WO2021053756A1 - 半導体装置の製造方法、基板処理装置およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置およびプログラム Download PDF

Info

Publication number
WO2021053756A1
WO2021053756A1 PCT/JP2019/036572 JP2019036572W WO2021053756A1 WO 2021053756 A1 WO2021053756 A1 WO 2021053756A1 JP 2019036572 W JP2019036572 W JP 2019036572W WO 2021053756 A1 WO2021053756 A1 WO 2021053756A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
raw material
material gas
substrate
semiconductor device
Prior art date
Application number
PCT/JP2019/036572
Other languages
English (en)
French (fr)
Inventor
良太 片岡
宏朗 平松
清久 石橋
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020207026142A priority Critical patent/KR102473548B1/ko
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to CN201980019742.XA priority patent/CN112823410B/zh
Priority to PCT/JP2019/036572 priority patent/WO2021053756A1/ja
Priority to KR1020227041917A priority patent/KR102671300B1/ko
Priority to JP2020533172A priority patent/JP7035196B2/ja
Priority to SG11202008980YA priority patent/SG11202008980YA/en
Priority to TW111118798A priority patent/TW202234516A/zh
Priority to TW109120217A priority patent/TWI768375B/zh
Priority to US17/021,738 priority patent/US11476113B2/en
Publication of WO2021053756A1 publication Critical patent/WO2021053756A1/ja
Priority to JP2021159609A priority patent/JP7214812B2/ja
Priority to US17/881,772 priority patent/US20220375745A1/en
Priority to JP2023005582A priority patent/JP7371281B2/ja
Priority to JP2023179365A priority patent/JP2023181258A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour

Definitions

  • This disclosure relates to a semiconductor device manufacturing method, a substrate processing device, and a program.
  • a process of forming a film on a substrate may be performed (see, for example, Patent Documents 1 and 2).
  • An object of the present disclosure is to provide a technique capable of improving the characteristics of a film formed on a substrate.
  • a step of supplying a first raw material gas containing a first element to a substrate in a processing chamber and
  • (A) is a partially enlarged view of the surface of the substrate after the first raw material gas is supplied by performing step a
  • (b) is a second step b after performing step a. 2
  • (c) is the portion of the surface of the substrate after the reaction gas is supplied by performing step c after performing step b.
  • the processing furnace 202 has a heater 207 as a heating mechanism (temperature adjusting unit).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation portion) for activating (exciting) the gas with heat.
  • a reaction tube 203 is arranged concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • a processing chamber 201 is formed in the hollow portion of the reaction tube 203.
  • the processing chamber 201 is configured to accommodate the wafer 200 as a substrate.
  • the wafer 200 is processed in the processing chamber 201.
  • Nozzles 249a and 249b are provided in the processing chamber 201 so as to penetrate the lower side wall of the reaction tube 203.
  • Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively.
  • the gas supply pipes 232a and 232b are provided with mass flow controllers (MFCs) 241a and 241b which are flow rate controllers (flow control units) and valves 243a and 243b which are on-off valves, respectively, in order from the upstream side of the gas flow. ..
  • MFCs mass flow controllers
  • a gas supply pipe 232c is connected to the downstream side of the gas supply pipe 232a with respect to the valve 243a.
  • the gas supply pipe 232c is provided with an MFC 241c and a valve 243c in this order from the upstream side of the gas flow.
  • Gas supply pipes 232e and 232d are connected to the downstream side of the valves 243a and 243b of the gas supply pipes 232a and 232b, respectively.
  • the gas supply pipes 232e and 232d are provided with MFC 241e and 241d and valves 243e and 243d, respectively, in this order from the upstream side of the gas flow.
  • the nozzles 249a and 249b are arranged in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper part of the inner wall of the reaction tube 203 from the lower part of the wafer 200. Each is provided so as to stand upward in the arrangement direction. That is, the nozzles 249a and 249b are provided along the wafer arrangement region in the region horizontally surrounding the wafer arrangement region on the side of the wafer arrangement region in which the wafer 200 is arranged. Gas supply holes 250a and 250b for supplying gas are provided on the side surfaces of the nozzles 249a and 249b, respectively.
  • the gas supply holes 250a and 250b are opened so as to face the center of the reaction tube 203, respectively, so that gas can be supplied toward the wafer 200.
  • a plurality of gas supply holes 250a and 250b are provided from the lower part to the upper part of the reaction tube 203.
  • the first raw material gas containing the first element for example, a halosilane gas containing silicon (Si) as the first element and a halogen element is passed through the MFC 241a, the valve 243a, and the nozzle 249a. It is supplied into the processing chamber 201.
  • the raw material gas is a raw material in a gaseous state, for example, a gas obtained by vaporizing a raw material in a liquid state under normal temperature and pressure, a raw material in a gaseous state under normal temperature and pressure, and the like.
  • Halosilane is a silane having a halogen group.
  • the halogen group includes a chloro group, a fluoro group, a bromo group, an iodine group and the like. That is, the halogen group contains halogen elements such as chlorine (Cl), fluorine (F), bromine (Br) and iodine (I).
  • halogen elements such as chlorine (Cl), fluorine (F), bromine (Br) and iodine (I).
  • the halosilane-based gas for example, a raw material gas containing Si and Cl, that is, a chlorosilane-based gas can be used.
  • a chlorosilane-based gas in which the number of Si atoms contained in one molecule is one, for example, a tetrachlorosilane (SiCl 4 ) gas can be used.
  • the SiCl 4 gas acts as a Si source in the film forming process described later.
  • the temperature at which the first raw material gas thermally decomposes may be referred to as the first temperature.
  • First temperature using a SiCl 4 gas as the first source gas is a predetermined temperature within the range of more than 800 ° C..
  • a halosilane gas containing Si as the first element and a halogen element is MFC241c.
  • a halosilane gas containing Si as the first element and a halogen element is MFC241c.
  • a chlorosilane-based gas having two or more Si atoms contained in one molecule and having a Si—Si bond for example, hexachlorodisilane (Si 2 Cl 6 , abbreviated as HCDS) gas is used.
  • HCDS hexachlorodisilane
  • the Si 2 Cl 6 gas acts as a Si source in the film forming process described later.
  • the temperature at which the second raw material gas thermally decomposes may be referred to as the second temperature.
  • the second temperature when Si 2 Cl 6 gas is used as the second raw material gas is a predetermined temperature within the range of 500 ° C. or higher.
  • a reaction gas containing a second element different from the first element for example, a nitride gas containing nitrogen (N) as the second element is processed via the MFC 241b, the valve 243b, and the nozzle 249b. It is supplied into the room 201.
  • a nitride gas containing nitrogen (N) as the second element is processed via the MFC 241b, the valve 243b, and the nozzle 249b. It is supplied into the room 201.
  • the nitriding gas for example, ammonia (NH 3 ) gas can be used.
  • the NH 3 gas acts as an N source in the film forming process described later.
  • nitrogen (N 2 ) gas as an inert gas is introduced into the processing chamber 201 via the MFC 241d, 241e, valves 243d, 243e, gas supply pipes 232a, 232b, nozzles 249a, 249b, respectively. Is supplied to.
  • the N 2 gas acts as a purge gas, a carrier gas, a diluting gas, and the like.
  • the first raw material gas supply system is mainly composed of the gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • the second raw material gas supply system is mainly composed of the gas supply pipe 232c, the MFC 241c, and the valve 243c.
  • the reaction gas supply system is mainly composed of the gas supply pipe 232b, the MFC 241b, and the valve 243b.
  • the gas supply pipes 232d, 232e, MFC241d, 241e, and valves 243d, 243e constitute an inert gas supply system.
  • any or all of the supply systems may be configured as an integrated supply system 248 in which valves 243a to 243e, MFC 241a to 241e, and the like are integrated.
  • the integrated supply system 248 is connected to each of the gas supply pipes 232a to 232e, and supplies various gases into the gas supply pipes 232a to 232e, that is, the opening / closing operation of the valves 243a to 243e and the MFC 241a to 241e.
  • the flow rate adjustment operation and the like are configured to be controlled by the controller 121 described later.
  • the integrated supply system 248 is configured as an integrated or divided integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232e in units of the integrated unit. It is configured so that maintenance, replacement, expansion, etc. can be performed on an integrated unit basis.
  • An exhaust pipe 231 that exhausts the atmosphere in the processing chamber 201 is connected below the side wall of the reaction pipe 203.
  • the exhaust pipe 231 is provided via a pressure sensor 245 as a pressure detector (pressure detector) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure regulator).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, with the vacuum pump 246 operating, the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop. By adjusting the valve opening degree based on the pressure information detected by the pressure sensor 245, the pressure in the processing chamber 201 can be adjusted.
  • the exhaust system is mainly composed of an exhaust pipe 231, a pressure sensor 245, and an APC valve 244.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the reaction tube 203.
  • the seal cap 219 is made of a metal material such as SUS and is formed in a disk shape.
  • An O-ring 220 as a sealing member that comes into contact with the lower end of the reaction tube 203 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 which will be described later, is installed below the seal cap 219.
  • the rotation shaft 255 of the rotation mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lifting mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transport device (convey mechanism) for loading and unloading (conveying) the wafer 200 into and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • the boat 217 as a substrate support supports a plurality of wafers, for example 25 to 200 wafers, in a horizontal position and vertically aligned with each other, that is, in a multi-stage manner. It is configured to be arranged at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in a horizontal posture in multiple stages.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203. By adjusting the degree of energization of the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which the procedure and conditions of the film forming process described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each procedure in the film forming process described later and obtain a predetermined result, and functions as a program.
  • process recipes, control programs, etc. are collectively referred to simply as programs.
  • a process recipe is also simply referred to as a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d is connected to the above-mentioned MFC 241a to 241e, valves 243a to 243e, pressure sensor 245, APC valve 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115 and the like. ..
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a adjusts the flow rate of various gases by the MFCs 241a to 241e, opens and closes the valves 243a to 243e, opens and closes the APC valve 244, and adjusts the pressure by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe.
  • the controller 121 can be configured by installing the above-mentioned program stored in the external storage device 123 on the computer.
  • the external storage device 123 includes, for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as MO, a semiconductor memory such as a USB memory, and the like.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium may include only the storage device 121c alone, it may include only the external storage device 123 alone, or it may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • FIG. 4 shows an example of a substrate processing sequence for forming a film on a wafer 200 as a substrate, that is, an example of a film forming sequence, as one step of a manufacturing process of a semiconductor device using the above-mentioned substrate processing apparatus.
  • FIG. 5 and FIG. 7 will be described. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
  • step a supplying SiCl 4 gas as the first source gas to the wafer 200 in the process chamber 201
  • step b of supplying Si 2 Cl 6 gas as the second raw material gas to the wafer 200
  • step c which supplies NH 3 gas as a reaction gas to the wafer 200
  • SiN film is formed on the wafer 200 as a film containing Si and N by performing the cycle of performing the above steps in this order a predetermined number of times (n times, n is an integer of 1 or more).
  • steps a, b, and c are represented as a, b, and c, respectively.
  • FIGS. 4 and 5 the film formation sequence shown in FIGS. 4 and 5 may be shown as follows for convenience. The same notation is used in the following description of other aspects and the like.
  • wafer When the word “wafer” is used in the present specification, it may mean the wafer itself or a laminate of a wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in the present specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • a predetermined layer when it is described that "a predetermined layer is formed on a wafer”, it means that a predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer or the like. It may mean forming a predetermined layer on top of it.
  • board in the present specification is also synonymous with the use of the term "wafer”.
  • a plurality of wafers 200 are loaded (wafer charged) into the boat 217. After that, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and carried into the processing chamber 201 (boat load). In this state, the seal cap 219 is in a state of sealing the lower end of the reaction tube 203 via the O-ring 220.
  • Vacuum exhaust (vacuum exhaust) is performed by the vacuum pump 246 so that the inside of the processing chamber 201, that is, the space where the wafer 200 exists, has a desired processing pressure (vacuum degree).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired processing temperature (deposition temperature).
  • the state of energization of the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • the rotation mechanism 267 starts the rotation of the wafer 200.
  • the operation of the vacuum pump 246, the heating and rotation of the wafer 200 are all continued until at least the processing of the wafer 200 is completed.
  • Step a In this step, supplying the SiCl 4 gas to the wafer 200 in the process chamber 201. Specifically, by opening the valve 243a, flow SiCl 4 gas to the gas supply pipe 232a. The flow rate of the SiCl 4 gas is adjusted by the MFC 241a, is supplied into the processing chamber 201 via the nozzle 249a, and is exhausted from the exhaust pipe 231. At this time, SiCl 4 gas is supplied to the wafer 200. At the same time valve 243 d, open the 243 e, flowing N 2 gas gas supply pipe 232 d, into 232 e. The flow rate of the N 2 gas is adjusted by the MFC 241d and 241e. The flow-adjusted N 2 gas is supplied into the processing chamber 201 together with the SiC 4 gas, and is exhausted from the exhaust pipe 231.
  • the processing conditions in this step are SiCl 4 gas supply flow rate: 1 to 2000 sccm, preferably 100 to 1000 sccm N 2 gas supply flow rate (each gas supply pipe): 100 to 20000 sccm Each gas supply time: 10 to 300 seconds, preferably 30 to 120 seconds Processing temperature (temperature lower than the first temperature, preferably lower than the first temperature and higher than the second temperature): 400 to 800 ° C., Preferably 500 to 800 ° C, more preferably 600 to 750 ° C. Processing pressure: 1-2666 Pa, preferably 10-1333 Pa Is exemplified.
  • the notation of a numerical range such as "400 to 800 ° C.” in the present specification means that the lower limit value and the upper limit value are included in the range. Therefore, "400 to 800 ° C.” means “400 ° C. or higher and 800 ° C. or lower.” The same applies to other numerical ranges.
  • preflow supplied to the wafer 200 prior to the reaction gas such as NH 3 gas preflow supplied to the wafer 200 prior to the reaction gas such as NH 3 gas.
  • the reaction gas such as NH 3 gas.
  • an adsorption site by hydrogen (H) is formed on the surface of the wafer 200, and in this step and step b described later, a state in which Si atoms are easily adsorbed (that is, that is, It is in a state of high reactivity with Si atom).
  • the preflow procedure can be performed, for example, in the same manner as in step c described later.
  • SiCl bonds in SiCl 4 it is possible to cut a portion of SiCl bonds in SiCl 4, to adsorb the Si which has become to have a dangling bond in the adsorption sites on the surface of the wafer 200. Further, under the conditions described above, it is possible to keep the SiCl bond was not cleaved in the SiCl 4. For example, of the four bonds of Si constituting SiCl 4, Si having unbonded hands is applied to the adsorption site on the surface of the wafer 200 in a state where Cl is bonded to each of the three bonds. Can be adsorbed.
  • Si is formed on the wafer 200. It is possible to avoid multiple deposits.
  • Cl separated from Si constitutes a gaseous substance such as HCl or Cl 2 , and is exhausted from the exhaust pipe 231.
  • Adsorption reaction of Si proceeds and adsorption sites remaining on the surface of the wafer 200 is eliminated, the adsorption reaction is made to saturate, in this step, stopping the supply of the SiCl 4 gas before the adsorption reaction is saturated However, it is desirable to end this step with the adsorption sites remaining.
  • FIG. 7A shows a partially enlarged view of the surface of the wafer 200 on which the first layer is formed.
  • a layer having a thickness of less than one atomic layer means an atomic layer formed discontinuously, and a layer having a thickness of one atomic layer means an atomic layer formed continuously. It means that.
  • the fact that the layer having a thickness of less than one atomic layer is substantially uniform means that atoms are adsorbed on the surface of the wafer 200 at a substantially uniform density. Since the first layer is formed on the wafer 200 to have a substantially uniform thickness, it is excellent in step coverage characteristics and wafer in-plane film thickness uniformity.
  • the processing temperature is less than 400 ° C.
  • Si may be difficult to be adsorbed on the wafer 200, and it may be difficult to form the first layer.
  • the first layer can be formed on the wafer 200.
  • the treatment temperature is set to 500 ° C. or higher, the above-mentioned effect can be surely obtained.
  • the treatment temperature is set to 600 ° C. or higher, the above-mentioned effects can be obtained more reliably.
  • the valve 243a is closed to stop the supply of SiCl 4 gas into the processing chamber 201. Then, the inside of the processing chamber 201 is evacuated, and the gas or the like remaining in the processing chamber 201 is removed from the inside of the processing chamber 201. At this time, the valves 243d and 243e are left open to maintain the supply of the N 2 gas as the inert gas into the processing chamber 201.
  • the N 2 gas acts as a purge gas, whereby the effect of removing the gas or the like remaining in the processing chamber 201 from the processing chamber 201 can be enhanced.
  • the first raw material gas other SiCl 4 gas, dichlorosilane (SiH 2 Cl 2, abbreviation: DCS) gas, trichlorosilane (SiHCl 3, abbreviated: TCS) can be used halosilane material gas such as a gas.
  • DCS dichlorosilane
  • TCS trichlorosilane
  • the inert gas in addition to the N 2 gas, a rare gas such as Ar gas, He gas, Ne gas, and Xe gas can be used. This point is the same in steps b and c described later.
  • Step b Si 2 Cl 6 gas is supplied to the wafer 200 in the processing chamber 201, that is, the first layer formed on the wafer 200.
  • the valve 243c is opened to allow Si 2 Cl 6 gas to flow into the gas supply pipe 232a.
  • the flow rate of the Si 2 Cl 6 gas is controlled by the MFC 241c, is supplied into the processing chamber 201 via the nozzle 249a, and is exhausted from the exhaust pipe 231. At this time, Si 2 Cl 6 gas is supplied to the wafer 200.
  • the processing conditions for this step are Si 2 Cl 6 gas supply flow rate: 1 to 2000 sccm, preferably 100 to 1000 sccm Si 2 Cl 6 gas supply time: 0.5 to 60 seconds, preferably 1 to 30 seconds
  • Processing temperature temperature higher than the second temperature, preferably higher than the second temperature and lower than the first temperature: 500-1000 ° C, preferably 600-800 ° C, more preferably 650-750 ° C Is exemplified.
  • Other processing conditions are the same as the processing conditions in step a.
  • the Si having unbonded hands remained in the wafer in step a without the first layer being formed. It can be adsorbed on the surface of the wafer 200 by reacting with the adsorption sites on the surface of the 200.
  • the Si-containing layer as the second layer is formed with a substantially uniform thickness based on the first layer formed to have a substantially uniform thickness.
  • Sis having unbonded hands due to thermal decomposition of Si 2 Cl 6 are bonded to each other to form a Si—Si bond.
  • Si—Si bonds By reacting these Si—Si bonds with the adsorption sites and the like remaining on the surface of the wafer 200, it is possible to include the Si—Si bonds in the second layer and to form a layer in which Si is multiple-deposited. .. That is, by this step, the amount of Si—Si bond contained in the second layer (content ratio) is made larger than the amount of Si—Si bond contained in the first layer (content ratio).
  • Cl separated from Si constitutes a gaseous substance such as HCl or Cl 2 , and is exhausted from the exhaust pipe 231.
  • the thermal decomposition temperature of the second raw material gas Is preferably lower than the thermal decomposition temperature of the first raw material gas.
  • the second source gas is a gas that is more likely to form a Si—Si bond under the same conditions than the first source gas.
  • the molecule of the second raw material gas contains a Si—Si bond, and the composition ratio of Si to a halogen element such as Cl in the molecule of the second raw material gas is higher than that of the first raw material gas. Larger is preferable.
  • the processing conditions such as the processing temperature of each step are selected and the first step is performed so that the Si—Si bond that reacts with the adsorption sites remaining on the wafer surface is more likely to be formed than in step a.
  • One source gas and a second source gas are selected.
  • a Si-containing layer having a substantially uniform thickness exceeding the thickness of the first layer is formed as the second layer.
  • a Si-containing layer having a substantially uniform thickness exceeding one atomic layer is formed as the second layer.
  • FIG. 7B shows a partially enlarged view of the surface of the wafer 200 on which the second layer is formed.
  • the second layer means a Si-containing layer on the wafer 200 formed by performing steps a and b once.
  • the treatment temperature is less than 500 ° C., the Si 2 Cl 6 gas is less likely to be thermally decomposed, and the formation of the second layer may be difficult.
  • the second layer can be formed on the first layer.
  • the treatment temperature is set to 600 ° C. or higher, the above-mentioned effect can be surely obtained.
  • the treatment temperature is 650 ° C. or higher, the above-mentioned effect can be obtained more reliably.
  • the thermal decomposition of Si 2 Cl 6 gas becomes excessive, and the deposition of non-self-saturating Si tends to proceed rapidly, so that it becomes difficult to form the second layer substantially uniformly.
  • the treatment temperature exceeds 1000 ° C.
  • the thermal decomposition of Si 2 Cl 6 gas becomes excessive, and the deposition of non-self-saturating Si tends to proceed rapidly, so that it becomes difficult to form the second layer substantially uniformly.
  • the treatment temperature By setting the treatment temperature to 1000 ° C. or lower , excessive thermal decomposition of Si 2 Cl 6 gas is suppressed, and by controlling the deposition of Si that does not self-saturate, it is possible to form the second layer substantially uniformly.
  • Become By setting the treatment temperature to 800 ° C. or lower, the above-mentioned effect can be surely obtained.
  • the treatment temperature By setting the treatment temperature to 750 ° C. or lower, the above-mentioned effect can be obtained more reliably.
  • the temperature conditions in steps a and b are substantially the same. As a result, it is not necessary to change the temperature of the wafer 200 between steps a and b, that is, to change the temperature in the processing chamber 201 (change the set temperature of the heater 207). The waiting time until the temperature is stabilized is not required, and the throughput of substrate processing can be improved. Therefore, in both steps a and b, the temperature of the wafer 200 is preferably set to a predetermined temperature in the range of, for example, 500 to 800 ° C., preferably 600 to 800 ° C., more preferably 650 to 750 ° C.
  • the thermal decomposition of the first raw material gas does not substantially occur (that is, is suppressed) in step a, and the second in step b.
  • the temperature conditions and the first and second source gases are selected so that thermal decomposition of the source gas occurs (ie, is promoted).
  • the valve 243c is closed to stop the supply of Si 2 Cl 6 gas into the processing chamber 201. Then, the gas or the like remaining in the processing chamber 201 is removed from the processing chamber 201 by the same treatment procedure and treatment conditions as in the step of removing the residual gas in step a described above.
  • silicon hydride-based raw material gas such as monosilane (SiH 4 , abbreviation: MS) gas, trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, Aminosilane-based raw material gas such as abbreviation: 3DMAS) gas and bisdiethylaminosilane (SiH 2 [N (C 2 H 5 ) 2 ] 2; abbreviation: BDEAS) gas can be used.
  • a non-halogen gas as the second raw material gas, it is possible to avoid mixing of halogen into the SiN film finally formed on the wafer 200.
  • Step c the process chamber wafer 200 in 201, i.e., supplying the NH 3 gas to the layer of the first layer formed on the wafer 200 and the second layer is formed by laminating. Specifically, by opening the valve 243b, supplying the NH 3 gas into the gas supply pipe 232b. The flow rate of the NH 3 gas is controlled by the MFC 241b, is supplied into the processing chamber 201 via the nozzle 249b, and is exhausted from the exhaust pipe 231. At this time, NH 3 gas is supplied to the wafer 200.
  • the processing conditions in this step are NH 3 gas supply flow rate: 100 to 10000 sccm, preferably 1000 to 5000 sccm NH 3 Gas supply time: 1 to 120 seconds, preferably 10 to 60 seconds Processing pressure: 1 to 4000 Pa, preferably 10 to 1000 Pa Is exemplified.
  • Other processing conditions are the same as the processing conditions in step a.
  • the temperature condition in step c is preferably the same as that in steps a and b from the viewpoint of improving the productivity of the film forming process, but may be different from these conditions.
  • the second layer can be nitrided.
  • Cl contained in the second layer constitutes a gaseous substance such as HCl and Cl 2 , and is exhausted from the exhaust pipe 231.
  • FIG. 7C shows a partially enlarged view of the surface of the wafer 200 on which the third layer is formed.
  • hydrogen nitride-based gas such as diimide (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas can be used in addition to NH 3 gas.
  • a SiN film having a predetermined composition ratio and a predetermined film thickness is formed on the wafer 200 by performing this cycle a predetermined number of times (n times, n is an integer of 1 or more). Can be done.
  • the above cycle is preferably repeated a plurality of times. That is, it is preferable that the thickness of the SiN layer formed per cycle is made smaller than the desired film thickness, and the above cycle is repeated a plurality of times until the desired film thickness is reached.
  • the gas is supplied from each of the gas supply pipes 232d and 232e into the N 2 gas treatment chamber 201 as an inert gas, and is exhausted from the exhaust pipe 231.
  • the inside of the treatment chamber 201 is purged, and the gas, reaction by-products, and the like remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (after-purge).
  • the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to the normal pressure (return to atmospheric pressure).
  • step a supplying SiCl 4 gas, from doing a step b for supplying Si 2 Cl 6 gas, both steps of, SiN is formed on the wafer 200 It is possible to achieve both the effect of improving the step coverage characteristics of the film and the uniformity of the film thickness in the wafer surface and the effect of increasing the film formation rate of this film.
  • the thickness of the wafer 200 is less than one atomic layer.
  • a Si-containing layer (first layer) having a substantially uniform thickness is formed. If it is assumed that the step a for supplying the SiCl 4 gas and the step c for supplying the NH 3 gas are performed in this order a predetermined number of times without performing the step b, the cycles are formed per cycle.
  • the thickness of the Si-containing layer is uniform over the wafer surface, it is possible to improve the step coverage characteristics of the SiN film finally formed on the wafer 200 and the uniformity of the film thickness inside the wafer surface. .. On the other hand, since the thickness of the Si-containing layer formed per cycle is thin, it may be difficult to increase the film formation rate of the SiN film formed on the wafer 200.
  • Si 2 Cl 6 gas which has a lower thermal decomposition temperature than SiC 4 gas and is easily thermally decomposed
  • the wafer 200 has a Si—Si bond.
  • a Si-containing layer (second layer) having a thickness exceeding the atomic layer will be formed.
  • the cycle of supplying Si 2 Cl 6 gas and the step c of supplying NH 3 gas in this order is performed a predetermined number of times without performing step a, it is formed per cycle. Since the thickness of the Si-containing layer to be formed is large, it is possible to improve the film formation rate of the SiN film finally formed on the wafer 200.
  • the step coverage characteristics of the SiN film formed on the wafer 200 and the uniformity of the film thickness in the wafer surface May be difficult to improve.
  • both steps a and b since both steps a and b are performed, it is possible to achieve both the effects obtained from each step. For example, by completing step a before the adsorption reaction of Si is saturated and shifting to step b having a relatively high film formation rate, the film formation rate is improved as compared with the case where only step a is executed for the same time. Can be made to. Further, by forming the first layer having relatively excellent thickness uniformity in step a and then forming the second layer based on the first layer in step b, as compared with the case where only step b is executed. Therefore, the step coverage characteristics of the SiN film formed on the wafer 200 and the uniformity of the film thickness in the wafer surface can be improved.
  • step a is performed before step b, and then step b is performed, so that the step coverage characteristics and the wafer surface of the SiN film finally formed on the wafer 200 are performed. It is possible to increase the film formation rate while sufficiently exhibiting the uniformity of the inner film thickness.
  • step b Si containing a Si—Si bond generated by thermal decomposition is formed on the surface of the wafer 200. Since it tends to be adsorbed irregularly, a layer that tends to have a non-uniform thickness may be formed in the wafer surface as a base of the Si-containing film to be formed in step a. Therefore, the technical significance of step a of forming a Si-containing layer having a substantially uniform thickness during the film forming process is likely to be lost.
  • step a is performed before step b, and then step b is performed, so that the thickness of the Si-containing film to be formed in step b is substantially uniform. It is possible to form a Si-containing layer. Therefore, the technical significance of step a of forming a Si-containing layer having a substantially uniform thickness in the middle of the film forming process can be fully exhibited.
  • the ratio of Si—Si bonding can be reduced to control the thickness of the second layer to be reduced.
  • the composition ratio of the SiN film finally formed on the wafer 200 can be controlled so that the composition ratio of Si becomes smaller. it can.
  • the thickness of the second layer is reduced in the range of the thickness exceeding one atomic layer.
  • the ratio of Si—Si bonds contained in the second layer can be increased, and the thickness of the second layer can be controlled in the direction of increasing the thickness.
  • the composition ratio of the SiN film finally formed on the wafer 200 can be controlled in the direction of increasing the composition ratio of Si. it can.
  • the thickness of the second layer is increased in the range of the thickness exceeding one atomic layer.
  • the composition ratio of Si can be controlled to be larger (that is, to be Si-rich) with respect to the composition ratio in the stoichiometric composition of the SiN film.
  • the above-mentioned B / A is, for example, adjusting the size of the ratio T B / T A of Si 2 Cl 6 gas supply time of T B per cycle for SiCl 4 feed time T A of the gas per cycle That is, it can be controlled by adjusting the supply time of SiCl 4 gas and Si 2 Cl 6 gas per cycle. Further, the above B / A can be controlled by adjusting the magnitude of the ratio F B / F A feed rate F B of Si 2 Cl 6 gas to the feed flow rate F A of SiCl 4 gas.
  • the Si in the SiN film finally formed on the wafer 200 is also formed.
  • the composition ratio which is the ratio of the content of N to the content of N, can be controlled.
  • the thickness of the second layer can be controlled to be reduced.
  • the composition ratio of the SiN film finally formed on the wafer 200 can be controlled so that the composition ratio of Si becomes smaller. it can.
  • the pressure P B by greater than the pressure P A in the processing chamber 201 at step a, can be controlled in a direction to increase the thickness of the second layer.
  • the composition ratio of the SiN film finally formed on the wafer 200 can be controlled in the direction of increasing the composition ratio of Si. it can.
  • the treatment temperature in step a is set lower than the thermal decomposition temperature (first temperature) of the SiCl 4 gas, and the treatment temperature in step b is set to the thermal decomposition temperature (second temperature) of the Si 2 Cl 6 gas. Since it is made higher than, the above-mentioned effect can be surely obtained.
  • step a since the lower temperature than the processing temperature first temperature, it is possible to suppress thermal decomposition of SiCl 4 gas, the step coverage of the SiN film that is finally formed on the wafer 200 It is possible to improve the characteristics and the uniformity of the film thickness inside the wafer surface. Further, it is possible to control the composition ratio of the SiN film in the direction of approaching Si 3 N 4.
  • step b since the processing temperature is set to a temperature higher than the second temperature , appropriate thermal decomposition of the Si 2 Cl 6 gas can be maintained, and a SiN film finally formed on the wafer 200 can be formed. It is possible to improve the membrane rate. Further, the composition ratio of the SiN film can be controlled in the direction of Si rich.
  • N is used as an example, although NH 3 gas as a reaction gas containing a second element is described as an example, the present disclosure is not limited thereto.
  • oxygen (O) is used as the second element
  • the reaction gas containing the second element in addition to O 2 gas, ozone (O 3 ) gas, water vapor (H 2 O gas), O 2 + H 2 gas, one Nitric oxide (NO) gas, nitrous oxide (N 2 O) gas, nitrogen dioxide (NO 2) may be used such as gas.
  • the reaction gas it may be used both of these O-containing gas and NH 3 gas as described above.
  • a silicon oxide film may be formed on the wafer 200 by the film forming sequence shown below.
  • a silicon oxynitride film (SiON film) may be formed on the wafer 200 by the film forming sequence shown below.
  • the processing procedure and processing conditions in each step of these film formation sequences can be, for example, the same processing procedures and processing conditions as those described above. In these cases as well, the same effects as those described above can be obtained.
  • step b is started in a state where the supply of SiC 4 gas is continued, and Si 2 Cl 6 gas is supplied, and so on.
  • step b is overlapped (see FIG. 6).
  • processing procedure and processing conditions at this time can be, for example, the same as the processing procedure and processing conditions of the above-described aspect.
  • Sample 1 was prepared by performing n cycles of step a and step c in this order without performing step b.
  • Samples 2 to 5 were prepared by performing n cycles of performing steps a to c in this order.
  • Sample 1-5 was a SiCl 4 gas supply time in step a and 60 seconds, respectively.
  • the supply time of Si 2 Cl 6 gas in step b was 1.5 seconds, 4.5 seconds, 9 seconds, and 18 seconds, respectively.
  • the other treatment conditions were common conditions within the treatment condition range in the above-described embodiment, including the number of cycles performed and the amount of gas supplied.
  • the in-wafer average film thickness of the SiN film in Samples 2 to 5 is thicker than the in-wafer average film thickness of the SiN film in Sample 1. That is, the case where both the SiC 4 gas and the Si 2 Cl 6 gas are supplied as the raw material gas is more than the case where only the SiCl 4 gas is supplied without supplying the Si 2 Cl 6 gas as the raw material gas. It can be seen that the amount of SiN film formed per cycle increases, that is, the film forming rate improves.
  • the average film thickness of the SiN film in the wafer plane in the samples 2 to 5 becomes thicker as the supply time of the Si 2 Cl 6 gas is lengthened.
  • the amount of the SiN film formed per cycle increases, that is, the film forming rate of the SiN film formed on the wafer 200 is improved. Understand.
  • the refractive index of the SiN film in Samples 2 to 5 is larger than the refractive index of the SiN film in Sample 1. That is, the case where both the SiC 4 gas and the Si 2 Cl 6 gas are supplied as the raw material gas is more than the case where only the SiCl 4 gas is supplied without supplying the Si 2 Cl 6 gas as the raw material gas. It can be seen that the refractive index of the SiN film increases.
  • the refractive index of Si with respect to a wavelength of 633nm light is more in the case of supplying both gas SiCl 4 gas and Si 2 Cl 6 gas as the source gas, Si 2 It can be seen that the Si composition ratio of the SiN film formed on the wafer 200 is larger than that in the case where only the SiC 4 gas is supplied without supplying the Cl 6 gas.
  • the refractive index of the SiN film in Samples 2 to 5 increases as the supply time of the Si 2 Cl 6 gas is lengthened. That is, it can be seen that the longer the supply time of the Si 2 Cl 6 gas is, the larger the Si composition ratio of the SiN film formed on the wafer 200 is.
  • Samples 6 and 7 were prepared by performing the following treatment on a wafer having a trench structure having a groove width of about 50 nm, a groove depth of about 10 ⁇ m, and an aspect ratio of about 200 on the surface.
  • Sample 6 was prepared by performing n cycles of step b and step c in this order without performing step a.
  • Sample 7 was prepared by performing n cycles of performing steps a to c in this order.
  • the supply time of SiCl 4 gas in step a was 60 seconds.
  • the supply time of Si 2 Cl 6 gas in step b was set to 9 seconds, respectively.
  • the other treatment conditions were common conditions within the treatment condition range in the above-described embodiment, including the number of cycles performed and the amount of gas supplied.
  • the Top / Bottom ratio (%) is a percentage of the film thickness formed in the upper part of the groove of the trench structure to the film thickness formed in the lower part of the groove of the trench structure.
  • the Top / Bottom ratio (%) is calculated by the formula of C / D ⁇ 100, where C and D are the film thicknesses formed in the upper part and the lower part of the groove of the trench structure, respectively.
  • “Ranger (%)” is formed at the upper part of the groove and the lower part of the groove with respect to the average value of the film thickness values formed at the upper part of the groove and the lower part of the groove of the trench structure.
  • the difference from the film thickness value is expressed as a percentage.
  • the Range (%) is calculated by the formula
  • the Top / Bottom ratio in sample 7 is larger than the Top / Bottom ratio in sample 6. It can also be seen that the Range in Sample 7 is smaller than the Range in Sample 6. That is, when both the SiC 4 gas and the Si 2 Cl 6 gas are supplied, the step coverage characteristics and the wafer in-plane inner membrane are better than when only the Si 2 Cl 6 gas is supplied without supplying the SiC 4 gas. It can be seen that the thickness uniformity is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

(a)処理室内の基板に対して第1元素を含む第1原料ガスを供給する工程と、(b)基板に対して、第1元素を含み、第1原料ガスよりも熱分解温度が低い第2原料ガスを供給する工程と、(c)基板に対して、第1元素とは異なる第2元素を含む反応ガスを供給する工程と、をこの順に行うサイクルを所定回数行うことにより、基板上に、第1元素および第2元素を含む膜を形成する工程を有する技術を提供する。

Description

半導体装置の製造方法、基板処理装置およびプログラム
 本開示は、半導体装置の製造方法、基板処理装置およびプログラムに関する。
 半導体装置の製造工程の一工程として、基板上に膜を形成する処理が行われることがある(例えば特許文献1,2参照)。
特開2016-025262号公報 特開2017-097017号公報
 本開示は、基板上に形成される膜の特性を向上させることが可能な技術を提供することを目的とする。
 本開示の一態様によれば、
 (a)処理室内の基板に対して第1元素を含む第1原料ガスを供給する工程と、
 (b)前記基板に対して、前記第1元素を含み、前記第1原料ガスよりも熱分解温度が低い第2原料ガスを供給する工程と、
 (c)前記基板に対して、前記第1元素とは異なる第2元素を含む反応ガスを供給する工程と、
 をこの順に行うサイクルを所定回数行うことにより、前記基板上に、前記第1元素および前記第2元素を含む膜を形成する技術が提供される。
 本開示によれば、基板上に形成される膜の特性を向上させることが可能な技術を提供することが可能となる。
本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。 本開示の一態様で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本開示の一態様の基板処理工程におけるフローを示す図である。 本開示の一態様の成膜処理におけるガス供給のタイミングを示す図である。 本開示の一態様の成膜処理におけるガス供給のタイミングの変形例を示す図である。 (a)は、ステップaを行うことで第1原料ガスが供給された後の基板の表面の部分拡大図であり、(b)は、ステップaを行った後、ステップbを行うことで第2原料ガスが供給された後の基板の表面の部分拡大図であり、(c)は、ステップbを行った後、ステップcを行うことで反応ガスが供給された後の基板の表面の部分拡大図である。 基板上に形成された膜の評価結果を示す図である。 基板上に形成された膜の評価結果を示す図である。
<本開示の一態様>
 以下、本開示の一態様について、主に、図1~図5、図7を用いて説明する。
(1)基板処理装置の構成
 図1に示すように、処理炉202は加熱機構(温度調整部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の筒中空部には、処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。この処理室201内でウエハ200に対する処理が行われる。
 処理室201内には、ノズル249a,249bが、反応管203の下部側壁を貫通するように設けられている。ノズル249a,249bには、ガス供給管232a,232bがそれぞれ接続されている。
 ガス供給管232a,232bには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232aのバルブ243aよりも下流側には、ガス供給管232cが接続されている。ガス供給管232cには、ガス流の上流側から順に、MFC241cおよびバルブ243cが設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、ガス供給管232e,232dがそれぞれ接続されている。ガス供給管232e,232dには、ガス流の上流側から順に、MFC241e,241dおよびバルブ243e,243dがそれぞれ設けられている。
 図2に示すように、ノズル249a,249bは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。ノズル249a,249bの側面には、ガスを供給するガス供給孔250a,250bがそれぞれ設けられている。ガス供給孔250a,250bは、反応管203の中心を向くようにそれぞれ開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250bは、反応管203の下部から上部にわたって複数設けられている。
 ガス供給管232aからは、第1元素を含む第1原料ガスとして、例えば、第1元素としてのシリコン(Si)とハロゲン元素とを含むハロシラン系ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。ハロシランとは、ハロゲン基を有するシランのことである。ハロゲン基には、クロロ基、フルオロ基、ブロモ基、ヨード基等が含まれる。すなわち、ハロゲン基には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素が含まれる。ハロシラン系ガスとしては、例えば、SiおよびClを含む原料ガス、すなわち、クロロシラン系ガスを用いることができる。第1原料ガスとしては、1分子中に含まれるSi原子の数が1つであるクロロシラン系ガス、例えば、テトラクロロシラン(SiCl)ガスを用いることができる。SiClガスは、後述する成膜処理においてSiソースとして作用する。本明細書では、処理室201内に第1原料ガスが単独で存在した場合に、第1原料ガスが熱分解する温度を第1温度と称する場合がある。第1原料ガスとしてSiClガスを用いたときの第1温度は、800℃以上の範囲内の所定の温度である。
 ガス供給管232cからは、第1元素を含み、第1原料ガスよりも熱分解温度が低い第2原料ガスとして、例えば、第1元素としてのSiとハロゲン元素とを含むハロシラン系ガスが、MFC241c、バルブ243c、ノズル249aを介して処理室201内へ供給される。第2原料ガスとしては、1分子中に含まれるSi原子の数が2つ以上であり、Si-Si結合を有するクロロシラン系ガス、例えば、ヘキサクロロジシラン(SiCl、略称:HCDS)ガスを用いることができる。SiClガスは、後述する成膜処理においてSiソースとして作用する。本明細書では、処理室201内に第2原料ガスが単独で存在した場合に、第2原料ガスが熱分解する温度を第2温度と称する場合がある。第2原料ガスとしてSiClガスを用いたときの第2温度は、500℃以上の範囲内の所定の温度である。
 ガス供給管232bからは、第1元素とは異なる第2元素を含む反応ガスとして、例えば、第2元素としての窒素(N)を含む窒化ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。窒化ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。NHガスは、後述する成膜処理において、Nソースとして作用する。
 ガス供給管232d,232eからは、不活性ガスとしての窒素(N)ガスが、それぞれMFC241d,241e、バルブ243d,243e、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。Nガスは、パージガス、キャリアガス、希釈ガス等として作用する。
 各ガス供給管から上述のようなガスをそれぞれ流す場合、主に、ガス供給管232a、MFC241a、バルブ243aにより、第1原料ガス供給系が構成される。主に、ガス供給管232c、MFC241c、バルブ243cにより、第2原料ガス供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、反応ガス供給系が構成される。主に、ガス供給管232d,232e、MFC241d,241e、バルブ243d,243eにより、不活性ガス供給系が構成される。
 上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a~243eやMFC241a~241e等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232eのそれぞれに対して接続され、ガス供給管232a~232e内への各種ガスの供給動作、すなわち、バルブ243a~243eの開閉動作やMFC241a~241eによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a~232e等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。
 反応管203の側壁下方には、処理室201内の雰囲気を排気する排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、さらに、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、圧力センサ245、APCバルブ244により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 反応管203の下方には、反応管203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、反応管203の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が水平姿勢で多段に支持されている。
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する成膜処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する成膜処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a~241e、バルブ243a~243e、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241eによる各種ガスの流量調整動作、バルブ243a~243eの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置123は、例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ等を含む。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200上に膜を形成する基板処理シーケンス例、すなわち、成膜シーケンス例について、図4、図5、図7を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 図4、図5に示す成膜シーケンスでは、
 処理室201内のウエハ200に対して第1原料ガスとしてSiClガスを供給するステップaと、
 ウエハ200に対して第2原料ガスとしてSiClガスを供給するステップbと、
 ウエハ200に対して反応ガスとしてNHガスを供給するステップcと、
をこの順に行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200上に、SiおよびNを含む膜として、シリコン窒化膜(SiN膜)を形成する。なお、図5では、ステップa,b,cの実施期間をそれぞれa,b,cと表している。
 本明細書では、図4、図5に示す成膜シーケンスを、便宜上、以下のように示すこともある。以下の他の態様等の説明においても同様の表記を用いる。
 (SiCl→SiCl→NH)×n ⇒ SiN
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージおよびボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)される。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220を介して反応管203の下端をシールした状態となる。
(圧力調整および温度調整)
 処理室201内、すなわち、ウエハ200が存在する空間が所望の処理圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201内のウエハ200が所望の処理温度(成膜温度)となるように、ヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。また、回転機構267によるウエハ200の回転を開始する。真空ポンプ246の稼働、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
(成膜処理)
 その後、以下のステップa~cを順次実施する。
 [ステップa]
 このステップでは、処理室201内のウエハ200に対してSiClガスを供給する。具体的には、バルブ243aを開き、ガス供給管232a内へSiClガスを流す。SiClガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気管231より排気される。このとき、ウエハ200に対してSiClガスが供給される。このとき同時にバルブ243d,243eを開き、ガス供給管232d,232e内へNガスを流す。Nガスは、MFC241d,241eにより流量調整される。流量調整されたNガスは、SiClガスと一緒に処理室201内へ供給され、排気管231より排気される。
 本ステップにおける処理条件としては、
 SiClガス供給流量:1~2000sccm、好ましくは100~1000sccm
 Nガス供給流量(各ガス供給管):100~20000sccm
 各ガス供給時間:10~300秒、好ましくは30~120秒
 処理温度(第1温度よりも低い温度、好ましくは、第1温度よりも低く第2温度よりも高い温度):400~800℃、好ましくは500~800℃、より好ましくは600~750℃
 処理圧力:1~2666Pa、好ましくは10~1333Pa
 が例示される。なお、本明細書における「400~800℃」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、「400~800℃」とは「400℃以上800℃以下」を意味する。他の数値範囲についても同様である。
 なお、本実施形態では、本ステップの前処理として、ウエハ200に対してNHガス等の反応ガスを先行して供給するプリフローを行っている。プリフローにおいてNHガスをウエハ200に供給することによって、ウエハ200の表面上に水素(H)による吸着サイトを形成し、本ステップや後述するステップbにおいて、Si原子が吸着しやすい状態(すなわち、Si原子との反応性の高い状態)としている。プリフローの手順は、例えば、後述するステップcと同様に行うことができる。
 上述の条件下では、SiClにおけるSi-Cl結合の一部を切断し、未結合手を有することとなったSiをウエハ200の表面の吸着サイトに吸着させることができる。また、上述の条件下では、SiClにおける切断されなかったSi-Cl結合をそのまま保持することができる。例えば、SiClを構成するSiが有する4つの結合手のうち、3つの結合手にそれぞれClを結合させた状態で、未結合手を有することとなったSiをウエハ200の表面の吸着サイトに吸着させることができる。また、ウエハ200の表面に吸着したSiから切断されず保持されたClが、このSiに未結合手を有することとなった他のSiが結合することを阻害するので、ウエハ200上にSiが多重に堆積することを回避することができる。Siから切り離されたClは、HClやCl等のガス状物質を構成して排気管231より排気される。Siの吸着反応が進行し、ウエハ200の表面に残存する吸着サイトがなくなると、その吸着反応は飽和することになるが、本ステップでは、吸着反応が飽和する前にSiClガスの供給を停止し、吸着サイトが残存した状態で本ステップを終了することが望ましい。
 これらの結果、ウエハ200上には、第1層として、1原子層未満の厚さの略均一な厚さのSiおよびClを含む層、すなわち、Clを含むSi含有層が形成される。図7(a)に、第1層が形成されたウエハ200の表面の部分拡大図を示す。ここで、1原子層未満の厚さの層とは、不連続に形成される原子層のことを意味しており、1原子層の厚さの層とは、連続的に形成される原子層のことを意味している。また、1原子層未満の厚さの層が略均一であるということは、ウエハ200の表面上に略均一な密度で原子が吸着していることを意味している。第1層は、ウエハ200上に略均一な厚さに形成されるため、ステップカバレッジ特性やウエハ面内膜厚均一性に優れている。
 なお、処理温度が400℃未満となると、ウエハ200上にSiが吸着しにくくなり、第1層の形成が困難となる場合がある。処理温度を400℃以上にすることにより、ウエハ200上に第1層を形成することが可能となる。処理温度を500℃以上にすることで、上述の効果が確実に得られるようになる。処理温度を600℃以上にすることで、上述も効果をより確実に得られるようになる。
 処理温度が800℃を超えると、SiClにおける切断されなかったSi-Cl結合をそのまま保持することが困難となるとともに、SiClの熱分解速度が増大するその結果、ウエハ200上にSiが多重に堆積し、第1層として、1原子層未満の厚さの略均一な厚さのSi含有層を形成することが難しくなる場合がある。処理温度を800℃以下とすることにより、第1層として、1原子層未満の厚さの略均一な厚さのSi含有層を形成することが可能となる。処理温度を750℃以下とすることで、上述の効果が確実に得られるようになる。
 ウエハ200上に第1層を形成した後、バルブ243aを閉じ、処理室201内へのSiClガスの供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する。なお、このとき、バルブ243d,243eは開いたままとして、不活性ガスとしてのNガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留するガス等を処理室201内から排除する効果を高めることができる。
 第1原料ガスとしては、SiClガスの他、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス等のハロシラン原料ガスを用いることができる。
 不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。この点は、後述するステップb,cにおいても同様である。
 [ステップb]
 このステップでは、処理室201内のウエハ200、すなわち、ウエハ200上に形成された第1層に対してSiClガスを供給する。具体的には、バルブ243cを開き、ガス供給管232a内へSiClガスを流す。SiClガスは、MFC241cにより流量制御され、ノズル249aを介して処理室201内へ供給され、排気管231より排気される。このとき、ウエハ200に対してSiClガスが供給される。
 本ステップの処理条件としては、
 SiClガス供給流量:1~2000sccm、好ましくは100~1000sccm
 SiClガス供給時間:0.5~60秒、好ましくは1~30秒
 処理温度(第2温度よりも高い温度、好ましくは、第2温度よりも高く第1温度よりも低い温度):500~1000℃、好ましくは600~800℃、より好ましくは650~750℃
 が例示される。他の処理条件は、ステップaにおける処理条件と同様とする。
 上述の条件下では、SiClガスの分子構造の大部分を熱分解させ、これにより未結合手を有することとなったSiを、ステップaにおいて第1層が形成されずに残存したウエハ200表面上の吸着サイトと反応させて、ウエハ200の表面に吸着させることができる。一方、第1層が形成された部分には吸着サイトが存在しないため、第1層上に対するSiの吸着は抑制される。その結果、本ステップでは、略均一な厚さに形成された第1層を基礎として、第2層としてのSi含有層が略均一な厚さで形成される。また、SiClの熱分解により未結合手を有することとなったSi同士は結合して、Si-Si結合を形成する。これらのSi-Si結合をウエハ200の表面上に残存した吸着サイト等と反応させることにより、第2層にSi-Si結合を含ませ、Siが多重に堆積した層とすることが可能となる。すなわち、本ステップにより、第2層に含ませるSi-Si結合の量(含有比率)を、第1層に含ませるSi-Si結合の量(含有比率)よりも大きくする。Siから切り離されたClは、HClやCl等のガス状物質を構成して排気管231より排気される。
 なお、本ステップにより第2層に含ませるSi-Si結合の量を第1層に含ませるSi-Si結合の量よりも大きくするためには、上述の通り、第2原料ガスの熱分解温度が第1原料ガスの熱分解温度よりも低いことが好適である。換言すると、第2原料ガスは第1原料ガスよりも、同一条件下においてSi-Si結合を形成しやすいガスであることが望ましい。例えば、第2原料ガスの分子中にSi-Si結合が含まれていることや、第2原料ガスの分子中におけるCl等のハロゲン元素に対するSiの組成比が、第1原料ガスのものよりも大きいことなどが好適である。このように、本ステップでは、ステップaよりも、ウエハ表面上に残存した吸着サイト等に反応するSi-Si結合が形成されやすいように、各ステップの処理温度等の処理条件の選択や、第1原料ガス及び第2原料ガスの選択が行われる。
 この結果、本ステップでは、第2層として、第1層の厚さを超える略均一な厚さのSi含有層が形成される。成膜レートの向上等の観点から、本実施形態では特に、第2層として、1原子層を超える略均一な厚さのSi含有層を形成する。図7(b)に、第2層が形成されたウエハ200の表面の部分拡大図を示す。なお、本明細書において、第2層とは、ステップa及びbが1回ずつ実施されることにより形成されたウエハ200上のSi含有層を意味している。
 なお、処理温度が500℃未満となると、SiClガスが熱分解しにくくなり、第2層の形成が困難となる場合がある。処理温度を500℃以上にすることにより、第1層上に第2層を形成することが可能となる。処理温度を600℃以上にすることで、上述の効果が確実に得られるようになる。処理温度を650℃以上にすることで、上述の効果をより確実に得られるようになる。
 処理温度が1000℃を超えると、SiClガスの熱分解が過剰となり、自己飽和しないSiの堆積が急速に進みやすくなるため、第2層を略均一に形成することが困難となる場合がある。処理温度を1000℃以下とすることにより、SiClガスの過剰な熱分解を抑制し、自己飽和しないSiの堆積を制御することで、第2層を略均一に形成することが可能となる。処理温度を800℃以下とすることで、上述の効果が確実に得られるようになる。処理温度を750℃以下とすることで、上述の効果をより確実に得られるようになる。
 また、ステップa,bにおける温度条件は、実質的に同一の条件とすることが望ましい。これにより、ステップa,bの間で、ウエハ200の温度変更、すなわち、処理室201内の温度変更(ヒータ207の設定温度の変更)を行うことが不要となるので、ステップ間でウエハ200の温度を安定させるまでの待機時間が不要となり、基板処理のスループットを向上させることができる。従って、ステップa,bにおいては共に、ウエハ200の温度を、例えば500~800℃、好ましくは600~800℃、より好ましくは650~750℃の範囲内の所定の温度とするのがよい。本実施形態では、ステップa,bにおける温度条件が実質的に同一である場合、ステップaにおいては第1原料ガスの熱分解が実質的に起こらず(すなわち抑制され)、ステップbにおいては第2原料ガスの熱分解が起こる(すなわち促進される)ように、当該温度条件と、第1原料ガス及び第2原料ガスが選択される。
 ウエハ200上に第2層を形成した後、バルブ243cを閉じ、処理室201内へのSiClガスの供給を停止する。そして、上述のステップaの残留ガス除去のステップと同様の処理手順、処理条件により、処理室201内に残留するガス等を処理室201内から排除する。
 第2原料ガスとしては、SiClガスの他、モノシラン(SiH、略称:MS)ガス等の水素化ケイ素系原料ガス、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、ビスジエチルアミノシラン(SiH[N(C、略称:BDEAS)ガス等のアミノシラン系原料ガスを用いることができる。第2原料ガスとして、ノンハロゲンガスを用いることにより、ウエハ200上に最終的に形成されるSiN膜へのハロゲンの混入を回避することが可能となる。
 [ステップc]
 このステップでは、処理室201内のウエハ200、すなわち、ウエハ200上に形成された第1層と第2層とが積層してなる層に対してNHガスを供給する。具体的には、バルブ243bを開き、ガス供給管232b内へNHガスを流す。NHガスは、MFC241bにより流量制御され、ノズル249bを介して処理室201内へ供給され、排気管231より排気される。このとき、ウエハ200に対してNHガスが供給される。
 本ステップにおける処理条件としては、
 NHガス供給流量:100~10000sccm、好ましくはは1000~5000sccm
 NHガス供給時間:1~120秒、好ましくは10~60秒
 処理圧力:1~4000Pa、好ましくは10~1000Pa
 が例示される。他の処理条件は、ステップaにおける処理条件と同様とする。ただし、ステップcにおける温度条件は、成膜処理の生産性を向上させるという観点からは、ステップa,bと同一の条件とすることが望ましいが、これらの条件と異ならせてもよい。
 上述の条件下では、第2層の少なくとも一部を窒化することができる。第2層に含まれていたClは、HCl、Cl等のガス状物質を構成して排気管231より排気される。
 この結果、ウエハ200上には、第3層として、SiとNとを含むSiN層が形成される。図7(c)に、第3層が形成されたウエハ200の表面の部分拡大図を示す。
 ウエハ200上に第3層を形成した後、バルブ243bを閉じ、処理室201内へのNHガスの供給を停止する。そして、上述のステップaの残留ガス除去のステップと同様の処理手順、処理条件により、処理室201内に残留するガス等を処理室201内から排除する。
 反応ガスとしては、NHガスの他、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等の窒化水素系ガスを用いることができる。
 [所定回数実施]
 上述したステップa~cを1サイクルとして、このサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200上に所定組成比および所定膜厚のSiN膜を成膜することができる。なお、上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成するSiN層の厚さを所望の膜厚よりも小さくして、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい。
(アフターパージおよび大気圧復帰)
 上述の成膜処理が終了した後、ガス供給管232d,232eのそれぞれから不活性ガスとしてのNガス処理室201内へ供給し、排気管231より排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物等が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降され、反応管203の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態で、反応管203の下端から反応管203の外部に搬出される(ボートアンロード)。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
(3)本態様による効果
 本態様によれば、以下に示す一つ又は複数の効果が得られる。
(a)本態様では、1サイクルにおいて、SiClガスを供給するステップaと、SiClガスを供給するステップbと、の両方のステップを行うことから、ウエハ200上に形成されるSiN膜のステップカバレッジ特性やウエハ面内膜厚均一性を向上させる効果と、この膜の成膜レートを高める効果と、を両立することが可能となる。
 というのも、上述の処理条件でウエハ200に対して、SiClガスよりも熱分解温度が高く、熱分解しにくいSiClガスを供給すると、ウエハ200上には1原子層未満の厚さの略均一な厚さのSi含有層(第1層)が形成されることとなる。仮に、ステップbを行わずに、SiClガスを供給するステップaと、NHガスを供給するステップcと、をこの順に行うサイクルを所定回数行うこととした場合、1サイクルあたりに形成されるSi含有層の厚さがウエハ面内にわたり均一であることから、ウエハ200上に最終的に形成されるSiN膜のステップカバレッジ特性やウエハ面内膜厚均一性を良好にすることが可能となる。一方で、1サイクルあたりに形成されるSi含有層の厚さが薄いことから、ウエハ200上に形成されるSiN膜の成膜レートを高めることが困難となる場合がある。
 一方、上述の処理条件でウエハ200に対して、SiClガスよりも熱分解温度が低く、熱分解しやすいSiClガスを供給すると、ウエハ200上にはSi-Si結合を有する、1原子層を超える厚さのSi含有層(第2層)が形成されることとなる。仮に、ステップaを行わずに、SiClガスを供給するステップbと、NHガスを供給するステップcと、をこの順に行うサイクルを所定回数行うこととした場合、1サイクルあたりに形成されるSi含有層の厚さが厚いことから、ウエハ200上に最終的に形成されるSiN膜の成膜レートを良好とすることが可能となる。一方で、1サイクルあたりに形成されるSi含有層の厚さがウエハ面内で不均一になり易いことから、ウエハ200上に形成されるSiN膜のステップカバレッジ特性やウエハ面内膜厚均一性を向上させることが困難となる場合がある。
 本態様では、ステップaおよびステップbの両ステップを行うことから、各ステップから得られるそれぞれの効果を両立させることが可能となる。例えば、Siの吸着反応が飽和する前にステップaを終了し、成膜レートの比較的大きいステップbに移行することで、ステップaのみを同じ時間実行する場合に比べて、成膜レートを向上させることができる。また、ステップaにおいて比較的厚さの均一性に優れた第1層を形成した後、ステップbにおいて第1層をベースとして第2層を形成することで、ステップbのみを実行する場合に比べて、ウエハ200上に形成されるSiN膜のステップカバレッジ特性やウエハ面内膜厚均一性を向上させることができる。
(b)本態様では、各サイクルにおいて、ステップbよりも先にステップaを行い、その後にステップbを行うことにより、ウエハ200上に最終的に形成されるSiN膜のステップカバレッジ特性やウエハ面内膜厚均一性を充分に発揮しつつ、その成膜レートを高めることが可能となる。
 仮に、各サイクルにおいて、ステップaよりも先にステップbを行い、その後にステップaを行うこととした場合、ステップbでは、熱分解によって生じたSi-Si結合を含むSiがウエハ200の表面に不規則に吸着しやすくなるため、ステップaで形成しようとするSi含有膜の下地として、ウエハ面内で厚さが不均一になり易い層が形成されてしまう場合がある。そのため、成膜処理の途中で略均一な厚さのSi含有層を形成するというステップaの技術的意義が失われやすくなる。
 これに対し、本態様では、各サイクルにおいて、ステップbよりも先にステップaを行い、その後にステップbを行うことから、ステップbで形成しようとするSi含有膜の下地として、略均一な厚さのSi含有層を形成することが可能となる。そのため、成膜処理の途中で略均一な厚さのSi含有層を形成するというステップaの技術的意義を充分に発揮することが可能となる。
(c)本態様では、ウエハ200上に最終的に形成されるSiN膜のSiとNとの組成比を広く制御することが可能となる。
 というのも、1サイクルあたりのSiClガスの基板に対する供給量Aに対する1サイクルあたりのSiClガスの基板に対する供給量Bの比率B/Aを小さくすることにより、第2層に含まれるSi-Si結合の割合を小さくして、第2層の厚さを薄くする方向に制御することができる。第2層、すなわち、ステップcにおいて窒化対象となる層を薄くすることにより、ウエハ200上に最終的に形成されるSiN膜の組成比を、Siの組成比が小さくなる方向に制御することができる。例えば、比率B/Aを小さくすることで、第2層の厚さが1原子層を超える厚さの範囲で薄くする。これにより、SiN膜の化学量論組成における組成比(すなわち、Si:N=3:4)に対して、Siの組成比を小さくなる方向に近づけるように制御することができる。
 また、B/Aを大きくすることにより、第2層に含まれるSi-Si結合の割合を大きくして、第2層の厚さを厚くする方向に制御することができる。第2層、すなわち、ステップcにおいて窒化対象となる層を厚くすることにより、ウエハ200上に最終的に形成されるSiN膜の組成比を、Siの組成比が大きくなる方向に制御することができる。例えば、比率B/Aを大きくすることで、第2層の厚さが1原子層を超える厚さの範囲で厚くする。これにより、SiN膜の化学量論組成における組成比に対して、Siの組成比をより大きくなる方向に(すなわちSiリッチとするように)制御することができる。
 なお、上述のB/Aは、例えば、1サイクルあたりのSiClガスの供給時間Tに対する1サイクルあたりのSiClガスの供給時間Tの比率T/Tの大きさを調整すること、すなわち、1サイクルあたりのSiClガスとSiClガスとの供給時間を調整することにより制御することができる。また、上述のB/Aは、SiClガスの供給流量Fに対するSiClガスの供給流量Fの比率F/Fの大きさを調整することによっても制御することができる。
 また、ステップbにおける処理室201内の圧力Pの大きさを調整し、SiClガスの熱分解速度を制御することによっても、ウエハ200上に最終的に形成されるSiN膜におけるSiの含有量とNの含有量との比率である組成比を制御することができる。
 例えば、圧力Pを小さくすることにより、第2層の厚さを薄くする方向に制御することができる。第2層、すなわち、ステップcにおいて窒化対象となる層を薄くすることにより、ウエハ200上に最終的に形成されるSiN膜の組成比を、Siの組成比が小さくなる方向に制御することができる。
 また、圧力Pを、ステップaにおける処理室201内の圧力Pより大きくすることにより、第2層の厚さを厚くする方向に制御することができる。第2層、すなわち、ステップcにおいて窒化対象となる層を厚くすることにより、ウエハ200上に最終的に形成されるSiN膜の組成比を、Siの組成比が大きくなる方向に制御することができる。
(d)本態様では、ステップaの処理温度をSiClガスの熱分解温度(第1温度)よりも低くし、ステップbの処理温度をSiClガスの熱分解温度(第2温度)よりも高くしているので、上述の効果を確実に得ることができる。
 というのも、ステップaでは、処理温度を第1温度よりも低い温度としているので、SiClガスの熱分解を抑制することができ、ウエハ200上に最終的に形成されるSiN膜のステップカバレッジ特性やウエハ面内膜厚均一性を向上させることが可能となる。また、SiN膜の組成比をSiに近づける方向に制御することが可能となる。
 また、ステップbでは、処理温度を第2温度より高い温度としているので、SiClガスの適切な熱分解を維持することができ、ウエハ200上に最終的に形成されるSiN膜の成膜レートを向上させることが可能となる。また、SiN膜の組成比をSiリッチの方向に制御することが可能となる。
(e)なお、上述の効果は、SiClガス以外の第1原料ガスを用いる場合や、SiClガス以外の第2原料ガスを用いる場合や、NHガス以外の反応ガスを用いる場合や、Nガス以外の不活性ガスを用いる場合にも、同様に得ることができる。
<他の態様>
 以上、本開示の態様を具体的に説明した。しかしながら、本開示は上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の態様では、第2元素としてNを例に挙げ、第2元素を含む反応ガスとしてNHガスを例に挙げて説明したが、本開示はこれに限定されない。例えば、第2元素として酸素(O)を用い、第2元素を含む反応ガスとして、Oガスの他、オゾン(O)ガス、水蒸気(HOガス)、O+Hガス、一酸化窒素(NO)ガス、亜酸化窒素(NO)ガス、二酸化窒素(NO)ガスなどを用いてもよい。また、反応ガスとして、これらのO含有ガスと上述のNHガスとの両方を用いてもよい。
 例えば、以下に示す成膜シーケンスにより、ウエハ200上にシリコン酸化膜(SiO膜)を形成するようにしてもよい。
 (SiCl→SiCl→O)×n ⇒ SiO
 (SiCl→SiCl→O)×n ⇒ SiO
 (SiCl→SiCl→HO)×n ⇒ SiO
 (SiCl→SiCl→O+H)×n ⇒ SiO
 また、例えば、以下に示す成膜シーケンスにより、ウエハ200上にシリコン酸窒化膜(SiON膜)を形成するようにしてもよい。
 (SiCl→SiCl→NH→O)×n ⇒ SiON
 (SiCl→SiCl→O→NH)×n ⇒ SiON
 これらの成膜シーケンスの各ステップにおける処理手順、処理条件は、例えば上述の態様と同様な処理手順、処理条件とすることができる。これらの場合においても、上述の態様と同様の効果が得られる。
 上述の態様では、ステップaの実施期間aとステップbの実施期間bとを重複させない例、例えば、ステップaにおいてSiClガスの供給を中止し、その後実施期間aが終了した後でステップbを開始する例を説明した(図5参照)。本開示はこれに限定されず、例えば、ステップaにおいてSiClガスの供給を継続したままの状態でステップbを開始してSiClガスの供給する、というようにステップaの実施期間aとステップbの実施期間bの少なくとも一部とを重複させてもよい(図6参照)。このようにすることで、上述の効果に加えて、サイクルタイムを短縮させて基板処理のスループットを向上させることができる。
 また、上述の態様等は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の態様の処理手順、処理条件と同様とすることができる。
 サンプル1~5として、図1に示す基板処理装置を用い、ウエハ上に対してSiN膜を形成した。
 サンプル1は、ステップbを行わずに、ステップaとステップcとをこの順に行うサイクルをn回行うことにより作製した。サンプル2~5は、ステップa~cをこの順に行うサイクルをn回行うことにより作製した。
 サンプル1~5では、ステップaにおけるSiClガスの供給時間をそれぞれ60秒間とした。また、サンプル2~5では、ステップbにおけるSiClガスの供給時間を、それぞれ1.5秒間、4.5秒間、9秒間、18秒間とした。その他の処理条件は、サイクルの実施回数やガスの供給量を含め、それぞれ、上述の態様における処理条件範囲内の共通の条件とした。
 そして、サンプル1~5における、SiN膜のウエハ面内平均膜厚(Å)と、波長633nmの光に対しての屈折率(RI)と、をそれぞれ測定した。図8にそれらの結果を示す。
 図8によれば、サンプル2~5におけるSiN膜のウエハ面内平均膜厚は、サンプル1におけるSiN膜のウエハ面内平均膜厚よりも厚いことがわかる。すなわち、原料ガスとしてSiClガスとSiClガスとの両方のガスを供給する場合の方が、原料ガスとしてSiClガスを供給せずSiClガスのみを供給する場合よりも、1サイクルあたりのSiN膜の成膜量が増加すること、すなわち、成膜レートが向上することがわかる。
 また、図8によれば、サンプル2~5におけるSiN膜のウエハ面内平均膜厚は、SiClガスの供給時間を長くするほど厚くなることがわかる。これにより、SiClガスの供給時間を長くするほど1サイクルあたりのSiN膜の成膜量が増加すること、すなわち、ウエハ200上に形成されるSiN膜の成膜レートが向上することがわかる。
 また、図8によれば、サンプル2~5におけるSiN膜の屈折率は、サンプル1におけるSiN膜の屈折率よりも大きいことがわかる。すなわち、原料ガスとしてSiClガスとSiClガスとの両方のガスを供給する場合の方が、原料ガスとしてSiClガスを供給せずSiClガスのみを供給する場合よりも、SiN膜の屈折率が大きくなることがわかる。波長633nmの光に対してのSiの屈折率が、3.882であることを考慮すると、原料ガスとしてSiClガスとSiClガスの両方のガスを供給する場合の方が、SiClガスを供給せずSiClガスのみを供給する場合よりも、ウエハ200上に形成されるSiN膜のSi組成比が大きいことがわかる。
 さらに、サンプル2~5におけるSiN膜の屈折率は、SiClガスの供給時間を長くするほど大きくなることがわかる。すなわち、SiClガスの供給時間を長くするほどウエハ200上に形成されるSiN膜のSi組成比は大きくなることがわかる。
 また、サンプル6,7として、図1に示す基板処理装置を用い、ウエハ上に対してSiN膜を形成した。
 サンプル6,7は、溝幅約50nm、溝深さ約10μm、アスペクト比約200のトレンチ構造体を表面に有するウエハに対して以下の処理を行うことにより作製した。
 サンプル6は、ステップaを行わずに、ステップbとステップcとをこの順に行うサイクルをn回行うことにより作製した。サンプル7は、ステップa~cをこの順に行うサイクルをn回行うことにより作製した。
 具体的には、サンプル7では、ステップaにおけるSiClガスの供給時間を60秒とした。サンプル6,7では、ステップbにおけるSiClガスの供給時間をそれぞれ9秒間とした。その他の処理条件は、サイクルの実施回数やガスの供給量を含め、それぞれ、上述の態様における処理条件範囲内の共通の条件とした。
 そして、サンプル6,7のSiN膜におけるTop/Bottom比(%)と、Range(%)と、をそれぞれ測定した。図9にそれらの結果を示す。「Top/Bottom比(%)」は、トレンチ構造体の溝の下部に形成された膜厚に対する、トレンチ構造体の溝の上部に形成された膜厚の割合を百分率で表したものである。Top/Bottom比(%)は、トレンチ構造体の溝の上部と下部に形成された膜厚をそれぞれC,Dとした場合に、C/D×100の式で算出される。「Range(%)」とは、トレンチ構造体の溝の上部と溝の下部に形成された膜厚値の平均値に対する、溝の上部に形成された膜厚値と溝の下部に形成された膜厚値との差を百分率で表したものである。トレンチ構造体の溝の上部と下部に形成された膜厚をそれぞれC,Dとした場合に、Range(%)は、|C-D|/{(C+D)/2}×100の式で算出される。
 図9によれば、サンプル7におけるTop/Bottom比は、サンプル6におけるTop/Bottom比よりも大きいことがわかる。また、サンプル7におけるRangeは、サンプル6におけるRangeよりも小さいことがわかる。すなわち、SiClガスとSiClガスの両方のガスを供給する場合の方が、SiClガスを供給せずSiClガスのみを供給する場合よりもステップカバレッジ特性やウエハ面内膜厚均一性に優れていることがわかる。
 200…ウエハ、202…処理炉、217…ボート、115…ボートエレベータ、121…コントローラ、201…処理室、249a,249b…ノズル、250a,250b…ガス供給孔、232a~232d…ガス供給管

Claims (18)

  1.  (a)処理室内の基板に対して第1元素を含む第1原料ガスを供給する工程と、
     (b)前記基板に対して、前記第1元素を含み、前記第1原料ガスよりも熱分解温度が低い第2原料ガスを供給する工程と、
     (c)前記基板に対して、前記第1元素とは異なる第2元素を含む反応ガスを供給する工程と、
     をこの順に行うサイクルを所定回数行うことにより、前記基板上に、前記第1元素および前記第2元素を含む膜を形成する工程を有する、
    半導体装置の製造方法。
  2.  (a)における前記基板の温度を、前記処理室内に前記第1原料ガスが単独で存在した場合に前記第1原料ガスが熱分解する温度よりも低い温度とし、
    (b)における前記基板の温度を、前記処理室内に前記第2原料ガスが単独で存在した場合に前記第2原料ガスが熱分解する温度よりも高い温度にする、
     請求項1に記載の半導体装置の製造方法。
  3.  (a)では、前記第1元素を含む第1層を1原子層未満の厚さで形成し、
     (b)では、前記第1元素を含む第2層を1原子層を超える厚さで形成する、
     請求項1または請求項2に記載の半導体装置の製造方法。
  4.  前記第2層に含ませる前記第1元素と前記第1元素との結合の量を、前記第1層に含ませる前記第1元素と前記第1元素との結合の量よりも多くする
     請求項3に記載の半導体装置の製造方法。
  5.  (a)における前記基板の温度と(b)における前記基板の温度とを実質的に同じ温度にする、
     請求項1~4のいずれか1項に記載の半導体装置の製造方法。
  6.  1サイクルあたりの前記第1原料ガスの供給量Aに対する1サイクルあたりの前記第2原料ガスの供給量Bの比率B/Aを調整することにより、前記膜における前記第1元素の含有量と前記第2元素の含有量との比率である組成比を制御する、
     請求項1~5のいずれか1項に記載の半導体装置の製造方法。
  7.  前記B/A比を小さくすることにより、前記膜の組成比を、前記第1元素と前記第2元素とにより構成される化合物の化学量論組成に近づける方向に制御し、
     前記B/A比を大きくすることにより、前記膜の組成比を、前記化学量論組成よりも前記第1元素の含有比率を大きくする方向に制御する、
     請求項6に記載の半導体装置の製造方法。
  8.  前記膜の組成比を、1サイクルあたりの前記第1原料ガスの供給時間Tに対する1サイクルあたりの前記第2原料ガスの供給時間Tの比率T/Tの大きさを調整することにより制御する、
     請求項6または請求項7に記載の半導体装置の製造方法。
  9.  前記膜の組成比を、前記第1原料ガスの供給流量Fに対する前記第2原料ガスの供給流量Fの比率F/Fの大きさを調整することにより制御する、
     請求項6~8のいずれか1項に記載の半導体装置の製造方法。
  10.  前記膜における前記第1元素の含有量と前記第2元素の含有量との比率である組成比を、(b)における前記処理室内の圧力Pの大きさを調整することにより制御する、
     請求項1~9のいずれか1項に記載の半導体装置の製造方法。
  11.  前記第1原料ガスおよび前記第2原料ガスとしてそれぞれ互いに異なるハロシラン系ガスを用いる、
     請求項1~10のいずれか1項に記載の半導体装置の製造方法。
  12.  前記第2原料ガスとして、水素化ケイ素系ガスまたはアミノシラン系ガスの少なくともいずれか含むガスを用いる、
     請求項1~10のいずれか1項に記載の半導体装置の製造方法。
  13.  前記反応ガスとして、窒化ガスまたは酸化ガスのうち少なくともいずれかを含むガスを用いる、
     請求項1~12のいずれか1項に記載の半導体装置の製造方法。
  14.  前記サイクルを行う際、(a)の実施期間と、(b)の実施期間と、を重複させないようにする、
     請求項1~13のいずれか1項に記載の半導体装置の製造方法。
  15.  前記サイクルを行う際、(a)の実施期間と、(b)の実施期間の少なくとも一部と、を重複させるようにする、
     請求項1~13のいずれか1項に記載の半導体装置の製造方法。
  16.  前記サイクルを行う前に、(c)をさらに有する、
     請求項1~15のいずれか1項に記載の半導体装置の製造方法。
  17.  基板を収容する処理室と、
     第1元素を含む第1原料ガスを前記処理室内へ供給する第1原料ガス供給系と、
     前記第1元素を含み、前記第1原料ガスよりも熱分解温度が低い第2原料ガスを前記処理室内へ供給する第2原料ガス供給系と、
     前記第1元素とは異なる第2元素を含む反応ガスを前記処理室内へ供給する反応ガス供給系と、
     前記処理室内において、(a)前記基板に対して前記第1原料ガスを供給する処理と、(b)前記基板に対して前記第2原料ガスを供給する処理と、(c)前記基板に対して前記反応ガスを供給する処理と、をこの順に行うサイクルを所定回数行うことにより、前記基板上に、前記第1元素および前記第2元素を含む膜を形成する処理を行わせるように、前記第1原料ガス供給系、前記第2原料ガス供給系および前記反応ガス供給系を制御することが可能なよう構成される制御部と、
     を有する基板処理装置。
  18.  基板処理装置の処理室内において、
     (a)基板に対して第1元素を含む第1原料ガスを供給する手順と、
     (b)前記基板に対して、前記第1元素を含み、前記第1原料ガスよりも熱分解温度が低い第2原料ガスを供給する手順と、
     (c)前記基板に対して前記第1元素とは異なる第2元素を含む反応ガスを供給する手順と、
     をこの順に行うサイクルを所定回数行うことにより、前記基板上に、前記第1元素および前記第2元素を含む膜を形成する手順を、コンピュータによって前記基板処理装置に実行させるプログラム。
PCT/JP2019/036572 2019-09-18 2019-09-18 半導体装置の製造方法、基板処理装置およびプログラム WO2021053756A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
SG11202008980YA SG11202008980YA (en) 2019-09-18 2019-09-18 Method of manufacturing semiconductor device, substrate processing apparatus, and program
CN201980019742.XA CN112823410B (zh) 2019-09-18 2019-09-18 半导体装置的制造方法、基板处理装置和记录介质
PCT/JP2019/036572 WO2021053756A1 (ja) 2019-09-18 2019-09-18 半導体装置の製造方法、基板処理装置およびプログラム
KR1020227041917A KR102671300B1 (ko) 2019-09-18 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP2020533172A JP7035196B2 (ja) 2019-09-18 2019-09-18 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
KR1020207026142A KR102473548B1 (ko) 2019-09-18 2019-09-18 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
TW109120217A TWI768375B (zh) 2019-09-18 2020-06-16 半導體裝置的製造方法、基板處理方法、基板處理裝置及程式
TW111118798A TW202234516A (zh) 2019-09-18 2020-06-16 半導體裝置的製造方法、基板處理方法、基板處理裝置及程式
US17/021,738 US11476113B2 (en) 2019-09-18 2020-09-15 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2021159609A JP7214812B2 (ja) 2019-09-18 2021-09-29 半導体装置の製造方法、基板処理方法、プログラムおよび基板処理装置
US17/881,772 US20220375745A1 (en) 2019-09-18 2022-08-05 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2023005582A JP7371281B2 (ja) 2019-09-18 2023-01-18 基板処理方法、半導体装置の製造方法、プログラムおよび基板処理装置
JP2023179365A JP2023181258A (ja) 2019-09-18 2023-10-18 基板処理方法、半導体装置の製造方法、プログラムおよび基板処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036572 WO2021053756A1 (ja) 2019-09-18 2019-09-18 半導体装置の製造方法、基板処理装置およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/021,738 Continuation US11476113B2 (en) 2019-09-18 2020-09-15 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2021053756A1 true WO2021053756A1 (ja) 2021-03-25

Family

ID=74869829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036572 WO2021053756A1 (ja) 2019-09-18 2019-09-18 半導体装置の製造方法、基板処理装置およびプログラム

Country Status (7)

Country Link
US (2) US11476113B2 (ja)
JP (4) JP7035196B2 (ja)
KR (1) KR102473548B1 (ja)
CN (1) CN112823410B (ja)
SG (1) SG11202008980YA (ja)
TW (2) TWI768375B (ja)
WO (1) WO2021053756A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046225A (ko) 2021-09-29 2023-04-05 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023133075A1 (en) * 2022-01-07 2023-07-13 Lam Research Corporation Silicon nitride deposition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183069A (ja) * 2009-01-07 2010-08-19 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2014116626A (ja) * 2009-09-30 2014-06-26 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法および基板処理装置
JP2015185614A (ja) * 2014-03-20 2015-10-22 株式会社日立国際電気 基板処理方法、基板処理装置およびプログラム
JP2016018907A (ja) * 2014-07-09 2016-02-01 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP2018018896A (ja) * 2016-07-26 2018-02-01 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、およびプログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043147A (ja) * 2005-07-29 2007-02-15 Samsung Electronics Co Ltd 原子層蒸着工程を用いたシリコンリッチナノクリスタル構造物の形成方法及びこれを用いた不揮発性半導体装置の製造方法
JP2008053605A (ja) * 2006-08-28 2008-03-06 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び層生成制御方法
JP5467007B2 (ja) * 2009-09-30 2014-04-09 株式会社日立国際電気 半導体装置の製造方法および基板処理装置
KR101628211B1 (ko) 2011-10-14 2016-06-08 가부시키가이샤 히다치 고쿠사이 덴키 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 기록 매체
JP6039996B2 (ja) * 2011-12-09 2016-12-07 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6022272B2 (ja) * 2012-09-14 2016-11-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US20140124788A1 (en) * 2012-11-06 2014-05-08 Intermolecular, Inc. Chemical Vapor Deposition System
JP6199570B2 (ja) 2013-02-07 2017-09-20 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6254848B2 (ja) * 2014-01-10 2017-12-27 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP5886381B2 (ja) 2014-07-23 2016-03-16 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
JP6456185B2 (ja) * 2015-02-26 2019-01-23 東京エレクトロン株式会社 シリコン含有膜の成膜方法
JP6361636B2 (ja) 2015-11-18 2018-07-25 コニカミノルタ株式会社 摺動部材の製造方法
JP6545093B2 (ja) * 2015-12-14 2019-07-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
KR102472052B1 (ko) 2016-03-29 2022-11-29 가부시키가이샤 코쿠사이 엘렉트릭 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP6832808B2 (ja) 2017-08-09 2021-02-24 東京エレクトロン株式会社 シリコン窒化膜の成膜方法及び成膜装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183069A (ja) * 2009-01-07 2010-08-19 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2014116626A (ja) * 2009-09-30 2014-06-26 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法および基板処理装置
JP2015185614A (ja) * 2014-03-20 2015-10-22 株式会社日立国際電気 基板処理方法、基板処理装置およびプログラム
JP2016018907A (ja) * 2014-07-09 2016-02-01 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP2018018896A (ja) * 2016-07-26 2018-02-01 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、およびプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046225A (ko) 2021-09-29 2023-04-05 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램

Also Published As

Publication number Publication date
JP7371281B2 (ja) 2023-10-30
JP7035196B2 (ja) 2022-03-14
TW202125637A (zh) 2021-07-01
JP2023033533A (ja) 2023-03-10
KR102473548B1 (ko) 2022-12-05
CN112823410A (zh) 2021-05-18
JP2022002332A (ja) 2022-01-06
CN112823410B (zh) 2024-04-02
US20220375745A1 (en) 2022-11-24
US11476113B2 (en) 2022-10-18
JP2023181258A (ja) 2023-12-21
US20210082685A1 (en) 2021-03-18
KR20220165815A (ko) 2022-12-15
SG11202008980YA (en) 2021-04-29
JPWO2021053756A1 (ja) 2021-09-30
TWI768375B (zh) 2022-06-21
TW202234516A (zh) 2022-09-01
JP7214812B2 (ja) 2023-01-30
KR20210035075A (ko) 2021-03-31

Similar Documents

Publication Publication Date Title
US10497561B2 (en) Method for manufacturing semiconductor device, substrate-processing apparatus, and recording medium
KR101749413B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP6789257B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6756689B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP7371281B2 (ja) 基板処理方法、半導体装置の製造方法、プログラムおよび基板処理装置
KR20190109484A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP6760833B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6759137B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
WO2017056155A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
US20220301851A1 (en) Method of manufacturing semiconductor device, substrate processing method, recording medium, and substrate processing apparatus
JP6990756B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
KR102154114B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP2020205438A (ja) 基板処理装置、半導体装置の製造方法およびプログラム
KR102671300B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP6857759B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP6989677B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
WO2022064586A1 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2021061429A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2022037028A (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP2022040906A (ja) クリーニング方法、半導体装置の製造方法、基板処理装置、およびプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020533172

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945710

Country of ref document: EP

Kind code of ref document: A1