WO2021057104A1 - 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法 - Google Patents

一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法 Download PDF

Info

Publication number
WO2021057104A1
WO2021057104A1 PCT/CN2020/095757 CN2020095757W WO2021057104A1 WO 2021057104 A1 WO2021057104 A1 WO 2021057104A1 CN 2020095757 W CN2020095757 W CN 2020095757W WO 2021057104 A1 WO2021057104 A1 WO 2021057104A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
substrate
small
composite catalyst
salt
Prior art date
Application number
PCT/CN2020/095757
Other languages
English (en)
French (fr)
Inventor
潘路军
赵永鹏
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to JP2020567940A priority Critical patent/JP7008373B2/ja
Priority to US16/972,902 priority patent/US20210261418A1/en
Publication of WO2021057104A1 publication Critical patent/WO2021057104A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • B01J37/0223Coating of particles by rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • C01P2004/136Nanoscrolls, i.e. tubes having a spiral section
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention belongs to the technical field of material preparation and relates to a method for synthesizing high-purity carbon nano coils based on a composite catalyst formed by a plurality of small-sized catalysts.
  • CNC Carbon nanocoils
  • the chemical vapor deposition method is the most suitable production method for large-scale and high-efficiency preparation of CNC, in which the quality of catalyst activity is the most important factor affecting the synthesis efficiency.
  • the synthesis, application and mechanism research of catalysts for CNC growth are focused on the research and application of the anisotropy of the catalytic activity of single-particle catalysts, that is, the morphology, crystal face, composition and size of single-particle catalysts affect CNC growth.
  • Research and Application of Impact Publication: Liu, Wen-Chih, et al. Acs Nano 4.7 (2010): 4149-4157; Wang, Guizhen, et al. ACS nano 8.5 (2014): 5330-5338.].
  • the Fe/Sn catalysts currently reported usually use the precursor solution containing Fe/Sn to prepare catalyst particles (100-200nm) suitable for the growth of carbon nanocoils by the sol-gel method and the thermal co-deposition method, but these methods are used to prepare the catalyst particles (100-200nm).
  • the catalysts often have wide particle size distribution, small specific surface area, and low effective components in the catalyst, which severely restricts the efficient production of carbon nano coils. Therefore, how to efficiently prepare a catalyst of suitable size and composition has become the focus and difficulty of current research and application.
  • the purpose of the present invention is to solve the problems of complex catalyst synthesis process and low efficiency in the current high-efficiency synthesis of carbon nanocoils, and to provide a method for agglomerating small-sized catalyst particles, which can achieve high efficiency through the composite synergistic catalysis among multiple small-sized catalyst Method of growing carbon nanocoils.
  • this patent uses more than two catalyst particles with a size of less than 100nm as a composite catalyst to grow CNC together, and realizes multi-particle catalyst composite catalysis by changing the catalyst bulk density.
  • small-particle catalysts For growth, compared with large-size catalysts (greater than 100nm), small-particle catalysts have a larger specific surface area, and they are more fully in contact with carbon source gas, thereby achieving high-efficiency CNC preparation.
  • a method for synthesizing high-purity carbon nanocoils based on a composite catalyst formed by a plurality of small-sized catalysts The method first prepares Fe-Sn-O nanoparticles with a size of less than 100 nm.
  • the Fe/Sn catalyst has a wide range of raw materials due to its low preparation cost And its high catalytic activity has been widely studied. This is used as a catalyst, and a simple method is used to make it stack and contact, and then the prepared catalyst is used to efficiently synthesize carbon nano coils by the thermal CVD method. It includes the following steps:
  • the composite catalyst powder is prepared by a method of chemical synthesis, physical method, or a combination of chemical synthesis and physical method.
  • the catalyst powder is composed of Fe-Sn-O, the molar ratio of Fe:Sn in the catalyst is 5:1-30:1, and the catalyst particle size is 10-100nm.
  • the prepared composite catalyst powder is dispersed in a solvent such as water or ethanol, where the concentration of the dispersion is 0.01 mg-1 mg/ml, and the supporting substrate is cleaned.
  • the catalyst dispersion liquid is drop-coated, spin-coated or sprayed onto the surface of the substrate.
  • the density of the catalyst on the substrate surface is in the range of 1 ⁇ 10 9 /cm -2 — 5 ⁇ 10 10 /cm -2 to achieve the catalyst particles on the substrate. Load evenly and accumulate in contact with each other. After drying, put it in the CVD system and use chemical vapor deposition technology to synthesize high-purity (purity greater than 95%) carbon nano-coils.
  • the soluble Fe 3+ salt used in the preparation process described in step (1) includes, but is not limited to, ferric chloride, ferric nitrate, ferric sulfate, etc.; the soluble Sn 4+ salt includes tin chloride; Sn 4+ salt It can be combined with Fe 3+ salt arbitrarily; in step (1), the iron oxide is Fe 2 O 3 , and the tin oxide is SnO 2 .
  • step (1) includes hydrothermal method, solvothermal method, etc.; physical method includes thermal evaporation, magnetron sputtering, high-speed ball milling, etc.
  • the substrate described in step (2) includes quartz wafers, silicon wafers, SiO 2 wafers, graphite substrates, stainless steel or alumina substrates, and the like.
  • the mechanism of synthesizing carbon nanocoils by the catalyst is to use the different catalytic activity of each catalyst nanoparticle to cause the anisotropy of the catalytic activity of the entire composite catalyst.
  • small-sized Fe-Sn catalysts are stacked and contacted with each other.
  • the carbon source gas is cracked, carburized and carbonized on the catalyst surface at high temperature, several nearby catalysts naturally agglomerate and combine with each other through carbon to form a composite catalyst.
  • the fiber (tube)-like carbon nanowires with different morphologies grown from different catalyst particles adhere to each other.
  • a small-sized catalyst has a higher specific surface area, so that its catalytic activity is higher, the efficiency is better, and the product purity is higher.
  • Figure 1 is the EDS elemental analysis test spectrum of the catalyst powder prepared in Example 1.
  • Figure 2 is a transmission electron micrograph of the catalyst powder prepared in two steps a and b in Example 1.
  • Figure 3 shows the CNC macro SEM image (a) and the SEM image (b) of a single CNC top catalyst prepared after 30 spin-coating of the catalyst dispersion in Example 1.
  • Figure 4 is a TEM image of a typical product after 30 spin-coating of the catalyst in Example 1.
  • Figure 5 is a transmission electron micrograph of the catalyst powder prepared in two steps a and b in Example 2.
  • Figure 6 shows the CNC macro SEM image (a) and the SEM image (b) of a single CNC top catalyst prepared after spraying the catalyst dispersion for 20 times in Example 2.
  • Figure 7 is a scanning electron micrograph of the catalyst powder prepared in two steps a and b in Example 3.
  • Figure 8 shows the CNC macro SEM image (a) and the SEM image (b) of a single CNC top catalyst prepared after 10 drops of the catalyst dispersion in Example 3.
  • the small particle catalyst synergistically catalyzes and efficiently synthesizes the carbon nanocoil.
  • the process of CVD synthesis of carbon nanocoils is to use acetylene (C 2 H 2 ) as a carbon source, a flow rate of 15 sccm, argon (Ar) as a protective gas, a flow rate of 245 sccm, and a reaction temperature of 710°C.
  • the reaction time is 30 minutes. Cool down naturally after the reaction is over.
  • synthesis steps of this example are divided into two steps: a and b: (a) Dissolve 1.2g Fe(NO 3 ) 3 ⁇ 9H 2 O in 20ml deionized water, ultrasonically until the mixed solution is completely dissolved, and then 15ml ammonia water (mass fraction 15%) ), dissolve uniformly by ultrasonic, transfer the uniformly mixed and dispersed mixed solution into the autoclave, the reaction temperature is 140°C, the reaction time is 12 hours, naturally cool to room temperature, the obtained red precipitate is filtered, washed, and dried to obtain Single red powder.
  • Attached drawing 1 is the element analysis test of the catalyst powder and EDS, the results show that the red powder is mainly composed of three elements: Fe, Sn, and O; attached drawing 2 is the transmission electron microscope image (TEM) of the prepared catalyst powder, showing the distribution of catalyst particles The range is between 70-100nm.
  • TEM transmission electron microscope image
  • Fig. 4 is a TEM image of a typical product.
  • the catalyst is composed of 4 catalysts of different sizes. The difference in characteristics such as morphology and size of each catalyst leads to differences in their catalytic activity, which leads to anisotropic growth of CNC.
  • synthesis steps of this example are divided into two steps: a and b: (a) add 0.526g Fe 2 (SO 4 ) 3 •7H 2 O to 35ml N,N-dimethylformamide, sonicate until the mixed solution is completely dissolved, and finally add 0.8 After g polyvinylpyrrolidone (PVP) is completely dissolved, it is transferred to the reaction kettle, and the reaction temperature is controlled at 180°C in a solvothermal system. The reaction time is 6 hours, and it is naturally cooled to room temperature. The obtained red precipitate is filtered and washed. Dry to obtain a single red powder.
  • PVP polyvinylpyrrolidone
  • the synthesis steps of this example are divided into two steps: a and b: (a) add 0.270g FeCl 3 ⁇ 6H 2 O to 35ml N,N-dimethylformamide, sonicate until the mixed solution is completely dissolved, and finally add 0.8g polyvinylpyrrolidone ( After the PVP is completely dissolved, transfer to the reactor, control the reaction temperature at 180°C in the solvothermal system, the reaction time is 6 hours, and naturally cool to room temperature. The obtained red precipitate is filtered, washed, and dried to obtain a single red color. powder.
  • step (B) Accurately weigh the catalyst powder prepared in step (a) and disperse it in alcohol (concentration: 0.1mg/ml), take the silicon wafer of the reaction support substrate, wash it with acetone, alcohol, and deionized water and dry it for later use . Measure 0.1 ml of catalyst dispersion liquid and apply it to the surface of the substrate. After drying, put the substrate into a magnetron sputtering apparatus to compound SnO 2. The specific parameters are: working current is 60mA, working voltage is 40mV, working power is 20W, The deposition time is 3min. The atomic molar ratio of iron to tin is 30:1.
  • Fig. 8 is a scanning electron micrograph of the catalyst powder prepared in two steps a and b. It can be seen that the distribution range of the catalyst particles is between 30-50 nm.
  • step b is repeated 10 times.
  • the catalyst-carrying substrate is reacted in the CVD system.
  • Figure 3(a) is the SEM photo of the product after the CVD reaction of the substrate with 30 spin-coated catalysts. The CNC purity is higher than 95 %
  • Figure 3(b) SEM photo of the top catalyst of CNC. From the figure, we can see that the catalyst on the top of CNC is in a state of aggregation of multiple small particles, indicating that the catalyst of the carbon nanocoil is stacked by multiple small-sized catalysts. Become.
  • step (1) Accurately weigh a certain amount of the catalyst powder prepared in step (1) and disperse it into water or organic solution ultrasonically for later use (concentration: 1mg/ml), take the reaction carrier silicon wafer and clean it with acetone, alcohol, and deionized water. Dry afterwards and set aside. Measure 1 ml of the catalyst dispersion and apply it to the surface of the substrate; after drying, the substrate supporting the catalyst is reacted in the CVD system, and the temperature is naturally cooled after the reaction is completed.
  • the product is a carbon nanocoil.
  • step (B) Accurately weigh the catalyst powder prepared in step (a) and disperse it in alcohol (concentration: 0.1mg/ml), take the silicon wafer of the reaction support substrate, wash it with acetone, alcohol, and deionized water and dry it for later use . Measure 0.1 ml of catalyst dispersion was spin-coated on the surface of the substrate. After drying, the substrate was placed in a thermal evaporator to compound Sn. The specific parameters were: working current 1A, temperature 1000°C, and deposition time 10min. The molar ratio of iron to tin atoms is 30:1.
  • step b is repeated 10 times. After drying, the catalyst-carrying substrate is reacted in the CVD system, and the product is a high-purity carbon nanocoil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法,属于材料制备技术领域。以化学法或者物理法制备的尺寸小于100nm的Fe-Sn-O纳米颗粒为催化剂,并利用简易方式使其堆积接触,后利用所制备催化剂采用热CVD法高效合成的碳纳米线圈。该方法工艺简单,成本低;还揭示了一种新颖的碳纳米线圈生长的机理,使得制备出的用于生长碳纳米线圈的催化剂更高效,并易于工业化宏量生产。

Description

一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法 技术领域
本发明属于材料制备技术领域,涉及一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法。
背景技术
具有螺旋形貌的碳纳米线圈(CNC)具备独特的物理、化学性质,在复合材料、储能、应变传感器、电磁吸收材料、MEMS系统中都有广泛的应用前景,因此高效制备CNCs对于拓展其应用领域至关重要,而高效制备的前提是对其合成的机理有全面清晰的认识。
化学气相沉积法(CVD法)是最适合大规模高效制备CNC的生产方法,其中催化剂活性的优劣则是影响合成效率的重中之重。目前对CNC生长用催化剂的合成、应用及机理研究都集中于对单粒催化剂的催化活性的各向异性的研究和应用,即单粒催化剂的形貌、晶面、组分以及尺寸对CNC生长影响的研究和应用[出版物:Liu, Wen-Chih, et al. Acs Nano 4.7 (2010): 4149-4157;Wang, Guizhen, et al. ACS nano 8.5 (2014): 5330-5338.]。此外,研究表明尺寸在100-200nm的单粒催化剂适合弹簧状CNC生长[出版物:Qian, Juanjuan, et al. Journal of nanoscience and nanotechnology 10.11 (2010): 7366-7369.],其它粒径的催化剂只能生长为其他形态的碳纳米材料;另一方面,Fe/Sn催化剂因其制备成本低廉,原料来源广泛且催化活性高被广泛研究,目前报道的Fe/Sn催化剂通常是利用含Fe/Sn的前驱体溶液利用溶胶凝胶法、热共沉积法制备适合碳纳米线圈生长的催化剂颗粒(100-200nm),但这些方法制备的催化剂往往粒径分布广、比表面积小、催化剂中有效成分低,严重制约了碳纳米线圈的高效生产。因此,如何高效制备尺寸、组分合适的催化剂成为目前研究和应用的重点以及难点。
技术问题
本发明的目的是针对目前高效合成碳纳米线圈过程中,催化剂合成过程复杂、效率低这一问题,提供一种聚集小尺寸催化剂颗粒的方法,通过多颗小尺寸催化剂之间的复合协同催化高效生长的碳纳米线圈的方法。与之前报道的由单个纳米颗粒作催化剂生长CNC不同,本专利是由两个以上的尺寸为100nm以下催化剂颗粒作为复合催化剂协同生长CNC的方法,通过改变催化剂堆积密度的方式现实多颗粒催化剂复合催化生长,相比大尺寸催化剂(大于100nm),小颗粒催化剂比表面积更大,其与碳源气体接触更充分,从而实现对CNC高效制备。
技术解决方案
为了达到上述目的,本发明采用的技术方案为:
一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法,该方法首先制备尺寸小于100nm的Fe-Sn-O纳米颗粒,Fe/Sn催化剂因其制备成本低廉,原料来源广泛且催化活性高被广泛研究。以此为催化剂,并利用简易方式使其堆积接触,再利用所制备催化剂采用热CVD法高效合成的碳纳米线圈。具体包括以下步骤:
(1)制备的碳纳米线圈所用小尺寸催化剂
采用Fe 3+盐或铁的氧化物和可溶性Sn 4+盐或锡的氧化物为原料,采用化学合成法、物理法或化学合成法与物理法相互组合的方法制备复合催化剂粉末,所述复合催化剂粉末由Fe-Sn-O组成,催化剂中Fe:Sn的摩尔比为5:1-30:1,催化剂颗粒尺寸为10-100nm。
(2)采用合成的复合催化剂利用化学气相沉积技术复合催化高效生长碳纳米线圈
将制备得到的复合催化剂粉末分散至水或乙醇等溶剂中,其中分散液浓度为0.01mg-1mg/ml,清洗担载衬底。将催化剂分散液滴涂、旋涂或喷涂至衬底表面,其中催化剂在衬底表面密度范围在1×10 9/cm -2 — 5×10 10/cm -2,实现催化剂颗粒在基板上的均匀担载及相互堆积接触。将干燥后将其放至于CVD系统中利用化学气相沉积技术合成高纯度(纯度大于95%)碳纳米线圈。
进一步的,步骤(1)中所述的制备过程中使用的可溶性Fe 3+盐包括但不限于氯化铁、硝酸铁、硫酸铁等;可溶性Sn 4+盐包括氯化锡;Sn 4+盐与Fe 3+盐可以任意组合;步骤(1)中所述的铁的氧化物为Fe 2O 3,锡的氧化物为SnO 2
进一步的,步骤(1)中所述的化学合成法包括水热法、溶剂热法等;物理法包括热蒸镀、磁控溅射、高速球磨法等。
进一步的,步骤(2)中所述的衬底包括石英片、硅片、SiO 2片、石墨基板、不锈钢或氧化铝基板等。
本发明方法可以高效制备碳纳米线圈的原理可总结为:所述催化剂合成碳纳米线圈的机理是利用各催化剂纳米粒子的催化活性不同而造成整个复合催化剂的催化活性的各向异性。具体为:小尺寸的Fe-Sn催化剂相互堆积接触,在高温下当碳源气体在催化剂表面裂解、渗碳和析碳的过程中,附近数颗催化剂自然团聚并通过碳相互结合,形成复合催化剂,其中从不同催化剂小颗粒生长出的形貌不同的纤维(管)状碳纳米线相互粘连,同时不同催化剂小颗粒因其尺寸、形貌、组分差异导致碳源气体裂解、渗碳和析碳的速度产生差异,使得长出的复合碳纳米线为螺旋结构,即碳纳米线圈。
有益效果
本发明的有益效果:小尺寸的催化剂具有较高的比表面积,使得其催化活性更高,效率更好,产物纯度更高。
附图说明
图1为实施实例1制备的催化剂粉末的EDS元素分析测试图谱。
图2为实施实例1中a、b两步制备催化剂粉末的透射电镜图。
图3为实施实例1中催化剂分散液旋涂30次后制备的CNC宏观SEM图像(a)以及单根CNC顶部催化剂SEM图(b)。
图4为实施实例1中催化剂旋涂30次后典型产物的TEM图。
图5为实施实例2中a、b两步制备催化剂粉末的透射电镜图。
图6为实施实例2中催化剂分散液喷涂20次后制备的CNC宏观SEM图像(a)以及单根CNC顶部催化剂SEM图(b)。
图7为实施实例3中a、b两步制备催化剂粉末的扫描电镜图。
图8为实施实例3中催化剂分散液滴涂10次后制备的CNC宏观SEM图像(a)以及单根CNC顶部催化剂SEM图(b)。
本发明的实施方式
通过参考以下对实施方案、对照实施方案和附图的详细描述可以更容易地理解本发明。然而,本发明可以有许多不同的形式实施,不应被解释为限于本文所阐述的实施方案。这些实施例旨在使本发明的公开内容完整并且告知本发明所属领域的技术人员本发明的范围。本发明仅由权利要求的范围限定。在整个说明书中相同的附图标记表示相同的元件。
在下文中,将参照附图详细描述本发明的优选实施方案,即小颗粒催化剂协同催化高效合成碳纳米线圈。下文所述实例中,CVD合成碳纳米线圈的过程为,以乙炔(C 2H 2)为碳源,流速为15sccm,氩气(Ar)为保护气,流量为245sccm,反应温度为710℃,反应时间为30min。待反应结束后自然降温。
实施实例1:
(1)水热法(化学法)制备小尺寸催化剂
本实例合成步骤分为a、b两步:(a)将1.2g Fe(NO 3) 3·9H 2O和溶于20ml 去离子水中,超声至混合溶液完全溶解后15ml 氨水(质量分数15%),超声溶解均匀,将混合分散均匀后的混合溶液转移至高压反应釜内,反应温度在140℃,反应时间为12小时,自然冷却到室温,将所得的红色沉淀过滤,洗涤,干燥,得到单一红色粉末。
(b)取上步制备的红色粉末20mg超声分散在30ml水中,加入0.2g SnCl 4·5H 2O待充分溶解后逐滴滴加1mol/L的NaOH溶液调整PH至10,将混合分散均匀后的混合溶液转移至高压反应釜内,反应温度在200℃,反应时间为1.5小时,得到的产物Fe、Sn摩尔比为20:1,自然冷却到室温,将所得的红色沉淀过滤,洗涤,干燥,得到单一红色粉末。
附图1为催化剂粉末的以及EDS元素分析测试,结果表明红色粉末主要由Fe、Sn、O三种元素组成;附图2是制备催化剂粉末的透射电镜图(TEM),图中可见催化剂颗粒分布范围为70-100nm之间。
(2)使用上述催化剂制备碳纳米线圈
准确称取步骤(1)制备的催化剂粉末分散至酒精中(浓度为:0.1mg/ml),取反应担载衬底硅片分别用丙酮、酒精、去离子水清洗后干燥待用。量取0.2ml催化剂分散液旋涂至衬底表面(转速:2000/分钟),上述过程重复30次,附图3(a)为旋涂30次催化剂的基板CVD反应后的产物SEM照片,CNC纯度高于95%,附图3(b)CNC的顶部催化剂的SEM照片,从图中可以看到CNC顶端的催化剂为多颗小颗粒聚集状态,与之前公开的单一颗粒的催化剂的生长机理有显著不同。附图4为典型产物的TEM图,图中可见催化剂是由大小不等的4颗催化剂组成,各个催化剂的形貌尺寸等特性的不同导致其催化活性有差异从而引起CNC的各项异性生长。
实施实例2:
(1)溶剂热法(化学法)制备所用小尺寸催化剂
本实例合成步骤分为a、b两步:(a)将0.526gFe 2(SO 4) 3•7H 2O加入35mlN,N-二甲基甲酰胺中,超声至混合溶液完全溶解,最后加入0.8g聚乙烯吡咯烷酮(PVP)待完全溶解后,转移至反应釜内,在溶剂热体系中控制反应温度在180℃,反应时间为6小时,自然冷却到室温,将所得的红色沉淀过滤,洗涤,干燥,得到单一红色粉末。
(b)取上步制备的红色粉末20mg超声分散在30ml水中,加入0.2g SnCl 4·5H 2O待充分溶解后逐滴滴加1mol/L的NaOH溶液调整PH至10,将混合分散均匀后的混合溶液转移至高压反应釜内,反应温度在200℃,反应时间为2小时,得到的产物Fe、Sn摩尔比为10:1,自然冷却到室温,将所得的红色沉淀过滤,洗涤,干燥,得到单一红色粉末。附图5是a、b两步制备催化剂粉末的透射电镜图(TEM),图中可见催化剂颗粒分布范围为30-50nm之间。
(2)使用上述催化剂高效制备碳纳米线圈
准确称取步骤(1)制备的催化剂粉末分散至酒精中(浓度为:0.1mg/ml),取反应担载衬底硅片分别用丙酮、酒精、去离子水清洗后干燥待用。量取0.1 ml催化剂分散液喷涂至衬底表面,上述过程重复20次,待干燥后将担载催化剂的衬底至于CVD系统中反应,附图6(a)为旋涂30次催化剂的基板CVD反应后的产物SEM照片,CNC纯度高于95%,附图3(b)CNC的顶部催化剂的SEM照片,从图中可以看到CNC顶端的催化剂为多颗小颗粒聚集状态,说明该碳纳米线圈的催化剂是由多颗小尺寸的催化剂堆叠而成。
实施实例3:
(1)物理溅射法(化学-物理法结合)制备碳纳米线圈所用小尺寸催化剂
本实例合成步骤分为a、b两步:(a)将0.270gFeCl 3·6H 2O加入35mlN,N-二甲基甲酰胺中,超声至混合溶液完全溶解,最后加入0.8g聚乙烯吡咯烷酮(PVP)待完全溶解后,转移至反应釜内,在溶剂热体系中控制反应温度在180℃,反应时间为6小时,自然冷却到室温,将所得的红色沉淀过滤,洗涤,干燥,得到单一红色粉末。
(b)准确称取步骤(a)制备的催化剂粉末分散至酒精中(浓度为:0.1mg/ml),取反应担载衬底硅片分别用丙酮、酒精、去离子水清洗后干燥待用。量取0.1 ml催化剂分散液滴涂至衬底表面,干燥后将衬底放入磁控溅射仪中复合SnO 2,具体参数为:工作电流为60mA、工作电压为40mV、工作功率为20W、沉积时间为3min。铁锡原子摩尔比为30:1,附图8是a、b两步制备催化剂粉末的扫描电镜图,图中可见催化剂颗粒分布范围为30-50nm之间。
(2)使用上述催化剂制备高纯度碳纳米线圈
上述步骤b重复10次,待干燥后将担载催化剂的衬底至于CVD系统中反应,附图3(a)为旋涂30次催化剂的基板CVD反应后的产物SEM照片,CNC纯度高于95%,附图3(b)CNC的顶部催化剂的SEM照片,从图中可以看到CNC顶端的催化剂为多颗小颗粒聚集状态,说明该碳纳米线圈的催化剂是由多颗小尺寸的催化剂堆叠而成。
实施实例4:
(1)物理球磨(物理法)制备的碳纳米线圈所用小尺寸催化剂
将α‐Fe 2O 3(20-50nm)以及SnO 2(10-20nm)按铁锡摩尔比5:1混合之后放入高速球磨机,具体参数为:转速1000r/min、时间为2H,球磨结束后取出催化剂粉末,清洗待用。
(2)使用上述催化剂制备,碳纳米线圈
准确称取一定量步骤(1)制备的催化剂粉末分散至水或有机溶液中超声待用(浓度为:1mg/ml),取反应担载衬底硅片分别用丙酮、酒精、去离子水清洗后干燥待用。量取1ml催化剂分散液涂布至衬底表面;待干燥后将担载催化剂的衬底至于CVD系统中反应,待反应结束后自然降温。产物即为碳纳米线圈。
实施实例5:
(1)热蒸发法(化学-物理法)制备的碳纳米线圈所用小尺寸催化剂
本实例合成步骤分为a、b两步:
(a)将0.404gFe(NO 3) 3·9H 2O加入35mlN,N-二甲基甲酰胺中,超声至混合溶液完全溶解,最后加入0.8g聚乙烯吡咯烷酮(PVP)待完全溶解后,转移至反应釜内,在溶剂热体系中控制反应温度在180℃,反应时间为6小时,自然冷却到室温,将所得的红色沉淀过滤,洗涤,干燥,得到单一红色粉末。
(b)准确称取步骤(a)制备的催化剂粉末分散至酒精中(浓度为:0.1mg/ml),取反应担载衬底硅片分别用丙酮、酒精、去离子水清洗后干燥待用。量取0.1 ml催化剂分散液旋涂至衬底表面,干燥后将衬底放入热蒸发仪中复合Sn,具体参数为:工作电流为1A、温度1000℃、,沉积时间为10min。铁锡原子摩尔比为30:1。
(2)使用上述催化剂制备高纯度碳纳米线圈
上述步骤b重复10次,待干燥后将担载催化剂的衬底至于CVD系统中反应,产物即为高纯度碳纳米线圈。
上述实例证明:采用本文提出的使用小尺寸Fe-S-O 催化剂可以高效制备碳纳米线圈,同时本专利提出的。同时上述对实例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例子,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (5)

  1. 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法,其特征在于,该方法首先制备尺寸小于100nm的Fe-Sn-O纳米颗粒,并以此为催化剂,再利用所制备催化剂采用热CVD法高效合成的碳纳米线圈;包括以下步骤:
    (1)制备的碳纳米线圈所用小尺寸催化剂
    采用Fe 3+盐或铁的氧化物和可溶性Sn 4+盐或锡的氧化物为原料,采用化学合成法、物理法或化学合成法与物理法相互组合的方法制备复合催化剂粉末,所述复合催化剂粉末由Fe-Sn-O组成,催化剂中Fe:Sn的摩尔比为5:1-30:1,催化剂颗粒尺寸为10-100nm;
    (2)采用合成的复合催化剂利用化学气相沉积技术复合催化高效生长碳纳米线圈
    将制备得到的复合催化剂粉末分散至水或乙醇等溶剂中,其中分散液浓度为0.01mg-1mg/ml,清洗担载衬底;将催化剂分散液滴涂、旋涂或喷涂至衬底表面,其中催化剂在衬底表面密度范围在1×10 9/cm -2— 5×10 10/cm -2,实现催化剂颗粒在基板上的均匀担载及相互堆积接触;将干燥后将其放至于CVD系统中利用化学气相沉积技术合成高纯度碳纳米线圈,其中碳纳米线圈纯度大于95%。
  2. 根据权利要求1所述的一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法,其特征在于,步骤(1)中所述的制备过程中使用的可溶性Fe 3+盐包括但不限于氯化铁、硝酸铁、硫酸铁等;可溶性Sn 4+盐包括氯化锡;Sn 4+盐与Fe 3+盐可以任意组合;步骤(1)中所述的铁的氧化物为Fe 2O 3,锡的氧化物为SnO 2
  3. 根据权利要求1或2所述的一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法,其特征在于,步骤(1)中所述的化学合成法包括水热法、溶剂热法;物理法包括热蒸镀、磁控溅射、高速球磨法。
  4. 根据权利要求1或2所述的一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法,其特征在于,步骤(2)中所述的衬底包括石英片、硅片、SiO 2片、石墨基板、不锈钢或氧化铝基板。
  5. 根据权利要求3所述的一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法,其特征在于,步骤(2)中所述的衬底包括石英片、硅片、SiO 2片、石墨基板、不锈钢或氧化铝基板。
PCT/CN2020/095757 2019-09-23 2020-06-12 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法 WO2021057104A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020567940A JP7008373B2 (ja) 2019-09-23 2020-06-12 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法
US16/972,902 US20210261418A1 (en) 2019-09-23 2020-06-12 Method for synthesizing high-purity carbon nanocoils based on composite catalyst formed by multiple small-sized catalyst particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910899819.9 2019-09-23
CN201910899819.9A CN110642240B (zh) 2019-09-23 2019-09-23 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法

Publications (1)

Publication Number Publication Date
WO2021057104A1 true WO2021057104A1 (zh) 2021-04-01

Family

ID=69011042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095757 WO2021057104A1 (zh) 2019-09-23 2020-06-12 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法

Country Status (4)

Country Link
US (1) US20210261418A1 (zh)
JP (1) JP7008373B2 (zh)
CN (1) CN110642240B (zh)
WO (1) WO2021057104A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642240B (zh) * 2019-09-23 2022-05-27 大连理工大学 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法
CN110639521B (zh) * 2019-09-29 2022-05-17 湘潭大学 暴露高指数面的氧化铁十二面体纳米晶体催化剂的制备方法
CN111710991B (zh) * 2020-06-24 2021-08-10 大连理工大学 螺旋碳纳米线圈/核壳结构磁性纳米颗粒复合材料、制备方法及其在电磁波领域的应用
CN114522242B (zh) * 2022-02-28 2023-02-03 深圳大学 磁驱螺旋微纳米马达及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838992A (zh) * 2003-05-29 2006-09-27 独立行政法人科学技术振兴机构 碳纳米线圈制造用催化剂、其制造方法、碳纳米线圈制造方法及碳纳米线圈
CN101405081A (zh) * 2006-03-20 2009-04-08 日新电机株式会社 碳纳米线圈制造用催化剂颗粒及其制造方法以及碳纳米线圈的制造方法
WO2015020862A2 (en) * 2013-07-31 2015-02-12 Research Triangle Institute Mixed metal iron oxides and uses thereof
CN106517350A (zh) * 2016-10-31 2017-03-22 中国科学技术大学 一种铁锡氧化物纳米材料及其制备方法、应用
CN106582670A (zh) * 2016-12-22 2017-04-26 中国工程物理研究院材料研究所 一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法
JP2017095329A (ja) * 2015-11-27 2017-06-01 国立研究開発法人物質・材料研究機構 中空体、その製造方法、それを用いたアノード電極材料、および、それを用いたリチウムイオン二次電池
CN109201068A (zh) * 2018-10-12 2019-01-15 大连理工大学 一种减少副产物碳层的碳纳米线圈合成用催化剂的制备方法及其应用
CN110639532A (zh) * 2019-09-23 2020-01-03 大连理工大学 一种高纯度碳纳米线圈合成用催化剂的一步水热合成方法及其应用
CN110642240A (zh) * 2019-09-23 2020-01-03 大连理工大学 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822806B2 (ja) * 2001-07-11 2006-09-20 喜萬 中山 カーボンナノコイルの量産方法
JP2004261630A (ja) 2003-01-28 2004-09-24 Japan Science & Technology Agency カーボンナノコイル製造用触媒及びその製造方法並びにカーボンナノコイル製造方法
EP1649929B1 (en) 2003-05-29 2009-04-29 Japan Science and Technology Agency Method for preparing carbon nanocoil
JP5409345B2 (ja) 2007-03-14 2014-02-05 公立大学法人大阪府立大学 ブラシ状カーボンナノ構造物製造用触媒体、その製造方法及びブラシ状カーボンナノ構造物製造方法
JP5196417B2 (ja) * 2007-07-10 2013-05-15 公立大学法人大阪府立大学 カーボンナノコイル製造用触媒およびカーボンナノコイルの製造方法
CN101822986B (zh) * 2010-03-31 2012-05-09 北京化工大学 一种可以控制生长碳纳米管和碳纤维的催化剂制备方法
CN101880040B (zh) * 2010-06-24 2012-02-08 吉林大学 一步反应制备γ-Fe2O3纳米线填充碳氮多壁纳米管的方法
CN104386668B (zh) * 2014-11-10 2017-07-11 电子科技大学 一种镍纳米催化制备螺旋碳纳米材料的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838992A (zh) * 2003-05-29 2006-09-27 独立行政法人科学技术振兴机构 碳纳米线圈制造用催化剂、其制造方法、碳纳米线圈制造方法及碳纳米线圈
CN101405081A (zh) * 2006-03-20 2009-04-08 日新电机株式会社 碳纳米线圈制造用催化剂颗粒及其制造方法以及碳纳米线圈的制造方法
WO2015020862A2 (en) * 2013-07-31 2015-02-12 Research Triangle Institute Mixed metal iron oxides and uses thereof
JP2017095329A (ja) * 2015-11-27 2017-06-01 国立研究開発法人物質・材料研究機構 中空体、その製造方法、それを用いたアノード電極材料、および、それを用いたリチウムイオン二次電池
CN106517350A (zh) * 2016-10-31 2017-03-22 中国科学技术大学 一种铁锡氧化物纳米材料及其制备方法、应用
CN106582670A (zh) * 2016-12-22 2017-04-26 中国工程物理研究院材料研究所 一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法
CN109201068A (zh) * 2018-10-12 2019-01-15 大连理工大学 一种减少副产物碳层的碳纳米线圈合成用催化剂的制备方法及其应用
CN110639532A (zh) * 2019-09-23 2020-01-03 大连理工大学 一种高纯度碳纳米线圈合成用催化剂的一步水热合成方法及其应用
CN110642240A (zh) * 2019-09-23 2020-01-03 大连理工大学 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法

Also Published As

Publication number Publication date
US20210261418A1 (en) 2021-08-26
JP2021529716A (ja) 2021-11-04
CN110642240B (zh) 2022-05-27
JP7008373B2 (ja) 2022-01-25
CN110642240A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2021057104A1 (zh) 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法
Li et al. Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures
CN109956463B (zh) 一种碳纳米管及其制备方法
CN109201068B (zh) 一种减少副产物碳层的碳纳米线圈合成用催化剂的制备方法及其应用
Yu et al. Coating MWNTs with Cu2O of different morphology by a polyol process
CN107262133A (zh) 一种基于单分散单质铋和氮化碳的光催化剂的制备办法
JP2013163635A (ja) 超低嵩密度のバンドル部分を有する高伝導性カーボンナノチューブ及びその製造方法
CN102660220A (zh) 一种石墨烯负载四氧化三铁纳米复合材料的制备方法
CN100577329C (zh) 一种制备碳包覆磁性金属纳米粒子的方法
JP3822806B2 (ja) カーボンナノコイルの量産方法
CN112705235B (zh) 碳包覆碳化镍的纳米复合材料及其制备方法和应用
CN110255626B (zh) 基于气相沉积制备表面活性洋葱状碳纳米球的方法
CN109332681B (zh) 碳包覆的铁-碳化三铁磁性纳米颗粒的制备方法
Németh et al. Preparation of homogeneous titania coating on the surface of MWNT
Zhu et al. Controllable synthesis of hierarchical ZnO nanostructures via a chemical route
CN113477270A (zh) 一种铜铁双金属限域氮掺杂碳纳米管复合材料的制备方法
CN113399003B (zh) 一种贵金属纳米颗粒-MOFs凝胶块体复合材料及其制备方法和应用
CN108395542B (zh) 一种多孔膜基底调控的MOFs纳米晶材料及其制备方法
CN109231281B (zh) 一种Fe3O4准立方体颗粒/多层石墨烯复合材料的制备方法
Jiang et al. Bi2Te3 nanostructures prepared by microwave heating
CN110252304B (zh) 铁系催化剂及其制备方法和应用以及碳纳米管及其制备方法
US10421061B2 (en) Preparation method of alumina-carbon nano tube composite powder material
CN110270332B (zh) 一种磁性TiO2(R)复合光催化剂及其制备方法
CN101531374B (zh) 硼纳米线的制备方法
CN109616626B (zh) 一种碳包覆四氧化三铁纳米晶的低温宏量制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020567940

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868705

Country of ref document: EP

Kind code of ref document: A1