放側ビア電極28a、28bが形成されている。
 絶縁体層21kの上側主面に、平面電極29が形成されている。
 絶縁体層21lは保護層であり、電極は形成されていない。
 第1入出力端子T1が、ビア電極24aによって、キャパシタ電極26aに接続されている。第2入出力端子T2が、ビア電極24bによって、キャパシタ電極6bに接続されている。グランド端子TGが、ビア電極24c~24fによって、グランド電極25に接続されている。
 キャパシタ電極26cが、開放側ビア電極28aによって、平面電極29に接続されている。キャパシタ電極26dが、開放側ビア電極28bによって、平面電極29に接続されている。
 平面電極29が、共通短絡側ビア電極27a、27bによって、グランド電極25に接続されている。
 以上の構造を備えた積層型LCフィルタ200は、図9に示す等価回路からなる。
 積層型LCフィルタ200は、第1入出力端子T1と第2入出力端子T2とグランド端子TGとを備えている。
 第1入出力端子T1と第2入出力端子T2との間に、キャパシタC01、C12、C20が、この順番に接続されている。
 キャパシタC01とキャパシタC12との接続点と、グランド(グランド端子TG)との間に、インダクタL1とキャパシタC1とが並列に接続されて形成された第1LC共振器LC1が接続されている。
 キャパシタC12とキャパシタC20との接続点と、グランドとの間に、インダクタL2とキャパシタC2とが並列に接続されて形成された第2LC共振器LC2が接続されている。
 第1LC共振器LC1と第2LC共振器LC2とが、電磁界結合している。
 次に、図8に示した積層型LCフィルタ200の構造と、図9に示した積層型LCフィルタ200の等価回路との関係について説明する。
 上述したとおり、第1入出力端子T1が、ビア電極24aによって、キャパシタ電極26aに接続されている。キャパシタ電極26aとキャパシタ電極26cとの間に形成される容量によって、キャパシタC01が形成されている。
 相互に直列に接続された、キャパシタ電極26cとキャパシタ電極26eとの間に形成される容量と、キャパシタ電極26eとキャパシタ電極26dとの間に形成される容量とによって、キャパシタC12が形成されている。
 キャパシタ電極26dとキャパシタ電極26bとの間に形成される容量によって、キャパシタC20が形成されている。上述したとおり、キャパシタ電極26bが、ビア電極24bによって、第2入出力端子T2に接続されている。
 キャパシタ電極26cから、開放側ビア電極28aと、平面電極29と、共通短絡側ビア電極27a、27bとを経由して、グランド電極25に至る導電路によってインダクタL1が形成されている。キャパシタ電極26cとグランド電極25との間に形成される容量によって、キャパシタC1が形成されている。上述したとおり、インダクタL1とキャパシタC1とで、第1LC共振器LC1が形成されている。
 キャパシタ電極26dから、開放側ビア電極28bと、平面電極29と、共通短絡側ビア電極27a、27bとを経由して、グランド電極25に至る導電路によってインダクタL2が形成されている。キャパシタ電極26dとグランド電極25との間に形成される容量によって、キャパシタC2が形成されている。上述したとおり、インダクタL2とキャパシタC2とで、第2LC共振器LC2が形成されている。
 上述したとおり、グランド電極15が、ビア電極24c~24fによって、グランド端子TGに接続されている。
 以上のように、図8に示した積層型LCフィルタ200の構造によって、図9に示した積層型LCフィルタ200の等価回路が構成されている。
 積層型LCフィルタ200は、積層型LCフィルタ100と同様に、複数のLC共振器の短絡側ビア電極を共通化したことにより、LC共振器のQ値が、それぞれ、向上している。すなわち、積層型LCフィルタ200は、第1LC共振器LC1の短絡側ビア電極と、第2LC共振器LC2の短絡側ビア電極とを共通化させ、共通短絡側ビア電極27a、27bとしたことにより、第1LC共振器LC1、第2LC共振器LC2のQ値が、それぞれ、向上している。
 そして、積層型LCフィルタ200は、第1LC共振器LC1、第2LC共振器LC2のQ値が、それぞれ、向上しているため、優れた周波数特性を備え、かつ、挿入損失が小さくなっている。
 [第3実施形態]
 図10、図11に、第3実施形態に係る積層型LCフィルタ300を示す。ただし、図10は、積層型LCフィルタ300の分解斜視図である。図11は、積層型LCフィルタ300の等価回路図である。
 第3実施形態に係る積層型LCフィルタ300は、上述した第1実施形態に係る積層型LCフィルタ100に、新たな構成を追加した。
 具体的には、積層型LCフィルタ300は、積層型LCフィルタ100に対し、絶縁体層1aの両主面間を貫通する、新たなビア電極34a、34bを追加した。また、積層型LCフィルタ300は、積層型LCフィルタ100に対し、絶縁体層1aの上側主面に、新たなキャパシタ電極36a、36bを追加した。
 キャパシタ電極36aは、ビア電極34aによって、第1入出力端子T1に接続されている。キャパシタ電極36bは、ビア電極34bによって、第2入出力端子T2に接続されている。
 キャパシタ電極36aとキャパシタ電極6dとの間に形成される容量によって、キャパシタC02が形成されている。キャパシタ電極36bとキャパシタ電極6eとの間に形成される容量によって、キャパシタC30が形成されている。
 この結果、積層型LCフィルタ300は、図11に示す等価回路を備えている。すなわち、第1入出力端子T1と第2LC共振器LC2との間に、キャパシタC02が接続されている。また、第3LC共振器LC3と第2入出力端子T2との間に、キャパシタC30が接続されている。
 積層型LCフィルタ300は、キャパシタ電極36aの大きさや形状を調整して、キャパシタC02の容量値を調整するとともに、キャパシタ電極36bの大きさや形状を調整して、キャパシタC30の容量値を調整することによって、周波数特性を調整することができる。このことを明らかにするために、次の実験3をおこなった。
 (実験3)
 キャパシタ電極36aおよびキャパシタ電極36bの大きさや形状を、図10に示したものから変更し、キャパシタC02の容量値およびキャパシタC30の容量値を調整して、周波数特性の異なる、実施例2に係る積層型LCフィルタ300と、実施例3に係る積層型LCフィルタ300とを作製した。なお、ビア電極34a、34bの形成された位置、直径などは変更しなかった。
 キャパシタ電極36aおよびキャパシタ電極36bの大きさや形状を調整したことにより、実施例2は、実施例3よりも、キャパシタC02の容量値およびキャパシタC30の容量値が、それぞれ大きくなっている。
 図12に、実施例2に係るに係る積層型LCフィルタ300および実施例3に係る積層型LCフィルタ300につき、それぞれ、減衰特性と反射特性とを示す。
 図12から分かるように、キャパシタC02の容量値およびキャパシタC30の容量値が大きい、実施例2に係るに係る積層型LCフィルタ300は、通過帯域の低周波側に、緩やかではあるが、深い減衰が得られている。一方、キャパシタC02の容量値およびキャパシタC30の容量値が小さい、実施例3に係るに係る積層型LCフィルタ300は、通過帯域の低周波側に、浅いが、急峻な減衰が得られている。
 このように、本発明の積層型LCフィルタは、キャパシタ電極の大きさや形状を調整することによって、容易に周波数特性を調整することができる。
 [第4実施形態]
 図13(A)に、第4実施形態に係る積層型LCフィルタ400を示す。ただし、図13(A)は、積層型LCフィルタ400の平面電極49の形状、第1LC共振器LC1~第4LC共振器LC4の各形成位置、各開放側ビア電極8a、8b、8c、8dの各形成位置、共通短絡側ビア電極7a、7bの各形成位置を示した説明図である。
 第4実施形態に係る積層型LCフィルタ400は、上述した第1実施形態に係る積層型LCフィルタ100の構成の一部を変更した。具体的には、積層型LCフィルタ100の平面電極9は矩形形状であったが、積層型LCフィルタ400は、これを変更し、平面電極49に、2つのスリット49a、49bを形成した。なお、平面電極9は、積層型LCフィルタ100に含まれる第1LC共振器LC1~第4LC共振器LC4の平面電極を共通化させたものであり、平面電極49も、積層型LCフィルタ400に含まれる第1LC共振器LC1~第4LC共振器LC4の平面電極を共通化させたものである。
 図13(A)に示すように、スリット49aは、第1LC共振器LC1と第2LC共振器LC2との間に形成されている。また、スリット49bは、第3LC共振器LC3と第4LC共振器LC4との間に形成されている。この結果、積層型LCフィルタ400は、第1LC共振器LC1と第2LC共振器LC2との結合が弱められるとともに、第3LC共振器LC3と第4LC共振器LC4との結合が弱められている。
 このように、積層型LCフィルタ400に含まれる第1LC共振器LC1~第4LC共振器LC4の共通化された平面電極49にスリット49a、49bを形成することにより、共振器間の結合を調整する(弱める)ことができる。共通化された平面電極へのスリットの形成は、積層型LCフィルタの周波数特性の調整に利用することができる。
 [第5実施形態]
 図13(B)に、第5実施形態に係る積層型LCフィルタ500を示す。ただし、図13(B)は、積層型LCフィルタ500の平面電極59の形状、第1LC共振器LC1~第4LC共振器LC4の各形成位置、各開放側ビア電極8a、8b、8c、8dの各形成位置、共通短絡側ビア電極7a、7bの各形成位置を示した説明図である。
 第5実施形態に係る積層型LCフィルタ500は、上述した第4実施形態に係る積層型LCフィルタ400に、更に変更を加えた。具体的には、積層型LCフィルタ500は、平面電極59の第1LC共振器LC1と第2LC共振器LC2との間にスリット59aが形成され、第2LC共振器LC2と第3LC共振器LC3との間にスリット59bが形成され、第3LC共振器LC3と第4LC共振器LC4との間にスリット59cが形成され、第4LC共振器LC4と第1LC共振器LC1との間にスリット59dが形成されている。
 積層型LCフィルタ500は、第1LC共振器LC1と第2LC共振器LC2との結合、第2LC共振器LC2と第3LC共振器LC3との結合、第3LC共振器LC3と第4LC共振器LC4との結合、第4LC共振器LC4と第1LC共振器LC1との結合が、それぞれ、弱められている。
 [第6実施形態]
 図14(A)に、第6実施形態に係る積層型LCフィルタ600を示す。ただし、図14(A)は、積層型LCフィルタ600の平面電極9の形状、第1LC共振器LC1~第4LC共振器LC4の各形成位置、各開放側ビア電極8a、8b、8c、8dの各形成位置、共通短絡側ビア電極67a、67bの各形成位置を示した説明図である。
 第6実施形態に係る積層型LCフィルタ600は、上述した第1実施形態に係る積層型LCフィルタ100の構成の一部を変更した。具体的には、積層型LCフィルタ100では、共通短絡側ビア電極7a、7bが、平面電極9の中央付近に形成されていた。積層型LCフィルタ600は、これを変更し、共通短絡側ビア電極67a、67bを、平面電極9における第2LC共振器LC2と第3LC共振器LC3との間に偏在させて形成した。
 積層型LCフィルタ600は、第2LC共振器LC2と第3LC共振器LC3との結合が弱められている。
 [第7実施形態]
 図14(B)に、第7実施形態に係る積層型LCフィルタ700を示す。ただし、図14(B)は、積層型LCフィルタ700の平面電極9の形状、第1LC共振器LC1~第4LC共振器LC4の各形成位置、各開放側ビア電極8a、8b、8c、8dの各形成位置、共通短絡側ビア電極77a、77b、77c、77dの各形成位置を示した説明図である。
 第7実施形態に係る積層型LCフィルタ700は、上述した第1実施形態に係る積層型LCフィルタ100の構成の一部を変更した。具体的には、積層型LCフィルタ100では、2つの共通短絡側ビア電極7a、7bが、平面電極9の中央付近に形成されていた。積層型LCフィルタ700は、これを変更し、4つの共通短絡側ビア電極77a、77b、77c、77dを、平面電極9における、第1LC共振器LC1および第2LC共振器LC2と、第3LC共振器LC3および第4LC共振器LC4との間に形成した。
 積層型LCフィルタ700は、第1LC共振器LC1と第4LC共振器LC4と結合、および、第2LC共振器LC2と第3LC共振器LC3との結合が、それぞれ弱められている。
 [第8実施形態]
 図14(C)に、第8実施形態に係る積層型LCフィルタ800を示す。ただし、図14(C)は、積層型LCフィルタ800の平面電極9の形状、第1LC共振器LC1~第4LC共振器LC4の各形成位置、各開放側ビア電極8a、88b、88c、8dの各形成位置、共通短絡側ビア電極7a、7bの各形成位置を示した説明図である。
 第8実施形態に係る積層型LCフィルタ800は、上述した第1実施形態に係る積層型LCフィルタ100の構成の一部を変更した。具体的には、積層型LCフィルタ100では、第1LC共振器LC1~第4LC共振器LC4の4つの開放側ビア電極8a、8b、8c、8dが、積層体1の内部において4隅に離して配置されていた。積層型LCフィルタ800は、これを変更し、第2LC共振器LC2の開放側ビア電極88bとの第3LC共振器LC3の開放側ビア電極88cとを、相互に近づけて配置した。なお、第1LC共振器LC1の開放側ビア電極8aの形成位置と、第4LC共振器LC4の開放側ビア電極8dの形成位置とは変更しなかった。
 積層型LCフィルタ800は、第2LC共振器LC2と第3LC共振器LC3との結合が強められている。なお、第2LC共振器LC2の開放側ビア電極と、第3LC共振器LC3の開放側ビア電極とを近づけるのに代えて、第1LC共振器LC1の開放側ビア電極と、第4LC共振器LC4の開放側ビア電極との距離を近づけてもよい。
 [第9実施形態]
 図15に、第9実施形態に係る積層型LCフィルタ900を示す。ただし、図15は、積層型LCフィルタ900の要部分解斜視図である。
 第9実施形態に係る積層型LCフィルタ900は、上述した第1実施形態に係る積層型LCフィルタ100の構成の一部を変更した。具体的には、積層型LCフィルタ100では、絶縁体層1kに1つの平面電極9を形成し、平面電極9に、第1LC共振器LC1~第4LC共振器LC4の4つの開放側ビア電極8a、8b、8c、8dと、2つの共通短絡側ビア電極7a、7bの全てを接続していた。積層型LCフィルタ900は、これを変更し、絶縁体層1jに1つの平面電極99aを形成し、絶縁体層1kにもう1つの平面電極99bを形成した。そして、平面電極99aに、第1LC共振器LC1の開放側ビア電極98aおよび第4LC共振器LC4の開放側ビア電極98dを接続し、平面電極99bに、第2LC共振器LC2の開放側ビア電極98bおよび第3LC共振器LC3の開放側ビア電極98cを接続した。そして、2つの共通短絡側ビア電極97a、97bを、それぞれ、平面電極99aおよび平面電極99bに接続した。
 積層型LCフィルタ900においては、第1LC共振器LC1と第2LC共振器LC2との結合、および、第3LC共振器LC3と第4LC共振器LC4との結合が、それぞれ、弱められている。なお、平面電極99aや平面電極99bに接続される開放側ビア電極は、上記のものから別のものに変更してもよい。また、平面電極99aと平面電極99bとの形成位置を入れ替え、絶縁体層1jに平面電極99bを形成し、絶縁体層1kに平面電極99aを形成してもよい。
 このように、平面電極は1つには限られず、複数、形成してもよい。また、平面電極は、絶縁体層の異なる層に、それぞれ形成してもよい。また、共通短絡側ビア電極を、異なる層に形成された平面電極に、それぞれ接続してもよい。
 以上、第1実施形態~第7実施形態に係る積層型LCフィルタ100、200、300、400、500、600、700、800、900について説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って種々の変更をなすことができる。
 たとえば、積層型LCフィルタ100~900においては、第1入出力端子T1と第1LC共振器LC1との間にキャパシタC01を接続し、第4LC共振器LC4(第2LC共振器LC2)と第1入出力端子T1との間にキャパシタC40(キャパシタC20)を接続していたが、キャパシタC01やキャパシタC40(キャパシタC20)は省略することもできる。
 また、積層型LCフィルタ100、300~900は4段のバンドパスフィルタであり、積層型LCフィルタ200は2段のバンドパスフィルタであったが、フィルタの段数は、適宜、増減させることができる。また、フィルタの種類も、バンドパスフィルタには限定されず、ローパスフィルタやハイパスフィルタなどに変更することができる。
 本願発明の一実施態様にかかる積層型LCフィルタは、「課題を解決するための手段」の欄に記載したとおりである。
 この積層型LCフィルタにおいて、積層体の長さ方向において、少なくとも1つのLC共振器の開放側ビア電極と、他の少なくとも1つのLC共振器の開放側ビア電極との間に、全てのLC共振器の共通化された短絡側ビア電極が配置されることも好ましい。また、積層体の幅方向において、少なくとも1つのLC共振器の開放側ビア電極と、他の少なくとも1つのLC共振器の開放側ビア電極との間に、全てのLC共振器の共通化された短絡側ビア電極が配置されることも好ましい。これらの場合には、各LC共振器のQ値が改善される。
 また、積層体に4つのLC共振器が形成され、絶縁体層の積層方向に見たとき、4つのLC共振器のそれぞれの開放側ビア電極が、積層体の内部において4隅に分けて配置されることも好ましい。この場合には、各LC共振器のQ値が改善される。
 また、全てのLC共振器の共通化された短絡側ビア電極が、複数のビア電極からなることも好ましい。この場合には、抵抗が低くなるため、各LC共振器のQ値が改善される。
 また、共通化された短絡側ビア電極を構成する複数のビア電極が、幅方向において、均等に間隔を空けて配置されることも好ましい。この場合には、共通化された短絡側ビア電極の両側のLC共振器の間の結合を弱めることができる。あるいは、共通化された短絡側ビア電極を構成する複数のビア電極が、幅方向において、偏在して配置されることも好ましい。この場合にも、共通化された短絡側ビア電極の両側のLC共振器の間の結合を弱めることができる。
 また、全てのLC共振器の平面電極が、共通化されることも好ましい。この場合には、各LC共振器の短絡側ビア電極を共通化させやすくなる。
 この場合において、絶縁体層の積層方向に見たとき、全てのLC共振器の共通化された平面電極が矩形形状であることも好ましい。この場合には、平面電極の幅寸法を大きくすることができ、各LC共振器のQ値を改善することができる。
 この場合において、矩形形状の共通化された平面電極に、スリットが形成されることも好ましい。この場合には、スリットの両側のLC共振器の間の結合を弱めることができる。
 積層体の外表面に、第1入出力端子および第2入出力端子が形成され、nを整数としたとき、積層体にn個のLC共振器が形成され、n個のLC共振器は、順番に結合され、第1入出力端子と2段目のLC共振器とが、キャパシタを介して接続され、(n-1)段目のLC共振器と第2入出力端子とが、キャパシタを介して接続されることも好ましい。たとえば、積層体に4つのLC共振器が形成され、4つのLC共振器は、順番に結合され、第1入出力端子と2段目のLC共振器とが、キャパシタを介して接続され、3段目のLC共振器と第2入出力端子とが、キャパシタを介して接続されることも好ましい。この場合には、接続されたキャパシタの容量値を調整することによって、積層型LCフィルタの周波数特性を調整することができる。
 また、絶縁体層の異なる層間に、それぞれ、平面電極が形成され、少なくとも1つの開放側ビア電極が、1つの平面電極に接続され、少なくとも1つの他の開放側ビア電極が、異なる層間に形成された他の1つの平面電極に接続され、共通化された短絡側ビア電極が、異なる層間に形成された全ての平面電極に接続されることも好ましい。このように、平面電極の個数や形成位置を変更したり、各平面電極に接続される開放側ビア電極を選択したりすることによって、積層型LCフィルタの周波数特性を調整することができる。
1、21・・・積層体
1a~1l、21a~21l・・・絶縁体層
4a~4f、24a~24f、34a、34b・・・ビア電極
5、25・・・グランド電極
6a~6j、26a~26e、36a、36b・・・キャパシタ電極
7a、7b、27a、27b、67a、67b、77a~77d、97a、97b・・・共通短絡側ビア電極
8a~8d、28a、28b、88a、88b、98a~98d・・・開放側ビア電極
9、29、49、59、99a、99b・・・平面電極

Claims (13)

  1.  複数の絶縁体層が積層された積層体と、
     前記絶縁体層の層間に形成された少なくとも1つのグランド電極と、
     前記絶縁体層の層間に形成された複数のキャパシタ電極と、
     前記絶縁体層の層間に形成された少なくとも1つの平面電極と、
     前記絶縁体層を貫通して形成された複数のビア電極と、を備え、
     前記積層体は、直方体形状からなり、前記絶縁体層の積層方向である高さ方向と、前記高さ方向に直交する長さ方向と、前記高さ方向および前記長さ方向にそれぞれ直交する幅方向とを有し、
     前記ビア電極は、前記キャパシタ電極と前記平面電極とを繋ぐ開放側ビア電極と、前記平面電極とグランド電極とを繋ぐ短絡側ビア電極とを含み、
     前記キャパシタ電極から、前記開放側ビア電極と、前記平面電極と、前記短絡側ビア電極とを経由して、前記グランド電極に至る導電路によってインダクタが形成され、
     前記グランド電極と前記キャパシタ電極との間に形成される容量によってキャパシタが形成され、
     前記インダクタと前記キャパシタとが並列に接続されてLC共振器が形成され、
     前記積層体に複数の前記LC共振器が形成された積層型LCフィルタであって、
     前記積層体に形成された全ての前記LC共振器の前記短絡側ビア電極が、共通化された、
     積層型LCフィルタ。
  2.  前記積層体の前記長さ方向において、
     少なくとも1つの前記LC共振器の前記開放側ビア電極と、他の少なくとも1つの前記LC共振器の前記開放側ビア電極との間に、
     全ての前記LC共振器の共通化された前記短絡側ビア電極が配置された、
     請求項1に記載された積層型LCフィルタ。
  3.  前記積層体の前記幅方向において、
     少なくとも1つの前記LC共振器の前記開放側ビア電極と、他の少なくとも1つの前記LC共振器の前記開放側ビア電極との間に、
     全ての前記LC共振器の共通化された前記短絡側ビア電極が配置された、
     請求項1または2に記載された積層型LCフィルタ。
  4.  前記積層体に4つの前記LC共振器が形成され、
     前記絶縁体層の前記積層方向に見たとき、
     4つの前記LC共振器のそれぞれの前記開放側ビア電極が、前記積層体の内部において4隅に分けて配置された、
     請求項1ないし3のいずれか1項に記載された積層型LCフィルタ。
  5.  全ての前記LC共振器の共通化された前記短絡側ビア電極が、複数の前記ビア電極からなる、
     請求項1ないし4のいずれか1項に記載された積層型LCフィルタ。
  6.  共通化された前記短絡側ビア電極を構成する複数の前記ビア電極が、
     前記幅方向において、均等に間隔を空けて配置された、
     請求項5に記載された積層型LCフィルタ。
  7.  共通化された前記短絡側ビア電極を構成する複数の前記ビア電極が、
     前記幅方向において、偏在して配置された、
     請求項5に記載された積層型LCフィルタ。
  8.  全ての前記LC共振器の前記平面電極が、共通化された、
     請求項1ないし7のいずれか1項に記載された積層型LCフィルタ。
  9.  前記絶縁体層の前記積層方向に見たとき、
     全ての前記LC共振器の共通化された前記平面電極が、
     矩形形状である、
     請求項8に記載された積層型LCフィルタ。
  10.  前記矩形形状の共通化された前記平面電極に、スリットが形成された、
     請求項9に記載された積層型LCフィルタ。
  11.  前記積層体の外表面に、第1入出力端子および第2入出力端子が形成され、
     nを整数としたとき、
     前記積層体にn個の前記LC共振器が形成され、
     n個の前記LC共振器は、順番に結合され、
     前記第1入出力端子と2段目の前記LC共振器とが、キャパシタを介して接続され、
     (n-1)段目の前記LC共振器と前記第2入出力端子とが、キャパシタを介して接続された、
     請求項1ないし10のいずれか1項に記載された積層型LCフィルタ。
  12.  前記積層体に4つの前記LC共振器が形成され、
     4つの前記LC共振器は、順番に結合され、
     前記第1入出力端子と2段目の前記LC共振器とが、キャパシタを介して接続され、
     3段目の前記LC共振器と前記第2入出力端子とが、キャパシタを介して接続された、
     請求項11に記載された積層型LCフィルタ。
  13.  前記絶縁体層の異なる層間に、それぞれ、前記平面電極が形成され、
     少なくとも1つの前記開放側ビア電極が、1つの前記平面電極に接続され、
     少なくとも1つの他の前記開放側ビア電極が、異なる層間に形成された他の1つの前記平面電極に接続され、
     共通化された前記短絡側ビア電極が、異なる層間に形成された全ての前記平面電極に接続された、
     請求項1ないし12のいずれか1項に記載された積層型LCフィルタ。
PCT/JP2020/037927 2019-10-24 2020-10-07 積層型lcフィルタ WO2021079737A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021554247A JP7322968B2 (ja) 2019-10-24 2020-10-07 積層型lcフィルタ
CN202080071740.8A CN114586115B (zh) 2019-10-24 2020-10-07 层叠型lc滤波器
US17/696,390 US20220209736A1 (en) 2019-10-24 2022-03-16 Multilayer lc filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193518 2019-10-24
JP2019-193518 2019-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/696,390 Continuation US20220209736A1 (en) 2019-10-24 2022-03-16 Multilayer lc filter

Publications (1)

Publication Number Publication Date
WO2021079737A1 true WO2021079737A1 (ja) 2021-04-29

Family

ID=75620011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037927 WO2021079737A1 (ja) 2019-10-24 2020-10-07 積層型lcフィルタ

Country Status (4)

Country Link
US (1) US20220209736A1 (ja)
JP (1) JP7322968B2 (ja)
CN (1) CN114586115B (ja)
WO (1) WO2021079737A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071921A (ja) * 2009-09-28 2011-04-07 Murata Mfg Co Ltd 積層帯域通過フィルタ
JP2017063394A (ja) * 2015-09-26 2017-03-30 株式会社村田製作所 積層型lcフィルタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200908430A (en) * 2007-05-18 2009-02-16 Murata Manufacturing Co Stacked bandpass filter
WO2012066873A1 (ja) * 2010-11-16 2012-05-24 株式会社村田製作所 積層帯域通過フィルタ
JP2013128232A (ja) * 2011-12-19 2013-06-27 Murata Mfg Co Ltd バンドパスフィルタ
JP7156533B2 (ja) * 2019-07-09 2022-10-19 株式会社村田製作所 Lcフィルタ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071921A (ja) * 2009-09-28 2011-04-07 Murata Mfg Co Ltd 積層帯域通過フィルタ
JP2017063394A (ja) * 2015-09-26 2017-03-30 株式会社村田製作所 積層型lcフィルタ

Also Published As

Publication number Publication date
JPWO2021079737A1 (ja) 2021-04-29
CN114586115B (zh) 2024-01-09
CN114586115A (zh) 2022-06-03
JP7322968B2 (ja) 2023-08-08
US20220209736A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP5821914B2 (ja) 高周波部品
JP5012883B2 (ja) 積層バランスフィルタ
JP4821910B2 (ja) 積層帯域通過フィルタ
JP6809535B2 (ja) 積層型lcフィルタ
JP5907124B2 (ja) 高周波部品およびフィルタ部品
CN108390658B (zh) 层叠型电子部件以及层叠型lc滤波器
US6521976B2 (en) Multilayer LC composite component
JP5672266B2 (ja) 電子部品
CN108063606A (zh) 层叠型滤波器
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
CN109906553B (zh) 层叠型lc滤波器
WO2021079737A1 (ja) 積層型lcフィルタ
WO2017199749A1 (ja) 積層型lcフィルタ
JP6394805B2 (ja) 方向性結合器
WO2015064134A1 (ja) 電子部品
WO2012121038A1 (ja) フィルタ
WO2017086195A1 (ja) 積層型lcフィルタ
WO2014156719A1 (ja) バンドパスフィルタ
WO2018198604A1 (ja) 積層バラン
TWI584585B (zh) Laminated LC filter
JP6773122B2 (ja) 積層型lcフィルタ
WO2022113674A1 (ja) ローパスフィルタ、積層型ローパスフィルタおよびフィルタ特性調整方法
WO2022190828A1 (ja) フィルタ
TWI667880B (zh) 積層型電子零件及積層型lc濾波器
JP2002344274A (ja) バランス型lcフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878238

Country of ref document: EP

Kind code of ref document: A1