WO2021036381A1 - 激光剥离集成化设备 - Google Patents

激光剥离集成化设备 Download PDF

Info

Publication number
WO2021036381A1
WO2021036381A1 PCT/CN2020/093665 CN2020093665W WO2021036381A1 WO 2021036381 A1 WO2021036381 A1 WO 2021036381A1 CN 2020093665 W CN2020093665 W CN 2020093665W WO 2021036381 A1 WO2021036381 A1 WO 2021036381A1
Authority
WO
WIPO (PCT)
Prior art keywords
peeled
wafer
laser
peeling
lift
Prior art date
Application number
PCT/CN2020/093665
Other languages
English (en)
French (fr)
Inventor
卢敬权
任俊杰
庄文荣
孙明
Original Assignee
东莞市中镓半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市中镓半导体科技有限公司 filed Critical 东莞市中镓半导体科技有限公司
Priority to EP20857814.6A priority Critical patent/EP4024443A4/en
Priority to JP2021551876A priority patent/JP7351069B2/ja
Priority to US17/310,567 priority patent/US20220176496A1/en
Publication of WO2021036381A1 publication Critical patent/WO2021036381A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/707Auxiliary equipment for monitoring laser beam transmission optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • This application belongs to the field of semiconductor manufacturing equipment, for example, relates to a laser lift-off integrated equipment.
  • gallium nitride GaN
  • GaN gallium nitride
  • the crystal quality of the gallium nitride (GaN) epitaxial layer is the fundamental guarantee for the realization of high-performance gallium nitride (GaN)-based devices.
  • GaN gallium nitride
  • the preparation technology of large-size gallium nitride self-supporting substrates has become one of the biggest obstacles on its way forward.
  • the preparation process is usually a heteroepitaxial gallium nitride film on a sapphire substrate, and then laser lift-off Technology (Laser Lift-off Technology) separates the gallium nitride film from the sapphire, thereby obtaining a self-supporting gallium nitride substrate.
  • Laser Lift-off Technology Laser Lift-off Technology
  • the lattice mismatch stress is mainly caused by the mismatch of the sapphire substrate and the GaN crystal lattice size; thermal loss The distribution stress is mainly due to the different thermal expansion coefficients of the two.
  • the GaN epitaxial wafer is grown at a high temperature above 800°C. After the growth is completed and the temperature is cooled, the lattice shrinkage ratio of the two is very different, thus causing each other The crystal lattices between them constrain each other, resulting in greater warpage of the gallium nitride/sapphire composite substrate.
  • the large warpage of the gallium nitride/sapphire composite substrate causes the laser to be out of focus on the peeling surface during laser peeling, which greatly reduces the peeling yield.
  • the present application provides an integrated laser lift-off device, which can solve the problem of wafer fragmentation caused by defocusing during the laser lift-off process, and improve the overall production yield.
  • the embodiment of the present application provides an integrated laser lift-off device, including:
  • the laser light source is set to perform laser peeling on the wafer to be peeled off;
  • the peeling chamber is configured to carry the wafer to be peeled
  • a heater which is set to provide the temperature required for the peeling of the wafer to be peeled off
  • a contour measuring device configured to obtain surface contour information of the wafer to be peeled
  • the moving device is configured to adjust the height of the wafer to be peeled according to the surface profile information obtained by the profile measuring device, so that the focus of the laser light source is located at the position to be peeled of the wafer to be peeled.
  • Figures 1 to 2 are schematic diagrams of the structure of the integrated laser lift-off device provided in the first embodiment of the application;
  • 3a to 3b are schematic diagrams of dividing the to-be-peeled area of the wafer to be peeled off according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of height changes of wafers to be peeled when peeling different areas to be peeled according to an embodiment of the application;
  • 5 to 6 are schematic diagrams of the structure of the integrated laser lift-off device provided in the second embodiment of the application.
  • spatial relation words such as “below”, “below”, “below”, “below”, “above”, “above”, etc. may be used herein to describe an element or The relationship between a feature and other elements or features. It will be understood that these spatial relationship terms are intended to encompass directions other than those depicted in the drawings of the device in use or operation.
  • a layer when referred to as being “between” two layers, it may be the only layer between the two layers, or one or more intervening layers may also be present.
  • the described structure in which the first feature is "above" the second feature may include an embodiment in which the first and second features are formed in direct contact, or may include other features formed on the first and second features.
  • the embodiment between the second feature, so that the first and second features may not be in direct contact.
  • diagrams provided in this embodiment only illustrate the basic idea of the application in a schematic manner, so the diagrams only show the components related to the application instead of the number, shape, and shape of the components in actual implementation.
  • the type, quantity, and ratio of multiple components can be changed at will during actual implementation, and the component layout type may also be more complicated.
  • the large warpage of the gallium nitride/sapphire composite substrate causes the laser to be out of focus on the peeling surface during laser peeling, which greatly reduces the peeling yield.
  • the radius of curvature of a 4-inch GaN/sapphire composite substrate is 0.6-1.5 meters, and the corresponding measured wafer bow is 1200-1300 microns, and the focal depth of the laser is usually about 300 microns, and The laser focus is not adjustable during peeling.
  • the curvature of the wafer is greater than the focal depth of the light source. What's more serious is that the curvature of the wafer continues to change as the peeling progresses, which can easily cause insufficient or excessive laser energy density, and eventually lead to incomplete peeling, splits and other undesirable phenomena, which seriously affect the peeling yield.
  • this embodiment provides an integrated laser lift-off device.
  • the integrated laser lift-off device includes a laser light source 205, a lift-off chamber 203, a heater 202, a profile measuring device 206, and a moving device 201. .
  • the laser light source 205 is disposed above the peeling chamber 203 and is configured to perform laser peeling on the wafer 204 to be peeled in the peeling chamber 203.
  • the wavelength of the laser light source 205 may be 355 nanometers or 266 nanometers.
  • the laser light source 205 has a preset focal depth during peeling, such as 250 ⁇ m-400 ⁇ m, etc. In this embodiment, the laser light source 205 has a focal depth of 300 ⁇ m.
  • the peeling chamber 203 is configured to carry the wafer 204 to be peeled off, and to provide a sealed environment for the wafer 204 to be peeled off.
  • the sealed environment can block the splash of the products generated when the wafer is peeled off, and at the same time, can provide a suitable process for the peeling off. atmosphere.
  • the top of the stripping chamber 203 has a window for providing laser access into the stripping chamber 203.
  • the window is located directly under the laser light source 205 during stripping.
  • the material of the window can be sapphire or quartz. In this embodiment, quartz is selected to avoid damage to the window by the laser light while transmitting the laser light.
  • the heater 202 is located below the peeling chamber 203 and is set to provide the temperature required for the peeling of the wafer 204 to be peeled off.
  • the heater 202 may be a resistance wire heater, a radio frequency heater or an infrared lamp heater.
  • the heater 202 is selected as an infrared tube heater.
  • the contour measuring device 206 is configured to obtain the surface contour information of the wafer 204 to be peeled off.
  • the profile measuring device 206 is selected as a surface profiler.
  • the surface profiler 206 is arranged above the peeling chamber 203.
  • the surface profiler 206 indirectly measures the surface of the wafer 204 to be peeled.
  • the measurement method adopted by the surface profiler 206 includes one of the white light interferometry method, the Nomarski interferometry method, and the shearing interferometry method.
  • the surface profiler 206 measures The method is selected as a white light interferometry method, and the white light interferometry method includes one of a phase scanning interferometry method and a vertical scanning interferometry method.
  • the contour measuring device 206 obtains the surface contour information of the wafer 204 to be peeled, it divides the surface into multiple regions to be peeled according to the surface contour information, and each The maximum height difference inside the region to be stripped is less than or equal to the focal depth of the laser light source 205.
  • the wafer 204 to be peeled can be divided into four regions to be peeled, respectively The area to be peeled off A1, the area to be peeled off A2, the area to be peeled off A3, and the area to be peeled off A4, as shown in FIG. 3a and FIG. 3b, so that the maximum height difference inside each of the areas to be peeled off is less than or equal to the laser light source 205 The depth of focus.
  • the actual number of partitions can be set according to the overall contour height difference of the wafer 204 to be stripped and the focal depth of the laser light source 205, and is not limited to the examples listed here.
  • the profile measuring device 206 can be used to scan the to-be-peeled area after laser peeling is completed in each area to be peeled off.
  • the remaining area of the wafer 204 is re-zoned to the remaining area of the wafer 204 to be peeled off to form a new area to be peeled off.
  • the laser light source 205 adjusts laser parameters according to the surface profile of the area to be peeled off, and the laser parameters include one or more of scanning line speed and duty cycle.
  • the moving device 201 is configured to adjust the height of the wafer 204 to be peeled according to the surface profile information obtained by the profile measuring device 206 so that the focus of the laser light source 205 is at the position to be peeled during peeling. As shown in Figure 4, where H is the reference plane, the corresponding position is the middle height of the current area to be stripped, and also the middle of the laser focal depth. For different peeling stages, the moving device 201 is used to adjust the height of the wafer 204 to be peeled. Since the laser focus is not adjustable during peeling, adjusting the height of the wafer 204 to be peeled can make the laser focus always be located in the wafer to be peeled area.
  • the moving device 201 is also configured to drive the wafer 204 to be peeled to move horizontally. As shown in FIGS. 1 and 2, the moving device 201 can drive the wafer 204 to be peeled to move between the surface profiler 206 and the laser light source 205.
  • This embodiment also provides a peeling method for the integrated laser peeling device, which includes the following steps:
  • Step 1) put the wafer 204 to be peeled into the peeling chamber 203, pass the protective atmosphere and raise the temperature to the peeling temperature.
  • Step 2 Use the moving device 201 to move the entire stripping chamber 203, the heater 202, and the wafer 204 to be stripped horizontally under the surface profiler 206, and use the surface profiler 206 to measure the surface profile information of the wafer 204 to be stripped, and then use the surface profiler 206 to measure the surface profile information of the wafer 204 to be stripped.
  • the contour information divides the area to be peeled off A1, the area to be peeled off A2, the area to be peeled off A3, and the area to be peeled off A4, as shown in FIGS. 1 and 3a and 3b.
  • Step 3 using the mobile device 201 to adjust the height of the wafer 204 to be peeled off according to the above-mentioned surface profile information.
  • Step 4 using the moving device 201 to move the entire stripping chamber 203, the heater 202 and the wafer 204 to be stripped horizontally below the laser light source 205, as shown in FIG. 2, use the laser to scan the stripping area A1 of the wafer 204 to be stripped.
  • Step 6 complete the laser stripping, cool down and take out the wafer.
  • this embodiment provides an integrated laser lift-off device, the basic structure of which is the same as that in Embodiment 1.
  • the integrated laser lift-off device includes a laser light source 205, a lift-off chamber 203, and a heater. 202.
  • a contour measuring device 206 (namely, a surface profiler), a moving device 201, and a mirror 207.
  • the contour measuring device 206 and the mirror 207 are respectively located above the wafer to be peeled 204 and respectively located on the side of the wafer 204 to be peeled off.
  • the contour measuring device 206 faces the mirror 207, and the mirror 207 reflects and images the wafer 204 to be peeled to the contour measuring device 206 by tilting and rotating.
  • the moving device 201 is only configured to adjust the height of the wafer 204 to be peeled according to the surface profile information obtained by the profile measuring device 206, so that the focus of the laser light source 205 is at the position to be peeled during peeling, without horizontal movement
  • the function can effectively simplify the equipment, avoid the deviation of the peeling position caused by the movement error, and improve the peeling yield.
  • This embodiment also provides a peeling method for the integrated laser peeling device, which includes the following steps:
  • Step 1) put the wafer 204 to be peeled into the peeling chamber 203, pass the protective atmosphere and raise the temperature to the peeling temperature.
  • the surface profiler 206 faces the tilted mirror 207, and measures the surface contour information of the wafer to be peeled under the mirror 207 through the reflection imaging of the mirror 207, as shown in FIG. 6, and divides the to be peeled area according to the surface contour information A1, the area to be peeled off A2, the area to be peeled off A3, and the area to be peeled off A4 are as shown in FIGS. 1 and 3a and 3b.
  • Step 3 using the mobile device 201 to adjust the height of the wafer 204 to be peeled off according to the above-mentioned surface profile information.
  • Step 4) Rotate the mirror 207 so that it is perpendicular to the horizontal plane without blocking the laser. As shown in FIG. 5, the laser is used to scan the area A1 of the wafer 204 to be peeled off.
  • Step 6 complete the laser stripping, cool down and take out the wafer.
  • the moving device 201 of this embodiment is only configured to adjust the height of the wafer 204 to be peeled according to the surface profile information obtained by the profile measuring device 206, so that the focus of the laser light source 205 is at the position to be peeled during peeling, and
  • the horizontal movement function is not required, which can effectively simplify the equipment, avoid the deviation of the peeling position caused by the movement error, and improve the peeling yield.
  • This embodiment provides an integrated laser lift-off device, the basic structure of which is the same as that of Embodiment 1.
  • the difference from Embodiment 1 is that the profile measuring device 206 is selected as a laser rangefinder.
  • the laser rangefinder 206 obtains single-point data in one measurement, and uses the mobile device 201 with horizontal rotation and horizontal movement functions to obtain surface profile information through multi-point measurement and data fitting.
  • This embodiment also provides a peeling method for the integrated laser peeling device, which includes the following steps:
  • Step 1) put the wafer 204 to be peeled into the peeling chamber 203, pass the protective atmosphere and raise the temperature to the peeling temperature.
  • Step 2) Use the moving device 201 to move the entire stripping chamber 203, the heater 202 and the wafer 204 to be stripped horizontally under the laser rangefinder, and use the laser distance meter to measure the surface profile information of the wafer 204 to be stripped, and according to the surface
  • the contour information divides the area to be peeled off A1, the area to be peeled off A2, the area to be peeled off A3, and the area to be peeled off A4, as shown in FIGS. 1 and 3a and 3b.
  • Step 3 using the mobile device 201 to adjust the height of the wafer 204 to be peeled off according to the above-mentioned surface profile information.
  • Step 4 using the moving device 201 to move the entire stripping chamber 203, the heater 202 and the wafer 204 to be stripped horizontally below the laser light source 205, as shown in FIG. 2, use the laser to scan the stripping area A1 of the wafer 204 to be stripped.
  • Step 6 complete the laser stripping, cool down and take out the wafer.
  • the integrated laser lift-off device of the present application has the following beneficial effects:
  • the integrated laser stripping equipment and method of use of the present application measures the surface profile information of the wafer 204 to be stripped in real time, and adjusts the height of the wafer in real time during stripping, which can ensure that the laser focus is located at the position to be stripped during stripping, so that the laser does not deviate on the stripping surface. Focus, improve the yield of laser lift-off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Laser Beam Processing (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种激光剥离集成化设备,包括:激光光源,设置为对待剥离晶片进行激光剥离;剥离腔室,设置为承载所述待剥离晶片;加热器,设置为提供所述待剥离晶片进行剥离时所需要的温度;轮廓测量装置,设置为获取所述待剥离晶片的表面轮廓信息;以及移动装置,设置为依据所述轮廓测量装置所获取的表面轮廓信息调整所述待剥离晶片的所在高度,以使所述激光光源的焦点位于所述待剥离晶片的待剥离位置。

Description

激光剥离集成化设备
本申请要求申请日为2019年8月26日、申请号为201910788121.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于半导体制造设备领域,例如涉及一种激光剥离集成化设备。
背景技术
二十世纪末,为了实现高频、高效率及大功率等优异性能电子电力器件的制备,以氮化镓为代表的第三代宽禁带半导体材料加快了发展进程。氮化镓(GaN)由于其优异性能,可应用于制备高功率高频器件等其它特殊条件下工作的半导体器件而得到广泛研究与应用。氮化镓(GaN)外延层的晶体质量是实现高性能氮化镓(GaN)基器件的根本保障。而采用氮化镓(GaN)单晶衬底实现同质外延是提高氮化镓(GaN)外延层晶体质量与氮化镓(GaN)基器件的主要途径。
相关技术中,大尺寸氮化镓自支撑衬底的制备技术成为其前进道路上最大的障碍之一,其制备工艺,通常是在蓝宝石衬底上异质外延氮化镓膜,然后采用激光剥离技术(Laser Lift-off Technique)使得氮化镓膜与蓝宝石分离,从而得到自支撑氮化镓衬底。在氮化镓的外延生长过程中,残余应力主要是晶格失配应力和热失配应力,晶格失配应力主要是蓝宝石衬底和氮化镓晶体晶格大小不匹配造成的;热失配应力主要是由于两者热胀系数不同,氮化镓外延片是在800℃以上的高温状态下生长的,生长完毕降温后,两者的晶格收缩比例有很大不同,因此造成了彼此之间的晶格互相牵制,导致氮化镓/蓝宝石复合衬底的翘曲较大。
氮化镓/蓝宝石复合衬底的较大翘曲,使得激光剥离时激光在剥离面偏焦,极大降低剥离良率。
发明内容
本申请提供了一种激光剥离集成化设备,可以解决激光剥离过程中由偏焦导致的晶片裂片问题,提升整体的制作良率。
本申请实施例提供一种激光剥离集成化设备,包括:
激光光源,设置为对待剥离晶片进行激光剥离;
剥离腔室,设置为承载所述待剥离晶片;
加热器,设置为提供所述待剥离晶片进行剥离时所需要的温度;
轮廓测量装置,设置为获取所述待剥离晶片的表面轮廓信息;以及
移动装置,设置为依据所述轮廓测量装置所获取的表面轮廓信息调整所述待剥离晶片的所在高度,以使所述激光光源的焦点位于所述待剥离晶片的待剥离位置。
附图说明
图1-图2为本申请实施例一提供的激光剥离集成化设备的结构示意图;
图3a-图3b为本申请一实施例提供的待剥离晶片的待剥离区划分示意图;
图4为本申请一实施例提供的在对不同待剥离区进行剥离时的待剥离晶片的高度变化示意图;
图5-图6为本申请实施例二提供的激光剥离集成化设备的结构示意图。
元件标号说明
201 移动装置
202 加热器
203 剥离腔室
204 待剥离晶片
205 激光光源
206 轮廓测量装置
207 反射镜
具体实施方式
如在详述本申请实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本申请保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之 间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本申请的基本构想,遂图示中仅显示与本申请中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时多个组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
氮化镓/蓝宝石复合衬底的较大翘曲,使得激光剥离时激光在剥离面偏焦,极大降低剥离良率。例如,4英寸氮化镓/蓝宝石复合衬底的曲率半径为0.6-1.5米,对应的测量晶圆弯曲度(wafer bow)为1200-1300微米,而激光的焦深通常为300微米左右,且激光焦点在剥离时不可调。晶圆弯曲度比光源的焦深大。更严重的是,晶圆弯曲度还随剥离的进行持续变化,容易造成激光能量密度不足或过度,最终导致不完全剥离、裂片等不良现象,严重影响剥离良率。
实施例一
如图1及图2所示,本实施例提供一种激光剥离集成化设备,所述激光剥离集成化设备包括激光光源205、剥离腔室203、加热器202、轮廓测量装置206以及移动装置201。
如图1所示,所述激光光源205设置于所述剥离腔室203的上方,且设置为对剥离腔室203内的所述待剥离晶片204进行激光剥离。所述激光光源205的波长可以为355纳米或266纳米。所述激光光源205在剥离时具有预设的焦深,如250微米-400微米等,在本实施例中,所述激光光源205的焦深为300微米。
所述剥离腔室203设置为承载所述待剥离晶片204,并为所述待剥离晶片204提供密封环境,该密封环境可以阻挡晶片剥离时生成物的飞溅,同时,可以为剥离提供合适的工艺气氛。所述剥离腔室203的顶部具有提供激光进入所述剥离腔室203内的窗口,所述窗口在剥离时位于所述激光光源205的正下方,所述窗口的材质可以为蓝宝石或石英,在本实施例中选用为石英,以在透过激光的同时,避免激光对窗口的损坏。
如图1所示,所述加热器202位于所述剥离腔室203下方,且设置为提供所述待剥离晶片204进行剥离时所需要的温度。例如,所述加热器202可以为电阻丝 加热器、射频加热器或红外灯管加热器等。在本实施例中,所述加热器202选用为红外灯管加热器。
如图1所示,所述轮廓测量装置206设置为获取所述待剥离晶片204的表面轮廓信息。在本实施例中,所述轮廓测量装置206选用为表面轮廓仪,所述表面轮廓仪206设置于所述剥离腔室203上方,所述表面轮廓仪206间接测量所述待剥离晶片204的表面轮廓,表面轮廓仪206采用的测量方法包括白光干涉测量方法、诺马斯基干涉测量方法及剪切干涉测量方法中的一种,其中,在本实施例中,所述表面轮廓仪206的测量方法选用为白光干涉测量方法,所述白光干涉测量方法包括相位扫描干涉测量方法及垂直扫描干涉测量方法中的一种。
如图3a及图3b所示,待所述轮廓测量装置206在获取所述待剥离晶片204的表面轮廓信息后,根据所述表面轮廓信息将表面分为多个待剥离区,且每个所述待剥离区内部的最大高度差小于或等于所述激光光源205的焦深。例如,对于4英寸的待剥离晶片204,当其整体轮廓高度差为1200微米,激光光源205的焦深为300微米时,可以将所述待剥离晶片204划分为四个待剥离区,分别为待剥离区A1、待剥离区A2、待剥离区A3及待剥离区A4,如图3a及图3b所示,从而每个所述待剥离区内部的最大高度差小于或等于所述激光光源205的焦深。可选的,实际的分区数量可依据待剥离晶片204的整体轮廓高度差以及激光光源205的焦深进行设定,并不限于此处所列举的示例。
由于部分应力释放,晶片轮廓在激光剥离持续进行时会有所变化,为了提高剥离位置的精准性,可以在每一待剥离区完成激光剥离后,采用所述轮廓测量装置206扫描所述待剥离晶片204剩余的区域,对所述待剥离晶片204剩余的区域进行重新分区,形成新的待剥离区。
对于不同的待剥离区,所述激光光源205根据所述待剥离区的表面轮廓调整激光参数,所述激光参数包括扫描线速度及占空比中的一种或多种。
所述移动装置201设置为依据所述轮廓测量装置206所获取的表面轮廓信息调整所述待剥离晶片204的所在高度,使得剥离时激光光源205的焦点位于待剥离位置。如图4所示,其中,H为参考平面,对应的位置为当前待剥离区的中间高度,亦为激光焦深的中间处。对于不同剥离阶段时,通过所述移动装置201调整待剥离晶片204的高度,由于激光焦点在剥离时不可调,故调整待剥离晶片204的高度,可以使激光焦点始终位于晶片的待剥离区。
在本实施例中,所述移动装置201还设置为带动所述待剥离晶片204水平移 动。如图1及图2所示,所述移动装置201可以带动所述待剥离晶片204在所述表面轮廓仪206及所述激光光源205之间移动。
本实施例还提供一种激光剥离集成化设备的剥离方法,包括以下步骤:
步骤1),将待剥离晶片204放入剥离腔室203,通入保护气氛并升温至剥离温度。
步骤2),利用移动装置201将剥离腔室203、加热器202及待剥离晶片204整体水平移动至表面轮廓仪206下方,使用表面轮廓仪206测量待剥离晶片204的表面轮廓信息,并依据表面轮廓信息划分待剥离区A1、待剥离区A2、待剥离区A3及待剥离区A4,如图1及图3a及图3b所示。
步骤3),根据上述的表面轮廓信息利用移动装置201调整待剥离晶片204的高度。
步骤4),利用移动装置201将剥离腔室203、加热器202及待剥离晶片204整体水平移动至激光光源205下方,如图2所示,使用激光扫射待剥离晶片204的待剥离区A1。
步骤5),停止激光扫射,并重复步骤2)至步骤4),分别剥离待剥离区A2、待剥离区A3及待剥离区A4,或其他更多待剥离区。
步骤6),完成激光剥离,降温并取出晶片。
实施例二
如图5-图6所示,本实施例提供一种激光剥离集成化设备,其基本结构如实施例一,其中,所述激光剥离集成化设备包括激光光源205、剥离腔室203、加热器202、轮廓测量装置206(即表面轮廓仪)、移动装置201及反射镜207,所述轮廓测量装置206及所述反射镜207分别位于所述待剥离晶片204的上方且分别位于剥离晶片204的两侧,所述轮廓测量装置206正对所述反射镜207,所述反射镜207通过倾斜转动将所述待剥离晶片204反射成像至所述轮廓测量装置206。其中,反射镜207在图5所示平面内转动。所述移动装置201仅设置为依据所述轮廓测量装置206所获取的表面轮廓信息调整所述待剥离晶片204的所在高度,使得剥离时激光光源205的焦点位于待剥离位置,而不需要水平移动功能,可以有效简化设备,并避免由于移动误差造成的剥离位置偏移,提高剥离良率。
本实施例还提供一种激光剥离集成化设备的剥离方法,包括以下步骤:
步骤1),将待剥离晶片204放入剥离腔室203,通入保护气氛并升温至剥离 温度。
步骤2),旋转反射镜207,使其与水平面成45度夹角。表面轮廓仪206正对倾斜的反射镜207,通过反射镜207的反射成像测量位于反射镜207下面晶片的待剥离区的表面轮廓信息,如图6所示,并依据表面轮廓信息划分待剥离区A1、待剥离区A2、待剥离区A3及待剥离区A4,如图1及图3a及图3b所示。
步骤3),根据上述的表面轮廓信息利用移动装置201调整待剥离晶片204的高度。
步骤4),旋转反射镜207,使其垂直于水平面,不遮挡激光,如图5所示,使用激光扫射待剥离晶片204的待剥离区A1。
步骤5),停止激光扫射,并重复步骤2)至步骤4),分别剥离待剥离区A2、待剥离区A3及待剥离区A4,或其他更多待剥离区。
步骤6),完成激光剥离,降温并取出晶片。
本实施例的所述移动装置201仅设置为依据所述轮廓测量装置206所获取的表面轮廓信息调整所述待剥离晶片204的所在高度,使得剥离时激光光源205的焦点位于待剥离位置,而不需要水平移动功能,可以有效简化设备,并避免由于移动误差造成的剥离位置偏移,提高剥离良率。
实施例三
本实施例提供一种激光剥离集成化设备,其基本结构如实施例1,其中,与实施例1的不同之处在于,所述轮廓测量装置206选用为激光测距仪。所述激光测距仪206一次测量得到单点数据,利用带有水平旋转和水平移动功能的移动装置201,通过多点测量,并拟合数据即可得到表面轮廓信息。
本实施例还提供一种激光剥离集成化设备的剥离方法,包括以下步骤:
步骤1),将待剥离晶片204放入剥离腔室203,通入保护气氛并升温至剥离温度。
步骤2),利用移动装置201将剥离腔室203、加热器202及待剥离晶片204整体水平移动至激光测距仪下方,使用激光测距仪测量待剥离晶片204的表面轮廓信息,并依据表面轮廓信息划分待剥离区A1、待剥离区A2、待剥离区A3及待剥离区A4,如图1及图3a及图3b所示。
步骤3),根据上述的表面轮廓信息利用移动装置201调整待剥离晶片204的高度。
步骤4),利用移动装置201将剥离腔室203、加热器202及待剥离晶片204整体水平移动至激光光源205下方,如图2所示,使用激光扫射待剥离晶片204的待剥离区A1。
步骤5),停止激光扫射,并重复步骤2)至步骤4),分别剥离待剥离区A2、待剥离区A3及待剥离区A4,或其他更多待剥离区。
步骤6),完成激光剥离,降温并取出晶片。
如上所述,本申请的激光剥离集成化设备,具有以下有益效果:
本申请的激光剥离集成化设备及其使用方法,通过实时测量待剥离晶片204的表面轮廓信息,在剥离时实时调整晶片高度,可以保证剥离时激光焦点位于待剥离位置,使得激光在剥离面不偏焦,提升激光剥离的良率。

Claims (10)

  1. 一种激光剥离集成化设备,包括:
    激光光源,设置为对待剥离晶片进行激光剥离;
    剥离腔室,设置为承载所述待剥离晶片;
    加热器,设置为提供所述待剥离晶片进行剥离时所需要的温度;
    轮廓测量装置,设置为获取所述待剥离晶片的表面轮廓信息;以及
    移动装置,设置为依据所述轮廓测量装置所获取的表面轮廓信息调整所述待剥离晶片的所在高度,以使所述激光光源的焦点位于所述待剥离晶片的待剥离位置。
  2. 根据权利要求1所述的激光剥离集成化设备,其中:所述轮廓测量装置包括表面轮廓仪及激光测距仪中的一种。
  3. 根据权利要求2所述的激光剥离集成化设备,其中:所述轮廓测量装置为表面轮廓仪,所述表面轮廓仪设置为间接测量所述待剥离晶片的表面轮廓,且所述表面轮廓仪采用的测量方法包括白光干涉测量方法、诺马斯基干涉测量方法及剪切干涉测量方法中的一种。
  4. 根据权利要求3所述的激光剥离集成化设备,其中:所述表面轮廓仪的测量方法为白光干涉测量方法,所述白光干涉测量方法包括相位扫描干涉测量方法及垂直扫描干涉测量方法中的一种。
  5. 根据权利要求1所述的激光剥离集成化设备,其中:所述轮廓测量装置还设置为在获取所述待剥离晶片的表面轮廓信息后,根据所述表面轮廓信息将所述待剥离晶片的表面分为多个待剥离区,且每个所述待剥离区内部的最大高度差小于或等于所述激光光源的焦深。
  6. 根据权利要求5所述的激光剥离集成化设备,其中:所述轮廓测量装置还设置为在完成每一所述待剥离区的激光剥离后,扫描所述待剥离晶片剩余的区域,并对所述待剥离晶片剩余的区域进行重新分区,以形成新的待剥离区。
  7. 根据权利要求5所述的激光剥离集成化设备,其中:所述激光光源能够根据所述待剥离区的表面轮廓调整激光参数,所述激光参数包括扫描线速度及占空比中的至少一种。
  8. 根据权利要求1所述的激光剥离集成化设备,其中:所述移动装置还设置为带动所述待剥离晶片产生水平移动和水平转动中的至少一种运动。
  9. 根据权利要求1所述的激光剥离集成化设备,还包括反射镜,所述轮廓测量装置及所述反射镜分别位于所述待剥离晶片的上方且分别位于所述待剥离 晶片的两侧,所述轮廓测量装置正对所述反射镜,所述反射镜通过倾斜转动将所述待剥离晶片反射成像至所述轮廓测量装置。
  10. 根据权利要求1所述的激光剥离集成化设备,其中:所述激光光源的波长为355纳米或266纳米。
PCT/CN2020/093665 2019-08-26 2020-06-01 激光剥离集成化设备 WO2021036381A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20857814.6A EP4024443A4 (en) 2019-08-26 2020-06-01 INTEGRATED LASER DETACHMENT DEVICE
JP2021551876A JP7351069B2 (ja) 2019-08-26 2020-06-01 レーザ剥離統合化機器
US17/310,567 US20220176496A1 (en) 2019-08-26 2020-06-01 Laser lift-off integrated apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910788121.X 2019-08-26
CN201910788121.XA CN110534477B (zh) 2019-08-26 2019-08-26 激光剥离集成化设备

Publications (1)

Publication Number Publication Date
WO2021036381A1 true WO2021036381A1 (zh) 2021-03-04

Family

ID=68662798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093665 WO2021036381A1 (zh) 2019-08-26 2020-06-01 激光剥离集成化设备

Country Status (5)

Country Link
US (1) US20220176496A1 (zh)
EP (1) EP4024443A4 (zh)
JP (1) JP7351069B2 (zh)
CN (1) CN110534477B (zh)
WO (1) WO2021036381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406393B2 (ja) 2020-02-14 2023-12-27 東レエンジニアリング株式会社 チップ転写装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534477B (zh) * 2019-08-26 2022-04-15 东莞市中镓半导体科技有限公司 激光剥离集成化设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211277A (ja) * 2002-01-22 2003-07-29 Sumitomo Heavy Ind Ltd レーザを用いたグリーンシート穴あけ加工方法及び加工装置
JP2007109799A (ja) * 2005-10-12 2007-04-26 Shibuya Kogyo Co Ltd 板状物品のピックアップ方法およびその装置
CN105436710A (zh) * 2015-12-30 2016-03-30 大族激光科技产业集团股份有限公司 一种硅晶圆的激光剥离方法
CN110534477A (zh) * 2019-08-26 2019-12-03 东莞市中镓半导体科技有限公司 激光剥离集成化设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080965A (en) * 1997-09-18 2000-06-27 Tokyo Electron Limited Single-substrate-heat-treatment apparatus in semiconductor processing system
US6777645B2 (en) * 2001-03-29 2004-08-17 Gsi Lumonics Corporation High-speed, precision, laser-based method and system for processing material of one or more targets within a field
US20060011592A1 (en) * 2004-07-14 2006-01-19 Pei-Chung Wang Laser welding control
JP5026946B2 (ja) 2007-12-19 2012-09-19 古河電気工業株式会社 窒化物半導体単結晶基板製造方法
JP2010014444A (ja) * 2008-07-01 2010-01-21 Kanazawa Univ 位相シフト法による形状測定方法及び測定装置
CN101879657B (zh) * 2009-05-08 2016-06-29 东莞市中镓半导体科技有限公司 固体激光剥离设备和剥离方法
JP2011040564A (ja) * 2009-08-11 2011-02-24 Toshiba Corp 半導体素子の製造方法および製造装置
JP2015166751A (ja) 2015-07-03 2015-09-24 エーファウ・グループ・エー・タルナー・ゲーエムベーハー ウェーハスタック内の層厚さ及び欠陥を測定する測定デバイス及び方法
JP6907011B2 (ja) * 2017-04-24 2021-07-21 株式会社ディスコ レーザー加工装置、及びレーザー加工方法
CN108335994A (zh) * 2017-12-28 2018-07-27 大族激光科技产业集团股份有限公司 晶片接合结构、晶片接合方法、晶片剥离方法及装置
CN108608120A (zh) * 2018-04-25 2018-10-02 大族激光科技产业集团股份有限公司 芯片衬底的激光剥离系统和方法
CN109148369B (zh) * 2018-10-15 2024-03-15 保定中创燕园半导体科技有限公司 一种加热激光剥离设备
CN110102877A (zh) * 2019-05-07 2019-08-09 东莞市中镓半导体科技有限公司 液态金属辅助导热的激光剥离装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211277A (ja) * 2002-01-22 2003-07-29 Sumitomo Heavy Ind Ltd レーザを用いたグリーンシート穴あけ加工方法及び加工装置
JP2007109799A (ja) * 2005-10-12 2007-04-26 Shibuya Kogyo Co Ltd 板状物品のピックアップ方法およびその装置
CN105436710A (zh) * 2015-12-30 2016-03-30 大族激光科技产业集团股份有限公司 一种硅晶圆的激光剥离方法
CN110534477A (zh) * 2019-08-26 2019-12-03 东莞市中镓半导体科技有限公司 激光剥离集成化设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406393B2 (ja) 2020-02-14 2023-12-27 東レエンジニアリング株式会社 チップ転写装置

Also Published As

Publication number Publication date
US20220176496A1 (en) 2022-06-09
CN110534477A (zh) 2019-12-03
JP7351069B2 (ja) 2023-09-27
EP4024443A4 (en) 2023-11-08
JP2022522503A (ja) 2022-04-19
EP4024443A1 (en) 2022-07-06
CN110534477B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2021036381A1 (zh) 激光剥离集成化设备
JP5802943B2 (ja) エピタキシャル成長用内部改質基板の製造方法および多層膜付き内部改質基板の製造方法
TWI459539B (zh) 用以形成立體電路之系統及方法
JP5732685B2 (ja) 結晶性膜、デバイス、及び、結晶性膜又はデバイスの製造方法
WO2010082267A1 (ja) エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
KR101024309B1 (ko) 단결정 사파이어 기판
WO2011108706A1 (ja) 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
US20180151404A1 (en) Method of fabricating diamond-semiconductor composite substrates
JP2011049518A (ja) レーザリフトオフ技術を用いて発光ダイオードを製造する方法及びヒータを有するレーザリフトオフ装置
TW201042710A (en) Method and apparatus for irradiating a semiconductor material surface by laser energy
CN102181824A (zh) 一种图形化衬底的工艺及其结构以及发光二极管芯片
CN106783648B (zh) 一种led显示屏的制备方法
TW201340379A (zh) 成膜方法、真空處理裝置、半導體發光元件之製造方法、半導體發光元件、照明裝置
CN109148369A (zh) 一种加热激光剥离设备
KR101172364B1 (ko) 질화갈륨 단결정 기판 및 표면 가공방법
KR20200066146A (ko) 다이아몬드 기판 제조 방법
CN107604339B (zh) 一种硒化镉薄膜材料的制备方法
CN102306624A (zh) 光子晶体和半导体的制造方法及含有所述半导体的器件
CN210296316U (zh) 一种可调节光强型激光剥离装置
US20130020582A1 (en) Rapid fabrication methods for forming nitride based semiconductors based on freestanding nitride growth substrates
US10971358B2 (en) Method of making a peeled magnesium oxide substrate using laser irradiation
KR102470876B1 (ko) 모놀리식 3차원 소자의 상부층 고결정화 방법 및 이를 통해 제조된 모놀리식 3차원 소자
KR101171358B1 (ko) 히터를 갖는 레이저 리프트 오프 장치
WO2019242139A1 (zh) 一种图形化外延结构激光剥离装置
TW201836750A (zh) 碳化矽晶體切片設備及切片方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020857814

Country of ref document: EP

Effective date: 20220328