JP7008373B2 - 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法 - Google Patents

複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法 Download PDF

Info

Publication number
JP7008373B2
JP7008373B2 JP2020567940A JP2020567940A JP7008373B2 JP 7008373 B2 JP7008373 B2 JP 7008373B2 JP 2020567940 A JP2020567940 A JP 2020567940A JP 2020567940 A JP2020567940 A JP 2020567940A JP 7008373 B2 JP7008373 B2 JP 7008373B2
Authority
JP
Japan
Prior art keywords
catalyst
substrate
composite catalyst
small
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020567940A
Other languages
English (en)
Other versions
JP2021529716A (ja
Inventor
路軍 潘
永鵬 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Publication of JP2021529716A publication Critical patent/JP2021529716A/ja
Application granted granted Critical
Publication of JP7008373B2 publication Critical patent/JP7008373B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • B01J37/0223Coating of particles by rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • C01P2004/136Nanoscrolls, i.e. tubes having a spiral section
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は、材料調製の技術分野に属し、複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法に関する。
螺旋態様を持つカーボンナノコイル(CNC)は、独特な物理化学的性質を持ち、複合材料、エネルギー貯蔵、歪みセンサ、電磁吸収材料、MEMSシステムに広範な応用将来性があるため、CNCsを効率的に調製することはその応用分野を拡大する上で非常に重要であり、効率的に調製する前提は、その合成のメカニズムを全面的かつ明確に認識することである。
化学気相成長法(CVD法)は大規模で効率的にCNCを調製するのに最適な生産方法であり、その中で触媒活性の優劣は合成効率に影響を与える最も重要なポイントである。現在、CNC成長用触媒の合成、応用及びメカニズムに関する研究は、単一粒子触媒の触媒活性の異方性に対する研究と応用、すなわち、単一粒子触媒の態様、結晶面、成分及びサイズによるCNC成長への影響に対する研究と応用に集中している[出版物:Liu、Wen-Chih、et al.Acs Nano 4.7(2010):4149-4157;Wang、Guizhen、et al.ACS nano 8.5(2014):5330-5338.]。また、研究により、サイズが100~200nmの単一粒子触媒がばね状CNC成長に適していることが分かった[出版物:Qian、Juanjuan、et al.Journal of nanoscience and nanotechnology10.11 (2010):7366-7369.]、他の粒径の触媒は他の態様のカーボンナノ材料にしか成長できない。一方、Fe/Sn触媒はその調製コストが安価で、原料源が広く、触媒活性が高いことから広く研究されており、現在報告されているFe/Sn触媒は、通常、Fe/Snを含む前駆体溶液を利用してゾル-ゲル法、熱共蒸着法でカーボンナノコイル成長に適切な触媒粒子(100~200nm)を調製しているが、これらの方法で調製された触媒は、粒径分布が広く、比表面積が小さく、触媒中の有効成分が低いことが多く、カーボンナノコイルの効率的な生産をひどく制約している。そのため、どのようにサイズ、成分の適切な触媒を効率的に調製するかが、現在の研究と応用の重点と難点となっている。
本発明は、現在、効率的にカーボンナノコイルを合成する過程で、触媒合成の過程が複雑で、効率が低いという課題に対して、小サイズの触媒粒子を集中する方法を提供し、複数の小サイズ触媒の間の複合協同触媒でカーボンナノコイルを効率的に成長する方法を提供することを目的とする。これまで報告された単一のナノ粒子を触媒として成長するCNCとは異なり、本特許は、2つ以上のサイズが100nm以下の触媒粒子を複合触媒として協同成長するCNCの方法であり、触媒堆積密度を変更する方式で複数の粒子触媒の複合触媒成長を実現し、大サイズの触媒(100nmよりも大きいもの)よりも、小粒子触媒の比表面積がより大きく、炭素源ガスとの接触がより十分となり、CNCの効率的な調製が実現される。
上記の目的を達成するために、本発明で用いられる技術的手段は下記の通りである。
複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法であって、当該方法により、先ずサイズが100nm未満のFe-Sn-Oナノ粒子を調製し、Fe/Sn触媒は調製コストが低く、原料源が広く触媒活性が高いことから広く研究されている。それを触媒とし、簡易な方式でそれを堆積接触させてから、調製された触媒を利用し熱CVD法を用いカーボンナノコイルを効率的に合成する。具体的には、下記のステップを含む。
(1)カーボンナノコイルに用いられる小サイズの触媒を調製する
Fe3+塩または鉄の酸化物と可溶性Sn4+塩または錫の酸化物を原料として用い、化学合成法、物理方法または化学合成法と物理方法との相互に組み合わせた方法を用いて複合触媒粉末を調製し、前記複合触媒粉末は、Fe-Sn-Oからなり、触媒において、Fe:Snのモル比は5:1~30:1であり、触媒粒子のサイズは、10-100nmである。
(2)合成された複合触媒を用いて化学気相成長技術を利用し複合触媒によりカーボンナノコイルを効率的に成長する
調製された複合触媒粉末を水やエタノールなどの溶媒に分散し、ここに、分散液の濃度は、0.01mg~1mg/mlであり、担持基板を洗浄する。触媒分散液を基板表面にドロップコート、スピンコートまたはスプレーコートし、ここに、触媒が基板表面での密度範囲は、1×10 -2~5×1010 -2であり、触媒粒子の基板での均一的な担持および相互的な堆積接触を実現する。乾燥後CVDシステムに置いて化学気相成長技術を利用し純度が95%を超えた高純度カーボンナノコイルを合成する。
さらに、ステップ(1)に記載の調製過程で使用される可溶性Fe3+塩は、塩化第二鉄、硝酸鉄、硫酸鉄などを含むがそれらに限られず、可溶性Sn4+塩は、塩化スズを含み、Sn4+塩とFe3+塩とは任意に組み合わせることができ、ステップ(1)に記載の鉄の酸化物はFeであり、錫の酸化物はSnOである。
さらに、ステップ(1)に記載の化学合成法は、水熱法、ソルボサーマル法などを含み、物理方法は、熱蒸着、マグネトロンスパッタ、高速ボールミル法などを含む。
ステップ(2)に記載の基板は、石英シート、シリコンチップ、SiOシート、グラファイト基板、ステンレス鋼またはアルミナ基板などを含む。
本発明方法は、カーボンナノコイルを効率的に調製できる原理を下記のようにまとめることができる。即ち、前記触媒がカーボンナノコイルを合成するメカニズムは、各触媒ナノ粒子の触媒活性が異なることによって、複合触媒全体の触媒活性の異方性を引き起こす。具体的には、小サイズのFe-Sn触媒が互いに堆積接触し、高温で炭素源ガスが触媒表面で分解、浸炭、炭素析出する過程で、近傍のいくつかの触媒が自然に凝集し、炭素を介して互いに結合して、複合触媒を形成し、異なる触媒小粒子から成長した異なる態様の繊維(チューブ)状カーボンナノワイヤーが互いに癒着し、同時に異なる触媒小粒子はそのサイズ、態様、成分の違いによって炭素源ガスの分解、浸炭、炭素析出の速度に差異が生じることで、成長した複合カーボンナノワイヤーが螺旋構造、即ち、カーボンナノコイルとなる。
本発明の有益な効果として、小サイズの触媒は高い比表面積を有し、その触媒活性をさらに高くし、効率をさらに高くし、生産物の純度をさらに高くする。
実施例1で調製された触媒粉末のEDS元素分析テストマップである。 実施例1におけるa、bの二ステップで触媒粉末を調製する透過型電子顕微鏡写真である。 実施例1における触媒分散液を30回スピンコートした後で調製されたCNCマクロSEM図像(a)および単一のCNC頂部触媒SEM図(b)である。 実施例1における触媒を30回スピンコートした後の典型的な生産物のTEM図である。 実施例2におけるa、bの二ステップで触媒粉末を調製する透過型電子顕微鏡写真である。 実施例2における触媒分散液を20回スプレーコートした後で調製されたCNCマクロSEM図像(a)および単一のCNC頂部触媒SEM図(b)である。 実施例3におけるa、bの二ステップで触媒粉末を調製する走査型電子顕微鏡写真である。 実施例3における触媒分散液を10回ドロップコートした後で調製されたCNCマクロSEM図像(a)および単一のCNC頂部触媒SEM図(b)である。
以下、実施の形態、比較実施の形態と図面の詳細な説明を参照することで、本発明をさらに容易に理解できる。しかし、本発明は、多くの異なる形態で実施でき、本文に記載の実施の形態に限られると解釈すべきではない。これらの実施例は、本発明の開示内容を完全にし、かつ当業者に本発明の範囲を知らせることを目的とするものである。本発明は、請求項の範囲だけによって限定される。明細書全文では、同一の図面の符号で同一の素子を表す。
以下、図面を参照し、本発明の好ましい実施の形態を詳しく説明し、即ち、小粒子触媒が協同触媒し、カーボンナノコイルを効率的に合成する。下記の実例では、カーボンナノコイルをCVD合成する過程は、アセチレン(C)を炭素源として、流速は15sccmであり、アルゴンガス(Ar)は保護ガスであり、流量は245sccmであり、反応温度は710℃であり、反応時間は30minである。反応終了後に自然に降温する。
実施例1:
(1)水熱法(化学法)で小サイズの触媒を調製する
本実例に係る合成ステップは、a、bの二ステップに分けられ、即ち、(a)1.2gのFe(NO・9HOを20mlの脱イオン水に溶解し、混合溶液が完全に溶解した後の15mlのアンモニア水(質量分率15%)まで超音波溶解し、超音波溶解が均一で、均一的に混合分散した後の混合溶液を高圧反応釜内に移し、反応温度は140℃であり、反応時間は12時間であり、室温まで自然冷却し、得られた赤色沈殿を濾過、洗浄、乾燥し、単一の赤色粉末を得た。
(b)上記のステップで調製された赤色粉末を20mg取り、30mlの水に超音波分散し、0.2gのSnCl・5HOを入れて、十分に溶解した後で、一滴ずつ1mol/LのNaOH溶液を滴下しPHを10に調整し、均一的に混合分散した後の混合溶液を高圧反応釜内に移し、反応温度は200℃であり、反応時間は1.5時間であり、得られた産物のFe、Snモル比は20:1であり、室温まで自然冷却し、得られた赤色沈殿を濾過、洗浄、乾燥し、単一の赤色粉末を得た。
図1は、触媒粉末のおよびEDS元素分析テストであり、結果により、赤色粉末が主にFe、Sn、Oの3種の元素からなることが分かった。図2は触媒粉末を調製した透過型電子顕微鏡写真(TEM)であり、図中において、触媒粒子の分布範囲は70~100nmの間にあることが見える。
(2)上記の触媒を用いてカーボンナノコイルを調製する
ステップ(1)で調製された触媒粉末を正確に測って取り、アルコール中(濃度:0.1mg/ml)に分散させ、反応担持基板シリコンチップを取り、それぞれアセトン、アルコール、脱イオン水で洗浄した後、乾燥して待機する。触媒分散液を0.2ml測って取り、基板表面にスピンコートする(回転数:2000/分)、上記の過程を30回繰返し、図3(a)は、触媒を30回スピンコートした基板CVD反応後の産物SEM写真であり、CNC純度は、95%よりも高く、図3(b)は、CNCの頂部触媒のSEM写真であり、図により、CNC頂端の触媒は、複数の小粒子が集中している状態が見え、従来に開示された単一粒子の触媒の成長メカニズムと著しく異なる。図4は典型的な産物のTEM図であり、図中において、触媒は異なる大きさの4つの触媒からなり、各触媒の態様サイズなどの特性が異なることによって、その触媒活性に差異があり、CNCの異方性成長を引起す。
実施例2:
(1)ソルボサーマル法(化学方法)で用いられる小サイズの触媒を調製する
本実例に係る合成ステップはa、bの二ステップに分けられ、即ち、(a)0.526gのFe(SO・7HOを35mlのN,N-ジメチルホルムアミドに加え、混合溶液が完全に溶解するまで超音波溶解し、最後に0.8gのポリビニルピロリドン(PVP)を加え、完全に溶解した後で、反応釜内に移し、ソルボサーマルシステムで反応温度を180℃に、反応時間を6時間に制御し、室温まで自然冷却し、得られた赤色沈殿を濾過、洗浄、乾燥し、単一の赤色粉末を得た。
(b)上記のステップで調製された赤色粉末を20mg取り、30mlの水に超音波分散し、0.2gのSnCl・5HOを入れて、十分に溶解した後で、一滴ずつ1mol/LのNaOH溶液を滴下しPHを10に調整し、均一的に混合分散した後の混合溶液を高圧反応釜内に移し、反応温度は200℃であり、反応時間は2時間であり、得られた産物のFe、Snモル比は10:1であり、室温まで自然冷却し、得られた赤色沈殿を濾過、洗浄、乾燥し、単一の赤色粉末を得た。図5はa、bの二ステップにより触媒粉末を調製する透過型電子顕微鏡写真(TEM)であり、図中において、触媒粒子の分布範囲は30~50nmの間にあることが見える。
(2)上記の触媒を用いてカーボンナノコイルを効率的に調製する
ステップ(1)で調製された触媒粉末を正確に測って取り、アルコール中(濃度:0.1mg/ml)に分散させ、反応担持基板シリコンチップを取り、それぞれアセトン、アルコール、脱イオン水で洗浄した後、乾燥して待機する。触媒分散液を0.1ml測って取り基板表面にスピンコートし、上記の過程を20回繰返し、乾燥した後で触媒を担持する基板をCVDシステムに反応させ、図6(a)は、触媒を30回スピンコートした基板CVD反応後の産物SEM写真であり、CNC純度は、95%よりも高く、図3(b)は、CNCの頂部触媒のSEM写真であり、図により、CNC頂端の触媒は、複数の小粒子が集中している状態が見え、当該カーボンナノコイルの触媒は複数の小サイズの触媒から堆積したものであることが示されている。
実施例3:
(1)物理スパッタ法(化学-物理方法の組合せ)でカーボンナノコイルに用いられる小サイズの触媒を調製する
本実例に係る合成ステップはa、bの二ステップに分けられ、即ち、(a)0.270gのFeCl・6HOを35mlN,N-ジメチルホルムアミドに加え、混合溶液が完全に溶解するまで超音波溶解し、最後に0.8gのポリビニルピロリドン(PVP)を加え、完全に溶解した後で、反応釜内に移し、ソルボサーマルシステムで反応温度を180℃に、反応時間を6時間に制御し、室温まで自然冷却し、得られた赤色沈殿を濾過、洗浄、乾燥し、単一の赤色粉末を得た。
(b)ステップ(a)で調製された触媒粉末を正確に測って取り、アルコール中(濃度:0.1mg/ml)に分散させ、反応担持基板シリコンチップを取り、それぞれアセトン、アルコール、脱イオン水で洗浄した後、乾燥して待機する。触媒分散液を0.1ml測って取り、基板表面にドロップコートし、乾燥後、基板をマグネトロンスパッタリング装置に入れてSnOを複合し、具体的なパラメータは、動作電流が60mAであり、動作電圧が40mVであり、動作電力が20Wであり、堆積時間が3minである。鉄錫原子のモル比は30:1であり、図8はa、bの二ステップにより調製された触媒粉末の走査型電子顕微鏡写真であり、図中において、触媒粒子の分布範囲は30~50nmの間にあることが見える。
(2)上記の触媒を用い高純度カーボンナノコイルを調製する
上記のステップbを10回繰返し、乾燥した後で触媒を担持する基板をCVDシステムに反応させ、図3(a)は触媒を30回スピンコートした基板CVD反応後の産物SEM写真であり、CNC純度は、95%よりも高く、附図3(b)は、CNCの頂部触媒のSEM写真であり、図により、CNC頂端の触媒は、複数の小粒子が集中している状態が見え、当該カーボンナノコイルの触媒は複数の小サイズの触媒から堆積したものであることが示されている。
実施例4:
(1)物理ボールミル(物理方法)でカーボンナノコイルに用いられる小サイズの触媒を調製する
α‐Fe(20~50nm)およびSnO(10~20nm)を鉄錫のモル比5:1で混合した後で高速ボールミルに入れ、具体的なパラメータは、回転数が1000r/minであり、時間が2Hであり、ボールミルが終了した後で触媒粉末を取り出し、洗浄して待機する。
(2)上記の触媒を用いてカーボンナノコイルを調製する
一定量のステップ(1)で調製された触媒粉末を正確に測って取り、水または有機溶液に分散させ、超音波待機し(濃度:1mg/ml),反応担持基板シリコンチップを取り、それぞれアセトン、アルコール、脱イオン水で洗浄した後、乾燥して待機する。触媒分散液を1ml測って取り、基板表面にコートし、乾燥した後で触媒を担持する基板をCVDシステムに反応させ、反応が終了した後で自然に降温する。産物はカーボンナノコイルである。
実施例5:
(1)熱蒸着法(化学-物理方法)でカーボンナノコイルに用いられる小サイズの触媒を調製する
本実例に係る合成ステップはa、bの二ステップに分けられ、即ち、
(a)0.404gのFe(NO・9HOを35mlのN,N-ジメチルホルムアミドに加え、混合溶液が完全に溶解するまで超音波溶解し、最後に0.8gのポリビニルピロリドン(PVP)を加え、完全に溶解した後で、反応釜内に移し、ソルボサーマルシステムで反応温度を180℃に、反応時間を6時間に制御し、室温まで自然冷却し、得られた赤色沈殿を濾過、洗浄、乾燥し、単一の赤色粉末を得た。
(b)ステップ(a)で調製された触媒粉末を正確に測って取り、アルコール中(濃度:0.1mg/ml)に分散させ、反応担持基板シリコンチップを取り、それぞれアセトン、アルコール、脱イオン水で洗浄した後、乾燥して待機する。触媒分散液を0.1ml測って取り、基板表面にスピンコートし、乾燥した後でサーマルエバポレーターに入れてSnを複合し、具体的なパラメータは、動作電流が1Aであり、温度が1000℃であり、堆積時間が10minである。鉄錫原子のモル比は30:1である。
(2)上記の触媒を用いて高純度カーボンナノコイルを調製する
上記のステップbを10回繰返し、乾燥後に触媒を担持する基板をCVDシステムに反応させ、産物は高純度カーボンナノコイルである。
上記の実例により、本文で提案されている小サイズのFe-S-O触媒を用いることでカーボンナノコイルを効率的に調製できることが証明されると同時に、本特許に提案されるものである。また、上記の実施例の記載は、当業者が本発明を理解し、適用できるようにするための内容である。当業者であれば、これらの実例に対して容易に様々な補正を加えることができるとともに、ここで説明する一般的な原理を他の実施例に適用するには進歩的な労働を要しないことは明らかである。したがって、本発明はここでの実施例に限定されるものではなく、当業者は、本発明の開示により、本発明に対する改善および補正はすべて本発明の保護範囲内に属するべきである。

Claims (5)

  1. 先ずサイズが100nm未満のFe-Sn-Oナノ粒子を調製するとともに、それを触媒にしてから、調製された触媒を利用し熱CVD法でカーボンナノコイルを効率的に合成し、下記のステップ:
    (1)カーボンナノコイルに用いられる小サイズの触媒を調製する
    Fe3+塩または鉄の酸化物と可溶性Sn4+塩または錫の酸化物を原料として用い、化学合成法、物理方法または化学合成法と物理方法との相互に組み合わせた方法を用いて複合触媒粉末を調製し、前記複合触媒粉末は、Fe-Sn-Oからなり、触媒において、Fe:Snのモル比は5:1~30:1であり、触媒粒子のサイズは、10-100nmであり、
    (2)合成された複合触媒を用いて化学気相成長技術を利用し複合触媒によりカーボンナノコイルを効率的に成長する
    調製された複合触媒粉末を水またはエタノール媒に分散し、ここに、分散液の濃度は、0.01mg~1mg/mlであり、担持基板を洗浄し、触媒分散液を基板表面にドロップコート、スピンコートまたはスプレーコートし、ここに、触媒が基板表面での密度範囲は、1×10 -2~5×1010 -2であり、触媒粒子の基板での均一的な担持および相互的な堆積接触を実現し、乾燥後CVDシステムに置いて化学気相成長技術を利用し純度が95%を超えた高純度カーボンナノコイルを合成すること
    を含むことを特徴とする、複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法。
  2. ステップ(1)に記載の調製過程で使用される可溶性Fe3+塩は、塩化第二鉄、硝酸鉄、硫酸鉄などを含むがそれらに限られず、可溶性Sn4+塩は、塩化スズを含み、Sn4+塩とFe3+塩とは任意に組み合わせることができ、ステップ(1)に記載の鉄の酸化物はFeであり、錫の酸化物はSnOであることを特徴とする、
    請求項1に記載の複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法。
  3. ステップ(1)に記載の化学合成法は、水熱法、ソルボサーマル法を含み、物理方法は、熱蒸着、マグネトロンスパッタ、高速ボールミル法を含むことを特徴とする、
    請求項1または2に記載の複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法。
  4. ステップ(2)に記載の基板は、石英シート、シリコンチップ、SiOシート、グラファイト基板、ステンレス鋼またはアルミナ基板を含むことを特徴とする、
    請求項1または2に記載の複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法。
  5. ステップ(2)に記載の基板は、石英シート、シリコンチップ、SiOシート、グラファイト基板、ステンレス鋼またはアルミナ基板を含むことを特徴とする、
    請求項3に記載の複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法。
JP2020567940A 2019-09-23 2020-06-12 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法 Active JP7008373B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910899819.9A CN110642240B (zh) 2019-09-23 2019-09-23 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法
CN201910899819.9 2019-09-23
PCT/CN2020/095757 WO2021057104A1 (zh) 2019-09-23 2020-06-12 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法

Publications (2)

Publication Number Publication Date
JP2021529716A JP2021529716A (ja) 2021-11-04
JP7008373B2 true JP7008373B2 (ja) 2022-01-25

Family

ID=69011042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020567940A Active JP7008373B2 (ja) 2019-09-23 2020-06-12 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法

Country Status (4)

Country Link
US (1) US20210261418A1 (ja)
JP (1) JP7008373B2 (ja)
CN (1) CN110642240B (ja)
WO (1) WO2021057104A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642240B (zh) * 2019-09-23 2022-05-27 大连理工大学 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法
CN110639521B (zh) * 2019-09-29 2022-05-17 湘潭大学 暴露高指数面的氧化铁十二面体纳米晶体催化剂的制备方法
CN111710991B (zh) * 2020-06-24 2021-08-10 大连理工大学 螺旋碳纳米线圈/核壳结构磁性纳米颗粒复合材料、制备方法及其在电磁波领域的应用
CN114522242B (zh) * 2022-02-28 2023-02-03 深圳大学 磁驱螺旋微纳米马达及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261630A (ja) 2003-01-28 2004-09-24 Japan Science & Technology Agency カーボンナノコイル製造用触媒及びその製造方法並びにカーボンナノコイル製造方法
WO2004105940A1 (ja) 2003-05-29 2004-12-09 Japan Science And Technology Agency カーボンナノコイル製造用触媒、その製造方法、カーボンナノコイル製造方法及びカーボンナノコイル
JP2007252982A (ja) 2006-03-20 2007-10-04 Osaka Industrial Promotion Organization カーボンナノコイル製造用触媒粒子およびその製造方法ならびにカーボンナノコイルの製造方法
WO2008111653A1 (ja) 2007-03-14 2008-09-18 Taiyo Nippon Sanso Corporation ブラシ状カーボンナノ構造物製造用触媒体、触媒体製造方法、ブラシ状カーボンナノ構造物及びその製法
JP2009018234A (ja) 2007-07-10 2009-01-29 Osaka Prefecture Univ カーボンナノコイル製造用触媒およびカーボンナノコイルの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822806B2 (ja) * 2001-07-11 2006-09-20 喜萬 中山 カーボンナノコイルの量産方法
CN101301618A (zh) * 2003-05-29 2008-11-12 独立行政法人科学技术振兴机构 碳纳米线圈制造用催化剂及碳纳米线圈的制造方法
CN101822986B (zh) * 2010-03-31 2012-05-09 北京化工大学 一种可以控制生长碳纳米管和碳纤维的催化剂制备方法
CN101880040B (zh) * 2010-06-24 2012-02-08 吉林大学 一步反应制备γ-Fe2O3纳米线填充碳氮多壁纳米管的方法
DK3027310T3 (da) * 2013-07-31 2023-07-10 Res Triangle Inst Blandingsmetaljernoxider og anvendelser deraf
CN104386668B (zh) * 2014-11-10 2017-07-11 电子科技大学 一种镍纳米催化制备螺旋碳纳米材料的方法
JP6598247B2 (ja) * 2015-11-27 2019-10-30 国立研究開発法人物質・材料研究機構 中空体、その製造方法、それを用いたアノード電極材料、および、それを用いたリチウムイオン二次電池
CN106517350B (zh) * 2016-10-31 2019-01-04 中国科学技术大学 一种铁锡氧化物纳米材料及其制备方法、应用
CN106582670B (zh) * 2016-12-22 2020-04-07 中国工程物理研究院材料研究所 一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法
CN109201068B (zh) * 2018-10-12 2021-04-16 大连理工大学 一种减少副产物碳层的碳纳米线圈合成用催化剂的制备方法及其应用
CN110642240B (zh) * 2019-09-23 2022-05-27 大连理工大学 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法
CN110639532A (zh) * 2019-09-23 2020-01-03 大连理工大学 一种高纯度碳纳米线圈合成用催化剂的一步水热合成方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261630A (ja) 2003-01-28 2004-09-24 Japan Science & Technology Agency カーボンナノコイル製造用触媒及びその製造方法並びにカーボンナノコイル製造方法
WO2004105940A1 (ja) 2003-05-29 2004-12-09 Japan Science And Technology Agency カーボンナノコイル製造用触媒、その製造方法、カーボンナノコイル製造方法及びカーボンナノコイル
JP2007252982A (ja) 2006-03-20 2007-10-04 Osaka Industrial Promotion Organization カーボンナノコイル製造用触媒粒子およびその製造方法ならびにカーボンナノコイルの製造方法
WO2008111653A1 (ja) 2007-03-14 2008-09-18 Taiyo Nippon Sanso Corporation ブラシ状カーボンナノ構造物製造用触媒体、触媒体製造方法、ブラシ状カーボンナノ構造物及びその製法
JP2009018234A (ja) 2007-07-10 2009-01-29 Osaka Prefecture Univ カーボンナノコイル製造用触媒およびカーボンナノコイルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, Dawei et al.,Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method,Carbon,英国,Elsevier Ltd.,2009年09月08日,Vol. 48, No.1,pp. 170-175,DOI: 10.1016/j.carbon.2009.08.045

Also Published As

Publication number Publication date
US20210261418A1 (en) 2021-08-26
JP2021529716A (ja) 2021-11-04
WO2021057104A1 (zh) 2021-04-01
CN110642240B (zh) 2022-05-27
CN110642240A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
JP7008373B2 (ja) 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法
Guo et al. Synthesis and characterization of carbon sphere-silica core–shell structure and hollow silica spheres
Luo et al. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method
Xie et al. Research on the preparation of graphdiyne and its derivatives
Yang et al. Controlled synthesis of CuO nanostructures by a simple solution route
CN109201068B (zh) 一种减少副产物碳层的碳纳米线圈合成用催化剂的制备方法及其应用
Yu et al. Coating MWNTs with Cu2O of different morphology by a polyol process
Liang et al. X-shaped hollow α-FeOOH penetration twins and their conversion to α-Fe2O3 nanocrystals bound by high-index facets with enhanced photocatalytic activity
Liu et al. A simple method for coating carbon nanotubes with Co–B amorphous alloy
CN109665512A (zh) 一种多壁碳纳米管的制备方法
Fan et al. Synthesis, structure, and magnetic properties of Ni and Co nanoparticles encapsulated by few-layer h-BN
CN101704110B (zh) 一种片状金属粉末的制备方法
Cheng et al. Synthesis of flower-like and dendritic platinum nanostructures with excellent catalytic activities on thermal decomposition of ammonium perchlorate
Liu et al. Controlled Synthesis of Carbon‐Encapsulated Co Nanoparticles by CVD
CN110842212A (zh) 一种超细Pd四面体纳米材料及其制备方法和应用
Dai et al. Synthesis of silver nanoparticles on functional multi-walled carbon nanotubes
Ramdani et al. Synthesis, characterization and kinetic computations of fullerene (C60)–CuO on the mechanism decomposition of ammonium perchlorate
Jin et al. Controllable preparation of helical carbon nanofibers by CCVD method and their characterization
CN108500285B (zh) 一种担载或非担载型过渡金属@h-BN核-壳纳米结构的制备方法
Jiang et al. Bi2Te3 nanostructures prepared by microwave heating
CN109231281B (zh) 一种Fe3O4准立方体颗粒/多层石墨烯复合材料的制备方法
Li et al. Synthesis of CdSe micro/nanocrystals with controllable multiform morphologies and crystal phases
CN113788464B (zh) 一种双过渡金属氧化物催化制备氮化硼纳米管的方法
CN101570478B (zh) 球形草酸钴粉体的制造方法
Naouel et al. Low temperature crystallization of a stable phase of microspherical MoO2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7008373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150