WO2021057051A1 - 一种永磁材料及其制备方法 - Google Patents

一种永磁材料及其制备方法 Download PDF

Info

Publication number
WO2021057051A1
WO2021057051A1 PCT/CN2020/091462 CN2020091462W WO2021057051A1 WO 2021057051 A1 WO2021057051 A1 WO 2021057051A1 CN 2020091462 W CN2020091462 W CN 2020091462W WO 2021057051 A1 WO2021057051 A1 WO 2021057051A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
optionally
mass fraction
mass
raw material
Prior art date
Application number
PCT/CN2020/091462
Other languages
English (en)
French (fr)
Inventor
杨武国
申屠金昂
何震宇
丁伯明
何军义
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to EP20869092.5A priority Critical patent/EP4036071A4/en
Publication of WO2021057051A1 publication Critical patent/WO2021057051A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/605Making or treating the green body or pre-form in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Definitions

  • the application belongs to the technical field of magnetic materials, and relates to a permanent magnetic material and a preparation method thereof.
  • the intrinsic coercivity (Hcj) refers to the strength of the reverse magnetic field required to reduce the residual magnetization Mr of the magnet to zero. Intrinsic coercivity is one of the most important performance indicators of magnetic materials, which mainly reflects the ability of permanent magnets to resist demagnetization.
  • the intrinsic coercivity of traditional AB 12 O 19 permanent magnet materials is not high, generally between 3000-5000 Oe. Therefore, when applied to permanent magnet motors, the permanent magnet ferrite materials are mostly made of watts, in order to prevent the motor For demagnetization, the magnetic tile is usually made thicker.
  • the ferrite magnet composed of AB 12 O 19 is a permanent magnet material with excellent magnetic properties. It is one of the key basic functional materials for permanent magnet DC motors, which can meet the requirements of various environments such as strong demagnetization, low temperature, and high altitude. It has high sensitivity and stability, and can be widely used in various motors with high power, high speed and high torque, such as high-end automobile motors (ABS motors, starting motors, etc.), motorcycle starting motors, and household appliances And power tool motors and other fields.
  • the original permanent ferrite materials are mainly prepared by using strontium ferrite (SrFe 12 O 19 ) and barium ferrite (BaFe 12 O 19 ) with a magnetoplumbite hexagonal structure.
  • strontium ferrite SrFe 12 O 19
  • barium ferrite BaFe 12 O 19
  • Br mainly depends on the saturation magnetization (Ms) of the material, the degree of orientation (f) and the final magnet density ( ⁇ ) during the molding process
  • CN101880155A discloses a method for manufacturing a ferrite permanent magnet material.
  • the method includes the following steps. After pre-burning the ingredients, the ball mill is used to pulverize and mix.
  • the pulverization method is wet milling, and further includes the following steps. During the wet grinding process, 0.1-2.0% sodium hydroxide is added by weight of the calcined material.
  • the permanent magnetic material obtained by this method has low intrinsic coercivity.
  • CN102815934A discloses a high-performance calcium lanthanum ferrite permanent magnetic material and a preparation method thereof.
  • the chemical formula of the high-performance calcium lanthanum ferrite permanent magnetic material is: CaO 0.2 ⁇ 0.5 ⁇ (La 2 O 3 ) 0.25 ⁇ 0.4 ⁇ (Fe 2 O 3 ) 5.2 ⁇ 5.8 ⁇ CoO 0.25 ⁇ 0.45 .
  • CN106882962A discloses a high magnetic energy M-type barium ferrite permanent magnet material and its preparation method, comprising the following mole fractions: 35-60 parts of iron source, 4-5 parts of barium nitrate, 2-3 parts of polyacrylamide, 4-7 parts of copper amino acetate, 4-5 parts of cobalt acetylacetonate, 4-5 parts of nickel sulfamate, 0.5-1.5 parts of hydrazine hydrate, 0.5-2 parts of cetyltrimethylammonium bromide, stearin 1-5 parts of acid metal salt, 0-2.5 parts of rare earth oxides, and 0-6 parts of bittern, which are made by mixing, ball milling, ultrasound, sintering and other steps.
  • the intrinsic coercivity of the permanent magnetic materials obtained by the above methods is relatively low.
  • the purpose of this application is to provide a permanent magnet material and a preparation method thereof.
  • the permanent ferrite material provided by the present application has both high residual magnetic induction intensity Br and ultra-high intrinsic coercive force Hcj, and has excellent performance.
  • the permanent magnetic material provided by this application can increase the intrinsic coercivity Hcj to 5800 Oe, or even about 6000 Oe.
  • the present application provides a permanent magnetic material.
  • the permanent magnetic material includes AB 12 O 19 , where A includes Sr, Ca, and La, B includes Fe and Co, and is composed of A and B oxide.
  • the total mass is 100%, the mass fraction of the oxide of A is 12-18wt%, such as 12wt%, 14wt%, 16wt%, 17wt% or 18wt%, etc.
  • the mass fraction of the oxide of B is 82-88wt%, For example, 82% by weight, 84% by weight, 86% by weight, 87% by weight, or 88% by weight.
  • the permanent magnetic material provided by the present application can obtain high residual magnetic induction and ultra-high intrinsic coercivity through the cooperation of the above-mentioned elements.
  • the ratio of each element in the AB 12 O 19 is calculated according to the mass fraction of the corresponding oxide.
  • the mass fraction of SrO is 0.5-5.0wt%, for example 0.5wt%, 1wt%, 2wt%, 3wt%, 4wt% or 5wt%, etc.
  • the mass fraction of La 2 O 3 is 5.0-10.0wt%, such as 5wt%, 6wt%, 7wt%, 8wt%, 9wt% or 10wt%, etc.
  • the mass fraction of CaO is 0.5-3.0wt%, such as 0.5wt%, 1wt%, 2wt% or 3wt%, etc.
  • the mass fraction of Fe 2 O 3 is 81-87wt%, such as 81wt%, 82wt%, 83wt%, 84wt %, 85% by weight, 86% by weight, or 87% by weight, etc.
  • the mass fraction of Co 2 O 3 is 1-4.0% by weight
  • the use of the above-mentioned optional composition ratio can increase the intrinsic coercivity Hcj of the permanent magnetic material to 5800 Oe, or even about 6000 Oe.
  • A further includes Ba and/or other La-based rare earth elements other than La.
  • the mass fraction of Ba is calculated as BaO, and the total mass of oxides of A and B is 100%, and the mass fraction of BaO is 0.1-0.5 wt%, For example, 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt% or 0.5wt%, etc., and the mass fraction of La 2 O 3 is 6.0-8.5 wt%, such as 6wt%, 7wt%, 8wt% or 8.5wt% Wait.
  • B further includes other fourth period transition elements other than iron and cobalt, and may be any one or a combination of at least two of Al, Cr, or Mn.
  • Al and Cr can increase the intrinsic coercivity of permanent magnetic material products.
  • the mass fraction of Al is calculated as Al 2 O 3 , and the total mass of oxides of A and B is 100%, and the mass fraction of Al 2 O 3 is 0.5-2.0wt%, such as 0.5wt%, 1wt%, 1.5wt% or 2wt%, etc., and the mass fraction of Co 2 O 3 is 1.5-3.0wt%, such as 1.5wt%, 2wt%, 2.5wt% or 3wt %Wait.
  • the mass fraction of Cr is calculated as Cr 2 O 3 , and the total mass of oxides of A and B is 100%, and the mass fraction of Cr 2 O 3 is 0.3-1.5wt%, such as 0.3wt%, 0.5wt%, 1wt%, 1.2wt% or 1.5wt%, etc., and the mass fraction of Co 2 O 3 is 1.5-3.0wt%, for example 1.5wt%, 2wt%, 2.5wt% or 3wt%, etc.
  • the mass fraction of Mn is calculated as MnO, and the total mass of oxides of A and B is 100%, and the mass fraction of MnO is 0.1-0.4 wt%, For example, 0.1 wt%, 0.2 wt%, 0.3 wt%, or 0.4 wt%, etc., and the mass fraction of Co 2 O 3 is 1.5-3.0 wt%, such as 1.5 wt%, 2 wt%, 2.5 wt%, or 3 wt%.
  • the permanent magnet material further includes Si, and the mass fraction of Si is calculated as SiO 2 and the total mass of the oxides of A and B is 100%.
  • the mass of the SiO 2 The fraction is 0.02-0.8wt, such as 0.02wt, 0.05wt, 0.1wt, 0.2wt, 0.4wt, 0.6wt or 0.8wt, etc.
  • the role of SiO 2 in the permanent magnetic material is to react with the remaining A oxides in the main component of the calcination material, such as CaO, SrO, and secondary CaO to form non-magnetic silicate, dispersing Between the magnetic ferrite particles, it can prevent the growth of magnetic crystal grains, improve the sintering and increase the magnet density, and finally improve the comprehensive magnetic properties of the material.
  • the calcination material such as CaO, SrO, and secondary CaO
  • the present application provides a method for preparing the permanent magnet material as described in the first aspect, the method including the following steps:
  • the first raw material mixture is crushed to obtain a primary crushed material;
  • the first raw material mixture includes an iron source, a strontium source, a calcium source, a lanthanum source, and a cobalt source;
  • step (3) Mixing the pre-fired material in step (2) with the second raw material mixture and crushing to obtain a secondary crushed material;
  • the second raw material mixture includes a calcium source;
  • step (3) Perform magnetic field molding on the secondary crushed material of step (3) to obtain a molded body
  • step (4) Preheating and sintering the molded body in step (4) to obtain the permanent magnet material.
  • the first raw material mixture added in step (1) is used to provide the main phase of the permanent magnetic material, and the calcium source therein plays a role in substituting strontium;
  • the second raw material mixture added in step (3) Used to improve the grain boundary and improve the performance of permanent magnet materials.
  • the first raw material mixture and the second raw material mixture together provide the elements required to compose the permanent magnetic material provided in this application.
  • the preheating described in step (5) is used to remove the solvent (such as water) in the molded body, and if a dispersant is present, it is also used to remove the dispersant.
  • each element source may use the oxide or carbonate of the corresponding element to ensure that the corresponding oxide can be obtained through the preparation method provided in this application.
  • iron red is used as the iron source
  • strontium carbonate is used as the strontium source
  • calcium carbonate is used as the calcium source
  • lanthanum oxide is used as the lanthanum source
  • cobalt trioxide is used as the cobalt source
  • chromium trioxide is used as the chromium source
  • silicon dioxide and aluminum are used as the silicon source.
  • the source is aluminum oxide
  • the barium source is barium oxide or barium carbonate.
  • the strontium source may contain some barium oxide or barium carbonate impurities. It can be used as the barium source, or the barium source can be directly added in step (1).
  • the iron source often contains some manganese impurities. As a manganese source, it is generally not necessary to add a manganese source separately.
  • the crushing method in step (1) is wet mixed crushing, and may be wet ball milling.
  • the crushed material obtained after wet crushing is slurry.
  • the crushing time in step (1) is 3-5h, such as 3h, 3.5h, 4h, 4.5h or 5h.
  • the average solid particle size of the primary crushed material in step (1) is below 0.8 ⁇ m, such as 0.8 ⁇ m, 0.7 ⁇ m, 0.6 ⁇ m or 0.5 ⁇ m.
  • the solid particle size in the slurry of the primary crushed material after mixing is too large, it is easy to cause insufficient pre-sintering during the pre-sintering process, and the resulting ferrite phase content is too low.
  • the average particle size of each element source is less than 2 ⁇ m, such as 1.9 ⁇ m, 1.8 ⁇ m, 1.7 ⁇ m, 1.6 ⁇ m, or 1.5 ⁇ m.
  • the pre-firing in step (2) is carried out in an air atmosphere.
  • the pre-sintering temperature in step (2) is 1150 to 1260°C, for example, 1150°C, 1170°C, 1190°C, 1210°C, 1230°C, 1250°C, or 1260°C, etc., can be 1230-1260°C .
  • the pre-burning time in step (2) is 0.5-3h, such as 0.5h, 1h, 1.5h, 2h, 2.5h, or 3h, etc., optionally 1-2h.
  • the crushing method in step (3) is wet mixed crushing, and may be wet ball milling.
  • the crushed material obtained after wet crushing is slurry.
  • the second raw material mixture in step (3) also includes any one or a combination of at least two of a silicon source, a chromium source, an aluminum source, a boron source, a strontium source, or a cobalt source.
  • the boron source can be boric acid, but the amount of boron source added is generally relatively small, which is difficult to analyze and reflect in the component analysis.
  • the second raw material mixture in step (3) is a mixture of calcium source, silicon source and cobalt source.
  • the mass fraction of the calcium source in the second raw material mixture is 0.4-1.5 wt%, such as 0.4 wt%, 0.5 wt%, 1wt% or 1.5wt%, etc.
  • the mass fraction of the silicon source is 0.2-0.8 wt%, for example 0.2 wt%, based on the mass of the pre-fired material being 100%. 0.4wt%, 0.6wt%, 0.8wt%, etc.
  • the mass fraction of the chromium source is 0-0.8% by weight and does not include 0 based on the mass of the pre-fired material being 100%, for example 0.1wt%, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt%, etc.
  • the mass fraction of the cobalt source is 0-0.8 wt% and does not include 0 based on the mass of the pre-fired material as 100%, for example 0.1wt%, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt%, etc.
  • the mass fraction of the aluminum source is 0-0.8 wt% and does not include 0, for example 0.1wt%, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt%, etc.
  • the mass fraction of the boron source is 0-0.8 wt% and does not include 0 based on the mass of the pre-burned material as 100%, for example 0.1wt%, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt%, etc.
  • the mass fraction of the strontium source is 0.1-1.0% by weight, such as 0.1% by weight, based on the mass of the pre-burned material being 100%. 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt%, 1.0wt%, etc.
  • step (3) further includes: adding a dispersant before crushing.
  • adding a dispersant can improve the orientation of the slurry particles during magnetic field molding.
  • the dispersant includes any one or a combination of at least two of calcium gluconate, polyvinyl alcohol, or sorbitol.
  • the added amount of the dispersant is 0.2-1.2 wt% of the mass of the pre-fired material, such as 0.2 wt%, 0.4 wt%, 0.6 wt%, 0.8 wt%, 1.0 wt%, or 1.2 wt%.
  • the added amount of dispersant is too small to disperse the particles of the secondary crushed slurry to improve the orientation degree during molding; too large an added amount will easily cause insufficient discharge of organic matter in the subsequent sintering process, resulting in The density of the sintered body decreases.
  • the average solid particle size of the secondary crushed material in step (3) is below 0.65 ⁇ m, such as 0.65 ⁇ m, 0.6 ⁇ m, 0.55 ⁇ m, or 0.5 ⁇ m.
  • the average particle size of the solid in the secondary crushing material is too coarse, it is easy to cause the crystal grain size in the sintered body to be too coarse and affect the coercivity of the sintered body.
  • step (4) before performing magnetic field molding, adjust the solid content of the secondary crushed material in step (3) to 65-80wt%, such as 65wt%, 70wt%, 75wt% or 80wt% etc.
  • the magnetic field strength of the magnetic field shaping in step (4) is above 12000 Gs, such as 12000 Gs, 13000 Gs, 14000 Gs, or 15000 Gs.
  • the molding magnetic field is too low, the orientation of the magnetic particles in the molded body will be too low.
  • the preheating temperature in step (5) is 200-400°C, such as 200°C, 250°C, 300°C, 350°C, or 400°C.
  • the preheating time in step (5) is 0.5-2h, such as 0.5h, 1h, 1.5h or 2h.
  • the sintering temperature of step (5) is 1150-1250°C, such as 1150°C, 1175°C, 1200°C, 1225°C or 1250°C, etc., and may be 1180-1220°C.
  • the sintering time in step (5) is 0.5-3h, such as 0.5h, 1h, 1.5h, 2h, 2.5h, or 3h, etc., and may be 0.5-2h.
  • the sintering in step (5) is carried out in an oxygen-rich atmosphere, optionally in an air atmosphere.
  • the oxygen-rich atmosphere helps to reduce the content of Fe 2+ ions in the sintered body and increase the specific saturation magnetization of the sintered body itself.
  • the solution includes the following steps:
  • the first raw material mixture is subjected to wet ball milling for 3-5 hours to obtain a primary crushed material;
  • the first raw material mixture includes an iron source, a strontium source, a calcium source, a lanthanum source, and a cobalt source; in the first raw material mixture ,
  • the average particle size of each element source is less than 2 ⁇ m; the average solid particle size of the primary crushed material is below 0.8 ⁇ m;
  • step (1) In an air atmosphere, the primary crushed material described in step (1) is pre-fired at 1230-1260°C for 1-2 hours to obtain a pre-fired material;
  • step (3) Mix the calcined material described in step (2) with the second raw material mixture and dispersant, and perform wet ball milling to obtain a secondary crushed material;
  • step (3) the second raw material mixture is a calcium source and a silicon source , A mixture of a chromium source and a cobalt source; based on the mass of the calcination material being 100%, the mass fraction of the calcium source in the second raw material mixture is 0.4-1.5wt%, and the mass fraction of the silicon source is 0.2-0.8wt% ,
  • the mass fraction of the cobalt source is 0-0.8wt% and does not include 0; the average solid particle size of the secondary crushed material is below 0.65 ⁇ m; the added amount of the dispersant is 0.2-1.2wt% of the mass of the calcined material ;
  • the solid content of the secondary crushing material is 65-80wt%, and magnetic field molding is performed under a magnetic field strength of 12000Gs or more to obtain a molded body;
  • step (4) Preheat the molded body in step (4) at 200-400°C for 0.5-2h, and then sinter it at a temperature of 1180-1220°C for 0.5-2h in an air atmosphere to obtain the permanent magnet material.
  • the permanent magnet material provided by this application is a ferrite material, which has both high residual magnetic induction intensity Br and ultra-high intrinsic coercive force Hcj.
  • High Br can ensure that the motor has a large output torque And power; ultra-high Hcj can ensure that the motor has strong anti-demagnetization, anti-aging and low-temperature working capabilities.
  • the intrinsic coercivity Hcj of the permanent magnetic material provided in this application can reach 6154Oe.
  • the preparation method provided by the present application can further improve the performance of the permanent magnet material product by optimizing the process conditions, and has simple operation, short flow, and low cost, which is conducive to industrialized large-scale production.
  • the permanent magnet material is prepared according to the following method:
  • Iron red the original average particle size of the particles with purity Fe 2 O 3 content ⁇ 99.5 wt% and Cl - ion content ⁇ 0.1 wt% is 1.6 ⁇ m, and the weight percentage is 83.4%;
  • Strontium carbonate the purity SrCO 3 ⁇ 98.0wt%, the original average particle size of the particles is 2.1 ⁇ m, and the weight percentage is 4.31%;
  • Calcium carbonate the purity of CaCO 3 ⁇ 99.0wt%, the original average particle size of the particles is 4.2 ⁇ m, and the weight percentage is 2.42%;
  • Lanthanum oxide the purity La 2 O 3 ⁇ 99.0wt%, the original average particle size of the particles is 4.5 ⁇ m, and the weight percentage is 7.08%;
  • Cobalt trioxide the purity of Co 2 O 3 is greater than or equal to 99.0 wt%, the original average particle size of the particles is 2.5 ⁇ m, and the weight percentage is 2.78%.
  • the above-mentioned raw materials were weighed and mixed and ball milled in a wet ball mill for 5 hours, and the average particle size after mixing was 0.8 ⁇ m.
  • the water content of the molding slurry is adjusted, and the solid content of the slurry is adjusted to 70%, and then the molding is performed.
  • a molding magnetic field of 14000 Oe is applied in the pressing direction.
  • the obtained molded body is a cylinder with a diameter of 43.2 mm and a height of 13 mm, and the molding pressure is 10 MPa.
  • the composition of the pre-fired material in step (2) and the main oxide content of the final permanent magnet material are shown in Table 1.
  • the method of obtaining it is to grind the calcined material and magnet of this embodiment into powders, and obtain the content of each main oxide through component analysis. Other embodiments also use this method to obtain the content of main oxide.
  • Mass fraction/wt% Fe 2 O 3 SrO CaO BaO La 2 O 3 Co 2 O 3 Cr 2 O 3 MnO SiO 2 Pre-fired material 85.6 1.4 1.8 0.06 8.0 2.75 0 0.25 0.03 magnet 85.2 1.1 2.0 0.05 7.45 3.10 0.30 0.20 0.40
  • the permanent magnet material is prepared according to the following method:
  • Example 1 Raw material selection The same as in Example 1, the weights of various raw materials constituting these main components were changed and fed. The four sets of tests were respectively numbered as Examples 2-1, 2-2, 2-3, and 2-4.
  • the raw materials weighed according to the above composition were mixed and ball milled in a wet ball mill for 5 hours, and the average particle size after mixing was about 0.8 ⁇ m.
  • the water content of the molding slurry is adjusted, the solid content of the slurry is adjusted to 70%, and then the molding is performed. While pressing, a molding magnetic field of 13000 Oe is applied in the pressing direction.
  • the obtained molded body is a cylinder with a diameter of 43.2 mm and a height of 13 mm, and the molding pressure is 10 MPa.
  • the molded body was then heat-treated at a temperature of 300°C for 1 hour to completely remove the organic dispersant, and then sintered in the air at a heating rate of 150°C/hour, and kept at 1210°C for 2 hours to obtain a permanent magnet material.
  • composition of the permanent magnet material obtained by each formula in this example is shown in Table 3, and the performance test result of each formula is shown in Table 4.
  • This example refers to the method of Example 1 to prepare permanent magnetic materials.
  • the difference is that the ingredient ratio of step (1) is adjusted according to the required ingredient ratio of the product. If the ingredients of step (1) are reduced, the required ratio cannot be achieved.
  • the composition ratio of, then the amount of raw materials added in step (3) is further reduced to meet the requirements of the permanent magnetic material product composition of each group of formulas.
  • composition of the permanent magnetic material of each formulation in this example is shown in Table 3, and the performance test results of each formulation are shown in Table 4.
  • the permanent magnet material is prepared according to the following method:
  • Example 1 Using the raw materials and proportions of Example 1, the mixing and ball milling were carried out in a wet ball mill for 4 hours, and the average particle size after mixing was 0.78 ⁇ m.
  • the water content of the molding slurry is adjusted to adjust the solid content of the slurry to 65%, and then the molding is performed. While pressing, a molding magnetic field of 12000 Oe is applied in the pressing direction.
  • the obtained molded body is a cylinder with a diameter of 43.2 mm and a height of 13 mm, and the molding pressure is 10 MPa.
  • composition of the permanent magnet material obtained in this example is shown in Table 3, and the performance test results of each formulation are shown in Table 4.
  • the permanent magnet material is prepared according to the following method:
  • Example 1 Using the raw materials and proportions of Example 1, the mixing and ball milling were carried out in a wet ball mill for 3 hours, and the average particle size after mixing was 0.8 ⁇ m.
  • the water content of the slurry for molding is adjusted, the solid content of the slurry is adjusted to 80%, and then the molding is performed.
  • a molding magnetic field of 14000 Oe is applied in the pressing direction.
  • the obtained molded body is a cylinder with a diameter of 43.2 mm and a height of 13 mm, and the molding pressure is 10 MPa.
  • composition of the permanent magnet material obtained in this example is shown in Table 3, and the performance test results of each formulation are shown in Table 4.
  • the difference between this embodiment and embodiment 1 lies in that the pre-sintering temperature of step (2) in this embodiment is 1230°C, the pre-sintering time is 1.5h, the sintering temperature of step (5) is 1200°C, and the sintering time is 2h.
  • composition of the permanent magnet material obtained in this example is shown in Table 3, and the performance test results of each formulation are shown in Table 4.
  • Embodiment 1 lies in that the pre-sintering temperature of step (2) in this embodiment is 1260°C, the pre-sintering time is 2h, the sintering temperature of step (5) is 1180°C, and the sintering time is 1h.
  • composition of the permanent magnet material obtained in this example is shown in Table 3, and the performance test results of each formulation are shown in Table 4.
  • This comparative example adopts the method of Example 1 to prepare the permanent magnet material.
  • the difference is that the ingredient ratio of step (1) is adjusted to meet the requirements of the permanent magnet material product composition of each group of formulas.
  • composition of the permanent magnetic material of each formulation in this comparative example is shown in Table 3, and the performance test results of each formulation are shown in Table 4.
  • Example 1 85.2 1.1 2.1 0.05 7.45 3.10 0 0.30 0.20 0.45
  • Example 2-1 82.4 4.3 2.1 0.25 6.5 2.8 0.5 0.4 0.2 0.5
  • Example 2-2 83.3 3.3 2.2 0.4 5.95 3.0 0.7 0.3 0.25 0.55
  • Example 2-3 83.7 2.9 1.7 0.05 7.0 2.3 0.95 0.65 0.20 0.50
  • Example 2-4 84.9 0.5 2.1 0.3 7.8 1.85 1.0 0.80 0.1 0.50
  • Example 3-1 81 5.0 3.0 0 10.0 1.0 0 0 0 0
  • Example 3-2 87 0.5 3.0 0 8.5 1.0 0 0 0 0
  • Example 3-3 81 4.5 0.5 0.5 6.0 4.0 1.5 1.5 0 0.80
  • Example 3-4 81 4.2 3.0 0 5.0 2.6 2.0 1.0 0.4 0.40
  • Example 3-5 82.2 4.4 2.0 0.1 8.5 1.5
  • the metal elements in SrO, CaO, BaO and La 2 O 3 are A-site elements, Fe 2 O 3 , Co 2 O 3 , Al 2 O 3 , Cr 2 O 3 and MnO
  • the metal element in is the B-site element.
  • the mass fraction calculations in Table 1, Table 2 and Table 3 are all based on the total mass of the oxides of A and B as 100%, and this 100% does not include SiO 2 in the calculation. Because the products of some examples contain a small amount of impurities, the total mass fraction of the ingredients listed in Table 3 is slightly lower than 100%.
  • the upper and lower surfaces of the permanent magnetic material products obtained in the respective examples and comparative examples were tested after grinding.
  • the TD8310 permanent magnet material test system produced by Changsha Tianheng Measurement and Control Technology Co., Ltd. is used to test the residual magnetic induction (Br), coercive force (Hcb), intrinsic coercive force (Hcj) and maximum magnetic energy product (BH) at room temperature. max, the test results are shown in the table below.
  • Example 1 4527 4117 5939 5.05
  • Example 2-3 4510 3998 5854 5.06
  • Example 2-4 4530 4095 5924 5.12
  • Example 3-4 4510 4058 5823 5.02
  • Example 3-5 4540 4120 5941 5.15
  • Example 6 4460 3987 5912 4.95
  • Example 7 4520 4085 6047 5.08 Comparative example 1-1 4351 3014 3541 4.51 Comparative example 1-2 4214 3258 3647 4.35 Comparative example 1-3 4284 3587 3987 4.42 Comparative example 1-4 4187 3789 4157 4.34 Comparative Examples 1-5 4472 3478 3987 4.78
  • the permanent magnet products provided in Examples 1-6 of this application accurately determine the distribution ratio of each group, and strictly control the process, which can achieve both high residual magnetic induction intensity Br and ultra-high intrinsic coercivity.
  • A does not include cobalt, which leads to a serious decrease in the final magnet remanence Br, intrinsic coercivity Hcj, and overall magnetic properties.
  • B does not include strontium, resulting in a severe decrease in the final magnet remanence Br, intrinsic coercivity Hcj, and overall magnetic properties.
  • B does not include calcium, resulting in a serious decrease in the final magnet remanence Br, intrinsic coercivity Hcj, and overall magnetic properties.
  • B does not include lanthanum, resulting in a serious decrease in the final magnet remanence Br, intrinsic coercivity Hcj and overall magnetic properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本申请提供了一种永磁材料及其制备方法。所述永磁材料包括AB 12O 19,其中A包括Sr、Ca和La,B包括Fe和Co,以A的氧化物和B的氧化物的总质量为100%计,A的氧化物的质量分数为12-18wt%,B的氧化物的质量分数为82-88wt%。所述制备方法包括:1)将第一原料混合物破碎,得到一次破碎料;2)对一次破碎料进行预烧,得到预烧料;3)将预烧料与第二原料混合物混合,进行破碎,得到二次破碎料;4)对二次破碎料进行磁场成型,得到成型体;5)对成型体进行预热和烧结,得到所述永磁材料。

Description

一种永磁材料及其制备方法 技术领域
本申请属于磁性材料技术领域,涉及一种永磁材料及其制备方法。
背景技术
内禀矫顽力(Hcj)是指使磁体的剩余磁化强度Mr降为零所需施加的反向磁场强度。内禀矫顽力是磁性能材料最重要重要的性能指标之一,主要反映永磁体抗退磁能力。传统的AB 12O 19型永磁材料内禀矫顽力不高,一般在3000-5000Oe之间,因此在应用于永磁电机上时,永磁铁氧体材料多做成瓦型,为了防止电机退磁,磁瓦通常要做得较厚。
具有AB 12O 19组成的铁氧体磁体为具有优异磁特性的永磁材料,是永磁直流电机的关键基础功能材料之一,能满足强退磁场、低温、高海拔等各种环境下电机的使用要求,具有较高的灵敏度和稳定性,可以广泛应用于高功率、高转速、高扭矩的各类电机,如高档汽车电机(ABS电机、启动电机等)、摩托车启动电机、家用电器以及电动工具马达等领域。
最初的永磁铁氧体材料主要是采用具有磁铅石六角结构的锶铁氧体(SrFe 12O 19)和钡铁氧体(BaFe 12O 19)来制备的。决定烧结永磁铁氧体的磁性能主要有两个参数,即剩余磁通密度(Br)和内禀矫顽力(Hcj)。Br主要取决于材料的饱和磁化强度(Ms)、成型过程中取向度(f)和最终磁体密度(ρ),Hcj主要取决于材料各向异性场强度(H A=2K 1/Ms,K 1为材料的各向异性场常数)、最终磁体晶格缺陷及晶界构造和单畴晶粒比例。
CN101880155A公开了一种铁氧体永磁材料的制作方法,该方法包括以下步骤,预烧料配料后使用球磨设备粉碎混合,所述粉碎的方式采用的是湿磨, 并且还包括如下步骤,在所述的湿磨的过程中加入预烧料重量0.1~2.0%的氢氧化钠。该方法得到的永磁材料内禀矫顽力较低。
CN102815934A公开了一种高性能钙镧铁氧体永磁材料及其制备方法,该高性能钙镧铁氧体永磁材料的化学式为:CaO 0.2~0.5·(La 2O 3) 0.25~0.4·(Fe 2O 3) 5.2~5.8·CoO 0.25~0.45
CN106882962A公开了一种高磁能M型钡铁氧体永磁材料及其制备方法,包括以下摩尔份数组成:铁源35-60份、硝酸钡4-5份、聚丙烯酰胺2-3份、氨基醋酸铜4-7份、乙酰丙酮钴4-5份、氨基磺酸镍4-5份、水合联氨0.5-1.5份、十六烷基三甲基溴化铵0.5-2份、硬脂酸金属盐1-5份、稀土氧化物0-2.5份、盐卤0-6份,采用混料、球磨、超声、烧结等步骤制成。
但是上述方法得到的永磁材料内禀矫顽力均较低。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种永磁材料及其制备方法。本申请提供的永磁铁氧体材料同时具备较高的剩余磁感应强度Br和超高的内禀矫顽力Hcj,性能优良。本申请提供的永磁材料在保证剩余磁感应强度Br基本不下降的基础上,内禀矫顽力Hcj可提高至5800Oe,甚至6000Oe左右。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供一种永磁材料,所述永磁材料包括AB 12O 19,其中A包括Sr、Ca和La,B包括Fe和Co,以A的氧化物和B的氧化物的总质量为100%计,A的氧化物的质量分数为12-18wt%,例如12wt%、14wt%、16wt%、 17wt%或18wt%等,B的氧化物的质量分数为82-88wt%,例如82wt%、84wt%、86wt%、87wt%或88wt%等。
本申请提供的永磁材料通过上述各元素的相互配合,可以获得较高的剩余磁感应强度和超高的内禀矫顽力。本申请中,所述AB 12O 19中各元素的配比按照其对应的氧化物的质量分数进行计算。
以下作为本申请可选的技术方案,但不作为对本申请提供的技术方案的限制,通过以下可选的技术方案,可以更好的达到和实现本申请的技术目的和有益效果。
作为本申请可选的技术方案,所述永磁材料中,以A的氧化物和B的氧化物的总质量为100%计,SrO的质量分数为0.5-5.0wt%,例如0.5wt%、1wt%、2wt%、3wt%、4wt%或5wt%等,La 2O 3的质量分数为5.0-10.0wt%,例如5wt%、6wt%、7wt%、8wt%、9wt%或10wt%等,CaO的质量分数为0.5-3.0wt%,例如0.5wt%、1wt%、2wt%或3wt%等;Fe 2O 3的质量分数为81-87wt%,例如81wt%、82wt%、83wt%、84wt%、85wt%、86wt%或87wt%等,Co 2O 3的质量分数为1-4.0wt%,例如1wt%、2wt%、3wt%或4wt%等。
本申请中,采用上述可选的组成配比,可以使得永磁材料的内禀矫顽力Hcj提高至5800Oe,甚至6000Oe左右。
作为本申请可选的技术方案,所述永磁材料中,A还包括Ba和/或除La之外的其他La系稀土元素。
可选地,当A中包括Ba时,所述Ba的质量分数以BaO计,以A的氧化物和B的氧化物的总质量为100%计,BaO的质量分数为0.1-0.5wt%,例如0.1wt%、0.2wt%、0.3wt%、0.4wt%或0.5wt%等,且La 2O 3的质量分数为6.0-8.5 wt%,例如6wt%、7wt%、8wt%或8.5wt%等。
可选地,所述永磁材料中,B还包括除铁和钴之外的其他第四周期过渡元素,可选为Al、Cr或Mn中的任意一种或至少两种的组合。其中,Al、Cr可以提升永磁材料产品的内禀矫顽力。
可选地,当B中包括Al时,所述Al的质量分数以Al 2O 3计,以A的氧化物和B的氧化物的总质量为100%计,Al 2O 3的质量分数为0.5-2.0wt%,例如0.5wt%、1wt%、1.5wt%或2wt%等,且Co 2O 3的质量分数为1.5-3.0wt%,例如1.5wt%、2wt%、2.5wt%或3wt%等。
可选地,当B中包括Cr时,所述Cr的质量分数以Cr 2O 3计,以A的氧化物和B的氧化物的总质量为100%计,Cr 2O 3的质量分数为0.3-1.5wt%,例如0.3wt%、0.5wt%、1wt%、1.2wt%或1.5wt%等,且Co 2O 3的质量分数为1.5-3.0wt%,例如1.5wt%、2wt%、2.5wt%或3wt%等。
可选地,当B中包括Mn时,所述Mn的质量分数以MnO计,以A的氧化物和B的氧化物的总质量为100%计,MnO的质量分数为0.1-0.4wt%,例如0.1wt%、0.2wt%、0.3wt%或0.4wt%等,且Co 2O 3的质量分数为1.5-3.0wt%,例如1.5wt%、2wt%、2.5wt%或3wt%等。
可选地,所述永磁材料还包括Si,所述Si的质量分数以SiO 2计,以所述A的氧化物和B的氧化物的总质量为100%计,所述SiO 2的质量分数为0.02-0.8wt,例如0.02wt、0.05wt、0.1wt、0.2wt、0.4wt、0.6wt或0.8wt等。本申请中,永磁材料中的SiO 2的作用在于与预烧料主成分中残留的A的氧化物,如CaO、SrO及二次添加的CaO发生反应,生成非磁性的硅酸盐,弥散在磁性铁氧体颗粒之间,从而达到阻止磁性晶粒长大,改善烧结提升磁体密度,最终提高材料 综合磁性能的作用。
第二方面,本申请提供一种如第一方面所述永磁材料的制备方法,所述方法包括以下步骤:
(1)将第一原料混合物破碎,得到一次破碎料;所述第一原料混合物包括铁源、锶源、钙源、镧源和钴源;
(2)对步骤(1)所述一次破碎料进行预烧,得到预烧料;
(3)将步骤(2)所述预烧料与第二原料混合物混合,进行破碎,得到二次破碎料;所述第二原料混合物包括钙源;
(4)对步骤(3)所述二次破碎料进行磁场成型,得到成型体;
(5)对步骤(4)所述成型体进行预热和烧结,得到所述永磁材料。
本申请提供的制备方法中,步骤(1)加入的第一原料混合物用于提供永磁材料的主相,其中的钙源起到对锶的取代作用;步骤(3)加入的第二原料混合物用来改善晶界,提高永磁材料产品性能。第一原料混合物和第二原料混合物共同提供组成本申请提供的永磁材料所需的各元素。
本申请提供的制备方法中,步骤(5)所述预热用于除去成型体中的溶剂(例如水),如果存在分散剂时,也用于除去分散剂。
本申请中,各元素源可以采用相应元素的氧化物或碳酸盐,以保证能够经过本申请提供的制备方法得到相应的氧化物。例如,铁源采用铁红,锶源采用碳酸锶,钙源采用碳酸钙,镧源采用氧化镧,钴源采用三氧化二钴,铬源采用三氧化二铬,硅源采用二氧化硅,铝源采用三氧化二铝,钡源采用氧化钡或碳酸钡等。
本申请中,锶源中可能会带有一些氧化钡或碳酸钡杂质,可将其作为钡源, 也可以在步骤(1)中直接添加钡源,铁源中常会带有一些锰杂质,可以作为锰源,一般不用单独添加锰源。
作为本申请可选的技术方案,步骤(1)所述破碎的方法为湿式混合破碎,可选为湿法球磨。湿法破碎后得到的破碎料为浆料。
可选地,步骤(1)所述破碎的时间为3-5h,例如3h、3.5h、4h、4.5h或5h等。
可选地,步骤(1)所述一次破碎料的固体平均粒度在0.8μm以下,例如0.8μm、0.7μm、0.6μm或0.5μm等。本申请中,如果混和后一次破碎料的料浆中固体粒度过大,在预烧过程中容易引起预烧不充分,生成的铁氧体相含量过低。
可选地,步骤(1)所述第一原料混合物中,各元素源的平均粒度均<2μm,例如1.9μm、1.8μm、1.7μm、1.6μm或1.5μm等。
作为本申请可选的技术方案,步骤(2)所述预烧在空气气氛下进行。
可选地,步骤(2)所述预烧的温度为1150~1260℃,例如1150℃、1170℃、1190℃、1210℃、1230℃、1250℃或1260℃等,可选为1230-1260℃。
可选地,步骤(2)所述预烧的时间为0.5-3h,例如0.5h、1h、1.5h、2h、2.5h或3h等,可选为1-2h。
作为本申请可选的技术方案,步骤(3)所述破碎的方法为湿式混合破碎,可选为湿法球磨。湿法破碎后得到的破碎料为浆料。
可选地,步骤(3)所述第二原料混合物除钙源外,还包括硅源、铬源、铝源、硼源、锶源或钴源中的任意一种或至少两种的组合。所述硼源可以采用硼酸,不过硼源的加入量一般比较少,在成分分析中难以分析体现出来。
可选地,步骤(3)所述第二原料混合物为钙源、硅源和钴源的混合物。
可选地,步骤(3)以所述预烧料的质量为100%计,所述第二原料混合物中的钙源的质量分数为0.4-1.5wt%,例如0.4wt%、0.5wt%、1wt%或1.5wt%等。
可选地,步骤(3)所述第二原料混合物中包含硅源时,以所述预烧料的质量为100%计,硅源的质量分数为0.2-0.8wt%,例如0.2wt%、0.4wt%、0.6wt%或0.8wt%等。
可选地,步骤(3)所述第二原料混合物中包含铬源时,以所述预烧料的质量为100%计,铬源的质量分数为0-0.8wt%且不包括0,例如0.1wt%、0.2wt%、0.4wt%、0.6wt%或0.8wt%等。
可选地,步骤(3)所述第二原料混合物中包含钴源时,以所述预烧料的质量为100%计,钴源的质量分数为0-0.8wt%且不包括0,例如0.1wt%、0.2wt%、0.4wt%、0.6wt%或0.8wt%等。
可选地,步骤(3)所述第二原料混合物中包含铝源时,以所述预烧料的质量为100%计,铝源的质量分数为0-0.8wt%且不包括0,例如0.1wt%、0.2wt%、0.4wt%、0.6wt%或0.8wt%等。
可选地,步骤(3)所述第二原料混合物中包含硼源时,以所述预烧料的质量为100%计,硼源的质量分数为0-0.8wt%且不包括0,例如0.1wt%、0.2wt%、0.4wt%、0.6wt%或0.8wt%等。
可选地,步骤(3)所述第二原料混合物中包含锶源时,以所述预烧料的质量为100%计,锶源的质量分数为0.1-1.0wt%,例如0.1wt%、0.2wt%、0.4wt%、0.6wt%、0.8wt%或1.0wt%等。
可选地,步骤(3)还包括:进行破碎前,加入分散剂。本申请中,加入分散剂可以改善磁场成型时的料浆粒子的取向性。
可选地,所述分散剂包括葡萄糖酸钙、聚乙烯醇或山梨糖醇中的任意一种或至少两种的组合。
可选地,所述分散剂的加入量为预烧料质量的0.2-1.2wt%,例如0.2wt%、0.4wt%、0.6wt%、0.8wt%、1.0wt%或1.2wt%等。本申请中,分散剂添加量过小,不能起到分散二次破碎料料浆粒子以提高成型时取向度的作用;添加量过大,在后续的烧结过程中容易造成有机物排出不充分,导致烧结体密度下降。
可选地,步骤(3)所述二次破碎料的固体平均粒度在0.65μm以下,例如0.65μm、0.6μm、0.55μm或0.5μm等。本申请中,如果二次破碎料中固体平均粒度过粗,容易导致烧结后烧结体中晶粒尺寸过粗,影响烧结体的矫顽力。
作为本申请可选的技术方案,步骤(4)在进行磁场成型前,先调整步骤(3)所述二次破碎料的固含量为65-80wt%,例如65wt%、70wt%、75wt%或80wt%等。
可选地,步骤(4)所述磁场成型的磁场强度在12000Gs以上,例如12000Gs、13000Gs、14000Gs或15000Gs等。本申请中,如果成型磁场过低,则会造成成型体中磁性颗粒取向度过低。
作为本申请可选的技术方案,步骤(5)所述预热的温度为200-400℃,例如200℃、250℃、300℃、350℃或400℃等。
可选地,步骤(5)所述预热的时间为0.5-2h,例如0.5h、1h、1.5h或2h等。
可选地,步骤(5)所述烧结的温度为1150-1250℃,例如1150℃、1175℃、 1200℃、1225℃或1250℃等,可选为1180-1220℃.
可选地,步骤(5)所述烧结的时间为0.5-3h,例如0.5h、1h、1.5h、2h、2.5h或3h等,可选为0.5-2h。
可选地,步骤(5)所述烧结在富氧气氛下进行,可选为在空气气氛下进行。本申请中,富氧气氛有助于降低烧结体中Fe 2+离子的含量,提高烧结体本身的比饱和磁化强度。
作为本申请所述制备方法的进一步可选技术方案,所述方案包括以下步骤:
(1)对第一原料混合物进行湿法球磨3-5h,得到一次破碎料;所述第一原料混合物包括铁源、锶源、钙源、镧源和钴源;所述第一原料混合物中,各元素源的平均粒度均<2μm;所述一次破碎料的固体平均粒度在0.8μm以下;
(2)在空气气氛下,对步骤(1)所述一次破碎料在1230-1260℃下预烧1-2h,得到预烧料;
(3)将步骤(2)所述预烧料与第二原料混合物以及分散剂混合,进行湿法球磨,得到二次破碎料;步骤(3)所述第二原料混合物为钙源、硅源、铬源和钴源的混合物;以所述预烧料的质量为100%计,第二原料混合物中钙源的质量分数为0.4-1.5wt%,硅源的质量分数为0.2-0.8wt%,钴源的质量分数为0-0.8wt%且不包括0;所述二次破碎料的固体平均粒度在0.65μm以下;所述分散剂的加入量为预烧料质量的0.2-1.2wt%;
(4)调整步骤(3)所述二次破碎料的固含量为65-80wt%,在12000Gs以上的磁场强度下进行磁场成型,得到成型体;
(5)对步骤(4)所述成型体在200-400℃下进行预热0.5-2h,之后在空气气氛下以1180-1220℃的温度烧结0.5-2h,得到所述永磁材料。
与现有技术相比,本申请具有以下有益效果:
(1)本申请提供的永磁材料为铁氧体材料,其同时具备较高的剩余磁感应强度Br和超高的内禀矫顽力Hcj,高的Br可以保证电机有具备较大的输出扭矩和功率;超高的Hcj能保证电机有较强的抗退磁及抗老化和低温工作能力。本申请提供的永磁材料的内禀矫顽力Hcj可达6154Oe。
(2)本申请提供的制备方法通过对工艺条件的优化,可以进一步提升永磁材料产品的性能,并且操作简单,流程短,成本低,利于进行产业化大规模生产。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明。但下述的实施例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请保护范围以权利要求书为准。
以下为本申请典型但非限制性实施例:
实施例1
本实施例按照如下方法制备永磁材料:
(1)配料工序选用各种原料要求及相应重量百分比如下:
铁红:其中纯度Fe 2O 3含量≥99.5wt%,Cl -离子含量≤0.1wt%颗粒的原始平均粒度为1.6μm,重量百分比为83.4%;
碳酸锶:其中纯度SrCO 3≥98.0wt%,颗粒的原始平均粒度为2.1μm,重量百分比为4.31%;
碳酸钙:其中纯度CaCO 3≥99.0wt%,颗粒的原始平均粒度为4.2μm,重量 百分比为2.42%;
氧化镧:其中纯度La 2O 3≥99.0wt%,颗粒的原始平均粒度为4.5μm,重量百分比为7.08%;
三氧化二钴:其中纯度Co 2O 3≥99.0wt%,颗粒的原始平均粒度为2.5μm,重量百分比为2.78%。
分别称取上述原材料在湿法球磨机中进行混合球磨5h,混合后平均粒度为0.8μm。
(2)随后在烘箱中进行干燥,然后造球,在空气中1240℃预烧,保温1小时,获得颗粒状预烧料。
(3)接着,称取按上述方式产生的粗粉碎预烧料450克,以所述预烧料的质量为100%,添加0.5wt%的SiO 2、0.75wt%的CaCO 3,0.4wt%的Cr 2O 3,0.5wt%的Co 2O 3,再加0.6wt%的葡萄糖酸钙做为分散剂,然后添加680毫升的去离子水作为球磨介质,在改进型高效球磨机中进行24小时的湿法粉碎,粉碎后的料浆颗粒的平均粒度为0.64μm。
(4)湿法粉碎之后,对成型用料浆进行含水量调整,料浆的固含量调整为70%,然后成型,在压制的同时,在压制方向施加14000Oe的成型磁场。所得成型体是直径为43.2mm、高度为13mm的圆柱体,成型压力为10MPa。
(5)在300℃的温度对成型体进行热处理1h,彻底去除有机分散剂,然后在空气中进行烧结,升温速度是150℃/小时,在1220℃保温1.5小时,获得永磁材料。
步骤(2)的预烧料的组成以及最终得到的永磁材料的主要氧化物含量见表1。其获得方法为将本实施例的预烧料和磁体分别研磨成粉末,通过成分分析得 出各主要氧化物含量,其他实施例也采用这种方法获得主要氧化物的含量。
表1实施例1成分分析结果
质量分数/wt% Fe 2O 3 SrO CaO BaO La 2O 3 Co 2O 3 Cr 2O 3 MnO SiO 2
预烧料 85.6 1.4 1.8 0.06 8.0 2.75 0 0.25 0.03
磁体 85.2 1.1 2.0 0.05 7.45 3.10 0.30 0.20 0.40
本实施例制备的永磁材料的性能测试结果见表4。
实施例2
本实施例按照如下方法制备永磁材料:
(1)原料选择同实施例1,对构成这些主成分的各种原材料重量进行变更并进行投料,四组试验分别编号为实施例2-1,2-2,2-3,2-4。
将按上述组成称量的各原料在湿法球磨机中进行混合球磨5h,混合后平均粒度约为0.8μm。
(2)随后在烘箱中进行干燥,然后造球,在空气中1250℃预烧,保温2小时,获得颗粒状预烧料,粉碎后成分分析如表2所示。
表2实施例2预烧料成分分析结果
质量分数/wt% Fe 2O 3 SrO CaO BaO La 2O 3 Co 2O 3 Al 2O 3 Cr 2O 3 MnO SiO 2
2-1 82.8 4.5 1.6 0.3 6.8 2.6 0.6 0.5 0.2 0
2-2 83.6 3.5 1.8 0.5 6.2 2.8 0.8 0.4 0.3 0.05
2-3 84.2 3.1 1.1 0.1 7.2 2.1 1.1 0.8 0.2 0.03
2-4 85.4 0.6 1.5 0.4 8.2 1.6 1.2 0.9 0.1 0.02
(3)接着,分别称取按上述方式产生的四种粗粉碎预烧料450克,以所述预烧料的质量为100%,添加0.6wt%的SiO 2、0.8wt%的CaCO 3,0.3wt%的Co 2O 3, 再加1.0wt%的葡萄糖酸钙做为分散剂,然后添加680毫升的去离子水作为球磨介质,在一种改进型高效球磨机中进行22小时的湿法粉碎,粉碎后的料浆颗粒的平均粒度为0.62-0.69μm。
(4)湿法粉碎之后,对成型用料浆进行含水量调整,料浆的固含量调整为70%,然后成型,在压制的同时,在压制方向施加13000Oe的成型磁场。所得成型体是直径为43.2mm、高度为13mm的圆柱体,成型压力为10MPa。
(5)随后在300℃的温度对成型体进行热处理1h,彻底去除有机分散剂,然后在空气中进行烧结,升温速度为150℃/小时,在1210℃保温2小时,获得永磁材料。
本实施例中各配方得到的永磁材料的成分见表3,各配方的性能测试结果见表4。
实施例3
本实施例参照实施例1的方法制备永磁材料,区别在于,按照产品所需的成分配比,调整步骤(1)的配料配比,如果降低步骤(1)的配料后仍无法达到所需的成分配比,则进一步降低步骤(3)中加入的原料量,以适应各组配方的永磁材料产品组成需要。
本实施例中各配方的永磁材料的成分见表3,各配方的性能测试结果见表4。
实施例4
本实施例按照如下方法制备永磁材料:
(1)采用实施例1的原料和配比,在湿法球磨机中进行混合球磨4h,混合后平均粒度为0.78μm。
(2)随后在烘箱中进行干燥,然后造球,在空气中1150℃预烧,保温3小时,获得颗粒状预烧料。
(3)接着,称取按上述方式产生的粗粉碎预烧料450克,以所述预烧料的质量为100%,添加0.2wt%的SiO 2、0.4wt%的CaCO 3,0.4wt%的Cr 2O 3,0.8wt%的Co 2O 3,再加0.2wt%的葡萄糖酸钙做为分散剂,然后添加680毫升的去离子水作为球磨介质,在改进型高效球磨机中进行24小时的湿法粉碎,粉碎后的料浆颗粒的平均粒度为0.64μm。
(4)湿法粉碎之后,对成型用料浆进行含水量调整,料浆的固含量调整为65%,然后成型,在压制的同时,在压制方向施加12000Oe的成型磁场。所得成型体是直径为43.2mm、高度为13mm的圆柱体,成型压力为10MPa。
(5)在200℃的温度对成型体进行热处理2h,彻底去除有机分散剂,然后在空气中进行烧结,升温速度是150℃/小时,在1150℃保温3小时,获得永磁材料。
本实施例得到的永磁材料的成分见表3,各配方的性能测试结果见表4。
实施例5
本实施例按照如下方法制备永磁材料:
(1)采用实施例1的原料和配比,在湿法球磨机中进行混合球磨3h,混合后平均粒度为0.8μm。
(2)随后在烘箱中进行干燥,然后造球,在空气中1260℃预烧,保温0.5小时,获得颗粒状预烧料。
(3)接着,称取按上述方式产生的粗粉碎材料450克,添加0.8wt%的SiO 2、1.5wt%的CaCO 3,0.8wt%的Cr 2O 3,0.2wt%的Co 2O 3,再加1.2wt%的葡萄糖酸 钙做为分散剂,然后添加680毫升的去离子水作为球磨介质,在改进型高效球磨机中进行24小时的湿法粉碎,粉碎后的料浆颗粒的平均粒度为0.64μm。
(4)湿法粉碎之后,对成型用料浆进行含水量调整,料浆的固含量调整为80%,然后成型,在压制的同时,在压制方向施加14000Oe的成型磁场。所得成型体是直径为43.2mm、高度为13mm的圆柱体,成型压力为10MPa。
(5)在400℃的温度对成型体进行热处理0.5h,彻底去除有机分散剂,然后在空气中进行烧结,升温速度是150℃/小时,在1250℃保温0.5小时,获得永磁材料。
本实施例得到的永磁材料的成分见表3,各配方的性能测试结果见表4。
实施例6
本实施例与实施例1的区别在于,本实施例步骤(2)的预烧温度为1230℃,预烧时间为1.5h,步骤(5)的烧结温度为1200℃,烧结时间为2h。
本实施例得到的永磁材料的成分见表3,各配方的性能测试结果见表4。
实施例7
本实施例与实施例1的区别在于,本实施例步骤(2)的预烧温度为1260℃,预烧时间为2h,步骤(5)的烧结温度为1180℃,烧结时间为1h。
本实施例得到的永磁材料的成分见表3,各配方的性能测试结果见表4。
对比例1
本对比例采用实施例1的方法制备永磁材料,区别在于,调整步骤(1)的配料配比,以适应各组配方的永磁材料产品组成需要。
本对比例中各配方的永磁材料的成分见表3,各配方的性能测试结果见表4。
表3各实施例和对比例的永磁材料磁体主要成分
质量分数/wt% Fe 2O 3 SrO CaO BaO La 2O 3 Co 2O 3 Al 2O 3 Cr 2O 3 MnO SiO 2
实施例1 85.2 1.1 2.1 0.05 7.45 3.10 0 0.30 0.20 0.45
实施例2-1 82.4 4.3 2.1 0.25 6.5 2.8 0.5 0.4 0.2 0.5
实施例2-2 83.3 3.3 2.2 0.4 5.95 3.0 0.7 0.3 0.25 0.55
实施例2-3 83.7 2.9 1.7 0.05 7.0 2.3 0.95 0.65 0.20 0.50
实施例2-4 84.9 0.5 2.1 0.3 7.8 1.85 1.0 0.80 0.1 0.50
实施例3-1 81 5.0 3.0 0 10.0 1.0 0 0 0 0
实施例3-2 87 0.5 3.0 0 8.5 1.0 0 0 0 0
实施例3-3 81 4.5 0.5 0.5 6.0 4.0 1.5 1.5 0 0.80
实施例3-4 81 4.2 3.0 0 5.0 2.6 2.0 1.0 0.4 0.40
实施例3-5 82.2 4.4 2.0 0.1 8.5 1.5 0.5 0.3 0.1 0.02
实施例4 85.3 1.05 2.0 0.05 7.50 3.25 0.05 0.35 0.20 0.20
实施例5 85.0 1.0 2.4 0.05 7.3 2.85 0 0.6 0.15 0.6
实施例6 85.25 1.15 2.0 0.05 7.5 3.10 0 0.30 0.20 0.40
实施例7 85.2 1.1 2.05 0.05 7.55 3.15 0 0.30 0.20 0.45
对比例1-1 77 7.0 4.0 0 11.0 1.0 0 0 0 0
对比例1-2 81 5.3 3.3 0 10.4 0 0 0 0 0
对比例1-3 86 0 3.0 0 10.0 1.0 0 0 0 0
对比例1-4 84 5.0 0 0 10.0 1.0 0 0 0 0
对比例1-5 91 5.0 3.0 0 0 1.0 0 0 0 0
表1、表2以及表3中,SrO、CaO、BaO和La 2O 3中的金属元素为A位元素,Fe 2O 3、Co 2O 3、Al 2O 3、Cr 2O 3和MnO中的金属元素为B位元素。表1、表2以及表3中的质量分数计算均以A的氧化物和B的氧化物的总质量为100%计,该100%并没有将SiO 2计算在内。有些实施例的产品因为含有少量杂质,使得表3中列出的成分质量分数总和略低于100%。
性能测试方法
对各实施例和对比例得到的永磁材料产品的上下表面研磨之后进行测试。采用长沙天恒测控技术有限公司生产的TD8310永磁材料测试系统在室温条件下测试剩余磁感应强度(Br)、矫顽力(Hcb)、内禀矫顽力(Hcj)和最大磁能积(BH)max,测试结果见下表。
表4各实施例和对比例的永磁材料磁体性能测试结果
编号 Br(Gs) HcB(Oe) HcJ(Oe) (BH)max(MGOe)
实施例1 4527 4117 5939 5.05
实施例2-1 4470 4052 5968 4.98
实施例2-2 4490 4152 6154 5.01
实施例2-3 4510 3998 5854 5.06
实施例2-4 4530 4095 5924 5.12
实施例3-1 4480 3950 5845 4.92
实施例3-2 4470 3985 5832 4.93
实施例3-3 4490 3996 5964 5.01
实施例3-4 4510 4058 5823 5.02
实施例3-5 4540 4120 5941 5.15
实施例4 4450 4152 5847 5.0
实施例5 4450 4057 5974 4.96
实施例6 4460 3987 5912 4.95
实施例7 4520 4085 6047 5.08
对比例1-1 4351 3014 3541 4.51
对比例1-2 4214 3258 3647 4.35
对比例1-3 4284 3587 3987 4.42
对比例1-4 4187 3789 4157 4.34
对比例1-5 4472 3478 3987 4.78
综合表3和表4可知,本申请实施例1-6提供的永磁产品精确确定各组分配比,严格工艺控制,可以达到同时具备较高的剩余磁感应强度Br和超高的内禀矫顽力Hcj的效果。
对比例1-1的产品中,A的氧化物含量过低,导致最终磁体剩磁Br和内禀矫顽力Hcj及综合磁性能严重下降。
对比例1-2的产品中,A不包括钴,导致最终磁体剩磁Br和内禀矫顽力Hcj及综合磁性能严重下降。
对比例1-3的产品中,B不包括锶,导致最终磁体剩磁Br和内禀矫顽力Hcj及综合磁性能严重下降。
对比例1-4的产品中,B不包括钙,导致最终磁体剩磁Br和内禀矫顽力 Hcj及综合磁性能严重下降。
对比例1-5的产品中,B不包括镧,导致最终磁体剩磁Br和内禀矫顽力Hcj及综合磁性能严重下降。
申请人声明,本申请通过上述实施例来说明本申请的详细方法,但本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述详细方法才能实施。

Claims (12)

  1. 一种永磁材料,其中,所述永磁材料包括AB 12O 19,其中A包括Sr、Ca和La,B包括Fe和Co,以A的氧化物和B的氧化物的总质量为100%计,A的氧化物的质量分数为12-18wt%,B的氧化物的质量分数为82-88wt%。
  2. 根据权利要求1所述的永磁材料,其中,所述永磁材料中,以A的氧化物和B的氧化物的总质量为100%计,SrO的质量分数为0.5-5.0wt%,La 2O 3的质量分数为5.0-10.0wt%,CaO的质量分数为0.5-3.0wt%;且Fe 2O 3的质量分数为81-87wt%,Co 2O 3的质量分数为1-4.0wt%。
  3. 根据权利要求1或2所述的永磁材料,其中,A还包括Ba和/或除La之外的其他La系稀土元素;
    可选地,当A中包括Ba时,所述Ba的质量分数以BaO计,以A的氧化物和B的氧化物的总质量为100%计,BaO的质量分数为0.1-0.5wt%,且La 2O 3的质量分数为6.0-8.5wt%。
  4. 根据权利要求1-3中任一项所述的永磁材料,其中,B还包括除铁和钴之外的其他第四周期过渡元素,可选为Al、Cr或Mn中的任意一种或至少两种的组合;
    可选地,当B中包括Al时,所述Al的质量分数以Al 2O 3计,以A的氧化物和B的氧化物的总质量为100%计,Al 2O 3的质量分数为0.5-2.0wt%,且Co 2O 3的质量分数为1.5-3.0wt%;
    可选地,当B中包括Cr时,所述Cr的质量分数以Cr 2O 3计,以A的氧化物和B的氧化物的总质量为100%计,Cr 2O 3的质量分数为0.3-1.5wt%,且Co 2O 3的质量分数为1.5-3.0wt%;
    可选地,当B中包括Mn时,所述Mn的质量分数以MnO计,以A的氧 化物和B的氧化物的总质量为100%计,MnO的质量分数为0.1-0.4wt%,且Co 2O 3的质量分数为1.5-3.0wt%;
    可选地,所述永磁材料还包括Si,所述Si的质量分数以SiO 2计,以所述A的氧化物和B的氧化物的总质量为100%计,所述SiO 2的质量分数为0.02-0.8wt%。
  5. 一种如权利要求1-4任一项所述的永磁材料的制备方法,其中,所述方法包括以下步骤:
    (1)将第一原料混合物破碎,得到一次破碎料;所述第一原料混合物包括铁源、锶源、钙源、镧源和钴源;
    (2)对步骤(1)所述一次破碎料进行预烧,得到预烧料;
    (3)将步骤(2)所述预烧料与第二原料混合物混合,进行破碎,得到二次破碎料;所述第二原料混合物包括钙源;
    (4)对步骤(3)所述二次破碎料进行磁场成型,得到成型体;
    (5)对步骤(4)所述成型体进行预热和烧结,得到所述永磁材料。
  6. 根据权利要求5所述的方法,其中,步骤(1)所述一次破碎料的固体平均粒度在0.8μm以下;
    可选地,步骤(1)所述破碎的方法为湿式混合破碎,可选为湿法球磨;
    可选地,步骤(1)所述破碎的时间为3-5h。
  7. 根据权利要求5或6所述的方法,其中,步骤(1)所述第一原料混合物中,各元素源的平均粒度均<2μm。
  8. 根据权利要求5-7中任一项所述的方法,其中,步骤(2)所述预烧在空气气氛下进行;
    可选地,步骤(2)所述预烧的温度为1150~1260℃,可选为1230-1260℃;
    可选地,步骤(2)所述预烧的时间为0.5-3h,可选为1-2h。
  9. 根据权利要求5-8中任一项所述的方法,其中,步骤(3)所述破碎的方法为湿式混合破碎,可选为湿法球磨;
    可选地,步骤(3)所述第二原料混合物除钙源外,还包括硅源、铬源、铝源、硼源、锶源或钴源中的任意一种或至少两种的组合;
    可选地,步骤(3)所述第二原料混合物为钙源、硅源和钴源的混合物;
    可选地,步骤(3)以所述预烧料的质量为100%计,所述第二原料混合物中的钙源的质量分数为0.4-1.5wt%;
    可选地,步骤(3)所述第二原料混合物中包含硅源时,以所述预烧料的质量为100%计,硅源的质量分数为0.2-0.8wt%;
    可选地,步骤(3)所述第二原料混合物中包含铬源时,以所述预烧料的质量为100%计,铬源的质量分数为0-0.8wt%且不包括0;
    可选地,步骤(3)所述第二原料混合物中包含钴源时,以所述预烧料的质量为100%计,钴源的质量分数为0-0.8wt%且不包括0;
    可选地,步骤(3)所述第二原料混合物中包含铝源时,以所述预烧料的质量为100%计,铝源的质量分数为0-0.8wt%且不包括0;
    可选地,步骤(3)所述第二原料混合物中包含硼源时,以所述预烧料的质量为100%计,硼源的质量分数为0-0.8wt%且不包括0;
    可选地,步骤(3)所述第二原料混合物中包含锶源时,以所述预烧料的质量为100%计,锶源的质量分数为0.1-1.0wt%;
    可选地,步骤(3)还包括:进行破碎前,加入分散剂;
    可选地,所述分散剂包括葡萄糖酸钙、聚乙烯醇或山梨糖醇中的任意一种或至少两种的组合;
    可选地,所述分散剂的加入量为预烧料质量的0.2-1.2wt%;
    可选地,步骤(3)所述二次破碎料的固体平均粒度在0.65μm以下。
  10. 根据权利要求5-9中任一项所述的方法,其中,步骤(4)在进行磁场成型前,先调整步骤(3)所述二次破碎料的固含量为65-80wt%;
    可选地,步骤(4)所述磁场成型的磁场强度在12000Gs以上。
  11. 根据权利要求5-10中任一项所述的方法,其中,步骤(5)所述预热的温度为200-400℃;
    可选地,步骤(5)所述预热的时间为0.5-2h;
    可选地,步骤(5)所述烧结的温度为1150-1250℃,可选为1180-1220℃;
    可选地,步骤(5)所述烧结的时间为0.5-3h,可选为0.5-2h;
    可选地,步骤(5)所述烧结在富氧气氛下进行,可选为在空气气氛下进行。
  12. 根据权利要求5-11中任一项所述的方法,其中,所述方法包括以下步骤:
    (1)对第一原料混合物进行湿法球磨3-5h,得到一次破碎料;所述第一原料混合物包括铁源、锶源、钙源、镧源和钴源;所述第一原料混合物中,各元素源的平均粒度均<2μm;所述一次破碎料的固体平均粒度在0.8μm以下;
    (2)在空气气氛下,对步骤(1)所述一次破碎料在1230-1260℃下预烧1-2h,得到预烧料;
    (3)将步骤(2)所述预烧料与第二原料混合物以及分散剂混合,进行湿法球磨,得到二次破碎料;步骤(3)所述第二原料混合物为钙源、硅源、铬源 和钴源的混合物;以所述预烧料的质量为100%计,第二原料混合物中钙源的质量分数为0.4-1.5wt%,硅源的质量分数为0.2-0.8wt%,钴源的质量分数为0-0.8wt%且不包括0;所述二次破碎料的固体平均粒度在0.65μm以下;所述分散剂的加入量为预烧料质量的0.2-1.2wt%;
    (4)调整步骤(3)所述二次破碎料的固含量为65-80wt%,在12000Gs以上的磁场强度下进行磁场成型,得到成型体;
    (5)对步骤(4)所述成型体在200-400℃下进行预热0.5-2h,之后在空气气氛下以1180-1220℃的温度烧结0.5-2h,得到所述永磁材料。
PCT/CN2020/091462 2019-09-25 2020-05-21 一种永磁材料及其制备方法 WO2021057051A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20869092.5A EP4036071A4 (en) 2019-09-25 2020-05-21 PERMANENT MAGNET MATERIAL AND PREPARATION METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910910793.3A CN110467452A (zh) 2019-09-25 2019-09-25 一种永磁材料及其制备方法
CN201910910793.3 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021057051A1 true WO2021057051A1 (zh) 2021-04-01

Family

ID=68516828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091462 WO2021057051A1 (zh) 2019-09-25 2020-05-21 一种永磁材料及其制备方法

Country Status (3)

Country Link
EP (1) EP4036071A4 (zh)
CN (1) CN110467452A (zh)
WO (1) WO2021057051A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896522A (zh) * 2021-11-12 2022-01-07 深圳信义磁性材料有限公司 一种永磁铁氧体及其制备方法
CN113929445A (zh) * 2021-09-24 2022-01-14 横店集团东磁股份有限公司 一种永磁铁氧体预烧料的制备方法
CN115340373A (zh) * 2022-07-15 2022-11-15 电子科技大学 基于低纯度铁精矿原料体系的六角铁氧体材料制备方法
CN116102344A (zh) * 2023-02-10 2023-05-12 安徽万磁电子股份有限公司 一种高密度永磁铁氧体磁体及其生产工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467452A (zh) * 2019-09-25 2019-11-19 横店集团东磁股份有限公司 一种永磁材料及其制备方法
CN111362687A (zh) * 2019-12-17 2020-07-03 横店集团东磁股份有限公司 一种永磁铁氧体及其制备方法
CN111620684A (zh) * 2020-05-22 2020-09-04 浙江凯文磁钢有限公司 一种镧钠永磁铁氧体及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552069A (zh) * 2009-01-08 2009-10-07 横店集团东磁股份有限公司 磁铅石永磁铁氧体及其制造方法
CN101880155A (zh) 2010-06-04 2010-11-10 安吉县科声磁性器材有限公司 一种铁氧体永磁材料的制作方法
CN102815934A (zh) 2012-08-13 2012-12-12 镇江金港磁性元件有限公司(中外合资) 高性能钙镧铁氧体永磁材料及其制备方法
CN104692785A (zh) * 2015-03-18 2015-06-10 马鞍山市鑫洋永磁有限责任公司 一种高性能锶钙永磁铁氧体磁铁及其制备方法
CN106882962A (zh) 2017-03-08 2017-06-23 安徽省东方磁磁铁制造有限公司 一种高磁能m型钡铁氧体永磁材料及其制备方法
CN110467452A (zh) * 2019-09-25 2019-11-19 横店集团东磁股份有限公司 一种永磁材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279295A (en) * 1975-12-25 1977-07-04 Toranosuke Kawaguchi Oxide permanent magnet material
US6139766A (en) * 1997-02-25 2000-10-31 Tdk Corporation Oxide magnetic material, ferrite particle, sintered magnet, bonded magnet, magnetic recording medium and motor
CN101599332B (zh) * 2009-04-22 2011-08-31 上海应用技术学院 制备稀土永磁铁氧体磁性材料的方法
WO2011004791A1 (ja) * 2009-07-08 2011-01-13 Tdk株式会社 フェライト磁性材料
CN101844914B (zh) * 2010-05-11 2013-02-13 武汉吉磁电子科技有限责任公司 一种磁铅石型永磁铁氧体及其制造方法
CN102050619B (zh) * 2010-08-02 2013-01-02 横店集团东磁股份有限公司 一种永磁铁氧体材料的制备方法
CN104496443A (zh) * 2014-01-22 2015-04-08 安徽大学 一种高磁能积m型钙系永磁铁氧体材料及其制备方法
CN104496444B (zh) * 2014-09-15 2018-06-05 横店集团东磁股份有限公司 一种低成本烧结永磁铁氧体材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552069A (zh) * 2009-01-08 2009-10-07 横店集团东磁股份有限公司 磁铅石永磁铁氧体及其制造方法
CN101880155A (zh) 2010-06-04 2010-11-10 安吉县科声磁性器材有限公司 一种铁氧体永磁材料的制作方法
CN102815934A (zh) 2012-08-13 2012-12-12 镇江金港磁性元件有限公司(中外合资) 高性能钙镧铁氧体永磁材料及其制备方法
CN104692785A (zh) * 2015-03-18 2015-06-10 马鞍山市鑫洋永磁有限责任公司 一种高性能锶钙永磁铁氧体磁铁及其制备方法
CN106882962A (zh) 2017-03-08 2017-06-23 安徽省东方磁磁铁制造有限公司 一种高磁能m型钡铁氧体永磁材料及其制备方法
CN110467452A (zh) * 2019-09-25 2019-11-19 横店集团东磁股份有限公司 一种永磁材料及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929445A (zh) * 2021-09-24 2022-01-14 横店集团东磁股份有限公司 一种永磁铁氧体预烧料的制备方法
CN113929445B (zh) * 2021-09-24 2023-07-21 横店集团东磁股份有限公司 一种永磁铁氧体预烧料的制备方法
CN113896522A (zh) * 2021-11-12 2022-01-07 深圳信义磁性材料有限公司 一种永磁铁氧体及其制备方法
CN115340373A (zh) * 2022-07-15 2022-11-15 电子科技大学 基于低纯度铁精矿原料体系的六角铁氧体材料制备方法
CN116102344A (zh) * 2023-02-10 2023-05-12 安徽万磁电子股份有限公司 一种高密度永磁铁氧体磁体及其生产工艺
CN116102344B (zh) * 2023-02-10 2024-04-16 安徽万磁电子股份有限公司 一种高密度永磁铁氧体磁体及其生产工艺

Also Published As

Publication number Publication date
CN110467452A (zh) 2019-11-19
EP4036071A4 (en) 2023-10-18
EP4036071A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2021057051A1 (zh) 一种永磁材料及其制备方法
CN112679207B (zh) 一种永磁铁氧体材料及其制备方法
CN104230323B (zh) M型钙镧钴永磁铁氧体及其制备方法
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
EP3473606B1 (en) Ferrite sintered magnet
CN103058641B (zh) 一种制备非稀土高磁性永磁铁氧体材料的方法
CN101552069A (zh) 磁铅石永磁铁氧体及其制造方法
CN104230326B (zh) M型钙永磁铁氧体的制备方法
CN102964120A (zh) 一种烧结永磁铁氧体及其制备方法
CN102942357A (zh) 一种高性能烧结永磁铁氧体磁铁的制备方法
CN103548101B (zh) 磁铅石型铁氧体磁性材料以及由其得到的分段式永磁体
CN102050619A (zh) 一种永磁铁氧体材料的制备方法
CN106365626B (zh) 一种干压异性铁氧体的制造方法
CN109354488A (zh) 一种低成本永磁铁氧体材料及其制备方法
CN102701721A (zh) 一种低成本烧结钙永磁铁氧体及其制备方法
CN104496444B (zh) 一种低成本烧结永磁铁氧体材料及其制备方法
CN102992744A (zh) 注射成型粘结磁体用m型锶铁氧体粉末及其制造方法
CN104230322A (zh) M型钙永磁铁氧体及其制备方法
CN104230321A (zh) M型钙永磁铁氧体及其制备方法
CN111362686A (zh) 一种六角磁铅石永磁铁氧体材料及其制备方法
CN109836147A (zh) 一种永磁铁氧体及其制备方法
CN111423226B (zh) 一种永磁铁氧体及其制备方法和应用
CN102167576A (zh) 一种高性能永磁铁氧体磁粉及其制备方法
CN102731080A (zh) 一种制备铁氧体磁性材料用的粉料加工方法
CN111196720A (zh) 一种改进的磁环用高性能锶铁氧体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020869092

Country of ref document: EP

Effective date: 20220425