CN106582670B - 一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法 - Google Patents

一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法 Download PDF

Info

Publication number
CN106582670B
CN106582670B CN201611201081.7A CN201611201081A CN106582670B CN 106582670 B CN106582670 B CN 106582670B CN 201611201081 A CN201611201081 A CN 201611201081A CN 106582670 B CN106582670 B CN 106582670B
Authority
CN
China
Prior art keywords
tin
iron oxide
nanoparticles
doped
mesomorphic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611201081.7A
Other languages
English (en)
Other versions
CN106582670A (zh
Inventor
吕超
蔡金光
宋江锋
钱晓静
罗军洪
张志�
安永涛
陈闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Juneng Nuclear Technology Engineering Co ltd
Institute of Materials of CAEP
Original Assignee
Sichuan Juneng Nuclear Technology Engineering Co ltd
Institute of Materials of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Juneng Nuclear Technology Engineering Co ltd, Institute of Materials of CAEP filed Critical Sichuan Juneng Nuclear Technology Engineering Co ltd
Priority to CN201611201081.7A priority Critical patent/CN106582670B/zh
Publication of CN106582670A publication Critical patent/CN106582670A/zh
Application granted granted Critical
Publication of CN106582670B publication Critical patent/CN106582670B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种锡掺杂氧化铁介晶纳米粒子,是在由2nm~6nm氧化铁纳米粒子晶体取向堆积组成的氧化铁介晶纳米粒子中掺杂锡元素构成,其尺寸为40nm‑220nm,比表面积为36.2 m2/g,其中,掺杂的锡元素摩尔量为铁元素摩尔量的0.01%~15%。该锡掺杂氧化铁介晶纳米粒子的制备方法,包括:(1)合成氧化铁介晶纳米粒子;(2)将适量氧化铁介晶纳米粒子与相应比例的锡源醇溶液混合;搅拌挥发,挥发完毕后真空干燥;(3)将上述干燥后的复合物放入马弗炉中500℃~650℃煅烧3小时以上。本发明得到的锡掺杂氧化铁介晶纳米粒子具有增强的可见光催化降解污染物以及光电化学分解水性能。能够在诸如光催化降解污染物、光催化分解水制氢、超级电容器、锂离子电池等领域实现商业应用。

Description

一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法
技术领域
本发明涉及氧化铁介晶纳米粒子领域,具体地讲,是涉及一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法。
背景技术
半导体材料的组分、尺寸、结构及形貌影响着材料的性能,特别是到纳米尺度,其作用更加明显。已有的研究结果表明,通过调节纳米结构材料的元素组成、尺寸大小以及结构形貌可以极大地改善材料的有关性能,特别是在光学、电学、磁学、传感器件、催化性能、能量转化与存储等方面。多晶纳米粒子具有较大的比表面积和孔隙率,但是由于晶界的存在,其电荷传输速率相对较低,而单晶纳米结构尽管内部传输速率相对较高,但比表面积及孔隙率低,各自的劣势限制了相应的应用范围。介晶是2015年首次提出的一种新的结构材料,一般是由晶体取向一致的次级纳米粒子堆积而成,一方面具有一致的晶体取向保证较好的电荷传输性质,又具有较高的孔隙率和比表面积。因而在催化、传感、污水处理、光伏器件、锂离子电池以及超级电容器等领域表现出优异的性能和广阔的发展潜力。
氧化铁是一种n型半导体,具有很多优异的特性,如自然界中储量丰富,价格低廉,具有很高的化学稳定性,无污染,且具有较窄的带隙在可见光区域有吸收,因此在重金属离子去除、光催化降解有机废液、气体传感器、光电化学分解水制氢、锂离子电池负极材料以及超级电容器活性电极等环境和能源研究领域都被广泛研究,且表现出良好的应用前景。但其一大劣势就是少子扩散距离太短,只有2~4nm,因此大大限制了其在光电及电学领域的应用。文献中有不少报道,研究了氧化铁介晶纳米结构在上述应用方面性能的提高。虽然有一定的效果,但离实际应用仍有一些距离,因此有必要对其进一步研究。最近的研究表明,锡掺杂氧化铁纳米结构能够提高材料的性能,但氧化铁介晶纳米结构的锡掺杂研究却鲜有报道。因此,发展条件温和、简单快捷、价格低廉、易于批量处理的方法来制备锡掺杂氧化铁介晶纳米结构不仅具有学术意义,也有很大的商业价值。
发明内容
为克服现有技术中的上述问题,本发明提供一种制法简单、易于批量处理的锡掺杂氧化铁介晶纳米粒子,在掺杂后氧化铁介晶纳米粒子结构和形貌基本得到保持。
为了实现上述目的,本发明采用的技术方案如下:
一种锡掺杂氧化铁介晶纳米粒子,是在由2nm~6nm氧化铁纳米粒子晶体取向堆积组成的氧化铁介晶纳米粒子中掺杂锡元素构成,其尺寸为40nm-220nm,比表面积为36.2m2/g,其中,掺杂的锡元素摩尔量为铁元素摩尔量的0.01%~15%,所掺杂的锡元素在该比例内连续可调。
经研究试验证实,该锡掺杂氧化铁介晶纳米粒子可应用于可见光催化降解有机污染物。
并且,该锡掺杂氧化铁介晶纳米粒子还可应用于光电化学分解水制氢。
基于前述内容,本发明还提供了该锡掺杂氧化铁介晶纳米粒子的制备方法,包括如下步骤:
(1)将乙酰丙酮铁溶解在乙醇中,将得到的溶液加入到聚四氟乙烯内胆中,然后加入去离子水,混合均匀后,放入水热釜中进行水热反应,然后将产物用水和乙醇分别洗涤三遍后,真空干燥,得到氧化铁介晶纳米粒子;
(2)将适量氧化铁介晶纳米粒子与相应比例的锡源醇溶液混合,超声使混合溶液分散均匀,在室温至80℃条件下搅拌挥发,并在挥发完毕后真空干燥2小时;
(3)将上述真空干燥后的复合物放入马弗炉中500℃~650℃煅烧3小时以上,制得该锡掺杂氧化铁介晶纳米粒子。
具体地,所述氧化铁介晶纳米粒子为纳米粒子取向堆积形成的氧化铁纳米结构。
优选地,所述锡源醇溶液中锡元素摩尔量相对于氧化铁用量中铁元素摩尔量的百分比为0.01%~15%。
具体地,所述锡源醇溶液中锡元素摩尔量相对于氧化铁用量中铁元素摩尔量的百分比为4.5%。
优选地,所述锡源为四氯化锡或氯化亚锡;所述醇溶液为甲醇、乙醇、丙醇或异丙醇溶液。
具体地,所述步骤(2)中,超声处理30分钟以上,直至氧化铁介晶纳米粒子处于完全分散状态,进一步优选超声处理1小时;所述搅拌挥发温度为40℃。
具体地,所述步骤(3)中煅烧温度为600℃。
与现有技术相比,本发明具有以下有益效果:
(1)本发明采用高温煅烧掺杂的方法,在锡源分散液中搅拌挥发达到均匀负载,然后高温处理实现锡掺杂,同时介晶结构仍然得到保持。
(2)本发明制备的材料及采用的方法,易于进行批量处理,商业应用价值很高。
(3)本发明得到的锡掺杂氧化铁介晶纳米粒子具有更好的可见光催化降解污染物以及光电化学分解水性能。预期能够在诸如光催化降解污染物、光催化分解水制氢、超级电容器、锂离子电池等领域实现商业应用。因此,本发明具有很高的实用价值和推广价值。
附图说明
图1为本发明制备的锡掺杂氧化铁介晶纳米粒子与氧化铁介晶纳米粒子的对比XRD谱图。
图2为本发明制备的锡掺杂氧化铁介晶纳米粒子的扫描电子显微镜照片。
图3为本发明制备的锡掺杂氧化铁介晶纳米粒子的透射电子显微镜照片及相应的电子衍射图。
图4为本发明制备的锡掺杂氧化铁介晶纳米粒子的能量色散X射线光谱图。
图5为本发明制备的锡掺杂氧化铁介晶纳米粒子的可见光催化降解有机污染物浓度曲线图。
图6为本发明制备的锡掺杂氧化铁介晶纳米粒子光电化学分解水曲线。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,本发明的实施方式包括但不限于下列实施例。
实施例
该锡掺杂氧化铁介晶纳米粒子,是在由2nm~6nm氧化铁纳米粒子晶体取向堆积组成的氧化铁介晶纳米粒子中掺杂锡元素构成,其尺寸为40nm-220nm,比表面积为36.2 m2/g,其中,掺杂的锡元素摩尔量为铁元素摩尔量的0.01%~15%,所掺杂的锡元素在该比例内连续可调。
该锡掺杂氧化铁介晶纳米粒子的制备方法,包括如下步骤:
(1)先合成所述氧化铁介晶纳米粒子:将乙酰丙酮铁溶解在乙醇中,超声使其完全溶解,得到50mM溶液,取35 mL该溶液加入到50mL聚四氟乙烯内胆中,然后加入200微升去离子水,混合均匀后,放入水热釜中,150℃反应24小时;然后将上述产物用水洗涤三遍后,再用乙醇洗涤三遍,之后真空干燥,得到氧化铁介晶纳米粒子;该氧化铁介晶纳米粒子为纳米粒子取向堆积形成的氧化铁纳米结构。
(2)将适量氧化铁介晶纳米粒子与相应比例的氯化亚锡乙醇溶液混合,该氯化亚锡乙醇溶液由氯化亚锡和乙醇配制而成,其中锡元素摩尔量相对于氧化铁介晶纳米粒子用量中铁元素摩尔量的百分比为4.5%;
之后超声处理1小时使混合溶液分散均匀,在40℃热板上搅拌挥发,并在挥发完毕后真空干燥2小时。
(3)将上述真空干燥后的复合物放入马弗炉中600℃煅烧3小时以上,制得该锡掺杂氧化铁介晶纳米粒子。
其中,所述锡源醇溶液中,锡源除上述使用的氯化亚锡外,还可以采用四氯化锡;醇溶液除上述使用的乙醇溶液外,还可以采用甲醇、丙醇或异丙醇溶液。
本实施例中所采用的试剂均从化学试剂公司购置,纯度不低于99%。
如图1所示的该锡掺杂氧化铁介晶纳米粒子与氧化铁介晶纳米粒子的对比XRD谱图,结果显示为纯相的赤铁矿氧化铁结构,并无杂质峰,且衍射峰向左有明显偏移,说明锡应该掺入了氧化铁晶格,而不是简单的负载。如图2~3所示的扫描电子显微镜照片、透射电子显微镜照片及相应的电子衍射图表明该锡掺杂氧化铁介晶纳米结构保持了原来的纳米粒子状介晶结构。如图4所示的能量色散X射线光谱图也确认了锡元素的存在,元素百分含量为4.8%。
为了检验该锡掺杂氧化铁介晶纳米粒子的应用前景,对该材料在可见光催化降解有机污染物及光电化学分解水制氢性能进行了具体测试。测试方法及性能如下:
可见光催化降解有机污染物测试:该测试是通过将锡掺杂氧化铁介晶纳米粒子超声分散在一定浓度的模拟污染物罗丹明B水溶液中,并对分散液进行可见光照射完成的。光照前,将10mg锡掺杂氧化铁介晶纳米粒子超声分散在50mL 浓度为20nM罗丹明B水溶液中,暗处搅拌30分钟后,加入0.255mL过氧化氢溶液(30wt%)。然后该分散液在装有420nm截止滤光片的氙灯下照射,每隔一定时间取出3mL分散液。离心后测试上清液紫外可见吸收光谱以确定罗丹明B的浓度。图5给出了锡掺杂氧化铁介晶纳米粒子可见光催化降解罗丹明B的浓度变化曲线,从图中可以看出,相对于添加未掺杂氧化铁介晶纳米粒子以及无添加氧化铁催化剂的情况,锡掺杂氧化铁介晶纳米粒子表现出更好的催化降解性能。可见,本发明制备的该锡掺杂氧化铁介晶纳米粒子可应用于可见光催化降解有机污染物领域,并具有增强效果。
光电化学分解水制氢测试:将50mg锡掺杂氧化铁介晶纳米粒子与2.5mL异丙醇混合,超声1小时使其充分分散。采用刮刀涂布法在透明导电玻璃FTO基底上制膜,然后在650℃退火2小时。采用三电极体系在1M浓度的NaOH水溶液中测试光电流密度,负载有锡掺杂氧化铁介晶纳米粒子的FTO基底为工作电极,铂片为对电极,Ag/AgCl电极为参比电极。测试之前在工作电极表面滴加10μL 浓度为 10mM 的 Co(NO3)2 水溶液,10秒后除去,反复两次。太阳光采用一个300瓦的氙灯加420纳米的截止滤光片模拟太阳光输出,并采用硅的标准二极管标定能量密度为100mW/cm2。图6给出了锡掺杂氧化铁介晶纳米粒子的光电流密度曲线,与未掺杂的氧化铁介晶纳米粒子相比,锡掺杂氧化铁介晶纳米粒子表现出更好的光电流密度。可见,本发明制备的该锡掺杂氧化铁介晶纳米粒子也可应用于光电化学分解水制氢领域,并具有增强效果。
本发明通过简单的均匀负载及高温煅烧方法,得到了锡掺杂氧化铁介晶纳米粒子,且掺杂量在0.01%~15wt%较大原子浓度范围内可调。该方法简单,易于批量处理。在目前氧化铁介晶纳米结构掺杂鲜有报道的情况下,本发明具有方法简易实用等特点。此外,本发明还证实了该方法制备的锡掺杂氧化铁纳米粒子具有更好的可见光催化降解有机污染物及光电化学分解水制氢性能。
上述实施例仅为本发明的优选实施例,并非对本发明保护范围的限制,但凡采用本发明的设计原理,以及在此基础上进行非创造性劳动而作出的变化,均应属于本发明的保护范围之内。

Claims (10)

1.一种锡掺杂氧化铁介晶纳米粒子,其特征在于,由在由2nm~6nm氧化铁纳米粒子晶体取向堆积组成的氧化铁介晶纳米粒子中掺杂锡元素构成,其尺寸为40nm-220nm,比表面积为36.2m2/g,其中,掺杂的锡元素摩尔量为铁元素摩尔量的0.01%~15%。
2.如权利要求1所述的一种锡掺杂氧化铁介晶纳米粒子的应用方法,其特征在于,将该锡掺杂氧化铁介晶纳米粒子应用于可见光催化降解有机污染物。
3.如权利要求1所述的一种锡掺杂氧化铁介晶纳米粒子的应用方法,其特征在于,将该锡掺杂氧化铁介晶纳米粒子应用于光电化学分解水制氢。
4.如权利要求1所述的一种锡掺杂氧化铁介晶纳米粒子的制备方法,其特征在于,包括如下步骤:
(1)将乙酰丙酮铁溶解在乙醇中,将得到的溶液加入到聚四氟乙烯内胆中,然后加入去离子水,混合均匀后,放入水热釜中进行水热反应,然后将产物用水和乙醇分别洗涤三遍后,真空干燥,得到氧化铁介晶纳米粒子;
(2)将适量氧化铁介晶纳米粒子与相应比例的锡源醇溶液混合,超声使混合溶液分散均匀,在室温至80℃条件下搅拌挥发,并在挥发完毕后真空干燥2小时;
(3)将上述真空干燥后的复合物放入马弗炉中500℃~650℃煅烧3小时以上,制得该锡掺杂氧化铁介晶纳米粒子。
5.根据权利要求4所述的一种锡掺杂氧化铁介晶纳米粒子的制备方法,其特征在于,所述氧化铁介晶纳米粒子为纳米粒子晶体取向堆积形成的氧化铁纳米结构。
6.根据权利要求4所述的一种锡掺杂氧化铁介晶纳米粒子的制备方法,其特征在于,所述锡源醇溶液中锡元素摩尔量相对于氧化铁用量中铁元素的摩尔量的百分比为0.01%~15%。
7.根据权利要求6所述的一种锡掺杂氧化铁介晶纳米粒子的制备方法,其特征在于,所述锡源醇溶液中锡元素摩尔量相对于氧化铁用量中铁元素摩尔量的百分比为4.5%。
8.根据权利要求4所述的一种锡掺杂氧化铁介晶纳米粒子的制备方法,其特征在于,所述锡源为四氯化锡或氯化亚锡;所述醇溶液为甲醇、乙醇、丙醇或异丙醇溶液。
9.根据权利要求4所述的一种锡掺杂氧化铁介晶纳米粒子的制备方法,其特征在于,所述步骤(2)中,超声处理30分钟以上,直至氧化铁介晶纳米粒子处于完全分散状态;所述搅拌挥发温度为40℃。
10.根据权利要求4所述的一种锡掺杂氧化铁介晶纳米粒子的制备方法,其特征在于,所述步骤(3)中煅烧温度为600℃。
CN201611201081.7A 2016-12-22 2016-12-22 一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法 Expired - Fee Related CN106582670B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611201081.7A CN106582670B (zh) 2016-12-22 2016-12-22 一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611201081.7A CN106582670B (zh) 2016-12-22 2016-12-22 一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法

Publications (2)

Publication Number Publication Date
CN106582670A CN106582670A (zh) 2017-04-26
CN106582670B true CN106582670B (zh) 2020-04-07

Family

ID=58603055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611201081.7A Expired - Fee Related CN106582670B (zh) 2016-12-22 2016-12-22 一种锡掺杂氧化铁介晶纳米粒子及其制备方法和应用方法

Country Status (1)

Country Link
CN (1) CN106582670B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642240B (zh) * 2019-09-23 2022-05-27 大连理工大学 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法
CN110586100A (zh) * 2019-10-08 2019-12-20 扬州大学 Fe2O3/FeO异质结构及其制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103523826A (zh) * 2013-10-16 2014-01-22 黑龙江大学 锡掺杂二氧化钛的制备方法
KR20140095869A (ko) * 2013-01-25 2014-08-04 주식회사 엘지화학 산화철 나노입자의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095869A (ko) * 2013-01-25 2014-08-04 주식회사 엘지화학 산화철 나노입자의 제조 방법
CN103523826A (zh) * 2013-10-16 2014-01-22 黑龙江大学 锡掺杂二氧化钛的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ogranic additive-free synthesis of mesocrystalline hematite nanoplates via two-dimensional oriented attachment;Jinguang Cai,et al;《CrystEngComm》;20131030;第16卷;摘要,第1555页左栏第1段,第1556页左栏第2段,图4b *
Sn-doped hematite nanostructures for photoelectrochemical water splitting;Yichuan Ling,et al;《Nano Lett》;20110408;第11卷;摘要 *
Synthesis and characterization of Sn-doped hematite as visible light photocatalyst;Zhiqin Cao,et al;《Materials Research Bulletin》;20160107;第77卷;摘要 *

Also Published As

Publication number Publication date
CN106582670A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
Li et al. Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance
Wang et al. Synergy of Ti-O-based heterojunction and hierarchical 1D nanobelt/3D microflower heteroarchitectures for enhanced photocatalytic tetracycline degradation and photoelectrochemical water splitting
Rani et al. Sn doped α-Fe2O3 (Sn= 0, 10, 20, 30 wt%) photoanodes for photoelectrochemical water splitting applications
Liu et al. Titanium dioxide crystals with tailored facets
Xu et al. Fabricating carbon quantum dots doped ZnIn2S4 nanoflower composites with broad spectrum and enhanced photocatalytic Tetracycline hydrochloride degradation
Biswas et al. A facile one-step synthesis of single crystalline hierarchical WO3 with enhanced activity for photoelectrochemical solar water oxidation
Wang et al. Facile synthesis of a novel visible-light-driven AgVO3/BiVO4 heterojunction photocatalyst and mechanism insight
Wei et al. Titanium glycolate-derived TiO2 nanomaterials: Synthesis and applications
Song et al. Preparation of single-crystalline AgIn5S8 octahedrons with exposed {111} facets and its visible-light-responsive photocatalytic H2 production activity
Rajendran et al. Fabrication of tantalum doped CdS nanoparticles for enhanced photocatalytic degradation of organic dye under visible light exposure
Makal et al. Reduced graphene oxide-laminated one-dimensional TiO2–bronze nanowire composite: an efficient photoanode material for dye-sensitized solar cells
Zou et al. Enhanced photocatalytic efficiency in degrading organic dyes by coupling CdS nanowires with ZnFe2O4 nanoparticles
Li et al. Ligand-Assisted Coordinative Self-Assembly Method to Synthesize Mesoporous Zn x Cd1–x S Nanospheres with Nano-Twin-Induced Phase Junction for Enhanced Photocatalytic H2 Evolution
Rani et al. WO3 nanocubes for photoelectrochemical water-splitting applications
Das et al. Effect of higher carrier mobility of the reduced graphene oxide–zinc telluride nanocomposite on efficient charge transfer facility and the photodecomposition of rhodamine B
Liu et al. Constructing Ag decorated ZnS1-x quantum dots/Ta2O5-x nanospheres for boosted tetracycline removal: Synergetic effects of structural defects, S-scheme heterojunction, and plasmonic effects
Ali et al. Effect of preparation methods and optical band gap of ZnO nanomaterials on photodegradation studies
Ouyang et al. S, N co-doped graphene quantum dots decorated CdSe for enhanced photoelectric properties
da Trindade et al. Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe 2 O 3) as photoelectrodes for solar cell applications
Ke et al. Enhanced solar light driven activity of pn heterojunction for water oxidation induced by deposition of Cu2O on Bi2O3 microplates
Cao et al. Rational synthesis of SrTiO3 nanodots anchored mesocrystalline anatase TiO2 submicrospheres for photocatalytic reduction of CrVI
Ma et al. Controlled synthesis of Zn x Cd 1− x S nanorods and their composite with RGO for high-performance visible-light photocatalysis
Kao et al. MoS2-coupled coniferous ZnO for photocatalytic degradation of dyes
Helal et al. Influence of a hole inversion layer at the In2O3/BiVO4 interface on the high-efficiency photocatalytic performance
Li et al. Hierarchical flower-like 0D/3D g-C3N4/TiO2 S-scheme heterojunction with enhanced photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200407