WO2011108706A1 - 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法 - Google Patents

単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法 Download PDF

Info

Publication number
WO2011108706A1
WO2011108706A1 PCT/JP2011/055076 JP2011055076W WO2011108706A1 WO 2011108706 A1 WO2011108706 A1 WO 2011108706A1 JP 2011055076 W JP2011055076 W JP 2011055076W WO 2011108706 A1 WO2011108706 A1 WO 2011108706A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal substrate
multilayer film
substrate
region
Prior art date
Application number
PCT/JP2011/055076
Other languages
English (en)
French (fr)
Inventor
英雄 会田
奈津子 青田
仁志 星野
健次 古田
友三郎 浜元
慶司 本庄
Original Assignee
並木精密宝石株式会社
株式会社ディスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社, 株式会社ディスコ filed Critical 並木精密宝石株式会社
Priority to CN201180011562.0A priority Critical patent/CN102792420B/zh
Priority to JP2012503288A priority patent/JP5732684B2/ja
Priority to EP11750815.0A priority patent/EP2544220A4/en
Priority to KR20127022613A priority patent/KR101491528B1/ko
Priority to US13/582,587 priority patent/US20130161797A1/en
Publication of WO2011108706A1 publication Critical patent/WO2011108706A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Definitions

  • the present invention relates to a single crystal substrate, a method for manufacturing a single crystal substrate, a method for manufacturing a single crystal substrate with a multilayer film, and a method for manufacturing an element.
  • Nitride semiconductors typified by gallium nitride have a wide band gap and can emit blue light, and thus are widely used in LEDs (light emitting diodes), LDs (semiconductor lasers), and the like. In recent years, efforts have been actively made to further increase luminous efficiency and increase brightness.
  • a general nitride semiconductor light emitting device structure includes a sapphire substrate, a buffer layer made of GaN, an n-type contact layer made of n-type GaN, an n-type cladding layer made of n-type AlGaN, an active layer made of n-type InGaN, It has a double hetero structure in which a p-type cladding layer made of p-type AlGaN and a p-type contact layer made of p-type GaN are sequentially stacked.
  • the active layer is a single quantum well (SQW: Single Quantum Well) structure consisting of only a well layer made of InxGa1-xN (0 ⁇ X ⁇ 1), or a well layer made of InxGa1-xN (0 ⁇ X ⁇ 1), It is configured to include a multiple quantum well structure (MQW: In) with a barrier layer made of InyGa1-yN (0 ⁇ y ⁇ 1, y ⁇ x) (see Patent Document 1).
  • SQW Single Quantum Well
  • Non-Patent Document 1 investigates how an AlN buffer layer and a GaN layer are epitaxially grown on a sapphire substrate, and how thermal stress generated by the film formation is relieved depending on the film thickness of the GaN layer. Results are disclosed.
  • the warpage of the substrate increases, and accordingly, interface defects, microcracks, dislocations, and macrocracks occur. It is clarified that stress is relieved.
  • FIG. 4 discloses an analysis method for in-situ observation of the warpage of a substrate that occurs through a process of epitaxially growing a GaN-based LED structure on a sapphire substrate. According to this, it is shown that the curvature of the sapphire substrate greatly changes due to changes in film forming material, film forming temperature, and film thickness in a series of film forming steps. Furthermore, it has been clarified that the emission wavelength in the substrate plane is made uniform by adopting a film forming process in which the curvature of the sapphire substrate becomes substantially zero at the growth stage of the InGaN layer as the active layer.
  • the warpage of the sapphire substrate changes greatly through a series of film forming steps, which affects the quality of the nitride semiconductor film and the uniformity of the emission wavelength.
  • the warp shape and the warp amount of the sapphire substrate are set so that the substrate curvature is substantially zero in the InGaN-based active layer using the difference in thermal expansion coefficient with the substrate. From such a background, various polishing techniques have been studied in order to control the shape and the amount of warpage of the sapphire substrate (see Patent Document 2, etc.).
  • Patent Document 3 when dividing a light emitting device in which a nitride semiconductor is laminated on a sapphire substrate, a pulsed laser is focused inside the sapphire substrate having a thickness of about 80 to 90 ⁇ m to form a division planned line of the light emitting device.
  • a technique for forming a corresponding altered region is known (Patent Document 3).
  • the technique disclosed in Patent Document 3 is a method for processing a sapphire substrate that can suppress a decrease in luminance of the light emitting element even when the sapphire substrate is irradiated with a laser beam and divided into individual light emitting elements. It is aimed.
  • a multilayer film corresponding to the element structure is formed on a single crystal substrate such as a sapphire substrate.
  • the single crystal substrate usually warps.
  • various post-processes are usually performed on the single crystal substrate with a multilayer film.
  • the post-process is performed in a state where the multilayer film-coated substrate is warped, the quality of the elements and the yield are reduced.
  • the following problem occurs. That is, when patterning a multilayer film, the resist formed on the multilayer film is exposed using a photomask. At this time, the single crystal substrate with the multilayer film is warped. Therefore, when the light irradiated for exposure is focused on the surface of the multilayer film located in the center of the single crystal substrate, the surface of the multilayer film located near the edge of the single crystal substrate is focused. Will be blurred. In this case, exposure unevenness occurs in the plane of the multilayer film, which leads to variations in the quality of elements manufactured through subsequent processes and a decrease in yield.
  • the multilayer film of the single crystal substrate with the multilayer film was formed. It is necessary to affix the surface to a flat polishing machine and fix it.
  • a large pressure is applied to the single crystal substrate with a multilayer film during the pasting process to flatten the surface to be backlapped. Need to do.
  • the greater the warp the greater the pressure that must be applied.
  • cracks are likely to occur in the substrate with a multilayer film, leading to a decrease in yield.
  • the amount of polishing required for the back wrap process increases and the polishing time becomes longer, so the productivity is lowered and lacks practicality.
  • the multilayer film is generally formed using a substantially flat single crystal substrate having almost no warpage. Then, when the multilayer film is formed on one side of the single crystal substrate, the stress in the regions on both sides divided by the line that bisects the single crystal substrate in the thickness direction due to the internal stress caused by the multilayer film The balance will be lost. As a result, it can be said that the single crystal substrate is warped when the formation of the multilayer film is completed.
  • warping caused by the formation of the multilayer film is warped in advance as a single crystal substrate used for manufacturing a single crystal substrate with a multilayer film so that the warpage caused when the multilayer film is formed is corrected. It is considered desirable to use a substrate in a wet state.
  • the warpage occurs from the film forming process step of forming a multilayer film on the single crystal substrate, but if the fluctuation of the warp behavior of the single crystal substrate during the film forming process is severe, in each layer constituting the multilayer film, Film thickness unevenness and / or film quality unevenness occurs. This unevenness in film thickness and / or unevenness in film quality has led to variations in the quality of the various elements and a decrease in yield.
  • the present invention has been made in view of the above circumstances, and a single crystal substrate capable of correcting warpage caused by the formation of a multilayer film, a manufacturing method thereof, and a single crystal substrate with a multilayer film using the single crystal substrate And a device manufacturing method using the manufacturing method.
  • the above-mentioned subject is achieved by the following present invention. That is, The single crystal substrate of the present invention is provided with a heat-denatured layer in one of two regions consisting of a first region and a second region obtained by dividing the substrate into two equal parts in the thickness direction of the substrate, and The surface side of the region where the heat-denaturing layer is provided is warped so as to be convex.
  • the region where the heat-denatured layer is provided is preferably the first region.
  • the region where the heat-denatured layer is provided is preferably the second region.
  • the heat-denatured layer is preferably provided in a range of 5% or more and less than 50% in the thickness direction of the substrate.
  • the heat-denatured layer is preferably provided in the range of more than 50% and not more than 95% in the thickness direction of the substrate.
  • the heat-denatured layer is preferably formed by laser irradiation.
  • the heat-denatured layer is provided in parallel with both surfaces of the substrate.
  • the heat-denatured layer is in the plane direction of the substrate, i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged; ii) a shape in which a plurality of circles or ellipses having the same shape and the same size are regularly arranged; iii) concentric circles, iv) a shape formed substantially point-symmetrically with respect to the center point of the substrate; v) a shape formed substantially symmetrical with respect to a straight line passing through the center point of the substrate; vi) stripe shape, and vii) Spiral shape It is preferable that it is provided in at least any one pattern shape selected from.
  • a shape in which a plurality of polygons having the same shape and the same size are regularly arranged is a lattice shape.
  • the pitch of the lines constituting the pattern forming the lattice shape is in the range of 50 ⁇ m to 2000 ⁇ m.
  • the curvature of the substrate is preferably within a range of 200 km ⁇ 1 or less.
  • the substrate material is preferably sapphire.
  • the substrate preferably has a diameter of 50 mm or more and 300 mm or less.
  • the thickness of the substrate is preferably 0.05 mm or more and 5.0 mm or less.
  • the method for producing a single crystal substrate of the present invention comprises irradiating a laser from one surface side of the single crystal substrate before the laser irradiation treatment, At least through a heat-denatured layer forming step of forming a heat-denatured layer in either one of the two regions consisting of the first region and the second region obtained by equally dividing the substrate in the thickness direction of the substrate, A single crystal substrate is manufactured in which the surface side of the region provided with the heat-denatured layer is warped so as to be convex.
  • a region where the heat-denatured layer is formed is the first region.
  • the laser irradiation to the single crystal substrate is performed from the surface of the single crystal substrate on the first region side.
  • the region where the heat-denatured layer is formed is preferably the second region.
  • the laser irradiation to the single crystal substrate is performed from the surface of the single crystal substrate on the second region side.
  • one embodiment of the method for producing a single crystal substrate of the present invention is preferably carried out so that the laser irradiation satisfies the irradiation conditions described in at least one of the following A to B.
  • ⁇ Irradiation condition A> ⁇ Laser wavelength: 200 nm to 350 nm ⁇ Pulse width: nanosecond order ⁇ Irradiation condition B> ⁇ Laser wavelength: 350 nm to 2000 nm ⁇ Pulse width: femtosecond order to picosecond order
  • one of the two regions consisting of the first region and the second region obtained by equally dividing the substrate into two in the thickness direction of the substrate is in any one of the above regions.
  • a surface of the single crystal substrate provided with a heat-denatured layer and warped so that the surface side of the region where the heat-denatured layer is provided is convex, on the surface of the second region side,
  • a single crystal substrate with a multilayer film is manufactured by performing at least a multilayer film formation step of forming a multilayer film having two or more layers.
  • the region where the heat-denatured layer is formed is preferably the first region.
  • the relative position in the thickness direction of the substrate is assumed to be 0% on the surface on the first region side, and the surface on the second region side is 100%. %, It is preferable that the heat-denatured layer is formed so as to be located within a range of 5% or more and less than 50% in the thickness direction of the substrate.
  • the region where the heat-denatured layer is formed is preferably the second region.
  • the relative position in the thickness direction of the substrate is assumed to be 0% on the surface on the first region side, and the surface on the second region side is 100%. %, It is preferable that the heat-denatured layer is formed so as to be within a range of more than 50% and not more than 95% in the thickness direction of the substrate.
  • one embodiment of the method for producing a single crystal substrate with a multilayer film of the present invention is obtained by dividing the substrate into two equal parts in the thickness direction of the substrate by irradiating a laser from one surface side of the single crystal substrate.
  • the surface side of the first region is simply warped so as to be convex. It is preferable to manufacture a crystal substrate and then perform a multilayer film formation step on the single crystal substrate.
  • the laser irradiation to the single crystal substrate is performed from the surface of the single crystal substrate on the first region side.
  • an embodiment of the method for producing a single crystal substrate with a multilayer film of the present invention is obtained by dividing the substrate into two equal parts in the thickness direction of the substrate by irradiating a laser from one surface side of the single crystal substrate.
  • the surface side of the second region is warped so as to be convex by at least a heat-denaturing layer forming step of forming a heat-denaturing layer in the second region. It is preferable to manufacture a crystal substrate and then perform a multilayer film formation step on the single crystal substrate.
  • the laser irradiation to the single crystal substrate is performed from the surface of the single crystal substrate on the second region side.
  • the laser irradiation may be performed so as to satisfy the irradiation condition described in at least one of the following A to B: preferable.
  • the heat-denatured layer is preferably formed so as to be parallel to the multilayer film.
  • the heat-denatured layer is in a plane direction of the substrate. i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged; ii) a shape in which a plurality of circles or ellipses having the same shape and the same size are regularly arranged; iii) concentric circles, iv) a shape formed substantially point-symmetrically with respect to the center point of the substrate; v) a shape formed substantially symmetrical with respect to a straight line passing through the center point of the substrate; vi) stripe shape, and vii) Spiral shape Preferably, it is formed so as to draw at least one pattern shape selected from the above.
  • a shape in which a plurality of polygons having the same shape and the same size are regularly arranged is a lattice shape.
  • the pitch of lines constituting a pattern having a lattice shape is in a range of 50 ⁇ m to 2000 ⁇ m.
  • the curvature of the single crystal substrate before the multilayer film is formed is 200 km ⁇ 1 or less. It is preferable to be within the range.
  • the material of the substrate is preferably sapphire.
  • the diameter of the substrate is preferably 50 mm or more and 300 mm or less.
  • the thickness of the substrate is preferably 0.05 mm or more and 5.0 mm or less.
  • At least one of the layers constituting the multilayer film is a nitride semiconductor crystal layer.
  • the heat-denatured layer is provided in one of the two regions consisting of the first region and the second region obtained by equally dividing the single crystal substrate in the thickness direction.
  • a single crystal substrate with a multilayer film is manufactured by at least a multilayer film formation step of forming a multilayer film having two or more layers, Further, by performing at least patterning treatment on the multilayer film of the single crystal substrate with the multilayer film, an element portion that functions as any one element selected from a light emitting element, a photovoltaic element, and a semiconductor element is manufactured.
  • An element including the element part and a single crystal substrate having a size substantially corresponding to the element part is manufactured through at least an element part forming step.
  • a single crystal substrate capable of correcting warpage caused by the formation of a multilayer film, a manufacturing method thereof, and a manufacturing of a single crystal substrate with a multilayer film using the single crystal substrate A method and a device manufacturing method using the manufacturing method can be provided.
  • FIG. 5A is a plan view showing a stripe shape in which a plurality of lines are formed perpendicular to the orientation flat surface of the substrate
  • FIG. 5B is a plan view showing the plurality of lines in the orientation flat of the substrate
  • FIG. 5C is a plan view showing a lattice shape in which the arrangement pattern shapes shown in FIGS. 5A and 5B are combined.
  • regular hexagons of the same size are regularly arranged such that all six vertices of the regular hexagon overlap with any one of the regular hexagons adjacent to the regular hexagon.
  • FIG. 6A is a diagram showing a state before the start of film formation
  • FIG. 6B is a diagram showing a state after the low-temperature buffer layer is formed
  • FIG. 6C is an n ⁇
  • FIG. 6D is a diagram showing a state after the GaN layer is formed
  • FIG. 6D is a diagram showing a state after the InGaN-based active layer having a multiple quantum well structure is formed. It is a graph which shows an example of the curvature behavior of the single crystal substrate in a multilayer film formation process.
  • FIG. 9A is a diagram showing an element part forming step
  • FIG. 9B is a diagram showing a polishing step
  • FIG. 9C is a diagram showing a division-scheduled line forming step
  • FIG. 9D is a diagram showing the dividing step. It is the graph which showed the depth and curvature variation
  • FIG. 6 is a graph showing the warpage behavior of a single crystal substrate in the process of forming an AlN film and forming an LT-GaN film in the present embodiment. It is a graph which shows an example of the curvature behavior of a single crystal substrate in the process of forming a multilayer film in the single crystal substrate which formed the heat denaturation layer in the 2nd field. It is a schematic explanatory drawing which shows an example of the manufacturing method of the single crystal substrate which concerns on another form of this embodiment. It is the graph which showed the depth and curvature variation
  • the single crystal substrate of this embodiment (hereinafter simply referred to as “substrate” as necessary) is divided into two equal parts in the thickness direction of the substrate, and the two regions consisting of the first region and the second region are: A heat-denatured layer is provided in either one of the above regions, and the surface side of the region where the heat-denatured layer is provided is warped so as to be convex.
  • the method for manufacturing a single crystal substrate with a multilayer film of the present embodiment using the single crystal substrate of the present embodiment has two or more layers on the surface of the single crystal substrate of the present embodiment on the second region side.
  • a single crystal substrate with a multilayer film is manufactured by performing at least a multilayer film formation step of forming a multilayer film.
  • the region where the heat-denatured layer is provided is either the first region or the second region.
  • warping caused by the formation of the multilayer film can be corrected when the multilayer film is formed using the single crystal substrate of the present embodiment.
  • the single crystal substrate with a multilayer film be as flat as possible by correcting this warp, but the direction of the warp caused by the formation of the multilayer film remains the same.
  • the degree of warpage may only be somewhat smaller, or it may be caused by the multilayer film formation so that the direction of warpage caused by the multilayer film formation is reversed and warped in the reverse direction. You may correct the curvature which arose.
  • the single crystal substrate with the multilayer film approaches a substantially flat state by correcting the warp caused by the formation of the multilayer film
  • a post-process is performed after the multilayer film is formed on the conventional single crystal substrate.
  • the quality variation of the device is suppressed and the yield is improved. It becomes easier.
  • the reason for correcting the warp caused by the multilayer film is that the single crystal substrate of the present embodiment is provided with a heat-denatured layer in the first region. This is because the multilayer film is formed on the surface on the second region side when the multilayer film is formed.
  • the multilayered single crystal substrate caused by the multilayer film is formed. Warp can be corrected.
  • the same effect as described above can be obtained even if a single crystal substrate having the same curved shape as that warped by the polishing process is used. Is also expected to be obtained.
  • normal polishing is performed on a flat substrate, it is very difficult to manufacture a single crystal substrate having a curved shape similar to that when warped by a polishing process.
  • a single crystal substrate having a curved shape similar to the case of warping can be easily obtained.
  • the crystal plane exposed to the polished surface varies within the substrate surface.
  • a crystalline film is used for the epitaxial growth using the crystal plane exposed on the surface of the single crystal substrate. Often. Considering the need for such a single crystal substrate, it is almost impossible to form a multilayer film using a single crystal substrate curved by a lens polishing process, and lacks practicality and versatility.
  • the “thermally denatured layer” formed in the single crystal substrate of the present embodiment is a layer formed by locally heating a partial region of the single crystal substrate.
  • the heat-denatured layer is formed in one of two regions divided by a line that bisects the single crystal substrate in the thickness direction, the heat-denatured layer is formed on the one region side.
  • the single crystal substrate is warped so as to be convex.
  • the method for forming this heat-denatured layer is not particularly limited, but a method of irradiating a single crystal substrate with a laser is usually used. In this case, due to multiphoton absorption of atoms present in the laser irradiated region, the region is locally heated, and some modification such as a change in crystal structure or crystallinity occurs in the surrounding region. Thus, a heat-denatured layer is formed. That is, among the two regions consisting of the first region and the second region obtained by irradiating the laser from one surface side of the single crystal substrate before the laser irradiation treatment and dividing into two in the thickness direction of the substrate.
  • the single crystal substrate of the present embodiment warped so as to be convex on the surface side of the first region can be manufactured through at least a heat-denatured layer forming step of forming a heat-denatured layer in the first region. And a multilayer film formation process is implemented after passing through this heat-denatured layer formation process.
  • laser irradiation is performed from the surface on the first region side. Accordingly, it may be carried out from the surface on the second region side.
  • the laser irradiation may be carried out under any irradiation conditions as long as a heat-denatured layer can be formed. However, in general, energy can be concentrated in a short time width, so that a high peak can be obtained. It is preferable to carry out within the ranges shown in 1) and 2) below by using a pulse laser that emits laser light intermittently in that an output can be obtained.
  • Pulse width femtosecond order to nanosecond order (1 fs to 1000 ns)
  • the laser wavelength and pulse width are the light transmittance / light absorption due to the material of the single crystal substrate that is the target of laser irradiation, the size and pattern accuracy of the heat-denatured layer formed in the single crystal substrate, It is appropriately selected in consideration of a laser device that can be used practically.
  • ⁇ Irradiation condition A> Laser wavelength: 200 nm to 350 nm -Pulse width: nanosecond order (1 ns to 1000 ns). More preferably, it is 10 ns to 15 ns.
  • the irradiation condition A uses a laser having a shorter wavelength than that of the irradiation condition B. For this reason, when laser irradiation is carried out under the same conditions other than the laser wavelength and pulse width, the laser necessary for obtaining the same degree of warp correction effect in the irradiation condition A than in the irradiation condition B. Processing time can be shortened.
  • the wavelength of the laser to be used is preferably selected to be longer than the absorption edge wavelength of the single crystal substrate that is the target of laser irradiation.
  • the irradiation conditions A and B can be used.
  • ⁇ Repetition frequency 50 kHz to 500 kHz
  • Laser power 0.05W ⁇ 0.8W
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m (more preferably around 2 ⁇ m)
  • Sample stage scanning speed 100 mm / s to 1000 mm / s
  • the irradiation condition B can be used.
  • ⁇ Pulse width 50ns to 200ns
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 3 ⁇ J-12 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • the irradiation condition B can be used.
  • ⁇ Pulse width 30 ns to 80 ns
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 8 ⁇ J ⁇ 20 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • the irradiation condition B can be used.
  • ⁇ Pulse width 200 fs to 800 fs
  • Repetition frequency 10 kHz to 500 kHz
  • Irradiation energy 3 ⁇ J ⁇ 6 ⁇ J
  • Laser spot size 0.5 ⁇ m to 4.0 ⁇ m
  • Sample stage scanning speed 50 mm / s to 1000 mm / s (more preferably 100 mm / s to 1000 mm / s)
  • Table 1 shows an example of laser irradiation conditions when a heat-denatured layer is formed on a Si substrate, a GaAs substrate, and a quartz substrate.
  • the surface of the single crystal substrate on the laser irradiation side is particularly preferably in a mirror state (surface roughness Ra is about 1 nm or less).
  • mirror polishing can be performed.
  • a method for forming the heat-denatured layer provided in the second region is not particularly limited, but usually a method of irradiating a single crystal substrate with laser is used.
  • a heat-denatured layer forming step of forming a heat-denatured layer in the second region it is possible to manufacture a single crystal substrate of another embodiment that is warped so as to be convex on the surface side of the second region. .
  • a multilayer film forming step is performed.
  • laser irradiation is performed from the surface on the second region side. Accordingly, it may be carried out from the surface on the first region side.
  • FIG. 1 and FIG. 2 are schematic explanatory views showing an example of a method for manufacturing a single crystal substrate according to the present embodiment. Specifically, FIG. 1 and FIG. 2 are schematic explanatory views for explaining an example of a heat-denatured layer forming step.
  • the upper part of FIG. 1 is a schematic cross-sectional view showing the single crystal substrate before the heat-denatured layer forming step
  • the lower part of FIG. 1 shows the single crystal substrate after the heat-denatured layer forming step. It is a schematic cross section shown.
  • FIG. 1 is a schematic cross-sectional view showing the single crystal substrate before the heat-denatured layer forming step
  • FIG. 1 shows the single crystal substrate after the heat-denatured layer forming step. It is a schematic cross section shown.
  • FIG. 2 is a schematic cross-sectional view showing a state in which the heat-denatured layer forming step is being performed, that is, a state in which laser irradiation is performed from one surface (surface on the first region side) of the single crystal substrate. It is.
  • the conventional single crystal substrate (the single crystal substrate 10A before laser treatment) before performing the heat-denatured layer forming step has no warp and is substantially flat.
  • the single crystal substrate (laser-processed single crystal substrate 10B) of the present embodiment after performing the heat-denaturing layer forming step shown in the lower part of FIG. 1 is convex on the surface side of the first region 10D. Is warping.
  • the first region 10D out of the first region 10D and the second region 10U obtained by equally dividing the single crystal substrate 10B after the laser treatment into two in the thickness direction by a one-dot chain line L.
  • a plurality of heat-denatured layers 20 (20A, 20B, 20C, 20D) having a constant thickness are formed at equal intervals in the planar direction of the single crystal substrate 10B after laser processing.
  • the term “single crystal substrate 10” may be used to mean either or both of the single crystal substrate 10A before laser processing and the single crystal substrate 10B after laser processing.
  • the heat-denatured layer forming step is performed in a state where the single crystal substrate 10A before laser processing is fixed to a sample stage (not shown). Fixing is preferably performed by, for example, vacuum adsorption. Then, the laser irradiation device 30 irradiates the laser from the surface opposite to the side on which the sample stage is disposed of the single crystal substrate 10A before laser processing fixed to the sample stage. At this time, of the two regions obtained by dividing the single crystal substrate 10A before laser treatment into two equal parts in the thickness direction, the region 10R on the side where the laser irradiation device 30 is arranged, that is, the region that can be the first region 10D.
  • the thermally denatured layer 20 is formed by relatively moving the laser irradiation device 30 and the single crystal substrate 10A before laser processing in the horizontal direction.
  • the laser spot size, laser power, pulse width, etc. by appropriately selecting the laser spot size, laser power, pulse width, etc., the size and degree of modification of the heat-denatured layer 20 with respect to the planar direction and thickness direction of the single crystal substrate 10B after laser treatment can be controlled.
  • the relative moving speed of the laser irradiation device 30 with respect to the single crystal substrate 10A before laser processing for example, the scanning speed of the sample stage when the sample stage is movable
  • the laser repetition frequency for example, the scanning speed of the sample stage when the sample stage is movable
  • the spacing between the individual heat-denatured layers 20A, 20B, 20C, and 20D with respect to the planar direction of the single crystal substrate 10B after processing can be controlled.
  • the conventional single crystal substrate (the single crystal substrate 10A before laser processing) before the step of forming the heat-denatured layer in the second region 10U is also substantially flat without warping.
  • the single crystal substrate (laser-treated single crystal substrate 10B) of another embodiment after performing the heat-denaturing layer forming step on the second region 10U shown in the middle stage of FIG. It is warped so as to be convex on the surface side.
  • a plurality of heats having a constant thickness in the second region 10U among the first region 10D and the second region 10U obtained by equally dividing the single crystal substrate 10B after the laser treatment in the thickness direction by a dashed line.
  • Modified layers 28 are formed at equal intervals in the planar direction of single crystal substrate 10B after laser processing.
  • single crystal substrate 10 may be used when it may mean either or both of the single crystal substrate 10A before laser processing and the single crystal substrate 10B after laser processing.
  • the single crystal substrate on which the heat-denatured layer 20 or 28 is formed is a single-crystal substrate after laser treatment, and the surface side of the region where the heat-denatured layer is provided is convex. Therefore, it is expressed as “single crystal substrate 10B after laser processing”.
  • the thermally denatured layer forming step in the second region 10U is also performed in a state where the single crystal substrate 10A before laser processing is fixed to a sample stage (not shown). Then, the laser irradiation device 30 irradiates the laser from the surface opposite to the side on which the sample stage is arranged on the single crystal substrate 10A before laser processing fixed to the sample stage. At this time, the laser is focused in a region that can be the second region 10U, and the laser irradiation device 30 and the single crystal substrate 10A before laser processing are relatively moved in the horizontal direction to form the heat-denatured layer 28. To do.
  • the relative moving speed of the laser irradiation apparatus 30 with respect to the single crystal substrate 10A before laser processing for example, the scanning speed of the sample stage when the sample stage is movable
  • the repetition frequency of the laser for example, the scanning speed of the sample stage when the sample stage is movable
  • the spacing between the individual heat-denatured layers 28A, 28B, 28C, 28D with respect to the planar direction of the single crystal substrate 10B can be controlled.
  • FIG. 3 is a schematic cross-sectional view showing an example of the state of warping of a single crystal substrate with a multilayer film obtained after forming a multilayer film on a conventional flat single crystal substrate without warpage.
  • FIG. 3 is a schematic cross-sectional view showing an example of a warped state of a single crystal substrate with a multilayer film obtained after forming a multilayer film on the single crystal substrate of the present embodiment.
  • the same reference numerals are given to those having the same functions and structures as those shown in FIGS. 1 and 2. Further, in FIG. 3 and FIG. 4, the description of each layer constituting the multilayer film is omitted.
  • a single crystal substrate 30A with a multilayer film shown in FIG. 3 includes a single crystal substrate 10A before laser processing which is substantially flat and has no warpage before the film formation as shown in the upper part of FIG.
  • the multilayer film 40 is provided on one side of 10A.
  • the single crystal substrate 30A with a multilayer film is greatly warped so as to be convex on the surface on which the multilayer film 40 is provided.
  • the single crystal substrate 30B with a multilayer film shown in FIG. 4 is greatly warped so as to protrude toward the surface of the first region 10D in the state before film formation as shown in the lower part of FIG.
  • the single crystal substrate 30B with a multilayer film in which the heat-denatured layer 20 exists is in a substantially flat state without warping.
  • a single crystal substrate 30C with a multilayer film shown in the lower part of FIG. 13 includes, as shown in the upper part of FIG.
  • the multilayer film 40 is provided on one surface of the crystal substrate 10A.
  • the multilayered single crystal substrate 30 ⁇ / b> C is greatly warped so as to be convex on the surface on which the multilayered film 40 is provided.
  • the single crystal substrate 30C with a multilayer film shown in the lower part of FIG. 13 has a single crystal post-laser treatment that is largely warped so as to protrude toward the surface of the second region 10U in the state before film formation as shown in the middle part of FIG.
  • the crystal substrate 10B is composed of a multilayer film 40 provided on the surface side of the second region 10U of the single crystal substrate 10B after laser processing.
  • Heat-denaturing layer 28 The single crystal substrate with a multilayer film 30A having a convex has a convex warp on the surface side of the second region 10U.
  • the multilayer film 40 is formed using the single crystal substrate 10B after the laser treatment in which the heat-denatured layer 20 is provided in the first region 10D, the single crystal substrate 30B with the multilayer film is formed. Can correct the warpage. However, if the heat-denatured layer 20 is provided at a position deviated with respect to the thickness direction or the plane direction of the single crystal substrate 10B after laser processing, irregularly disposed, or asymmetrically disposed, the multilayer film In some cases, it may be difficult to correct the warp caused by 40, or the shape of the single crystal substrate 30B with a multilayer film may be distorted.
  • the heat-denatured layer 20 is preferably provided in parallel with the multilayer film 40 in the thickness direction of the single crystal substrate 10B after laser processing.
  • the relative position in the thickness direction of the single crystal substrate 10B after laser processing is assumed to be 0% on the surface on the first region 10D side, and on the second region 10U side.
  • the heat-denatured layer 20 is preferably provided in a range of 5% to less than 50% in the thickness direction of the single crystal substrate 10B after laser treatment, and preferably 5% to 30%. It is more preferable that it is provided within the range.
  • the warp of the single crystal substrate 10B after laser treatment caused by the multilayer film 40 is more effectively corrected. Also, deformation of the single crystal substrate 30B with the multilayer film can be suppressed.
  • the sign of the curvature change amount in FIG. 10 is + (plus) for the curvature change amount when the surface on the first region side is convex as shown in the lower part of FIG. 1, and the surface on the first region side is concave.
  • -(Minus) is the amount of curvature change due to warping.
  • FIG. 10 is a graph showing the depth of the heat-denatured layer and the amount of change in curvature in the laser-treated single crystal substrate 10B irradiated with laser from the surface on the first region 10D side.
  • Advantages of performing laser irradiation from the surface on the first region side include the following advantages in addition to the ability to suppress the absorption loss of laser light as described above. As shown in FIG.
  • laser irradiation can be performed from the surface on the first region side. preferable.
  • the positions of the heat-denatured layers 20 in the thickness direction of the single crystal substrate 10B after laser processing are preferably all the same at the same positions, but at different positions. May be present.
  • the shape of the single crystal substrate 30B with a multilayer film is distorted or the heat-denatured layer 20 is provided in consideration of the arrangement position of the individual heat-denatured layers 20A, 20B, 20C, and 20D with respect to the plane direction of the substrate.
  • the individual heat-denatured layers 20A, 20B, 20C, and 20D may be arranged at different positions with respect to the thickness direction of the single crystal substrate 10B after the laser treatment so that the correction effect of the warp due to the above is not significantly lost.
  • the length of the heat-denatured layer 20 with respect to the thickness direction of the single crystal substrate 10B after laser processing is determined depending on the laser spot size, irradiation energy (laser power / repetition frequency), and pulse width. It is in the range of ⁇ m to several tens of ⁇ m.
  • the heat-denatured layer 20 is provided in the pattern shape shown below in the planar direction of the single crystal substrate 10B after laser processing. That is, the heat-denatured layer 20 is preferably provided in at least one pattern shape selected from the following i) to vii) with respect to the planar direction of the single crystal substrate 10B after laser processing. In this case, the warp of the single crystal substrate 30B with the multilayer film caused by the multilayer film 40 can be more effectively corrected, and the deformation can be suppressed. i) A shape in which a plurality of polygons having the same shape and the same size are regularly arranged.
  • the warp of the single crystal substrate 30B with the multilayer film caused by the multilayer film 40 can be more evenly corrected, and the distortion of the shape can be further reduced.
  • To iv) are more preferable.
  • the pattern shape is preferably i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged. Further, i) as a shape in which a plurality of polygons having the same shape and the same size are regularly arranged, any one of a plurality of the same shapes and the same size quadrangles adjacent to each other on four sides constituting each quadrangle.
  • the shape is regularly arranged so as to overlap one side, that is, a lattice shape.
  • laser scanning may be performed only in two directions, ie, the vertical direction and the horizontal direction, and laser processing becomes easier, and the warpage amount control and shape control design of the single crystal substrate with multilayer film 30B become easier.
  • the pitch of the lines constituting the pattern having the lattice shape is preferably in the range of 50 ⁇ m to 2000 ⁇ m, and more preferably in the range of 100 ⁇ m to 1000 ⁇ m.
  • the pitch is preferably in the range of 50 ⁇ m to 2000 ⁇ m, and more preferably in the range of 100 ⁇ m to 1000 ⁇ m.
  • FIG. 5 is a plan view showing an example of the arrangement pattern shape of the thermally denatured layer with respect to the planar direction of the substrate.
  • the planar shape of the single crystal substrate 10B after laser processing is a circular shape having an orientation flat surface.
  • 2 shows an example of an arrangement pattern shape of the heat-denatured layer 20 in FIG.
  • the arrangement pattern shape of the heat-denaturing layer 20 is, for example, a stripe shape in which a plurality of lines are formed perpendicularly or parallel to the orientation flat surface of the substrate (FIGS. 5A and 5B). )), A lattice shape combining both of them (FIG. 5C), and the like.
  • regular hexagons of the same size are regularly arranged so that all six vertices of the regular hexagon overlap with any one of the regular hexagons adjacent to the regular hexagon.
  • FIG. 5D concentric circles
  • FIG. 5E concentric circles
  • the width W shown in FIG. 5A means a pitch between lines.
  • warping may occur so as to form a convex on one surface side of the single crystal substrate 30 ⁇ / b> B with a multilayer film.
  • the warp as shown in FIG. 3 is corrected so that the direction of warpage is the same and the amount of warpage is suppressed, or the direction of warpage is corrected to the opposite side. become. That is, the degree of warpage caused by the multilayer film 40 varies depending on the layer configuration and film thickness of the multilayer film 40 and the thickness and material of the single crystal substrate 10B after laser processing.
  • the length of the heat-modified layer 20 in the thickness direction of the single crystal substrate 10B after laser processing ii) the heat in the thickness direction of the single crystal substrate 10B after laser processing
  • the heat-denatured layer 28 is provided in the second region 10U, it is preferable that the heat-denatured layer 28 is provided in parallel with the multilayer film 40 in the thickness direction of the single crystal substrate 10B after laser processing.
  • the heat-denatured layer 28 is provided in the range of more than 50% in the thickness direction of the single crystal substrate 10B after laser processing and 95% or less. Furthermore, it is more preferable that it is provided within a range of 80% to 95%.
  • the warp of the single crystal substrate 10B at an arbitrary film formation stage during the formation of the multilayer film 40 can be reduced to zero, and the single crystal substrate 30A with the multilayer film is provided.
  • the deformation of can also be suppressed.
  • the sign of the curvature change amount in FIG. 14 is + (plus) the curvature change amount when the surface on the second region 10U side is convex as shown in the middle of FIG. 13, and the surface on the second region 10U side.
  • -(Minus) is the amount of curvature change due to the concave warping.
  • FIG. 14 is a graph showing the depth and the amount of curvature change of the heat-denatured layer in the single crystal substrate 10B after the laser treatment in which laser irradiation is performed from the surface on the second region side.
  • Advantages of performing laser irradiation from the surface on the second region side include the following advantages in addition to the ability to suppress the absorption loss of laser light as described above. As shown in FIG.
  • laser irradiation can be performed from the surface on the second region side. preferable.
  • the individual heat-denatured layers 28A, 28B, 28C, and 28D are all present at the same position in the thickness direction of the single crystal substrate 10B after the laser treatment, but at different positions. May be present.
  • the shape of the single crystal substrate 30C with a multilayer film is distorted, and the effects of providing the heat-denatured layer 28 are significantly lost.
  • the heat-denatured layers 28A, 28B, 28C, and 28D may be arranged at different positions with respect to the thickness direction of the single crystal substrate 10B after laser processing.
  • the length of the heat-denatured layer 28 in the thickness direction of the single crystal substrate 10B after laser processing is determined depending on the laser spot size, irradiation energy (laser power / repetition frequency), and pulse width. It is in the range of ⁇ m to several tens of ⁇ m.
  • the heat-denatured layer 28 is provided in at least one pattern shape selected from the following i) to vii), like the heat-denatured layer 20.
  • the single crystal substrate 30A with a multilayer film resulting from the multilayer film 40 is provided.
  • the pattern shapes shown in i) to iv) are more preferable from the viewpoint of more uniformly correcting the warpage and reducing the distortion of the shape.
  • the pattern shape is preferably i) a shape in which a plurality of polygons having the same shape and the same size are regularly arranged. Further, i) as a shape in which a plurality of polygons having the same shape and the same size are regularly arranged, any one of a plurality of the same shapes and the same size quadrangles adjacent to each other on four sides constituting each quadrangle.
  • the shape is regularly arranged so as to overlap one side, that is, a lattice shape.
  • laser scanning may be performed only in two directions, ie, the vertical direction and the horizontal direction, and laser processing becomes easier, and the warpage amount control and shape control design of the single crystal substrate with multilayer film 30C become easier.
  • the pitch of the lines constituting the pattern having the lattice shape is preferably in the range of 50 ⁇ m to 2000 ⁇ m, and more preferably in the range of 100 ⁇ m to 1000 ⁇ m.
  • the pitch is preferably in the range of 50 ⁇ m to 2000 ⁇ m, and more preferably in the range of 100 ⁇ m to 1000 ⁇ m.
  • Examples of the arrangement pattern shape of the heat-denatured layer 28 include various shapes shown in FIG. Note that the width W shown in FIG. 5A means a pitch between lines.
  • the length of the thermally modified layer 28 in the thickness direction of the single crystal substrate 10B after laser processing i) the length of the thermally modified layer 28 in the thickness direction of the single crystal substrate 10B after laser processing, and ii) the thickness of the single crystal substrate 10B after laser processing.
  • the arrangement position of the heat-denatured layer 28 in the direction, and iii) the arrangement pattern shape of the heat-denatured layer 28 in the plane direction of the single crystal substrate 10B after laser processing are appropriately selected and combined to form the single crystal substrate 30C with a multilayer film
  • the warp caused by the multilayer film 40 can be corrected, and the warp of the single crystal substrate 10B at any film formation stage during the multilayer film formation can be reduced to zero.
  • the curvature of the single crystal substrate 10B after laser processing is not particularly limited as long as it is warped so as to be convex on the surface on the first region 10D side,
  • the upper limit of the curvature is preferably 200 km ⁇ 1 or less, more preferably 150 km ⁇ 1 or less, and further preferably 60 km ⁇ 1 or less. In this case, it becomes easy to suppress the warpage of the single crystal substrate 30B with the multilayer film obtained by forming the multilayer film 40, and to make it flatter.
  • Table 2 shows an example of the curvature of the single crystal substrate after laser processing and an embodiment in which the curvature of the warp is 200 km ⁇ 1 or less.
  • the curvature of the single crystal substrate before laser processing was 10 or 11 km ⁇ 1 and had a concave shape. That is, the heat-denaturing layer is provided in the first region, the substrate surface side of the first region is convex, and the substrate surface side of the other region is concave.
  • the curvature of the single crystal substrate becomes larger by forming the heat-denatured layer at a position closer to the first region side with respect to the second region side in the thickness direction of the single crystal substrate even at the same processing pitch. . Further, it has been found that even when the heat-denatured layer is formed at the same position in the thickness direction of the single crystal substrate, the curvature of the single crystal substrate becomes larger when the processing pitch is smaller.
  • the single crystal substrate 10B after the laser treatment after the heat-denatured layer 28 is formed in the second region 10U by the laser treatment is warped so that the surface on the second region 10U side is convex.
  • the curvature is not particularly limited, but the upper limit of the curvature is preferably 200 km ⁇ 1 or less, more preferably 150 km ⁇ 1 or less, and 60 km ⁇ 1 or less. Further preferred. In this case, the warpage of the single crystal substrate with multilayer film 30C obtained by forming the multilayer film 40 is suppressed, and the post-laser processing single crystal substrate 10B of the single crystal substrate 10B at any film formation stage during the formation of the polycrystalline film 40 is suppressed. It becomes easier to make the warpage zero.
  • any known single crystal material capable of forming the heat-denatured layers 20 and 28 by laser irradiation is used.
  • sapphire, nitride semiconductor, Si, GaAs, quartz, SiC, and the like can be used.
  • the single crystal substrate with a multilayer film of the present embodiment uses a single crystal substrate made of a single crystal material.
  • a substrate made of a polycrystalline material for example, a quartz substrate
  • a substrate made of an amorphous material for example, a glass substrate
  • the single crystal substrate 10A before laser processing is usually one having at least one surface mirror-polished, and one having both surfaces mirror-polished.
  • laser irradiation is performed from this surface side to produce a single crystal substrate 10B after laser processing, and then the surface on the second region 10U side is mirror-polished and then the multilayer film 40 is formed.
  • any heat-denatured layer by laser processing or ion implantation or the like is used as the single crystal substrate 10A before laser treatment used for the production of the single crystal substrate 10B after laser treatment. In the state where the composition-modified layer is not formed and no film is formed, the amount of warpage is generally zero, that is, a substantially flat layer.
  • the shape of the single crystal substrate 10 in the planar direction is not particularly limited, and may be, for example, a square shape. However, from the viewpoint of easy application in a production line of various known elements, the single crystal substrate 10 is a circular shape. In particular, a circular shape provided with an orientation flat surface is preferable.
  • the diameter of the single crystal substrate 10 is preferably 50 mm or more, more preferably 75 mm or more, and 100 mm or more. More preferably.
  • the diameter is 50 mm or more
  • the multilayer film 40 is formed using the single crystal substrate 10A before laser processing and the single crystal substrate 30A with the multilayer film is manufactured, the single crystal substrate 30A with the multilayer film is increased as the diameter increases.
  • a difference in height (amount of warpage) between the vicinity of the center portion and the vicinity of the end portion of the single crystal substrate with a multilayer film 30A with respect to the vertical direction when it is assumed to be left on a flat surface increases.
  • the upper limit of the diameter is not particularly limited, but is preferably 300 mm or less from a practical viewpoint.
  • the thickness of the single crystal substrate 10 is preferably 5.0 mm or less, preferably 3.0 mm or less, and more preferably 2.0 mm or less.
  • the thickness is set to 5.0 mm or less, since the thickness is small, the rigidity of the single crystal substrate 10B after the laser processing is lowered and is easily deformed.
  • the amount of warpage tends to increase.
  • the multilayer film 40 is formed using the single crystal substrate 10B after laser treatment, the increase in warpage when the single crystal substrate 10A before laser treatment is used is taken into consideration, and the single crystal substrate 10B after laser treatment is taken into account.
  • the amount of warpage of the produced single crystal substrate 30B with a multilayer film can be easily controlled near zero.
  • the multilayer film 40 can be formed using the single crystal substrate 10B after the laser processing with a thinner thickness so that the polishing allowance is reduced within a range where the adverse effect on the subsequent process does not increase. In this case, the time required for polishing in the post process can be shortened, and the productivity in the post process can be improved.
  • the lower limit value of the thickness is not particularly limited, but is preferably 0.05 mm or more and preferably 0.1 mm or more from the viewpoint of securing a region where the heat-denatured layer 20 or 28 can be formed.
  • the shape of the single crystal substrate 10 is a circular shape or a circular shape provided with an orientation flat surface
  • the thickness is preferably 0.3 mm or more, and the diameter is 100 mm.
  • the thickness is preferably 0.5 mm or more.
  • the “multilayer film” has two or more layers.
  • each of the layers constituting the multilayer film means a film having no step that penetrates the outermost layer film composed of continuous layers having the same film thickness with respect to the planar direction of the substrate.
  • the layer structure of the multilayer film 40, and the film thickness, material, and crystallinity / non-crystallinity of each layer constituting the multilayer film 40 are determined using the single crystal substrate 10B of the present embodiment. It is appropriately selected according to the type of element produced by further post-processing 30B and 30C and the manufacturing process applied when the element is produced.
  • At least one layer constituting the multilayer film 40 is a crystalline layer.
  • at least the single crystal substrate after the laser treatment among the layers constituting the multilayer film 40 are preferably a crystalline layer, and all layers constituting the multilayer film 40 may be crystalline layers.
  • the epitaxial growth includes homoepitaxial growth and heteroepitaxial growth including the same composition or mixed crystal.
  • the material of each layer constituting the multilayer film 40 is also appropriately selected according to the element to be manufactured.
  • the substrate used for manufacturing the single crystal substrate 10B after the laser processing is configured with an inorganic material such as a sapphire substrate.
  • the material constituting each layer is also preferably an inorganic material such as a metal material, a metal oxide material, and an inorganic semiconductor material, and it is desirable that all the layers are composed of these inorganic materials.
  • an organic material derived from an organic metal may be contained in the inorganic material of the layer.
  • each layer constituting the multilayer film 40 includes various nitride semiconductors such as a light emitting element used for a surface emitting laser, a light receiving element used for an optical sensor or a solar cell, and a semiconductor element used for an electronic circuit.
  • suitable semiconductor device manufacturing include GaN-based, AlGaN-based, and InGaN-based nitride semiconductor crystal layers. Note that in this case, it is preferable to use a sapphire substrate as a substrate used for manufacturing the single crystal substrate 10B after the laser treatment.
  • the heat-denatured layers 20 and 28 are formed as the single crystal substrate 10B after the laser treatment.
  • a buffer layer made of GaN an n-type contact layer made of n-type GaN, an n-type cladding layer made of n-type AlGaN, an active layer made of n-type InGaN, and a p-type AlGaN
  • a p-type cladding layer and a p-type contact layer made of p-type GaN can be employed in this order.
  • the film thickness of the multilayer film 40 is appropriately selected according to the element to be manufactured. Generally, as the film thickness of the multilayer film 40 increases, the multilayer film 40 is formed on the single crystal substrate 10A before laser processing. The amount of warpage of the single crystal substrate 30A with the multilayer film also increases. Conventionally, the influence on the quality variation of the element and the yield becomes remarkable. Further, in this case, cracks are likely to occur in the multilayer film 40 due to brittle fracture caused by warping after film formation. However, the laser-processed single crystal substrate 10B manufactured by laser irradiation so as to have a predetermined warpage amount so that the warpage amount of the single crystal substrate 30B with the multilayer film after forming the multilayer film 40 can be controlled to be close to zero.
  • the multilayer film 40 is formed using the above, the occurrence of the above-described problem can be more reliably suppressed.
  • the upper limit of the film thickness of the multilayer film 40 is not specifically limited.
  • the number of layers in the multilayer film may be two or more, and the number of layers can be appropriately selected according to the type of element to be manufactured.
  • a method for forming the multilayer film 40 is not particularly limited, and a known film formation method can be used, and film formation is performed by employing different film formation methods and / or film formation conditions for each layer constituting the multilayer film 40. You can also.
  • the film forming method include a liquid phase film forming method such as a plating method, but it is preferable to use a vapor phase film forming method such as a sputtering method or a CVD method (Chemical Vapor Deposition).
  • MOCVD method Metal Organic Chemical Vapor Deposition
  • HVPE method Hydride vapor phase epitaxy
  • MBE method Molecular It is more preferable to use a vapor deposition method such as Beam Epitaxy.
  • the surface on which the multilayer film 40 of the single crystal substrate 10B after the laser treatment is formed is in a mirror state (surface roughness Ra is about 1 nm or less). In order to make the surface on which the multilayer film 40 is formed into a mirror surface state, for example, mirror polishing can be performed.
  • a sapphire substrate (laser-treated sapphire substrate) in which the heat-denatured layers 20 and 28 are formed by laser irradiation is used as the single crystal substrate 10B after laser treatment.
  • a multilayer film 40 is formed by laminating a plurality of nitride semiconductor layers by epitaxial growth on one surface of a sapphire substrate after processing will be described with reference to the drawings.
  • FIG. 6 is a schematic explanatory view showing an example of the multilayer film forming step, and specifically shows a process of forming a multilayer film by laminating a nitride semiconductor layer or the like on a sapphire substrate.
  • FIG. 6A is a diagram showing a state before the start of film formation
  • FIG. 6B is a diagram showing a state after the low-temperature buffer layer is formed
  • FIG. 6C is an n ⁇
  • FIG. 6D is a diagram showing a state after the GaN layer is formed
  • FIG. 6D is a diagram showing a state after the InGaN-based active layer having a multiple quantum well structure is formed.
  • the description of the presence or absence of warpage of the sapphire substrate and the degree of warpage, the heat-denatured layer 20, the first region 10D, and the second region 10U are omitted during and after the multilayer film formation. It is.
  • the surface of the sapphire substrate 50 after laser treatment (single crystal substrate 10B after laser treatment) on the second region 10U side (hereinafter referred to as “film formation surface 52”) is thermally cleaned before the start of film formation (FIG. 6 ( a)).
  • the low-temperature buffer layer 60 (FIG. 6B), the n-GaN layer 62 (FIG. 6C), and an InGaN-based active layer 64A (GaN-based layer having a multiple quantum well structure) 64) (FIG. 6D) is grown in this order.
  • a multilayer film 70 (multilayer film 40) consisting of three layers is formed on one surface of the sapphire substrate 50 after the laser treatment.
  • each layer constituting the multilayer film 70 can be formed using, for example, the MOCVD method, the HVPE method, the MBE method, or the like.
  • FIG. 7 is a graph showing an example of warping behavior of the single crystal substrate in the multilayer film forming step.
  • both the post-laser sapphire substrate 50 and the pre-laser sapphire substrate are indicated, they are simply referred to as “sapphire substrate”.
  • the horizontal axis represents time
  • the vertical axis represents the curvature of the sapphire substrate on the film formation surface.
  • the positive direction on the vertical axis means that the sapphire substrate is warped so that the film-forming surface side is convex
  • the negative direction on the vertical axis means that the sapphire substrate is warped so that the film-forming surface side is concave. Means the state.
  • the specification of the sapphire substrate that is the measurement target of the spectra A to C shown in FIG. 7 and the details of the film forming conditions for this sapphire substrate will be described in detail in the examples described later.
  • FIG. 8 is a schematic explanatory view for explaining a method of calculating the amount of warpage of the substrate from the curvature of the circular substrate.
  • the curvature radius of the substrate is shown as R, the warpage amount X of the substrate having the curvature 1 / R, and the diameter of the substrate as D.
  • spectrum A shows the warp when the multilayer film 70 is formed using the conventional sapphire substrate before the laser treatment in which the heat-denatured layer 20 is not formed.
  • spectrum B and the spectrum C are obtained when the multilayer film 70 is formed under the same conditions as the measurement of the spectrum A except that the sapphire substrate 50 after laser processing is used instead of the conventional sapphire substrate before laser processing. This shows a change in the warping behavior of.
  • the difference between the spectrum B and the spectrum C is that only the pitch between the lines of the heat-denatured layer 20 formed in a lattice pattern in the plane direction of the sapphire substrate 50 after laser processing is different.
  • the pitch between the lines of the post-laser sapphire substrate 50 used for the measurement of the spectrum B was 250 ⁇ m
  • the pitch between the lines of the post-laser sapphire substrate 50 used for the measurement of the spectrum C was 100 ⁇ m.
  • the post-laser sapphire substrate 50 used for the measurement of spectrum C has a lattice pattern heat more densely with respect to the plane direction of the substrate than the post-laser sapphire substrate 50 used for the measurement of spectrum B.
  • a modified layer 20 is formed. As a result, as shown in FIG.
  • the laser sapphire substrate 50 used for the measurement of the spectrum B is also used for the post-laser-treated sapphire substrate 50 whose absolute value of the curvature of the substrate before the start of film formation is also used for the measurement of the spectrum C. It is larger than the sapphire substrate 50 after processing.
  • the sections shown as (a) to (e) along the horizontal axis in FIG. 7 correspond to the respective processes sequentially performed in the multilayer film forming step.
  • the process (a) corresponds to the process of thermally cleaning the film formation surface of the sapphire substrate
  • the process (b) corresponds to the process of forming the low temperature buffer layer 60
  • the process (c) corresponds to the process of forming the GaN layer 62
  • the process (d) corresponds to the process of forming the InGaN-based active layer 64A (64)
  • the process (e) corresponds to the process of cooling down.
  • the temperature of the sapphire substrate before laser processing is again raised to about 1000 ° C. to form the n-GaN layer 62.
  • the film formation surface warps in a direction to form a concave surface, and the absolute value of the curvature slightly increases.
  • the temperature of the sapphire substrate before laser processing is lowered to about 700 to 800 ° C. to form the InGaN-based active layer 64A (64).
  • the pre-laser sapphire substrate is formed by the difference in thermal expansion coefficient between the multilayer film 70 and the pre-laser sapphire substrate. The absolute value of curvature also increases in the direction of convexity toward the film-forming surface.
  • the sapphire substrate before laser processing is warped so as to be convex toward the film formation surface.
  • warpage can be corrected by using the sapphire substrate 50 after laser processing when forming the multilayer film 70, and further, by optimizing the arrangement pattern of the heat-denatured layer 20, the spectrum C can be corrected.
  • the curvature can be near zero.
  • a light-emitting element such as an LED chip
  • various post-processes such as a patterning process and a back-wrap process are performed, it is possible to reliably suppress variations in the quality of the light-emitting elements and a decrease in yield due to warping. Can do.
  • the InGaN-based active layer 64A when a light-emitting element such as an LED chip is manufactured by performing predetermined post-processing using the laser-processed sapphire substrate 50 with the multilayer film 70 shown in FIG. 6D, the InGaN-based active layer 64A.
  • the thickness of (64) and the uniformity of the In composition in the InGaN-based active layer 64A (64) affect the in-plane uniformity of the emission wavelength, and consequently the manufacturing yield of the light-emitting elements.
  • the film thickness of the InGaN-based active layer 64A (64) and the uniformity of the In composition in the InGaN-based active layer 64A (64) are affected by the deposition temperature. For this reason, in the process of forming the InGaN-based active layer 64A (64) in FIG.
  • the curvature of the sapphire substrate during film formation is made as close to 0 as possible in order to improve the temperature uniformity in the substrate surface. Is desirable. For this reason, when the multilayer film 70 is formed using a sapphire substrate not subjected to conventional laser processing as shown as spectrum A, the curvature in the process (d) is maintained in the vicinity of 0. There are many.
  • the curvature in the process (d) is shown. Becomes smaller than 0.
  • the multilayer film 70 is formed using the sapphire substrate 50 after laser processing, the warpage of the post-laser-processed sapphire substrate 50 provided with the multilayer film 70 after film formation is suppressed, so that (1) While having the merit that the adverse effect on the process can be made smaller, (2) the increase in the absolute value of the curvature in the process (d) reduces the temperature uniformity in the substrate surface, resulting in a reduction in the yield of the light emitting elements. It also has the demerit of lowering.
  • the post-laser-treated sapphire substrate 50 is formed using a heater having a curved shape corresponding to the warp direction and curvature of the post-laser-treated sapphire substrate 50. It can also be heated (eg E.Armour et.al., semiconductor TODAY Compounds & Advanced Silicon, Vol.4, Issue 3, April / May 2009, "LED growth compatibility between 2", 4 "and 6" sapphire " In this case, even if the multilayer film 70 is formed by using the sapphire substrate 50 after the laser processing, only the above-described advantages can be enjoyed while avoiding the above-described disadvantages.
  • a heater having a curved shape corresponding to the warp direction and curvature of the post-laser-treated sapphire substrate 50. It can also be heated (eg E.Armour et.al., semiconductor TODAY Compounds & Advanced Silicon, Vol.4, Issue 3, April / May 2009, "LED growth compatibility between 2", 4 "and 6" sapphire " In this
  • the absolute value of the curvature increases with time in any of the spectra A to C after 4000 s. Such a change is undesirable because it causes the film quality and film thickness variation in the film thickness direction of the n-GaN layer 62 which is the underlying layer of the InGaN-based active layer 64A (64).
  • the absolute value of the curvature increases with time, and the curvature can be kept substantially constant.
  • FIG. 12 is a graph showing an example of warpage behavior of the single crystal substrate in the step of forming a multilayer film on the single crystal substrate in which the heat-denatured layer 28 is formed in the second region.
  • the description of FIG. 12 when referring to both the post-laser sapphire substrate and the pre-laser sapphire substrate, they are simply referred to as “sapphire substrate”.
  • the post-laser sapphire substrate and the pre-laser sapphire substrate they are simply referred to as “sapphire substrate”.
  • FIG. 12 when referring to both the post-laser sapphire substrate and the pre-laser sapphire substrate, they are simply referred to as “sapphire substrate”.
  • FIG. 12 when referring to both the post-laser sapphire substrate and the pre-laser sapphire substrate, they are simply referred to as “sapphire substrate”.
  • the horizontal axis represents time
  • the vertical axis represents the amount of warpage of the sapphire substrate on the film formation surface.
  • the positive direction on the vertical axis means that the sapphire substrate is warped so that the film-forming surface side is convex
  • the negative direction on the vertical axis means that the sapphire substrate is warped so that the film-forming surface side is concave. Means the state.
  • the specification of the sapphire substrate that is the measurement target of the spectra A to C shown in FIG. 12 and the details of the film forming conditions for the sapphire substrate will be described in detail in Examples described later.
  • spectrum A shows the warp when the multilayer film 70 is formed using a conventional sapphire substrate before laser processing in which the heat-denatured layer 28 is not formed.
  • spectrum B and the spectrum C are obtained when the multilayer film 70 is formed under the same conditions as the measurement of the spectrum A except that the sapphire substrate 50 after laser processing is used instead of the conventional sapphire substrate before laser processing. This shows a change in the warping behavior of.
  • the difference between the spectrum B and the spectrum C is that only the pitch between the lines of the heat-denatured layer 28 formed in a lattice pattern in the plane direction of the sapphire substrate 50 after laser processing is different.
  • the pitch between the lines of the post-laser sapphire substrate 50 used for the measurement of the spectrum B was 500 ⁇ m
  • the pitch between the lines of the post-laser sapphire substrate 50 used for the measurement of the spectrum C was 300 ⁇ m.
  • the post-laser sapphire substrate 50 used for the measurement of spectrum C has a lattice pattern heat more densely with respect to the plane direction of the substrate than the post-laser sapphire substrate 50 used for the measurement of spectrum B.
  • a modified layer 28 is formed. As a result, as shown in FIG.
  • the laser-treated sapphire substrate 50 in which the absolute value of the warpage amount of the substrate before the start of film formation was also used for the measurement of the spectrum C was used for the measurement of the spectrum B. It is larger than the sapphire substrate 50 after the laser treatment.
  • the sections shown as (a) to (e) along the horizontal axis in FIG. 12 correspond to the respective processes sequentially performed in the multilayer film forming step.
  • the process (a) corresponds to the process of thermally cleaning the film formation surface of the sapphire substrate
  • the process (b) corresponds to the process of forming the low temperature buffer layer 60
  • the process (c) corresponds to the process of forming the GaN layer 62
  • the process (d) corresponds to the process of forming an arbitrary GaN-based barrier layer 64B (GaN-based layer 64)
  • the process (e) corresponds to the process of cooling down. ing.
  • the temperature of the sapphire substrate before laser processing is again raised to about 1000 ° C. to form the n-GaN layer 62.
  • the film formation surface warps in a direction to form a concave surface, and the absolute value of the warpage amount slightly increases.
  • the temperature of the sapphire substrate before laser processing is raised to about 1100 to 1200 ° C. to form the GaN-based barrier layer 64B (64).
  • the pre-laser-processed sapphire substrate is caused by the difference in thermal expansion coefficient between the multilayer film 70 and the pre-laser-processed sapphire substrate.
  • the absolute value of curvature also increases in the direction of convexity toward the film-forming surface.
  • the sapphire substrate before laser processing is warped so as to be convex toward the film formation surface.
  • the curvature of the sapphire substrate during film formation is desirably as close to 0 as possible in order to suppress the warping behavior of the substrate.
  • the substrate used for forming the multilayer film 70 is changed from a sapphire substrate that has not been subjected to conventional laser processing to a sapphire substrate 50 that has been subjected to laser processing in the second region, as shown in spectra B and C.
  • the warpage amount in process (d) is 0 or close to 0. Therefore, when the multilayer film 70 is formed using the sapphire substrate 50 after the laser treatment, it has an effect that the film thickness unevenness and / or film quality unevenness of the multilayer film 70 can be suppressed.
  • an AlN layer may be formed instead of the process (b) after the process (a) is performed, and the warping amount can be kept substantially constant in the process (c) by forming the AlN layer.
  • an element can be manufactured by further performing various post processes.
  • an element part for producing an element part that functions as any one element selected from a light-emitting element, a photovoltaic element, and a semiconductor element by performing at least a patterning process on the multilayer film 40 in a subsequent process.
  • an element including an element portion and a single crystal substrate having a size substantially corresponding to the element portion can be manufactured.
  • the layer structure of the multilayer film 40 is appropriately selected according to the type of element to be finally produced.
  • the polishing process, the division planned line forming process, and the dividing process may be performed in this order.
  • the element manufacturing method using the multilayered single crystal substrates 30B and 30C manufactured by the multilayered single crystal substrate manufacturing method of this embodiment is specifically described in the following (1) to (4).
  • an element including an element portion and a single crystal substrate having a size substantially corresponding to the element portion can be manufactured.
  • Element portion forming step of forming individual element portions by patterning a multilayer film of a single crystal substrate with a multilayer film (2) At least a first heat-denatured layer formed in the step of forming a heat-denatured layer after the multilayer film is formed on the surface of the single crystal substrate with an element portion formed on one side, where the element portion is not formed.
  • Polishing process until polishing is removed (3) Scheduled split line forming step of forming split planned lines by irradiating laser along the boundary lines of the individual element portions from the side polished in the polishing process (4) A dividing step of dividing the single crystal substrate with an element portion into element portions by applying an external force along the planned dividing line formed in the division planned line forming step.
  • segmentation process the technique of patent document 3 can be utilized.
  • the laser-heated layers 20 and 28 in the single crystal substrate 10B after the laser treatment are formed in a lattice pattern
  • the laser-heated layers 20 and 28 are polished to such an extent that they are not completely removed in the polishing step.
  • the multilayer film 40 is individualized into individual element portions, alignment for laser irradiation cannot be performed after confirming the existence positions of the element portions.
  • the planned division lines are accurately formed corresponding to the individual element portions. Is difficult. That is, in the above method, there is a high possibility that the planned division line will deviate from the boundary line between the two adjacent element portions, so that it is not practical. For this reason, it can be said that it is particularly preferable to perform the steps (1) to (4) in this order when the dividing step is performed using a heat-modified layer formed by laser irradiation.
  • the division line formation process it is particularly preferable to select the irradiation condition B described above as the laser irradiation condition.
  • the irradiation condition A in which the laser wavelength is in the ultraviolet region the energy of the laser due to the laser wavelength is large, so that the width of the planned division line to be formed is thick and the thickness is also likely to vary with respect to the length direction of the line. For this reason, it may be difficult to perform linear and accurate division in the division step.
  • FIG. 9 is a schematic explanatory view showing an example of the element manufacturing method of the present embodiment. Specifically, using the single crystal substrate 10B after laser processing shown in the lower part of FIG. 9 (a)), (2) Polishing step (FIG. 9 (b)), (3) Divided line forming step (FIG. 9 (c)), and (4) Dividing step (FIG. 9 (d)). An example of implementation in this order is shown. In the figure, components having the same functions and configurations as those shown in FIG. 1 or FIG. 13 are denoted by the same reference numerals, and whether or not the single crystal substrate 10B after laser processing is warped and its degree are described. Description is omitted.
  • the patterning process can be performed as follows, for example. First, after a resist film is formed on the multilayer film 40, this resist film is developed after exposure using a photomask, and then patterned to be partially removed by patterning. Thereafter, the element film 42 is formed by removing the portion of the multilayer film 40 from which the resist film has been removed by etching (FIG. 9A). Next, the surface on which the element portion 42 is formed and the flat polishing plate 80 are bonded together, thereby fixing the single crystal substrate 10B after laser processing on which the element portion 42 is formed on the polishing plate 80, and the element portion 42.
  • the surface (non-deposition surface 12) side opposite to the surface on which is formed is polished. If the heat-denatured layer 20 is formed, this polishing is performed until at least the heat-denatured layer 20 is completely removed (FIG. 9B). Note that the polishing allowance for forming the heat-denatured layer 28 in the second region is arbitrary. Then, the division
  • Example 1> (Preparation of sample for evaluation) A laser-treated sapphire substrate 50 was produced by performing laser irradiation treatment on a conventional sapphire substrate (sapphire substrate before laser treatment) that had not been subjected to any pretreatment. Next, a multilayer film 70 was formed on the sapphire substrate before laser treatment and the sapphire substrate 50 after laser treatment as shown in FIG. At this time, the amount of warpage before and after laser irradiation and the direction of warpage as viewed from the planned film formation side before the multilayer film formation, and the amount of warpage after the multilayer film formation and the direction of warpage as viewed from the film formation surface side Evaluated. Details of test conditions and evaluation results will be described below.
  • a circular sapphire substrate with an orientation flat surface (diameter: 4 inches (100 mm), thickness: 650 ⁇ m) was used.
  • This sapphire substrate is mirror-polished on both sides.
  • a pre-laser sapphire substrate was fixed on a flat sample stage by vacuum suction.
  • the heat-denatured layer 20 is formed by performing laser irradiation under the following irradiation conditions from the surface (non-deposition surface 54) opposite to the surface on which the sample stage of the sapphire substrate before laser processing is disposed.
  • the sapphire substrate 50 was obtained after the laser treatment.
  • the sapphire substrate before laser treatment was fixed on the sample stage so that the vertical scanning direction of the sample stage coincided with the orientation flat of the sapphire substrate before laser treatment.
  • the sample stage was scanned in the vertical direction and the horizontal direction with respect to the laser irradiation apparatus, and the heat-denatured layer 20 was formed so as to have a lattice pattern with respect to the plane direction of the sapphire substrate before laser processing.
  • a sample in which the pitch between lines of the lattice pattern was changed by changing the scanning speed of the sample stage was produced.
  • ⁇ Laser wavelength 1045 nm
  • Pulse width 500 ⁇ 10 ⁇ 15 sec
  • Repetition frequency 100 kHz
  • Spot size 1.6-3.5 ⁇ m
  • Laser power 0.3W
  • Sample stage scanning speed 400 mm / s (select as appropriate within the range shown on the left according to the pitch between lines)
  • a multilayer film 70 having a three-layer structure was formed on two types of sapphire substrates before and after the laser treatment, as shown in FIG.
  • the specific film formation conditions are as follows, and the processes were performed in the order of (1) to (5) shown below.
  • the substrate temperature during film formation was set to 530 ° C., and the low-temperature buffer layer 60 (Ga (gallium), N (nitrogen)) was formed at a film formation rate of 0.16 nm / s until the film thickness reached 30 nm.
  • the low-temperature buffer layer 60 Ga (gallium), N (nitrogen)
  • (3) Formation of n-GaN layer 62 The n-GaN layer 62 was formed at a substrate temperature of 1050 ° C. at a film formation rate of 2000 nm / s until the film thickness reached 3500 nm.
  • InGaN-based active layer 64A Formation of InGaN-based active layer 64A (64)
  • the InGaN-based active layer 64A (64) was formed at a film formation rate of 10 nm / s at a film formation rate of 10 nm / s until the film thickness reached 408 nm.
  • Cool down A sapphire substrate having a low-temperature buffer layer 60, an n-GaN layer 62, and an InGaN-based active layer 64A (64) formed in this order on one side was cooled to near room temperature.
  • Example 2 (Preparation of sample for evaluation) A sample in which a multilayer film 70 having a three-layer structure was formed on one surface of a sapphire substrate 50 similar to that shown in FIG. First, the heat-denatured layer 28 was formed in a lattice pattern by laser irradiation from the film-forming surface 52 side of the sapphire substrate 50, and then the multilayer film 70 was formed on the film-forming surface 52. Thereafter, a sapphire substrate with a multilayer film obtained by forming the heat-denatured layer 20 in a lattice pattern by laser irradiation from the non-deposition surface 54 side was produced.
  • the amount of warpage before and after the laser irradiation before the multilayer film formation and the direction of the warp viewed from the film forming surface side, and the amount of warpage before and after the laser irradiation after the multilayer film formation and the film surface side viewed The relationship between the direction of warpage, the change in the amount of warpage before and after laser irradiation with respect to the pitch between lines during laser irradiation after multilayer film formation, and the maximum and minimum values of curvature of the sapphire substrate during multilayer film formation The difference was evaluated. Details of test conditions and evaluation results will be described below.
  • the sapphire substrate 50 As the sapphire substrate 50, a circular sapphire substrate with an orientation flat surface (diameter: 2 inches (50.8 mm), thickness: 430 ⁇ m) was used. The sapphire substrate 50 is mirror-polished on one side, and the multilayer film 70 is formed with the mirror-polished surface as a film-forming surface 52. In addition, the amount of warpage of the sapphire substrate 50 in a state where no film forming process or laser irradiation process is performed is within a range of ⁇ 10 ⁇ m.
  • the heat-denatured layer 28 is formed from the film-forming surface 52 side in a state in which the sapphire substrate 50 is arranged on a flat sample stage so that the film-forming surface 52 becomes the upper surface and the sapphire substrate 50 is fixed by vacuum suction.
  • the laser irradiation was performed under the following irradiation conditions. In the laser irradiation, the sapphire substrate 50 was fixed on the sample stage so that the vertical scanning direction of the sample stage coincided with the orientation flat of the sapphire substrate 50.
  • the sample stage was scanned in the vertical direction and the horizontal direction with respect to the laser irradiation apparatus, and the first heat-denatured layer 28 was formed so as to have a lattice pattern in the plane direction of the sapphire substrate 50.
  • the pitch between lines was changed by changing the scanning speed of the sample stage.
  • ⁇ Laser wavelength 1045 nm
  • Pulse width 500 fs
  • Repetition frequency 100 kHz
  • Spot size 1.6-3.5 ⁇ m
  • Laser power 0.3W
  • Sample stage scanning speed 400 mm / s (select as appropriate within the range shown on the left according to the pitch between lines)
  • a multilayer film 70 having a three-layer structure was formed on the film-forming surface 52 of the sapphire substrate 50 on which the heat-denatured layer 28 was formed.
  • the specific film formation conditions are as follows, and the processes were performed in the order of (1) to (5) shown below.
  • (2) Formation of low-temperature buffer layer 60 The substrate temperature during film formation was set to 530 ° C., and the low-temperature buffer layer 60 was formed at a film formation rate of 0.16 nm / s until the film thickness reached 30 nm.
  • n-GaN layer 62 The substrate temperature during film formation was 1050 ° C., and the n-GaN layer 62 was formed at a film formation rate of 2000 nm / s until the film thickness reached 3500 nm.
  • Cool-down The sapphire substrate 50 having the low-temperature buffer layer 60, the n-GaN layer 62, and the AlGaN-based barrier layer 64C (64) formed in this order on one side was cooled to near room temperature.
  • FIG. 12 shows a change in the warping behavior of the single crystal substrate during the formation of the multilayer film.
  • the sections indicated by reference numerals (a) to (e) in FIG. 12 correspond to the multilayer film forming processes shown in the above (1) to (5), respectively.
  • Example 3 As shown in Table 5, compared to three conventional sapphire substrates (sapphire sapphire substrates before laser processing) (samples 1 to 3) that have not been subjected to any pretreatment, only one sapphire substrate is formed with a multilayer film.
  • a sapphire substrate after laser treatment of Sample 3 was prepared by applying a laser irradiation treatment in the first region before the film to provide a heat-denatured layer 20.
  • a multilayer film was formed on the sapphire substrate before laser treatment of sample 1 or 2 and the sapphire substrate after laser treatment of sample 3.
  • FIG. 11 shows the warping behavior of the sapphire substrate during the formation of each of the LT-GaN film and the AlN film.
  • the sapphire substrate to be used and the conditions for forming the heat-denatured layer are the same as those in Example 1. Further, the LT-GaN film or the AlN film was formed by forming the LT-GaN film or the AlN film after forming the thermal cleaning and the low-temperature buffer layer as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Laminated Bodies (AREA)
  • Laser Beam Processing (AREA)

Abstract

 多層膜の成膜に起因して生じる反りを矯正すること。 基板の厚み方向において2等分して得られる第1領域10Dおよび第2領域10Uからなる2つの領域のうち、どちらか一方の領域内に熱変性層が設けられ、かつ、熱変性層が設けられている領域の面側が凸を成すように反っている単結晶基板、その製造方法、当該単結晶基板を用いた多層膜付き単結晶基板の製造方法、および、当該製造方法を利用した素子製造方法。

Description

単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
 本発明は、単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法に関するものである。 
 窒化ガリウムに代表される窒化物半導体は、バンドギャップが広く、青色系の発光が可能であることから、LED(発光ダイオード)やLD(半導体レーザ)等に広く用いられている。近年は、更なる発光効率アップや高輝度化への取り組みが盛んに行われている。
 一般的な窒化物半導体発光素子構造は、サファイア基板上に、GaNより成るバッファ層、n型GaNより成るn型コンタクト層、n型AlGaNより成るn型クラッド層、n型InGaNより成る活性層、p型AlGaNよりなるp型クラッド層、p型GaNより成るp型コンタクト層が順に積層されたダブルヘテロ構造を有している。活性層は、InxGa1-xN(0≦X≦1)よりなる井戸層のみの単一量子井戸(SQW:Single Quantum Well)構造もしくは、InxGa1-xN(0≦X≦1)よりなる井戸層と、InyGa1-yN(0≦y≦1、y<x)よりなる障壁層との多重量子井戸構造(MQW:Multi Quantum Well)のInを含む構成となっている(特許文献1参照)。 
 サファイア基板上に上述した多層膜を形成すると、多層膜とサファイアとの熱膨張係数差及び格子定数差に起因して、成膜後のサファイア基板に反りが発生することが知られている。たとえば、非特許文献1には、サファイア基板上に、AlNバッファ層とGaN層とをエピタキシャル成長させ、成膜により発生する熱応力がGaN層膜厚に依存してどのように緩和されるかを調べた結果が開示されている。この非特許文献1では、膜厚が厚くなるに従って基板の反りが大きくなり、それに伴って界面欠陥(Interference Defects)、マイクロクラック(Microcracks)や転位(Dislocation)、マクロクラック(Macrocracks)が発生することで応力を緩和するということが明らかにされている。 
 また、非特許文献2のFig.4には、サファイア基板上にGaN系LED構造をエピタキシャル成長させる工程を通して発生する基板の反りを、In-situ観察する解析手法が開示されている。これによると、一連の成膜工程において、成膜物質、成膜温度、膜厚の変化によりサファイア基板の曲率が大きく変化することが示されている。さらに、活性層であるInGaN層の成長段階でサファイア基板の曲率がほぼ0となるような成膜工程とすることによって、基板面内における発光波長を均一化することが明らかにされている。 
 以上に説明したように、一連の成膜工程を通してサファイア基板の反りが大きく変化し、窒化物半導体膜の品質や発光波長の均一性に影響を与えることが知られている。なお、実際には、基板との熱膨張係数差を利用して、InGaN系活性層において基板曲率がほぼ0となるように、サファイア基板の反り形状及び反り量が設定されることが多い。このような背景から、サファイア基板の形状及び反り量を制御するために、様々な研磨加工技術が検討されている(特許文献2等参照)。 
 一方で、サファイア基板上に窒化物半導体が積層された発光素子を分割する際に、80~90μm程度の厚みを有するサファイア基板の内部に、パルスレーザを集光し、発光素子の分割予定ラインに対応する変質領域を形成する技術が知られている(特許文献3)。特許文献3に開示される技術は、サファイア基板にレーザ光線を照射して個々の発光素子に分割しても発光素子の輝度低下を抑制し得るサファイア基板の加工方法であり、発光素子の分割を目的としている。 
特許第3250438号公報 特開2006-347776号公報 特開2008-6492号公報
Jpn.J. Appl. Phys. Vol. 32 (1993) pp. 1528-1533 J.Cryst. Growth, Vol.272, Issues 1-4, (2004), pp.94-99
 以上に説明したように、発光素子などの各種素子を作製するために、サファイア基板などの単結晶基板上に、素子の構成に応じた多層膜を成膜すると、成膜後の基板(多層膜付き単結晶基板)は、通常は反ってしまう。一方、素子を製造する上では、多層膜付き単結晶基板に対して、通常は、さらに種々の後工程が実施される。しかしながら、多層膜付き基板が反った状態で、後工程を実施する場合、素子の品質ばらつきや歩留まり低下などを招いていた。 
 たとえば、後工程において多層膜をパターニング処理しようとした場合、以下に説明する問題が発生する。すなわち、多層膜をパターニング処理する場合、フォトマスクを用いて、多層膜上に形成されたレジストを露光することになる。この際、多層膜付き単結晶基板は反った状態である。それゆえ、単結晶基板の中央部に位置する多層膜の表面に対して露光のために照射される光の焦点を合わせると、単結晶基板の端部近傍に位置する多層膜の表面では、焦点がぼけることになる。この場合、多層膜の面内において露光ムラが生じるため、後工程を経て製造される素子の品質ばらつきや、歩留まりの低下を招くことになる。 
 また、後工程において、多層膜付き単結晶基板の多層膜が形成された面と反対側の面を研磨(バックラップ処理)しようとした場合、多層膜付き単結晶基板の多層膜が形成された面を平坦な研磨盤に貼り付けて固定する必要がある。しかし、この場合、多層膜付き単結晶基板が反っていると、バックラップ処理する面を平坦にするために、貼り付け時に、多層膜付き単結晶基板に対して大きな圧力を加えて貼り付け処理を行う必要がある。しかしながら、反りが大きいほど、大きな圧力を加えなければならなくなるため、結果として、多層膜付き基板にクラックが生じ易くなり、歩留まりの低下を招くことになる。なお、このような問題の発生を回避するために、より厚みのある単結晶基板を用いることも考えられる。しかしながら、この方法では、バックラップ処理に必要な研磨量が増大し、研磨時間がより長時間となるため、生産性が低下し実用性に欠ける。 
 一方、上述した多層膜付き単結晶基板を製造する場合、一般的には反りの殆ど無い略平坦な単結晶基板を用いて多層膜が成膜される。そして、多層膜が単結晶基板の片面に成膜されると、多層膜に起因する内部応力によって、単結晶基板をその厚み方向に対して2等分するラインで分割された両側の領域の応力バランスが崩れることになる。その結果、多層膜の成膜が完了すると単結晶基板が反ることになるといえる。上述した事情を考慮すれば、多層膜の成膜により生じる反りを、多層膜の成膜が終了した時点で矯正されるように、多層膜付き単結晶基板の製造に用いる単結晶基板として予め反った状態の基板を用いることが望ましいと考えられる。 
 また、前記反りは単結晶基板上に多層膜を成膜する成膜工程段階から発生するが、成膜工程中の単結晶基板の反り挙動の変動が激しいと、多層膜を構成する各層において、膜厚ムラおよび/または膜質ムラが発生してしまう。この膜厚ムラおよび/または膜質ムラにより、前記各種素子の品質ばらつきや歩留まり低下などを招いていた。 
 本発明は、上記事情に鑑みてなされたものであり、多層膜の成膜に起因して生じる反りを矯正できる単結晶基板、その製造方法、当該単結晶基板を用いた多層膜付き単結晶基板の製造方法、および、当該製造方法を利用した素子製造方法を提供することを課題とする。 
 上記課題は以下の本発明により達成される。すなわち、 
本発明の単結晶基板は、基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、どちらか一方の領域内に熱変性層が設けられ、かつ、熱変性層が設けられている領域の面側が凸を成すように反っていることを特徴とする。 
 さらに本発明の単結晶基板のー実施態様は、熱変性層が設けられている領域が、第1領域であることが好ましい。 
 また本発明の単結晶基板の他の実施態様は、熱変性層が設けられている領域が、第2領域であることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、基板の厚み方向の相対位置を、第1領域側の面を0%と仮定し、第2領域側の面を100%として仮定した際に、熱変性層が、基板の厚み方向の5%以上50%未満の範囲内に設けられていることが好ましい。 
 また本発明の単結晶基板の他の実施態様は、基板の厚み方向の相対位置を、第1領域側の面を0%と仮定し、第2領域側の面を100%として仮定した際に、熱変性層が、基板の厚み方向の50%を超え95%以下の範囲内に設けられていることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、熱変性層がレーザ照射により形成されたものであることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、熱変性層が基板の両面と平行に設けられていることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、熱変性層が基板の平面方向に対して、 
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、 
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、 
iii)同心円状、 
iv)基板の中心点に対して略点対称に形成された形状、 
v)基板の中心点を通じる直線に対して略線対称に形成された形状、 
vi)ストライプ形状、ならびに、 
vii)らせん形状 
 から選択される少なくともいずれか1つのパターン形状で設けられていることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、基板の曲率が200km-1以下の範囲内であることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、基板の材質がサファイアであることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、基板の直径が50mm以上300mm以下であることが好ましい。 
 さらに本発明の単結晶基板の他の実施態様は、基板の厚みが0.05mm以上5.0mm以下であることが好ましい。 
 また本発明の単結晶基板の製造方法は、レーザ照射処理前の単結晶基板の一方の面側から、レーザを照射することにより、 
 基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、上記どちらか一方の領域内に熱変性層を形成する熱変性層形成工程を少なくとも経て、 
 上記熱変性層が設けられている領域の面側が凸を成すように反った単結晶基板を製造することを特徴とする。 
さらに本発明の単結晶基板の製造方法の一実施形態は、熱変性層を形成する領域が前記第1領域であることが好ましい。 
さらに本発明の単結晶基板の製造方法の一実施形態は、前記単結晶基板への前記レーザの照射を、前記単結晶基板の前記第1領域側の面から行うことが好ましい。 
 また本発明の単結晶基板の製造方法の他の実施形態は、熱変性層を形成する領域が、前記第2領域であることが好ましい。 
 さらに本発明の単結晶基板の製造方法の一実施形態は、前記単結晶基板への前記レーザの照射を、前記単結晶基板の前記第2領域側の面から行うことが好ましい。 
 さらに本発明の単結晶基板の製造方法の一実施態様は、レーザの照射が、下記A~Bに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることが好ましい。 
<照射条件A> 
・レーザ波長:200nm~350nm 
・パルス幅:ナノ秒オーダー 
<照射条件B> 
・レーザ波長:350nm~2000nm 
・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
 また本発明の多層膜付き単結晶基板の製造方法は、基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、上記どちらか一方の領域内に熱変性層が設けられ、かつ、上記熱変性層が設けられている領域の面側が凸を成すように反っている単結晶基板の、上記第2領域側の面に、 
 2つ以上の層を有する多層膜を形成する多層膜形成工程を、少なくとも経ることにより、多層膜付き単結晶基板を製造することを特徴とする。 
さらに本発明の多層膜付き単結晶基板の製造方法の一実施形態は、熱変性層を形成する領域が、第1領域であることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、基板の厚み方向の相対位置を、第1領域側の面を0%と仮定し、第2領域側の面を100%とし仮定した際に、熱変性層が、基板の厚み方向の5%以上50%未満の範囲内に位置するように形成されることが好ましい。 
 また本発明の多層膜付き単結晶基板の製造方法の他の実施形態は、熱変性層を形成する領域が、第2領域であることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、基板の厚み方向の相対位置を、第1領域側の面を0%と仮定し、第2領域側の面を100%とし仮定した際に、熱変性層が、基板の厚み方向の50%を超え95%以下の範囲内に位置するように形成されることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の一実施態様は、前記単結晶基板の一方の面側から、レーザを照射することにより、基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、第1領域内に熱変性層を形成する熱変性層形成工程を少なくとも経ることで、第1領域の面側が凸を成すように反った単結晶基板を作製し、その後に、当該単結晶基板に対して多層膜形成工程を実施することが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の一実施態様は、前記単結晶基板への前記レーザの照射を、前記単結晶基板の前記第1領域側の面から行うことが好ましい。 
 また本発明の多層膜付き単結晶基板の製造方法の一実施態様は、前記単結晶基板の一方の面側から、レーザを照射することにより、基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、第2領域内に熱変性層を形成する熱変性層形成工程を少なくとも経ることで、第2領域の面側が凸を成すように反った単結晶基板を作製し、その後に、当該単結晶基板に対して多層膜形成工程を実施することが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の一実施態様は、前記単結晶基板への前記レーザの照射を、前記単結晶基板の前記第2領域側の面から行うことが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、レーザの照射が、下記A~Bに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることが好ましい。 
<照射条件A> 
・レーザ波長:200nm~350nm 
・パルス幅:ナノ秒オーダー 
<照射条件B> 
・レーザ波長:350nm~2000nm 
・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、熱変性層が、多層膜と平行となるように形成されることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、熱変性層が、基板の平面方向に対して、 
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、 
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、 
iii)同心円状、 
iv)基板の中心点に対して略点対称に形成された形状、 
v)基板の中心点を通じる直線に対して略線対称に形成された形状、 
vi)ストライプ形状、ならびに、 
vii)らせん形状 
 から選択される少なくともいずれか1つのパターン形状を描くように形成されることを特徴とすることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、前記熱変性層が設けられ、前記多層膜が形成される前の前記単結晶基板の曲率を、200km-1以下の範囲内とすることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、基板の材質が、サファイアであることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、基板の直径が50mm以上300mm以下であることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、基板の厚みが0.05mm以上5.0mm以下であることが好ましい。 
 さらに本発明の多層膜付き単結晶基板の製造方法の他の実施態様は、多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることが好ましい。 
 また本発明の素子製造方法は、単結晶基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、上記どちらか一方の領域内に熱変性層が設けられ、かつ、上記熱変性層が設けられている領域の面側が凸を成すように反っている単結晶基板の、上記第2領域側の面に、 
 2つ以上の層を有する多層膜を形成する多層膜形成工程を、少なくとも経ることにより、多層膜付き単結晶基板を製造し、 
 さらに、当該多層膜付き単結晶基板の上記多層膜に対して、少なくともパターニング処理を施すことにより、発光素子、光発電素子、半導体素子から選択されるいずれか1つの素子として機能する素子部分を作製する素子部分形成工程を少なくとも経て、上記素子部分と当該素子部分に略対応するサイズを有する単結晶基板とを含む素子を製造することを特徴とする。 
 以上に説明したように、本発明によれば、多層膜の成膜に起因して生じる反りを矯正できる単結晶基板、その製造方法、当該単結晶基板を用いた多層膜付き単結晶基板の製造方法、および、当該製造方法を利用した素子製造方法を提供することができる。 
本実施形態の単結晶基板の製造方法の一例を示す模式説明図である。 図1に示すものと対応関係にある本実施形態の単結晶基板の製造方法の一例を示す模式説明図である。 従来の反りの無い略平坦な単結晶基板に対して多層膜を成膜した後に得られた多層膜付き単結晶基板の反りの状態の一例を示す模式断面図である。 本実施形態の単結晶基板に対して多層膜を成膜した後に得られた多層膜付き単結晶基板の反りの状態の一例を示す模式断面図である。 単結晶基板の平面方向に対する熱変性層の配置パターン形状の一例を示す平面図である。ここで、図5(a)は、複数本のラインを基板のオリフラ面に対して垂直に形成したストライプ形状を示す平面図であり、図5(b)は、複数本のラインを基板のオリフラ面に対して水平に形成したストライプ形状を示す平面図であり、図5(c)は、図5(a)および図5(b)に示す配置パターン形状を組み合わせた格子形状を示す平面図であり、図5(d)は、同一サイズの複数の正六角形を、正六角形の6つの頂点全てが当該正六角形に隣接する正六角形のいずれか一つの頂点と必ず重なり合うように規則的に配置した形状を示す平面図であり、図5(e)は、同心円状を示す平面図である。 多層膜形成工程の一例を示す模式説明図である。ここで、図6(a)は成膜開始前の状態を示す図であり、図6(b)は低温バッファ層を形成した後の状態を示す図であり、図6(c)はn-GaN層を形成した後の状態を示す図であり、図6(d)は多重量子井戸構造を有するInGaN系活性層を形成した後の状態を示す図である。 多層膜形成工程における単結晶基板の反り挙動の一例を示すグラフである。 円形状基板の曲率から基板の反り量を計算する方法を説明する模式説明図である。 本実施形態の素子製造方法の一例を示す模式説明図である。ここで、図9(a)は素子部分形成工程を示す図であり、図9(b)は研磨工程を示す図であり、図9(c)は分割予定ライン形成工程を示す図であり、図9(d)は分割工程を示す図である。 第1領域側の面からレーザ照射を行ったレーザ処理後単結晶基板における、熱変性層の深さと曲率変化量を示したグラフである。 本実施形態におけるAlN膜の形成及びLT-GaN膜の形成行程での単結晶基板の反り挙動を示すグラフである。 第2領域に熱変性層を形成した単結晶基板に多層膜を形成する工程における単結晶基板の反り挙動の一例を示すグラフである。 本実施形態の別形態に係る単結晶基板の製造方法の一例を示す模式説明図である。 第2領域側の面からレーザ照射を行ったレーザ処理後単結晶基板における熱変性層の深さと曲率変化量を示したグラフである。
10A レーザ処理前単結晶基板 
10B レーザ処理後単結晶基板 
10C 研磨後基板 
10D 第1領域 
10U 第2領域 
10R レーザ照射装置30が配置された側の領域(第1領域10Dとなりうる領域) 
12 非成膜面 
12A 研磨後の非成膜面 
20、20A、20B、20C、20D 熱変性層 
28、28A、28B、28C、28D 熱変性層 
30 レーザ照射装置 
30A、30B、30C 多層膜付き単結晶基板 
40 多層膜 
42 素子部分 
50 レーザ処理後サファイア基板 
52 成膜面 
54 非成膜面 
60 低温バッファ層 
62 n-GaN層 
64 GaN系層
64A InGaN系活性層
64B GaN系障壁層
64C AlGaN系障壁層
70 多層膜 
80 研磨盤 
90 分割予定ライン 
100 素子 
(単結晶基板、その製造方法および多層膜付き単結晶基板の製造方法) 
 本実施形態の単結晶基板(以下、必要に応じて単に「基板」と云う)は、基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、上記どちらか一方の領域内に熱変性層が設けられ、かつ、上記熱変性層が設けられる領域の面側が凸を成すように反っていることを特徴とする。また、本実施形態の単結晶基板を用いた本実施形態の多層膜付き単結晶基板の製造方法は、本実施形態の単結晶基板の第2領域側の面に、2つ以上の層を有する多層膜を形成する多層膜形成工程を、少なくとも経ることにより、多層膜付き単結晶基板を製造することを特徴とする。前記熱変性層を設ける領域は、前記第1領域または第2領域のどちらかとする。 
 ここで、多層膜の成膜に起因して生じる反りは、本実施形態の単結晶基板を用いて多層膜を形成した場合には、矯正することができる。この場合、この反りが矯正されることで多層膜付き単結晶基板ができるだけ平坦な状態に近づくことが基本的に望ましいが、多層膜の成膜に起因して生じた反りの向きは同じままで、反りの程度が多少小さくなっているだけでもよく、あるいは、多層膜の成膜に起因して生じた反りの向きを反転させて逆向きに反らせるように、多層膜の成膜に起因して生じた反りを矯正してもよい。なお、多層膜の形成に起因する反りが矯正されることで多層膜付きの単結晶基板が略平坦な状態に近づいた場合、従来の単結晶基板に多層膜を成膜後に後工程を実施して素子を作製するときと比較して、本実施形態の単結晶基板に多層膜を成膜後に後工程を実施して素子を作製するときは、素子の品質ばらつきを抑制し、歩留まりを向上させることがより容易となる。 
 本実施形態の単結晶基板を用いて多層膜を成膜した場合において、多層膜に起因する反りを矯正できる理由は、本実施形態の単結晶基板には第1領域内に熱変性層が設けられており、多層膜の成膜に際しては第2領域側の面に多層膜が形成されるためである。 
 以上に説明したように、反りを有する本実施形態の単結晶基板に対して、この反りを打ち消すように多層膜を成膜することで、多層膜に起因して生じる多層膜付き単結晶基板の反りを矯正することができる。なお、このことからは、熱変性層を形成することで反らせた単結晶基板の代わりに、研磨処理によって反った場合と同様の湾曲形状を有する単結晶基板を用いても、上述と同様の効果が得られるとも予想される。しかしながら、通常の研磨は、平坦な基板に対してなされるものであるため、研磨処理によって反った場合と同様の湾曲形状の単結晶基板を作製するのは、非常に困難である。また、レンズ研磨を利用すれば、反った場合と同様の湾曲形状の単結晶基板を容易にえることができる。しかし、この場合は、研磨面に露出する結晶面が基板面内でばらつくことになる。一方、何がしかの素子の作製等を目的として単結晶基板に対して成膜する場合、一般的には、単結晶基板表面に露出した結晶面を利用して、結晶性の膜をエキタピシャル成長させることが多い。このような単結晶基板に対するニーズを考慮すれば、レンズ研磨処理によって湾曲させた単結晶基板を用いて多層膜を形成すること自体が殆ど想定され得ず、実用性や汎用性に欠ける。 
 また、研磨処理以外にも、イオン注入によって単結晶基板の表面に組成変性層を形成することによって基板を反らせることで、上述と同様の効果が得られるとも予想される。しかしながら、イオン注入は基板表面近傍の領域に限られるため、第1領域内の任意の位置に熱変性層を設ける場合と比べると、単結晶基板の反りの制御範囲が非常に狭くなるものと思われる。これに加えて、イオン注入は減圧環境下で実施する必要があることから生産性が非常に低い。以上の点を考慮すると、イオン注入を利用した方法は、実用性には極めて欠けると考えられる。 
 なお、本実施形態の単結晶基板内に形成される「熱変性層」は、単結晶基板の一部の領域を局所的に加熱することにより形成される層である。この熱変性層は、単結晶基板をその厚み方向において2等分するラインで分割される2つの領域のうちの一方の領域内に、この熱変性層を形成した場合に、当該一方の領域側に凸を成すように単結晶基板を反らす作用を有する。 
 この熱変性層の形成方法としては特に限定されるものではないが、通常は、単結晶基板に対してレーザ照射する方法が用いられる。この場合、レーザ照射された領域に存在する原子の多光子吸収により、当該領域が局所的に加熱され、周囲の領域に対して結晶構造や結晶性の変化などの何がしかの変性が生じることで、熱変性層が形成される。即ち、レーザ照射処理前の単結晶基板の一方の面側から、レーザを照射することにより、基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、第1領域内に熱変性層を形成する熱変性層形成工程を少なくとも経て、第1領域の面側に凸を成すように反った本実施形態の単結晶基板を製造することができる。そして、この熱変性層形成工程を経た後に多層膜形成工程が実施される。なお、レーザ光の吸収損失を抑制するという観点から、第1領域内に熱変性層を形成する場合は、通常、レーザ照射は第1領域側の面から実施されることが好ましいが、必要に応じて第2領域側の面から実施してもよい。 
-レーザ照射条件- 
 なお、レーザの照射は、熱変性層が形成できるのであれば、如何様な照射条件で実施してもよいが、一般には、短い時間幅の中にエネルギーを集中させることが出来るため、高いピーク出力が得ることができるという点で、断続的にレーザ光を出すパルスレーザを用いて、下記1)および2)に示す範囲内で実施することが好ましい。 
1)レーザ波長:200nm~5000nm 
2)パルス幅:フェムト秒オーダー~ナノ秒オーダー(1fs~1000ns) 
 ここで、レーザ波長やパルス幅は、レーザ照射の対象となる単結晶基板の材質に起因する光透過性/光吸収性や、単結晶基板内に形成される熱変性層のサイズ・パターン精度、実用上利用可能なレーザ装置などを考慮して適宜選択される。しかしながら、レーザ照射に際しては、特に下記Aに示す照射条件を選択することが好ましい。 
<照射条件A> 
・レーザ波長:200nm~350nm 
・パルス幅:ナノ秒オーダー(1ns~1000ns)。なお、より好ましくは、10ns~15ns。 
<照射条件B> 
・レーザ波長:350nm~2000nm 
・パルス幅:フェムト秒オーダー~ピコ秒オーダー(1fs~1000ps)。なお、より好ましくは、200fs~800fs。 
 なお、照射条件Aは、照射条件Bよりも、レーザ波長がより短波長域のレーザを利用する。このため、レーザ波長およびパルス幅以外のその他の条件を同一として、レーザ照射を実施した場合、照射条件Bよりも、照射条件Aの方が、同程度の反り矯正効果を得るために必要なレーザ加工時間を短縮できる。また、使用するレーザの波長は、レーザ照射の対象となる単結晶基板の吸収端波長よりも長波長域の波長を選択することが好適である。
 ここで、単結晶基板がサファイア基板である場合は、上記照射条件A、Bを利用できる。この場合、レーザ波長およびパルス幅以外のその他の条件としては、たとえば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。 
・繰り返し周波数:50kHz~500kHz 
・レーザパワー:0.05W~0.8W 
・レーザのスポットサイズ:0.5μm~4.0μm(より好ましくは2μm前後) 
・試料ステージの走査速度:100mm/s~1000mm/s 
 また、単結晶基板が、Si基板の場合は、上記照射条件Bが利用できる。この場合、レーザ波長以外のその他の条件としては、たとえば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。 
・パルス幅:50ns~200ns 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:3μJ~12μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s) 
 また、単結晶基板が、GaAs基板の場合は、上記照射条件Bが利用できる。この場合、レーザ波長以外のその他の条件としては、たとえば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。 
・パルス幅:30ns~80ns 
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:8μJ~20μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s) 
 また、単結晶基板が、水晶基板の場合は、上記照射条件Bが利用できる。この場合、レーザ波長以外のその他の条件としては、たとえば、実用性や量産性等の観点から、以下に示す範囲内で選択することが好ましい。 
・パルス幅:200fs~800fs
・繰り返し周波数:10kHz~500kHz 
・照射エネルギー:3μJ~6μJ 
・レーザのスポットサイズ:0.5μm~4.0μm 
・試料ステージの走査速度:50mm/s~1000mm/s(より好ましくは100mm/s~1000mm/s) 
 なお、表1に、Si基板、GaAs基板および水晶基板に対して熱変性層を形成する場合のレーザ照射条件の一例を示す。また、レーザ照射する場合、単結晶基板のレーザ照射される側の面は鏡面状態(表面粗さRaで1nm以下程度)であることが特に好ましい。レーザ照射される面を鏡面状態とするためには、たとえば、鏡面研磨を実施することができる。 
Figure JPOXMLDOC01-appb-T000001
 また、本実施形態の単結晶基板の第2領域内に熱変性層を設けることにより、単結晶基板上に多層膜を成膜する成膜工程中に発生する単結晶基板の反り挙動の変動を抑えられ、成膜工程中の任意の成膜段階での単結晶基板の反りを0にすることが可能となる。従って、多層膜を構成する各層において、膜厚ムラおよび/または膜質ムラの発生が防止される。膜厚ムラおよび/または膜質ムラが防止されることにより、各種素子の品質ばらつきや歩留まり低下などが防止される。第2領域内に設けられる熱変性層の形成方法も特に限定されないが、通常は、単結晶基板に対してレーザ照射する方法が用いられる。第2領域内に熱変性層を形成する熱変性層形成工程を少なくとも経ることにより、第2領域の面側に凸を成すように反った他の実施形態の単結晶基板を製造することができる。この熱変性層形成工程を経た後に多層膜形成工程が実施される。なお、レーザ光の吸収損失を抑制するという観点から、第2領域内に熱変性層を形成する場合は、通常、レーザ照射は第2領域側の面から実施されることが好ましいが、必要に応じて第1領域側の面から実施してもよい。 
-熱変性層形成工程の具体例- 
 次に、熱変性層形成工程の具体例を図面を用いて説明する。図1および図2は本実施形態の単結晶基板の製造方法の一例を示す模式説明図であり、具体的には、熱変性層形成工程の一例を説明する模式説明図である。ここで、図1の上段は、熱変性層形成工程の実施前での単結晶基板を示す模式断面図であり、図1の下段は、熱変性層形成工程を実施した後の単結晶基板を示す模式断面図である。また、図2は熱変性層形成工程を実施している最中の状態、すなわち、単結晶基板の一方の面(第1領域側の面)からレーザを照射している状態を示す模式断面図である。 
 図1の上段に示すように、熱変性層形成工程を実施する前の従来の単結晶基板(レーザ処理前単結晶基板10A)は、反りが無く、略平坦状である。これに対して、図1の下段に示す熱変性層形成工程を実施した後の本実施形態の単結晶基板(レーザ処理後単結晶基板10B)は、第1領域10Dの面側に凸を成すように反っている。また、図1下段に示すように、レーザ処理後単結晶基板10Bをその厚み方向において、一点鎖線Lにより2等分して得られる第1領域10Dおよび第2領域10Uのうち、第1領域10D内に、一定の厚みを有する複数の熱変性層20(20A、20B、20C、20D)が、レーザ処理後単結晶基板10Bの平面方向に対して等間隔に形成されている。なお、以下の説明において、レーザ処理前単結晶基板10Aおよびレーザ処理後単結晶基板10Bの双方またはいずれかを意味してもよい場合は、単結晶基板10と称す場合がある。 
 ここで、熱変性層形成工程は、図2に一例を示すように、レーザ処理前単結晶基板10Aを不図示の試料ステージに固定した状態で実施される。なお、固定は、たとえば、真空吸着などにより実施することが好ましい。そして、試料ステージに固定されたレーザ処理前単結晶基板10Aの試料ステージが配置された側と反対側の面から、レーザ照射装置30によりレーザを照射する。この際、レーザ処理前単結晶基板10Aをその厚み方向に2等分して得られる2つの領域のうちレーザ照射装置30が配置された側の領域10R、すなわち第1領域10Dとなりうる領域内にレーザを集光させると共に、レーザ照射装置30とレーザ処理前単結晶基板10Aとを水平方向に相対的に移動させることで、熱変性層20を形成する。ここで、レーザのスポットサイズ、レーザパワー、パルス幅などを適宜選択することで、レーザ処理後単結晶基板10Bの平面方向や厚み方向に対する熱変性層20のサイズや変性度合などを制御できる。また、レーザ処理前単結晶基板10Aに対するレーザ照射装置30の相対的な移動速度(たとえば試料ステージが移動可能な場合は、試料ステージの走査速度)、レーザの繰り返し周波数を適宜選択することにより、レーザ処理後単結晶基板10Bの平面方向に対する個々の熱変性層20A、20B、20C、20D間の間隔を制御することができる。 
 また、図13の上段に示すように、第2領域10Uに熱変性層を形成する工程を実施する前の従来の単結晶基板(レーザ処理前単結晶基板10A)も、反りが無く、略平坦状である。これに対して、図13の中段に示す第2領域10Uへの熱変性層形成工程を実施した後の他の実施形態の単結晶基板(レーザ処理後単結晶基板10B)は、第2領域10Uの面側に凸を成すように反っている。レーザ処理後単結晶基板10Bをその厚み方向において、一点鎖線により2等分して得られる第1領域10Dおよび第2領域10Uのうち、第2領域10U内に、一定の厚みを有する複数の熱変性層28(28A、28B、28C、28D)が、レーザ処理後単結晶基板10Bの平面方向に対して等間隔に形成されている。なお、前記と同様、以下の説明において、レーザ処理前単結晶基板10Aおよびレーザ処理後単結晶基板10Bの双方またはいずれかを意味してもよい場合は、単結晶基板10と称す場合がある。また、熱変性層20または28が形成された単結晶基板は、どちらもレーザ処理が施された後の単結晶基板であり、かつ熱変性層が設けられている領域の面側が凸を成すように反っているという点で共通なので、「レーザ処理後単結晶基板10B」と表すことにする。 
 ここで、第2領域10Uへの熱変性層形成工程も、レーザ処理前単結晶基板10Aを不図示の試料ステージに固定した状態で実施される。そして試料ステージに固定されたレーザ処理前単結晶基板10Aの試料ステージが配置された側と反対側の面から、レーザ照射装置30によりレーザを照射する。この際、第2領域10Uとなりうる領域内にレーザを集光させると共に、レーザ照射装置30とレーザ処理前単結晶基板10Aとを水平方向に相対的に移動させることで、熱変性層28を形成する。レーザ処理前単結晶基板10Aに対するレーザ照射装置30の相対的な移動速度(たとえば試料ステージが移動可能な場合は、試料ステージの走査速度)、レーザの繰り返し周波数を適宜選択することにより、レーザ処理後単結晶基板10Bの平面方向に対する個々の熱変性層28A、28B、28C、28D間の間隔を制御することができる。 
-多層膜形成工程実施後の多層膜付き単結晶基板の反り- 
 次に、反りを有する本実施形態のレーザ処理後単結晶基板10Bに対して、多層膜を成膜した後に得られる多層膜付き単結晶基板の反りの状態の一例を、従来の反りの無い略平坦なレーザ処理前単結晶基板10Aに対して、多層膜を成膜した後に得られる多層膜付き単結晶基板の反りの状態と対比しながら説明する。図3は、従来の反りの無い略平坦な単結晶基板に対して多層膜を成膜した後に得られた多層膜付き単結晶基板の反りの状態の一例を示す模式断面図であり、図4は、本実施形態の単結晶基板に対して多層膜を成膜した後に得られた多層膜付き単結晶基板の反りの状態の一例を示す模式断面図である。なお、図3および図4中、図1、図2中に示すものと同様の機能・構造を有するものについては、同一の符号を付してある。また、図3および図4中、多層膜を構成する各層については記載を省略してある。 
 図3に示す多層膜付き単結晶基板30Aは、図1の上段に示すように成膜前の状態においては反りが無く略平坦なレーザ処理前単結晶基板10Aと、このレーザ処理前単結晶基板10Aの片面に設けられた多層膜40とから構成される。図3に示すように、多層膜付き単結晶基板30Aは、多層膜40が設けられた側の面に凸を成すように大きく反っている。 
 これに対して、図4に示す多層膜付き単結晶基板30Bは、図1の下段に示すように成膜前の状態においては第1領域10Dの面側に凸を成すように大きく反っているレーザ処理後単結晶基板10Bと、このレーザ処理後単結晶基板10Bの第2領域10Uの面側に設けられた多層膜40とから構成される。熱変性層20が存在する多層膜付き単結晶基板30Bは、反りが無く略平坦な状態となっている。 
 また図13下段に示す多層膜付き単結晶基板30Cは、図13の上段に示すように成膜前の状態においては反りが無く略平坦なレーザ処理前単結晶基板10Aと、このレーザ処理前単結晶基板10Aの片面に設けられた多層膜40とから構成される。図13下段に示すように、多層膜付き単結晶基板30Cは、多層膜40が設けられた側の面に凸を成すように大きく反っている。 
 図13下段に示す多層膜付き単結晶基板30Cは、図13の中段に示すように成膜前の状態においては第2領域10Uの面側に凸を成すように大きく反っているレーザ処理後単結晶基板10Bと、このレーザ処理後単結晶基板10Bの第2領域10Uの面側に設けられた多層膜40とから構成される。熱変性層28
が存在する多層膜付き単結晶基板30A は、第2領域10Uの面側に凸状の反りを有している。 
-熱変性層の配置パターン- 
 図3および図4に例示したように、第1領域10D内に熱変性層20を設けたレーザ処理後単結晶基板10Bを用いて多層膜40を成膜すれば、多層膜付き単結晶基板30Bの反りを矯正できる。しかしながら、熱変性層20が、レーザ処理後単結晶基板10Bの厚み方向や平面方向に対して、偏った位置に設けられたり、不規則に配置されたり、非対称的に配置されたりすると、多層膜40に起因して発生する反りを矯正することが困難となったり、あるいは、多層膜付き単結晶基板30Bの形状が歪んでしまう場合がある。 
 上述した問題の発生を回避するためには、レーザ処理後単結晶基板10Bの厚み方向については、熱変性層20は、多層膜40と平行に設けられていることが好ましい。なお、この場合、図10に示されているように、レーザ処理後単結晶基板10Bの厚み方向の相対位置を、第1領域10D側の面を0%と仮定し、第2領域10U側の面を100%とし仮定した際に、熱変性層20が、レーザ処理後単結晶基板10Bの厚み方向の5%以上50%未満の範囲内に設けられていることが好ましく5%以上30%以下の範囲内に設けられていることがより好ましい。レーザ処理後単結晶基板10Bの厚み方向に対して熱変性層20を上記数値範囲内に設けることにより、多層膜40に起因するレーザ処理後単結晶基板10Bの反りをより効果的に矯正して、多層膜付き単結晶基板30Bの変形も抑制できる。なお、図10のおける曲率変化量の符号は、図1下段に示すような第1領域側の面が凸を成す反りでの曲率変化量を+(プラス)、第1領域側の面が凹を成す反りでの曲率変化量を-(マイナス)としている。レーザ処理時における、レーザ処理前単結晶基板10Aへのレーザ照射は、図2に示すように第1領域10D側の面から実施することが好ましい。図10は第1領域10D側の面からレーザ照射を行ったレーザ処理後単結晶基板10Bにおける、熱変性層の深さと曲率変化量を示したグラフである。第1領域側の面からレーザ照射を行う利点としては、前記の通りレーザ光の吸収損失を抑制できる点に加え、次のような利点もある。図10に示すように、レーザ処理後単結晶基板10Bの厚み方向における5%以上50%未満の範囲内に熱変性層20を形成する場合は、第1領域側の面からレーザ照射を行うとレーザ処理後単結晶基板10Bの曲率変化量が大きくなることが判る。一方、レーザ処理後単結晶基板10Bの厚み方向における50%超かつ95%以下の範囲内に熱変性層を形成する際は、第1領域側の面からレーザ照射を行うと、曲率変化量は得られるものの、その絶対値としての大きさは極めて小さいことが判る。従って、熱変性層20の形成数を抑えつつ、多層膜成膜前のレーザ処理後単結晶基板10Bの反り量を大きく設けたい場合には、第1領域側の面からレーザ照射を行うことが好ましい。 
 なお、レーザ処理後単結晶基板10Bの厚み方向に対する熱変性層20の存在位置は、個々の熱変性層20A、20B、20C、20Dが、全て同じ位置に存在することが好ましいが、異なる位置に存在していてもよい。この場合は、基板の平面方向に対する個々の熱変性層20A、20B、20C、20Dの配置位置も考慮の上、多層膜付き単結晶基板30Bの形状が歪んだり、熱変性層20を設けたことに起因する反りの矯正効果を著しく損失しないように、個々の熱変性層20A、20B、20C、20Dを、レーザ処理後単結晶基板10Bの厚み方向に対して異なる位置に配置してもよい。また、レーザ処理後単結晶基板10Bの厚み方向に対する熱変性層20の長さは、レーザのスポットサイズ、照射エネルギー(レーザパワー/繰り返し周波数)、パルス幅に依存して決定され、通常は、数μm~数十μmの範囲内である。 
 また、上述した問題の発生を回避するためには、レーザ処理後単結晶基板10Bの平面方向については、熱変性層20は、以下に示されるパターン形状で設けられることが好ましい。すなわち、熱変性層20は、レーザ処理後単結晶基板10Bの平面方向に対して、下記i)~vii)から選択される少なくともいずれか1つのパターン形状で設けられていることが好ましい。この場合、多層膜40に起因する多層膜付き単結晶基板30Bの反りをより効果的に矯正して、その変形も抑制できる。 
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状 
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状 
iii)同心円状 
iv)基板の中心点に対して略点対称に形成された形状 
v)基板の中心点を通じる直線に対して略線対称に形成された形状 
vi)ストライプ形状 
vii)らせん形状 
 なお、上記i)~vii)に示されるパターン形状のうち、多層膜40に起因する多層膜付き単結晶基板30Bの反りをより均一に矯正でき、形状の歪みもより小さくできる観点からは、i)~iv)に示されるパターン形状がより好ましい。 
 また、熱変性層20の形成に際して、レーザ走査、すなわち、レーザ処理前単結晶基板10Aに対するレーザ照射装置30の相対的な移動が、他のパターン形状と比べて比較的単純でレーザ加工が容易となる観点からは、パターン形状は、i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状であることが好ましい。さらに、i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状としては、複数個の同一形状および同一サイズの四角形を個々の四角形を構成する4辺が隣接する四角形のいずれか1辺と互いに重なり合うように規則的に配置した形状、すなわち、格子形状であることが特に好ましい。この場合、レーザ走査が縦方向および横方向の2方向のみでよく、レーザ加工がより容易となる上に、多層膜付き単結晶基板30Bの反り量制御や形状制御の設計もより容易となる。 
 ここで、格子形状を成すパターンを構成するラインのピッチは、50μm~2000μmの範囲内であることが好ましく、100μm~1000μmの範囲内であることがより好ましい。ピッチを50μm以上とすることにより、レーザ加工に要する時間が必要以上に増大するのを抑制でき、また、ピッチを2000μm以下とすることにより、多層膜40に起因する多層膜付き単結晶基板30Bの反りをより確実に矯正できる。 
 図5は、基板の平面方向に対する熱変性層の配置パターン形状の一例を示す平面図であり、具体的には、レーザ処理後単結晶基板10Bの平面形状がオリフラ面を有する円形状である場合における熱変性層20の配置パターン形状の一例を示したものである。熱変性層20の配置パターン形状は、図5に示すように、たとえば、複数本のラインを基板のオリフラ面に対して垂直又は平行に形成したストライプ形状(図5(a)、図5(b))、それら両方を組み合わせた格子形状(図5(c))などが挙げられる。また、この他の配置パターン形状として、同一サイズの複数の正六角形を、正六角形の6つの頂点全てが当該正六角形に隣接する正六角形のいずれか一つの頂点と必ず重なり合うように規則的に配置した形状(図5(d))、同心円状(図5(e))なども挙げられる。なお、図5(a)に示す幅Wは、ライン間のピッチを意味する。 
 なお、図4に示す例において、多層膜付き単結晶基板30Bのいずれか一方の面側に凸を成すように反りが生じる場合もありえる。しかしながら、いずれにせよ、図3に示すような反りは、反りの向きが同じかつ反り量が抑制された状態に矯正されるか、あるいは、反りの向きが逆側となるように矯正されることになる。すなわち、多層膜40に起因して発生する反りの程度は、多層膜40の層構成や膜厚、レーザ処理後単結晶基板10Bの厚みや材質など、様々である。しかしながら、この反りの程度に応じて、以上に説明した、i)熱変性層20のレーザ処理後単結晶基板10Bの厚み方向における長さ、ii)レーザ処理後単結晶基板10Bの厚み方向における熱変性層20の配置位置、および、iii)レーザ処理後単結晶基板10Bの平面方向における熱変性層20の配置パターン形状を適宜選択して組み合わせることで、多層膜付き単結晶基板30Aに対して、多層膜付き単結晶基板30Bの多層膜40に起因する反りを矯正できるのみならず、多層膜付き単結晶基板30Bを略平坦状とすることもできる。なお、多層膜付き単結晶基板30Bの曲率としては、反りに起因する後工程での悪影響をより小さくできる観点から±30km-1の範囲内が好ましく、±20km-1の範囲内がより好ましい。 
 また、第2領域10Uに熱変性層28を設ける場合も、レーザ処理後単結晶基板10Bの厚み方向において熱変性層28が多層膜40と平行に設けられていることが好ましい。なお、この場合、レーザ処理後単結晶基板10Bの厚み方向の相対位置を、第1領域10D側の面を0%と仮定し、第2領域10U側の面を100%とし仮定した際に、熱変性層28が、レーザ処理後単結晶基板10Bの厚み方向の50%を超えて95%以下の範囲内に設けられていることが好ましい。さらに、80%以上95%以下の範囲内に設けられていることがより好ましい。熱変性層28を上記数値範囲内に設けることにより、多層膜40成膜中の任意の成膜段階での単結晶基板10Bの反りを0にすることが可能となり、多層膜付き単結晶基板30Aの変形も抑制できる。なお、図14のおける曲率変化量の符号は、図13中段に示すような第2領域10U側の面が凸を成す反りでの曲率変化量を+(プラス)、第2領域10U側の面が凹を成す反りでの曲率変化量を-(マイナス)としている。レーザ処理時における、レーザ処理前単結晶基板10Aへのレーザ照射は、図13上段に示すように第2領域10U側の面から実施することが好ましい。図14は第2領域側の面からレーザ照射を行ったレーザ処理後単結晶基板10Bにおける、熱変性層の深さと曲率変化量を示したグラフである。第2領域側の面からレーザ照射を行う利点としては、前記の通りレーザ光の吸収損失を抑制できる点に加え、次のような利点もある。図14に示すように、レーザ処理後単結晶基板10Bの厚み方向における50%超かつ95%以下の範囲内に熱変性層28を形成する場合は、第2領域側の面からレーザ照射を行うとレーザ処理後単結晶基板10Bの曲率変化量が大きくなることが判る。一方、レーザ処理後単結晶基板10Bの厚み方向における0%以下50%未満の範囲内に熱変性層を形成する際は、第2領域側の面からレーザ照射を行うと、曲率変化量は得られるものの、その絶対値としての大きさは極めて小さいことが判る。従って、熱変性層28の形成数を抑えつつ、多層膜成膜前のレーザ処理後単結晶基板10Bの反り量を大きく設けたい場合には、第2領域側の面からレーザ照射を行うことが好ましい。 
 なお、レーザ処理後単結晶基板10Bの厚み方向に対する熱変性層28の存在位置も、個々の熱変性層28A、28B、28C、28Dが、全て同じ位置に存在することが好ましいが、異なる位置に存在していてもよい。この場合は、個々の熱変性層28A、28B、28C、28Dの配置位置も考慮の上、多層膜付き単結晶基板30Cの形状が歪んだり、熱変性層28を設けたことによる効果を著しく損失しないように、前記熱変性層28A、28B、28C、28Dを、レーザ処理後単結晶基板10Bの厚み方向に対して異なる位置に配置してもよい。また、レーザ処理後単結晶基板10Bの厚み方向に対する熱変性層28の長さは、レーザのスポットサイズ、照射エネルギー(レーザパワー/繰り返し周波数)、パルス幅に依存して決定され、通常は、数μm~数十μmの範囲内である。 
 またレーザ処理後単結晶基板10Bの平面方向については、熱変性層28は前記熱変性層20と同様、下記i)~vii)から選択される少なくともいずれか1つのパターン形状で設けられていることが好ましい。 
i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状 
ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状 
iii)同心円状 
iv)基板の中心点に対して略点対称に形成された形状 
v)基板の中心点を通じる直線に対して略線対称に形成された形状 
vi)ストライプ形状 
vii)らせん形状 
 なお、上記i)~vii)に示されるパターン形状のうち、多層膜40に起因する多層膜付き単結晶基板30A
の反りをより均一に矯正でき、形状の歪みもより小さくできる観点からは、i)~iv)に示されるパターン形状がより好ましい。 
 また、熱変性層28の形成に際して、レーザ走査、すなわち、レーザ処理前単結晶基板10Aに対するレーザ照射装置40の相対的な移動が、他のパターン形状と比べて比較的単純でレーザ加工が容易となる観点から、パターン形状は、i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状であることが好ましい。さらに、i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状としては、複数個の同一形状および同一サイズの四角形を個々の四角形を構成する4辺が隣接する四角形のいずれか1辺と互いに重なり合うように規則的に配置した形状、すなわち、格子形状であることが特に好ましい。この場合、レーザ走査が縦方向および横方向の2方向のみでよく、レーザ加工がより容易となる上に、多層膜付き単結晶基板30Cの反り量制御や形状制御の設計もより容易となる。 
 ここで、格子形状を成すパターンを構成するラインのピッチは、50μm~2000μmの範囲内であることが好ましく、100μm~1000μmの範囲内であることがより好ましい。ピッチを50μm以上とすることにより、レーザ加工に要する時間が必要以上に増大するのを抑制でき、また、ピッチを2000μm以下とすることにより、多層膜40成膜中の任意の成膜段階でのレーザ処理後単結晶基板10Bの反りを0に設定することをより効果的に実現することができる。 
 熱変性層28の配置パターン形状は、図5に示す各種形状などが挙げられる。なお、図5(a)に示す幅Wは、ライン間のピッチを意味する。 
 なお、多層膜40に起因して発生する反りの程度に応じて、i)熱変性層28のレーザ処理後単結晶基板10Bの厚み方向における長さ、ii)レーザ処理後単結晶基板10Bの厚み方向における熱変性層28の配置位置、および、iii)レーザ処理後単結晶基板10Bの平面方向における熱変性層28の配置パターン形状を適宜選択して組み合わせることで、多層膜付き単結晶基板30Cの多層膜40に起因する反りを矯正できるのみならず、多層膜成膜中の任意の成膜段階での単結晶基板10Bの反りも0にすることができる。 
-レーザ処理後単結晶基板の曲率- 
 一方、図1の下段に示すようにレーザ処理後単結晶基板10Bは、第1領域10D側の面に凸を成すように反っているのであればその曲率は特に限定されるものではないが、曲率の上限値は200km-1以下であることが好ましく、150km-1以下であることがより好ましく、60km-1以下であることがさらに好ましい。この場合、多層膜40を成膜して得られる多層膜付き単結晶基板30Bの反りを抑制して、より平坦な状態とすることが容易となる。 
 表2に、レーザ処理後単結晶基板の反りの曲率例と、前記反りの曲率が200km-1以下となる実施形態例を示す。表2より、レーザ処理前(加工前)単結晶基板の曲率は10又は11km-1で凹を成す形状であった。つまり、第1領域内に熱変性層が設けられ、第1領域の基板面側が凸、他方の領域の基板面側が凹を成している。このレーザ処理前(加工前)単結晶基板に、100μm以上の加工ピッチで熱変性層20を設けることにより、レーザ処理後(加工後)単結晶基板の曲率を200km-1以下に納めることが可能であると判明した。さらに、同じ加工ピッチでも、単結晶基板の厚み方向において第2領域側に対し第1領域側に近い位置に熱変性層を形成することにより、単結晶基板の曲率がより大きくなることが判った。さらに、単結晶基板の厚み方向において同じ位置に熱変性層を形成しても、加工ピッチが小さい方が単結晶基板の曲率がより大きくなることが判った。 
Figure JPOXMLDOC01-appb-T000002
 また、図13中段に示すように第2領域10Uに熱変性層28をレーザ処理で形成した後のレーザ処理後単結晶基板10Bは、第2領域10U側の面に凸を成すように反っているのであればその曲率は特に限定されるものではないが、曲率の上限値は200km-1以下であることが好ましく、150km-1以下であることがより好ましく、60km-1以下であることがさらに好ましい。この場合、多層膜40を成膜して得られる多層膜付き単結晶基板30Cの反りを抑制すると共に、多結晶膜40成膜中の任意の成膜段階でのレーザ処理後単結晶基板10Bの反りを0にすることがより容易となる。 
-単結晶基板- 
 レーザ処理後単結晶基板10Bの作製に用いられるレーザ処理前単結晶基板10Aを構成する材質としては、レーザ照射により熱変性層20、28の形成が可能な公知の単結晶材料であればいずれも利用できるが、たとえば、サファイア、窒化物半導体、Si、GaAs、水晶、SiCなどが挙げられる。なお、本実施形態の多層膜付き単結晶基板は、単結晶材料からなる単結晶基板を利用するものである。しかしながら、このような基板の代わりに、多結晶材料からなる基板(たとえば石英基板)や、非晶質材料からなる基板(たとえばガラス基板)を用いても、多層膜に起因する反りの発生が矯正された平坦な多層膜付き基板を得ることもできる。 
 また、レーザ処理前単結晶基板10Aは、通常、少なくとも片面が鏡面研磨されたものが用いられ、両面が鏡面研磨されたものを用いてもよい。片面のみが鏡面研磨されている場合は、通常は、この面側からレーザ照射を行いレーザ処理後単結晶基板10Bを作製し、次に、第2領域10U側の面を鏡面研磨した後に多層膜40を形成する。また、レーザ処理後単結晶基板10Bの作製に用いられるレーザ処理前単結晶基板10Aとしては、基板の製造および入手容易性の観点から、レーザ加工などによる何らの熱変性層やイオン打ち込みなどによる何らの組成変性層も形成されておらず、かつ、何らの膜も成膜されていない状態では、通常、その反り量はほぼゼロ、すなわち略平坦なものが用いられる。 
 単結晶基板10の平面方向の形状は特に限定されるものではなく、たとえば、方形などでもよいが、公知の各種素子の製造ラインでの適用が容易であるという観点からは、円形状であることが好ましく、特にオリフラ面が設けられた円形状であることが好ましい。 
 単結晶基板10の形状が円形状またはオリフラ面が設けられた円形状である場合、単結晶基板10の直径は50mm以上であることが好ましく、75mm以上であることがより好ましく、100mm以上であることが更に好ましい。直径を50mm以上とした場合、レーザ処理前単結晶基板10Aを用いて多層膜40を形成して多層膜付き単結晶基板30Aを作製した際に、直径の増大と共に多層膜付き単結晶基板30Aを平坦な面に静置したと仮定した際の鉛直方向に対する多層膜付き単結晶基板30Aの中央部付近と端部付近との高低差(反り量)が大きくなる。しかしながら、レーザ処理後単結晶基板10Bを用いて多層膜40を形成して多層膜付き単結晶基板30B、30Cを作製すれば、このような大きな反りを矯正して、反り量を容易に小さくすることができるので、後工程への悪影響を小さくすることができる。なお、直径の上限値は特に限定されるものではないが、実用上の観点からは300mm以下が好ましい。 
 また、単結晶基板10の厚みは、5.0mm以下であることが好ましく、3.0mm以下であることが好ましく、2.0 mm以下であることがより好ましい。厚みを5.0mm以下とした場合、厚みが薄いためレーザ処理後単結晶基板10Bの剛性が低下し、変形しやすくなる。この場合、レーザ処理前単結晶基板10Aを用いて多層膜40を形成して得られた多層膜付き単結晶基板30Aでは、反り量が増大しやすくなる。しかしながら、レーザ処理後単結晶基板10Bを用いて多層膜40を形成する場合、上記のレーザ処理前単結晶基板10Aを用いた場合の反りの増大を考慮して、レーザ処理後単結晶基板10Bの反り量を調整しておくことで、作製される多層膜付き単結晶基板30Bの反り量を容易に0近傍に制御できる。または、多層膜成膜中の任意の成膜段階での単結晶基板30Cの反りを0に設定することが可能となる。それゆえ、単結晶基板10の直径が増大しても後工程への悪影響を小さくすることができる。また、以上に説明した事情から、後工程において多層膜付き単結晶基板30B、30Cの第1領域10Dの面側の研磨により、レーザ処理後単結晶基板10Bを所定の厚みとなるまで研磨する必要がある場合には、後工程への悪影響が増大しない範囲で、研磨代がより小さくなるように厚みのより薄いレーザ処理後単結晶基板10Bを用いて多層膜40を形成することができる。この場合、後工程での研磨に要する時間を短縮でき、後工程における生産性を向上させることができる。 
 厚みの下限値は特に限定されるものではないが、熱変性層20、または28を形成できる領域を確保する観点から0.05mm以上であることが好ましく、0.1mm以上であることが好ましい。なお、単結晶基板10の形状が、円形状またはオリフラ面が設けられた円形状である場合、直径が50mm以上100mm以下のときは、厚みは0.3mm以上であることが好ましく、直径が100mmを超えるときは、厚みは0.5mm以上が好ましい。 
-多層膜- 
 本願明細書において「多層膜」とは、2つ以上の層を有するものである。これに加えて、この多層膜を構成する各層が基板の平面方向に対して同一の膜厚を有する連続した層から構成された最表層の膜を貫通する段差を持たない膜を意味する。多層膜40の層構成、ならびに、多層膜40を構成する各層の膜厚、材料および結晶性/非結晶性は、本実施形態の単結晶基板10Bを用いて作製された多層膜付き単結晶基板30B、30Cを更に後加工することにより作製される素子の種類や、素子を製造する際に適用する製造プロセスに応じて適宜選択される。 
 しかしながら、多層膜40を構成する少なくともいずれか1層が、結晶性の層であることが好ましい。また、レーザ処理後単結晶基板10Bの成膜面に露出する結晶面を利用してエキタピシャル成長させることができるという観点からは、多層膜40を構成する各層のうち、少なくともレーザ処理後単結晶基板10Bの成膜面に直接接触する層が結晶性の層であることが好ましく、多層膜40を構成する全ての層が結晶性の層であってもよい。なお、エキタピシャル成長とは、同一組成または混晶を含むホモエキタピシャル成長、ヘテロエキタピシャル成長を含む。また、多層膜40を構成する各層の材料も、作製する素子に応じて適宜選択されるが、レーザ処理後単結晶基板10Bの作製に用いる基板がサファイア基板などの無機材料で構成されることを考慮すると、各層を構成する材料も、金属材料、金属酸化物材料、無機半導体材料などの無機材料とすることが好ましく、全ての層がこれらの無機材料から構成されることが望ましい。ただし、MOCVD法を成膜法として用いた場合、層の無機材料中に有機金属由来の有機物を含有することがある。 
 多層膜40を構成する各層の具体例としては、たとえば、面発光レーザなどに用いる発光素子、光センサや太陽電池などに用いる受光素子、電子回路などに用いる半導体素子などの各種の窒化物半導体を利用した素子の製造に適したものとして、GaN系、AlGaN系、InGaN系などの窒化物半導体結晶層を挙げることができる。なお、この場合、レーザ処理後単結晶基板10Bの作製に用いる基板として、サファイア基板を用いることが好適である。また、多層膜40の層構成の具体例としては、たとえば、素子として窒化物半導体を利用した発光素子を作製するのであれば、レーザ処理後単結晶基板10Bとして熱変性層20、28が形成されたサファイア基板を用い、このサファイア基板側から、GaNより成るバッファ層、n型GaNより成るn型コンタクト層、n型AlGaNより成るn型クラッド層、n型InGaNより成る活性層、p型AlGaNよりなるp型クラッド層、p型GaNより成るp型コンタクト層をこの順に積層した層構成、を採用することができる。 
 多層膜40の膜厚としては、作製する素子に応じて適宜選択され、一般的に、多層膜40の膜厚が大きくなるほど、レーザ処理前単結晶基板10Aに対して多層膜40を成膜した多層膜付き単結晶基板30Aの反り量も増大することになる。従来であれば、素子の品質ばらつきや歩留まりへの影響が顕著となってくる。また、この場合、多層膜40には、成膜後において反りに起因する脆性破壊によりクラックが発生しやすくなる。しかしながら、多層膜40を形成した後の多層膜付き単結晶基板30Bの反り量が0近傍に制御できるように、所定の反り量を有するようにレーザ照射して作製したレーザ処理後単結晶基板10Bを用いて多層膜40を成膜すれば、上述した問題の発生をより確実に抑制できる。なお、多層膜40の膜厚の上限は特に限定されるものではない。また、多層膜の層数は2層以上であればよく、作製する素子の種類に応じて層数が適宜選択できる。 
 多層膜40の成膜方法としては特に限定されず、公知の成膜方法が利用でき、多層膜40を構成する各層毎に異なる成膜方法および/または成膜条件を採用して成膜することもできる。成膜法としてはメッキ法などの液相成膜法も挙げられるが、スパッタリング法やCVD法(Chemical Vapor Deposition)などの気相成膜法を用いることが好ましい。なお、発光素子などの作製を目的として窒化物半導体結晶層などの半導体結晶層を成膜する場合、MOCVD法(Metal Organic Chemical Vapor Deposition)、HVPE法(Hydride vapor phase epitaxy)、MBE法(Molecular
Beam Epitaxy)などの気相成膜法を利用することがより好ましい。なお、レーザ処理後単結晶基板10Bの多層膜40が成膜される側の面は、鏡面状態(表面粗さRaで1nm以下程度)であることが特に好ましい。多層膜40が形成される面を鏡面状態とするためには、たとえば、鏡面研磨を実施することができる。 
-多層膜形成工程の具体例- 
 次に、多層膜40を成膜する場合の具体例として、レーザ処理後単結晶基板10Bとしてレーザ照射により熱変性層20、28を形成したサファイア基板(レーザ処理後サファイア基板)を用い、このレーザ処理後サファイア基板の片面に、エピタキシャル成長により窒化物半導体層を複数層積層して多層膜40を形成する場合を図面を用いて説明する。図6は、多層膜形成工程の一例を示す模式説明図であり、具体的には、サファイア基板上に窒化物半導体層等を積層することで多層膜を形成するプロセスを示した図である。ここで、図6(a)は成膜開始前の状態を示す図であり、図6(b)は低温バッファ層を形成した後の状態を示す図であり、図6(c)はn-GaN層を形成した後の状態を示す図であり、図6(d)は多重量子井戸構造を有するInGaN系活性層を形成した後の状態を示す図である。なお、図中、多層膜成膜中および多層膜成膜後のレーザ処理後サファイア基板の反りの有無や反りの程度、熱変性層20、第1領域10Dおよび第2領域10Uについては記載を省略してある。 
 まず、レーザ処理後サファイア基板50(レーザ処理後単結晶基板10B)の第2領域10U側の面(以下、「成膜面52」と称す)を成膜開始前にサーマルクリーニングする(図6(a))。次に、成膜面52上に、低温バッファ層60(図6(b))、n-GaN層62(図6(c))、多重量子井戸構造を有するInGaN系活性層64A(GaN系層64)(図6(d))をこの順に成長させる。これによりレーザ処理後サファイア基板50の片面に3層からなる多層膜70(多層膜40)が形成される。なお、この後、所定の後加工を行うことでLEDチップなどの発光素子を得ることができる。なお、多層膜70を構成する各層は、たとえばMOCVD法、HVPE法、MBE法等を利用して形成できる。 
 次に、多層膜形成工程における単結晶基板10の反り挙動について説明する。図7は、多層膜形成工程における単結晶基板の反り挙動の一例を示すグラフであり、具体的には図6に示す多層膜70を成膜中のレーザ処理後サファイア基板50またはレーザ処理前サファイア基板の反り挙動を示したグラフである。なお、図7の説明において、レーザ処理後サファイア基板50およびレーザ処理前サファイア基板の双方を指し示す場合は、単に「サファイア基板」と称す。ここで、図7中、横軸は時間を表し、縦軸は成膜面におけるサファイア基板の曲率を表す。なお、縦軸の正の方向が成膜面側が凸を成すようにサファイア基板が反っている状態を意味し、縦軸の負の方向が成膜面側が凹を成すようにサファイア基板が反っている状態を意味する。また、図7に示すスペクトルA~Cの測定対象となったサファイア基板の仕様およびこのサファイア基板に対する成膜条件の詳細については、後述する実施例にて詳述する。 
 なお、図7に例示したような多層膜形成工程の実施中におけるサファイア基板の反り挙動は、非特許文献2に開示されるIn-situ観察方法を利用することで把握することができる。また、図7の縦軸として例示する基板の曲率からは、基板の反り量を計算することができる。図8は円形状基板の曲率から基板の反り量を計算する方法を説明する模式説明図である。図8
においては、基板の曲率半径をR、曲率1/Rを有する基板の反り量X、基板の直径を近似的にDとして示した。これらの値の関係性として、三平方の定理を用いることで,(1/R)2=((1/R)-X)2+(D/2)2と示すことができる。この式から、基板の直径が50mmの場合は、0.322×曲率(km-1)、基板の直径が100mmの場合は、1.250×曲率(km-1)として反り量(um)を求めることができる。
 図7に示される反り挙動の変化を示す3つのスペクトルのうち、スペクトルAは、熱変性層20が形成されていないレーザ処理前の従来のサファイア基板を用いて多層膜70を形成した場合の反り挙動の変化を示したものある。また、スペクトルBおよびスペクトルCは、レーザ処理前の従来のサファイア基板の代わりにレーザ処理後サファイア基板50を用いたことを除いては、スペクトルAの測定と同じ条件で多層膜70を形成した場合の反り挙動の変化を示したものである。なお、スペクトルBおよびスペクトルCの違いは、レーザ処理後サファイア基板50の平面方向おいて格子状パターンで形成された熱変性層20のライン間のピッチのみが異なる点にある。ここで、スペクトルBの測定に用いたレーザ処理後サファイア基板50のライン間のピッチは250μmとし、スペクトルCの測定に用いたレーザ処理後サファイア基板50のライン間のピッチは100μmとした。すなわち、スペクトルCの測定に用いたレーザ処理後サファイア基板50の方が、スペクトルBの測定に用いたレーザ処理後サファイア基板50よりも、基板の平面方向に対してより密に格子状パターンの熱変性層20が形成されている。そして、その結果、図7にも示されるように成膜開始前の基板の曲率の絶対値もスペクトルCの測定に用いたレーザ処理後サファイア基板50の方が、スペクトルBの測定に用いたレーザ処理後サファイア基板50よりも大きくなっている。 
 また、図7の横軸に沿って(a)~(e)として示される区間は、多層膜形成工程において順次実施される各プロセスに対応している。ここで、プロセス(a)は、サファイア基板の成膜面をサーマルクリーニングするプロセスに対応し、プロセス(b)は、低温バッファ層60を形成するプロセスに対応し、プロセス(c)は、n-GaN層62を形成するプロセスに対応し、プロセス(d)は、InGaN系活性層64A(64)を形成するプロセスに対応し、プロセス(e)はクールダウンするプロセスに対応している。 
 次に、図7に示されるスペクトルAの反り挙動の変化を説明する。まず、(a)成膜面のサーマルクリーニングプロセスでは、レーザ処理前サファイア基板の成膜面と非成膜面との温度差により、成膜面が凹面を成そうとする方向(図7中の縦軸におけるマイナス側)に反り、曲率が大きく変化する。次に、(b)低温バッファ層60を形成するプロセスでは、レーザ処理前サファイア基板の温度が、(a)成膜面52のサーマルクリーニングプロセスを実施中の温度よりも降下し、通常は、500~600℃程度の温度に維持される。このため、成膜面が凸面を成そうとする方向(図7中の縦軸におけるプラス側)に反り、曲率の絶対値は小さくなる。 
 次に、(c)n-GaN層62を形成するプロセスでは、レーザ処理前サファイア基板の温度を再び1000℃程度まで上昇させて、n-GaN層62を形成する。このプロセスでは、窒化ガリウムとサファイアの格子定数差に起因して、成膜面が凹面を成そうとする方向に反り、曲率の絶対値が若干増大する。 
 次に、(d)InGaN系活性層64A(64)を形成するプロセスでは、レーザ処理前サファイア基板の温度を700~800℃程度に下降させて、InGaN系活性層64A(64)を形成する。そして最後に、多層膜70が形成されたレーザ処理前サファイア基板を、(e)クールダウンするプロセスでは、多層膜70とレーザ処理前サファイア基板との熱膨張係数差により、レーザ処理前サファイア基板が成膜面側に凸を成す方向に反り、曲率の絶対値も増大する。また、常温近傍に冷却されてクールダウン終了後もレーザ処理前サファイア基板が成膜面側に凸を成すように反った状態が維持される。しかしながら、このような反りは、多層膜70の成膜に際してレーザ処理後サファイア基板50を用いることで矯正することができ、さらに、熱変性層20の配置パターンを最適化することで、スペクトルCに示すように曲率を0近傍とすることもできる。この場合、LEDチップ等の発光素子を得るために、パターニング処理やバックラップ処理などの各種の後工程を実施しても、反りに起因する発光素子の品質ばらつきや歩留まり低下を確実に抑制することができる。 
 ここで、図6(d)に示す多層膜70付きのレーザ処理後サファイア基板50を用いて、所定の後加工を行うことにより、LEDチップなどの発光素子を製造する場合、InGaN系活性層64A(64)の膜厚およびInGaN系活性層64A(64)中のIn組成の均一性が、発光波長の面内均一性に影響し、ひいては、発光素子の製造歩留まりにも影響する。InGaN系活性層64A(64)の膜厚およびInGaN系活性層64A(64)中のIn組成の均一性は成膜温度に影響を受ける。このため、図7の(d)InGaN系活性層64A(64)を形成するプロセスでは、基板面内の温度均一性を向上させるために、成膜中のサファイア基板の曲率はできるだけ0に近づけることが望ましいといえる。このような事情から、スペクトルAとして示されるように従来のレーザ処理がなされていないサファイア基板を用いて多層膜70を成膜する場合、プロセス(d)における曲率はほぼ0近傍に維持されることが多い。 
 しかしながら、多層膜70の成膜に用いる基板を、従来のレーザ処理がなされていないサファイア基板から、レーザ処理後サファイア基板50に変更するとスペクトルB、Cに示されるように、プロセス(d)における曲率は0よりも小さくなる。それゆえ、レーザ処理後サファイア基板50を用いて多層膜70を成膜した場合、成膜後の多層膜70が設けられたレーザ処理後サファイア基板50の反りを抑制することで、(1)後工程への悪影響をより小さくできるというメリットを有する一方で、(2)プロセス(d)における曲率の絶対値の増大により、基板面内の温度均一性が低下し、結果的に発光素子の歩留まりを低下させるというデメリットも有することになる。しかしながら、このデメリットを解消する一つの方法として、プロセス(d)において、レーザ処理後サファイア基板50の反りの向きや曲率に対応させた湾曲した形状のヒータを利用してレーザ処理後サファイア基板50を加熱することもできる(たとえば、E.Armour et.al.,semiconductor TODAY Compounds & Advanced Silicon,Vol.4,Issue 3,April/May 2009,"LED growth compatibility between 2",4" and 6" sapphire"参照)。この場合、レーザ処理後サファイア基板50を用いて多層膜70の成膜を行っても、上記のデメリットを回避しつつ、上記のメリットのみを享受できる。 
 また、プロセス(c)においては、スペクトルA~Cのいずれにおいても4000s以降において、時間の経過と共に曲率の絶対値が増大している。このような変化は、InGaN系活性層64A(64)の下地層であるn-GaN層62の膜厚方向における膜質や膜厚ばらつきなどを招くことになるため、望ましくない。この場合は、プロセス(a)を実施した後にプロセス(b)の代わりにAlN層を形成することが好ましい。これにより、プロセス(c)において、時間の経過と共に曲率の絶対値が増大すると共に、曲率をほぼ一定に保つことができる。 
 また、第2領域10Uに熱変性層28を形成して多層膜40を成膜する場合の具体例も、図6に示される通りである。この場合の、多層膜形成工程における単結晶基板10の反り挙動について説明する。図12は、第2領域に熱変性層28を形成した単結晶基板に多層膜を形成する工程における単結晶基板の反り挙動の一例を示すグラフである。なお、図12の説明において、レーザ処理後サファイア基板およびレーザ処理前サファイア基板の双方を指し示す場合は、単に「サファイア基板」と称す。ここで、図12中、横軸は時間を表し、縦軸は成膜面におけるサファイア基板の反り量を表す。なお、縦軸の正の方向が成膜面側が凸を成すようにサファイア基板が反っている状態を意味し、縦軸の負の方向が成膜面側が凹を成すようにサファイア基板が反っている状態を意味する。また、図12に示すスペクトルA~Cの測定対象となったサファイア基板の仕様およびこのサファイア基板に対する成膜条件の詳細については、後述する実施例にて詳述する。 
 なお、図12に例示したような多層膜形成工程の実施中におけるサファイア基板の反り挙動は、非特許文献2に開示されるIn-situ観察方法を利用することで把握することができる。 
 図12に示される反り挙動の変化を示す3つのスペクトルのうち、スペクトルAは、熱変性層28が形成されていないレーザ処理前の従来のサファイア基板を用いて多層膜70を形成した場合の反り挙動の変化を示したものある。また、スペクトルBおよびスペクトルCは、レーザ処理前の従来のサファイア基板の代わりにレーザ処理後サファイア基板50を用いたことを除いては、スペクトルAの測定と同じ条件で多層膜70を形成した場合の反り挙動の変化を示したものである。なお、スペクトルBおよびスペクトルCの違いは、レーザ処理後サファイア基板50の平面方向おいて格子状パターンで形成された熱変性層28のライン間のピッチのみが異なる点にある。ここで、スペクトルBの測定に用いたレーザ処理後サファイア基板50のライン間のピッチは500μmとし、スペクトルCの測定に用いたレーザ処理後サファイア基板50のライン間のピッチは300μmとした。すなわち、スペクトルCの測定に用いたレーザ処理後サファイア基板50の方が、スペクトルBの測定に用いたレーザ処理後サファイア基板50よりも、基板の平面方向に対してより密に格子状パターンの熱変性層28が形成されている。そして、その結果、図12にも示されるように成膜開始前の基板の反り量の絶対値もスペクトルCの測定に用いたレーザ処理後サファイア基板50の方が、スペクトルBの測定に用いたレーザ処理後サファイア基板50よりも大きくなっている。 
 また、図12の横軸に沿って(a)~(e)として示される区間は、多層膜形成工程において順次実施される各プロセスに対応している。ここで、プロセス(a)は、サファイア基板の成膜面をサーマルクリーニングするプロセスに対応し、プロセス(b)は、低温バッファ層60を形成するプロセスに対応し、プロセス(c)は、n-GaN層62を形成するプロセスに対応し、プロセス(d)は、任意のGaN系障壁層64B(GaN系層64)を形成するプロセスに対応し、プロセス(e)はクールダウンするプロセスに対応している。 
 次に、図12に示されるスペクトルAの反り挙動の変化を説明する。まず、(a)成膜面のサーマルクリーニングプロセスでは、レーザ処理前サファイア基板の成膜面と非成膜面との温度差により、成膜面が凹面を成そうとする方向(図12中の縦軸におけるマイナス側)に反り、反り量が大きく変化する。次に、(b)低温バッファ層60を形成するプロセスでは、レーザ処理前サファイア基板の温度が、(a)成膜面52のサーマルクリーニングプロセスを実施中の温度よりも降下し、通常は、500~600℃程度の温度に維持される。このため、成膜面が凸面を成そうとする方向(図12中の縦軸におけるプラス側)に反り、反り量の絶対値は小さくなる。 
 次に、(c)n-GaN層62を形成するプロセスでは、レーザ処理前サファイア基板の温度を再び1000℃程度まで上昇させて、n-GaN層62を形成する。このプロセスでは、窒化ガリウムとサファイアの格子定数差に起因して、成膜面が凹面を成そうとする方向に反り、反り量の絶対値が若干増大する。 
 次に、(d)任意のGaN系障壁層64B(64)を形成するプロセスでは、レーザ処理前サファイア基板の温度を1100~1200℃程度に上昇させて、GaN系障壁層64B(64)を形成する。そして最後に、多層膜70が形成されたレーザ処理前サファイア基板を、(e)クールダウンするプロセスでは、多層膜70とレーザ処理前サファイア基板との熱膨張係数差により、レーザ処理前サファイア基板が成膜面側に凸を成す方向に反り、曲率の絶対値も増大する。また、常温近傍に冷却されてクールダウン終了後もレーザ処理前サファイア基板が成膜面側に凸を成すように反った状態が維持される。 
 ここで、多層膜70付きのレーザ処理後サファイア基板50を用いて、所定の後加工を行うことにより、HEMT(High Electron Mobility Transistor :高電子移動度トランジスタ)などの半導体素子を製造する場合、GaN系障壁層64B(64)の膜厚およびGaN系障壁層64B(64)中の組成の均一性(膜質)が、デバイス性能に影響し、ひいては、半導体素子の製造歩留まりにも影響する。GaN系障壁層64B(64)の膜厚およびGaN系障壁層64B(64)中の組成の均一性は、成膜工程中の単結晶基板の反り挙動の変動に影響を受ける。このため、図12
の(d)GaN系障壁層64B(64)を形成するプロセスでは、基板の反り挙動を抑えるために、成膜中のサファイア基板の曲率はできるだけ0に近づけることが望ましいといえる。
 多層膜70の成膜に用いる基板を、従来のレーザ処理がなされていないサファイア基板から、第2の領域にレーザ処理を施した後のサファイア基板50に変更するとスペクトルB、Cに示されるように、プロセス(d)における反り量は0または0に近づく。それゆえ、レーザ処理後サファイア基板50を用いて多層膜70を成膜した場合、多層膜70の膜厚ムラおよび/または膜質ムラを抑えることができるという効果を有する 
 なお、プロセス(a)を実施した後にプロセス(b)の代わりにAlN層を形成しても良く、AlN層の形成により、プロセス(c)において反り量をほぼ一定に保つことができる。 
(素子製造方法) 
 図6(d)に一例を示したような多層膜付き単結晶基板30B、30Cに対しては、さらに各種の後工程を実施することにより素子を作製することができる。この場合、後工程において、多層膜40に対して、少なくともパターニング処理を施すことにより、発光素子、光発電素子、半導体素子から選択されるいずれか1つの素子として機能する素子部分を作製する素子部分形成工程を少なくとも経て、素子部分と当該素子部分に略対応するサイズを有する単結晶基板とを含む素子を製造することができる。ここで、多層膜40の層構成は、最終的に作製する素子の種類に応じて適宜選択される。また、素子の製造に際して、後工程として、素子部分形成工程以外に、研磨工程、分割予定ライン形成工程および分割工程をこの順に実施してもよい。 
 この場合、本実施形態の多層膜付き単結晶基板製造方法により作製された多層膜付き単結晶基板30B、30Cを用いた素子製造方法は、具体的には以下の(1)~(4)に示す工程を少なくとも順次実施することで、素子部分と当該素子部分に略対応するサイズを有する単結晶基板とを含む素子を作製することができる。 
 (1)多層膜付き単結晶基板の多層膜をパターニングして個々の素子部分を形成する素子部分形成工程 
 (2)素子部分が片面に形成された素子部分付き単結晶基板の素子部分が形成されていない面を、少なくとも、多層膜成膜後熱変性層形成工程において形成された第1の熱変性層が除去されるまで研磨する研磨工程 
 (3)研磨工程において研磨された面側から、個々の素子部分の境界ラインに沿って、レーザを照射することで分割予定ラインを形成する分割予定ライン形成工程 
 (4)分割予定ライン形成工程において形成された分割予定ラインに沿って外力を加えることで、素子部分付きの単結晶基板を素子部分単位で分割する分割工程 
 ここで、(3)分割予定ライン形成工程、および、(4)分割工程を実施する場合、特許文献3に記載の技術を利用することができる。 
 なお、レーザ処理後単結晶基板10B内の熱変性層20、28が格子状パターンに形成されている場合、研磨工程において熱変性層20、28が完全に除去されない程度に研磨した上で、レーザ処理後単結晶基板10B内に残留している熱変性層20、28を分割予定ラインとして利用することで分割工程を実施することも原理的には可能である。しかしながら、多層膜40が個々の素子部分に個別化された後でないと、素子部分の存在位置を確認した上でレーザ照射のための位置合わせを行うことができない。このため、個々の素子部分を作製する前に、分割予定ラインの機能も兼ねる熱変性層20、28を形成する上記の方法では、個々の素子部分に対応させて正確に分割予定ラインを形成することが困難である。すなわち、上記の方法では、分割予定ラインは隣接する2つの素子部分間の境界線からずれてしまう可能性が大きくなるため、実用性に欠けやすい。このため、レーザ照射により形成された熱変性層を利用して分割工程を実施する場合、上記(1)~(4)に示す工程をこの順に実施することが特に好ましいといえる。 
 また、分割予定ライン形成工程を実施する場合、レーザの照射条件としては、既述した照射条件Bを選択することが特に望ましい。レーザ波長が紫外域の照射条件Aでは、レーザ波長に起因するレーザのエネルギーが大きいために、形成される分割予定ラインの幅が太く、その太さもラインの長さ方向に対してばらつきやすくなる。このため、分割工程において、直線的かつ正確な分割が困難となる場合があるためである。 
 図9は、本実施形態の素子製造方法の一例を示す模式説明図であり、具体的には図1の下段に示すレーザ処理後単結晶基板10Bを用いて、(1)素子部分形成工程(図9(a))、(2)研磨工程(図9(b))、(3)分割予定ライン形成工程(図9(c))、および(4)分割工程(図9(d))をこの順に実施した場合の一例を示したものである。なお、図中、図1または図13に示すものと同様の機能・構成を有するものには同じ符号が付してあり、また、レーザ処理後単結晶基板10Bの反りの有無やその程度については記載を省略してある。 
 まず、図1の下段または図13の中段に示すレーザ処理後単結晶基板10Bに形成される多層膜40に対してパターニング処理を行うことで、多層膜40を個別化して複数の素子部分42を形成する。ここで、パターニング処理は、たとえば以下のように実施できる。まず、多層膜40上にレジスト膜を形成後、フォトマスクを用いてこのレジスト膜を露光後に現像することでパターニングしてレジスト膜を部分的に除去する。その後、レジスト膜が除去された部分の多層膜40をエッチングにより除去することで素子部分42を形成する(図9(a))。次に、素子部分42が形成された面と平坦な研磨盤80とを貼り合わせることで、研磨盤80上に素子部分42が形成されたレーザ処理後単結晶基板10Bを固定し、素子部分42が形成された面と反対側の面(非成膜面12)側を研磨する。この研磨は、熱変性層20を形成している場合は少なくとも熱変性層20が完全に除去されるまで実施する(図9(b))。なお、第2領域に熱変性層28を形成する場合の研磨代は任意とする。その後、研磨後の非成膜面12A側からレーザ照射することにより、分割予定ライン90を形成する。この分割予定ライン90は、レーザ処理後単結晶基板10Bを研磨して得られた研磨後基板10Cの平面方向に対して、隣接する2つの素子部分42間に形成される(図9(c))。最後に、この分割予定ライン90に沿って外力を加えることで、個々の素子部分42毎に研磨後基板10Cを分割し、複数の素子100を得る(図9(d))。 
 以下に、本発明を実施例を挙げて説明するが、本発明は以下の実施例にのみ限定されるものではない。 
<実施例1> 
(評価用サンプルの作製) 
 何らの前処理もなされていない従来のサファイア基板(レーザ処理前サファイア基板)に対してレーザ照射処理することによりレーザ処理後サファイア基板50を作製した。次に、レーザ処理前サファイア基板およびレーザ処理後サファイア基板50に対して、図6に示すように多層膜70を成膜した。この際、多層膜成膜前におけるレーザ照射前後での反り量および成膜予定面側から見た反りの方向、および、多層膜成膜後における反り量および成膜面側から見た反りの方向を評価した。以下に、テスト条件および評価結果の詳細を説明する。 
-サファイア基板- 
 レーザ処理前サファイア基板としては、オリフラ面付きの円形状のサファイア基板(直径:4インチ(100mm)、厚み:650μm)を用いた。なお、このサファイア基板は、両面が鏡面研磨されたものである。 
-熱変性層形成条件- 
 まず、平坦な試料ステージ上に、真空吸着によりレーザ処理前サファイア基板を固定した。この状態で、レーザ処理前サファイア基板の試料ステージが配置された面側と反対の面(非成膜面54)側から、以下の照射条件にてレーザ照射を行うことで熱変性層20を形成し、レーザ処理後サファイア基板50を得た。なお、レーザ照射に際しては、試料ステージの縦方向の走査方向がレーザ処理前サファイア基板のオリフラと一致するように、試料ステージ上にレーザ処理前サファイア基板を固定した。そして、レーザ照射装置に対して、試料ステージを縦方向および横方向に走査し、レーザ処理前サファイア基板の平面方向に対して格子状パターンとなるように熱変性層20を形成した。ここで、試料ステージの走査速度を変えることにより格子状パターンのライン間ピッチを変化させたサンプルを作製した。 
・レーザ波長:1045nm 
・パルス幅:500×10-15sec 
・繰り返し周波数:100kHz 
・スポットサイズ:1.6~3.5μm 
・レーザパワー: 0.3W 
・試料ステージ走査速度: 400mm/s(ライン間のピッチに応じて左記範囲内で適宜選択) 
-多層膜の層構成および成膜条件- 
 レーザ処理前およびレーザ処理後の2種類のサファイア基板に、図6に示すように3層構成の多層膜70を形成した。なお、具体的な成膜条件は以下の通りであり、以下に示す(1)~(5)の順にプロセスを実施した。 
(1)サーマルクリーニング 
 サファイア基板をMOCVD装置内に配置した後、成膜面のサーマルクリーニングを、基板温度 1100℃にて約 120秒間実施した。 
(2)低温バッファ層60の形成 
 成膜時の基板温度を 530℃とし、成膜レート 0.16nm/sにて膜厚が 30nmとなるまで低温バッファ層60(Ga(ガリウム)、N(窒素))を形成した。 
(3)n-GaN層62の形成 
 成膜時の基板温度を 1050℃とし、成膜レート 2000nm/sにて膜厚が 3500nmとなるまでn-GaN層62を形成した。 
(4)InGaN系活性層64A(64)の形成 
 成膜時の基板温度を750℃とし、成膜レート 10nm/sにて、膜厚が408nmとなるまでInGaN系活性層64A(64)を形成した。 
(5)クールダウン 
 片面に低温バッファ層60、n-GaN層62およびInGaN系活性層64A(64)をこの順に形成したサファイア基板を常温近傍まで冷却した。 
(評価結果) 
-反り量および反りの方向の評価- 
 表3に、多層膜成膜前におけるレーザ照射前後での反り量および成膜予定面側から見た反りの方向、および、多層膜成膜後における反り量および成膜面側から見た反りの方向について評価した結果を示す。なお、サンプル1、サンプル2および比較例は、各々、図7に示すスペクトルC、BおよびAに対応する。 
 表3に示すように、レーザ処理前サファイア基板を用いて多層膜70を成膜した比較例では、成膜面側に凸を成すように反り、反り量は75μmであった。しかしながら、レーザ処理後サファイア基板を用いて多層膜70を成膜したサンプル2では、反り量は25μmまで減少した。さらに、サンプル2よりもライン間のピッチを狭くして熱変性層20を形成したサンプル1では反り量は0μmとなった。この結果から、レーザ処理後サファイア基板50を用いて多層膜70を成膜すれば、多層膜70に起因する反りを矯正して、反り量を小さくでき、さらには平坦な状態とすることも可能であることが判った。 
Figure JPOXMLDOC01-appb-T000003
<実施例2> 
(評価用サンプルの作製) 
 評価用サンプルとして図6(d)に示すものと同様のサファイア基板50の片面に3層構成の多層膜70が形成されたものを以下の手順で作製した。まず、サファイア基板50の成膜面52側からのレーザ照射により格子状パターンで熱変性層28を形成し、次に、成膜面52に多層膜70を形成した。その後、非成膜面54側からのレーザ照射により格子状パターンで熱変性層20を形成して得られた多層膜付きサファイア基板を作製した。この際、多層膜成膜前におけるレーザ照射前後での反り量および成膜面側から見た反りの方向と、多層膜成膜後におけるレーザ照射前後での反り量および成膜面側から見た反りの方向と、多層膜成膜後におけるレーザ照射時のライン間のピッチに対するレーザ照射前後での反り量変化の関係と、多層膜成膜中におけるサファイア基板の曲率の最大値と最小値との差とについて評価した。以下に、テスト条件および評価結果の詳細を説明する。
-サファイア基板- 
 サファイア基板50としては、オリフラ面付きの円形状のサファイア基板(直径:2インチ(50.8mm)、厚み:430μm)を用いた。なお、このサファイア基板50は、片面が鏡面研磨されたものであり、多層膜70はこの鏡面研磨された面を成膜面52として形成される。また、何らの成膜処理やレーザ照射処理を行わない状態でのこのサファイア基板50の反り量は、±10μmの範囲内である。 
-熱変性層形成条件- 
 熱変性層28の形成は、平坦な試料ステージ上に、成膜面52が上面となるようにサファイア基板50を配置し、真空吸着によりサファイア基板50を固定した状態で、成膜面52側から、以下の照射条件にてレーザ照射を行うことで実施した。なお、レーザ照射に際しては、試料ステージの縦方向の走査方向がサファイア基板50のオリフラと一致するように、試料ステージ上にサファイア基板50を固定した。そして、レーザ照射装置に対して、試料ステージを縦方向および横方向に走査し、サファイア基板50の平面方向に対して格子状パターンとなるように第1の熱変性層28を形成した。ここで、ライン間ピッチは、試料ステージの走査速度を変えることで変化させた。 
・レーザ波長:1045nm 
・パルス幅:500fs 
・繰り返し周波数:100kHz 
・スポットサイズ:1.6~3.5μm 
・レーザパワー:0.3W 
・試料ステージ走査速度:400mm/s(ライン間のピッチに応じて左記範囲内で適宜選択) 
-多層膜の層構成および成膜条件-
 熱変性層28が形成されたサファイア基板50の成膜面52には、3層構成の多層膜70を形成した。なお、具体的な成膜条件は以下の通りであり、以下に示す(1)~(5)の順にプロセスを実施した。
(1)サーマルクリーニング
 サファイア基板50をMOCVD装置内に配置した後、成膜面52のサーマルクリーニングを、基板温度1100℃にて約120秒間実施した。
(2)低温バッファ層60の形成
 成膜時の基板温度を530℃とし、成膜レート0.16nm/sにて膜厚が30nmとなるまで低温バッファ層60を形成した。
(3)n-GaN層62の形成
 成膜時の基板温度を1050℃とし、成膜レート2000nm/sにて膜厚が3500nmとなるまでn-GaN層62を形成した。
(4)AlGaN系障壁層64C(GaN系層64)の形成
 成膜時の基板温度を1150℃とし、成膜レート0.2nm/sにて、膜厚が30nmとなるまでAlGaN系障壁層64C(64)を形成した。
(5)クールダウン
 片面に低温バッファ層60、n-GaN層62およびAlGaN系障壁層64C(64)をこの順に形成したサファイア基板50を常温近傍まで冷却した。
(評価結果) 
-反り量および反りの方向の評価- 
 表4に、多層膜成膜前におけるレーザ照射前後での反り量および成膜面52側から見た反りの方向と、多層膜成膜中における反り量及び成膜面側から見た反り方向、多層膜成膜後の反り量および成膜面側から見た反りの方向について評価した結果を示す。また、図12に、多層膜成膜中における単結晶基板の反り挙動の変化を示す。ここで、図12中、符号(a)~(e)で示される区間は、各々、上記(1)~(5)に示す多層膜の成膜プロセスに対応する。
 熱変性層28が形成された単結晶基板50の成膜面52側に、上記(1)~(5)に示すプロセスを順次実施した。この際、図12中、符号(d)で示されるAlGaN系障壁層64C(64)の成膜工程の実施中において、表4および図12に示すようにサンプル1の単結晶基板50の反りを0にできることが確認できた。なお、図12中のスペクトルAが比較例、スペクトルBがサンプル2、スペクトルCがサンプル1に相当する。
 また、図12中、符号(c)で示されるn-GaN層の成膜工程の実施中において、表4および図12に示すようにサンプル2の単結晶基板50の反りを、この成膜工程の全期間における平均値として0にできることが確認できた。
Figure JPOXMLDOC01-appb-T000004
<実施例3> 
 表5に示されているように、何らの前処理もなされていない従来のサファイア基板(レーザ処理前サファイア基板)3つ(サンプル1~3)に対し、1枚のサファイア基板のみに多層膜成膜前に第1領域内にレーザ照射処理を施して熱変性層20を設けることにより、サンプル3のレーザ処理後サファイア基板を作製した。次に、サンプル1または2のレーザ処理前サファイア基板およびサンプル3のレーザ処理後サファイア基板に対して、多層膜を成膜した。 
 サンプル1,2のレーザ処理前サファイア基板には、それぞれLT-GaN膜またはAlN膜を成膜した。一方、サンプル3のレーザ処理後サファイア基板にはAlN膜を成膜した。LT-GaN膜およびAlN膜のそれぞれの成膜中のサファイア基板の反りの挙動を図11に示す。この際、AlN膜成膜前におけるレーザ照射前後でのサファイア基板の反り量および成膜予定面側から見た反りの方向、および、多層膜成膜後における反り量および成膜面側から見た反りの方向を評価した。以下に、テスト条件および評価結果の詳細を説明する。なお、使用するサファイア基板、熱変性層の形成条件に関しては、前記実施例1と同一とする。さらに、LT-GaN膜またはAlN膜の成膜条件は、実施例1と同様のサーマルクリーニング及び低温バッファ層を形成した後に、それぞれLT-GaN膜またはAlN膜を成膜した。 
(評価結果) 
-反り量および反りの方向の評価- 
 表5に、AlN膜の成膜前におけるレーザ照射前後での反り量および成膜予定面側から見た反りの方向、および、AlN膜成膜後における反り量および成膜面側から見た反りの方向について評価した結果を、サンプル3(エピ前加工基板+AlNと)して示す。さらに比較例として、従来のサファイア基板(レーザ処理前サファイア基板)にLT-GaN膜を形成したサンプル1(STD+LT-GaN)と、AlN膜を形成したサンプル2(STD+AlN)もそれぞれ示す。 
 表5に示すように、成膜前のレーザ処理を行わなかったサンプル1(STD+LT-GaN)、サンプル2(STD+AlN)では、成膜後は成膜面側に凸を成すように反り、反り量は60または80μmであった。しかしながら、レーザ処理後サファイア基板を用いてAlN膜を成膜したサンプル3(エピ前加工基板+AlN)では、反り量は10μmまで減少した。特に、同じAlN膜を成膜したにも関わらず、成膜後のサファイア基板の反り量を8分の1にまで減少可能であることが判明した。 
Figure JPOXMLDOC01-appb-T000005

Claims (40)

  1.  基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、上記どちらか一方の領域内に熱変性層が設けられ、かつ、上記熱変性層が設けられている領域の面側が凸を成すように反っていることを特徴とする単結晶基板。 
  2.  前記熱変性層が設けられている領域が、前記第1領域であることを特徴とする請求項1に記載の単結晶基板。 
  3.  前記熱変性層が設けられている領域が、前記第2領域であることを特徴とする請求項1に記載の単結晶基板。 
  4.  請求項1または2のいずれか1つに記載の単結晶基板において、 
     前記基板の厚み方向の相対位置を、前記第1領域側の面を0%と仮定し、前記第2領域側の面を100%として仮定した際に、 
     前記熱変性層が、基板の厚み方向の5%以上50%未満の範囲内に設けられていることを特徴とする単結晶基板。 
  5.  請求項1または3のいずれか1つに記載の単結晶基板において、 
     前記基板の厚み方向の相対位置を、前記第1領域側の面を0%と仮定し、前記第2領域側の面を100%として仮定した際に、 
     前記熱変性層が、基板の厚み方向の50%を超え95%以下の範囲内に設けられていることを特徴とする単結晶基板。 
  6.  請求項1~5のいずれかに記載の単結晶基板において、 
     前記熱変性層が、レーザ照射により形成されたことを特徴とする単結晶基板。 
  7.  請求項1~6のいずれか1つに記載の単結晶基板において、  
     前記熱変性層が、基板の両面と平行に設けられていることを特徴とする単結晶基板。 
  8.  請求項1~7のいずれか1つに記載の単結晶基板において、 
     前記熱変性層が、基板の平面方向に対して、 
    i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、 
    ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、 
    iii)同心円状、 
    iv)前記基板の中心点に対して略点対称に形成された形状、 
    v)前記基板の中心点を通じる直線に対して略線対称に形成された形状、 
    vi)ストライプ形状、ならびに、 
    vii)らせん形状 
     から選択される少なくともいずれか1つのパターン形状で設けられていることを特徴とすることを特徴とする単結晶基板。 
  9.  請求項8に記載の単結晶基板において、 
     前記複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることを特徴とする単結晶基板。 
  10.  請求項9に記載の単結晶基板において、 
     前記格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることを特徴とする単結晶基板。 
  11.  請求項1~10のいずれか1つに記載の単結晶基板において、 
     前記基板の曲率が200km-1以下の範囲内であることを特徴とする単結晶基板。 
  12.  請求項1~11のいずれか1つに記載の単結晶基板において、  
     前記基板の材質がサファイアであることを特徴とする単結晶基板。 
  13.  請求項1~12のいずれか1つに記載の単結晶基板において、 
     前記基板の直径が50mm以上300mm以下であることを特徴とする単結晶基板。 
  14.  請求項1~13のいずれか1つに記載の単結晶基板において、 
     前記基板の厚みが0.05mm以上5.0mm以下であることを特徴とする単結晶基板。 
  15.  レーザ照射処理前の単結晶基板の一方の面側から、レーザを照射することにより、 
     基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、上記どちらか一方の領域内に熱変性層を形成する熱変性層形成工程を少なくとも経て、 
     上記熱変性層が設けられている領域の面側が凸を成すように反った単結晶基板を製造することを特徴とする単結晶基板の製造方法。 
  16.  前記熱変性層が設けられている領域が、前記第1領域であることを特徴とする請求項15に記載の単結晶基板の製造方法。 
  17.  前記単結晶基板への前記レーザの照射が、前記単結晶基板の前記第1領域側の面から行われることを特徴とする請求項16に記載の単結晶基板の製造方法。 
  18.  前記熱変性層が設けられている領域が、前記第2領域であることを特徴とする請求項15に記載の単結晶基板の製造方法。 
  19.  前記単結晶基板への前記レーザの照射が、前記単結晶基板の前記第2領域側の面から行われることを特徴とする請求項18に記載の単結晶基板の製造方法。 
  20.  請求項15~19のいずれか1つに記載の単結晶基板の製造方法において、 
     前記レーザの照射が、下記A~Bに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることを特徴とする単結晶基板の製造方法。 
    <照射条件A> 
    ・レーザ波長:200nm~350nm 
    ・パルス幅:ナノ秒オーダー 
    <照射条件B> 
    ・レーザ波長:350nm~2000nm 
    ・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
  21.  基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、上記どちらか一方の領域内に熱変性層が設けられ、かつ、上記熱変性層が設けられている領域の面側が凸を成すように反っている単結晶基板の、上記第2領域側の面に、 
     2つ以上の層を有する多層膜を形成する多層膜形成工程を、少なくとも経ることにより、多層膜付き単結晶基板を製造することを特徴とする多層膜付き単結晶基板の製造方法。
  22.  前記熱変性層が設けられている領域が、前記第1領域であることを特徴とする請求項21に記載の多層膜付き単結晶基板の製造方法。 
  23.  請求項21または22のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、 
     前記基板の厚み方向の相対位置を、前記第1領域側の面を0%と仮定し、前記第2領域側の面を100%とし仮定した際に、 
     前記熱変性層が、前記基板の厚み方向の5%以上50%未満の範囲内に位置するように形成されることを特徴とする多層膜付き単結晶基板の製造方法。 
  24.  前記熱変性層が設けられている領域が、前記第2領域であることを特徴とする請求項21に記載の多層膜付き単結晶基板の製造方法。 
  25.  請求項21または24のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、 
     前記基板の厚み方向の相対位置を、前記第1領域側の面を0%と仮定し、前記第2領域側の面を100%とし仮定した際に、 
     前記熱変性層が、前記基板の厚み方向の50%を超え95%以下の範囲内に位置するように形成されることを特徴とする多層膜付き単結晶基板の製造方法。 
  26.  請求項21~23のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記単結晶基板の一方の面側から、レーザを照射することにより、 
     前記基板の厚み方向において2等分して得られる前記第1領域および前記第2領域からなる2つの領域のうち、前記第1領域内に前記熱変性層を形成する熱変性層形成工程を少なくとも経ることで、前記第1領域の面側が凸を成すように反った前記単結晶基板を作製し、 
     その後に、当該単結晶基板に対して前記多層膜形成工程を実施することを特徴とする多層膜付き単結晶基板の製造方法。 
  27.  前記単結晶基板への前記レーザの照射が、前記単結晶基板の前記第1領域側の面から行われることを特徴とする請求項26に記載の多層膜付き単結晶基板の製造方法。 
  28.  請求項21、24、25のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、 
     前記単結晶基板の一方の面側から、レーザを照射することにより、 
     基板の厚み方向において2等分して得られる前記第1領域および前記第2領域からなる2つの領域のうち、前記第2領域内に熱変性層を形成する熱変性層形成工程を少なくとも経ることで、上記第2領域の面側が凸を成すように反った前記単結晶基板を作製し、 
     その後に、当該単結晶基板に対して前記多層膜形成工程を実施することを特徴とする多層膜付き単結晶基板の製造方法。 
  29.  前記単結晶基板への前記レーザの照射が、前記単結晶基板の前記第2領域側の面から行われることを特徴とする請求項28に記載の多層膜付き単結晶基板の製造方法。 
  30.  請求項26~29のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記レーザの照射が、下記A~Bに示す少なくともいずれか1つに記載の照射条件を満たすように実施されることを特徴とする多層膜付き単結晶基板の製造方法。 
    <照射条件A> 
    ・レーザ波長:200nm~350nm 
    ・パルス幅:ナノ秒オーダー 
    <照射条件B> 
    ・レーザ波長:350nm~2000nm 
    ・パルス幅:フェムト秒オーダー~ピコ秒オーダー 
  31.  請求項21~30のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記熱変性層が、前記多層膜と平行となるように形成されることを特徴とする多層膜付き単結晶基板の製造方法。 
  32.  請求項21~31のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記熱変性層が、基板の平面方向に対して、 
    i)複数個の同一形状および同一サイズの多角形を規則的に配置した形状、 
    ii)複数個の同一形状および同一サイズの円または楕円を規則的に配置した形状、 
    iii)同心円状、 
    iv)前記基板の中心点に対して略点対称に形成された形状、 
    v)前記基板の中心点を通じる直線に対して略線対称に形成された形状、 
    vi)ストライプ形状、ならびに、 
    vii)らせん形状 
     から選択される少なくともいずれか1つのパターン形状を描くように形成されることを特徴とすることを特徴とする多層膜付き単結晶基板の製造方法。 
  33.  請求項32に記載の多層膜付き単結晶基板の製造方法において、 
     前記複数個の同一形状および同一サイズの多角形を規則的に配置した形状が、格子形状であることを特徴とする多層膜付き単結晶基板の製造方法。 
  34.  請求項33に記載の多層膜付き単結晶基板の製造方法において、 
     前記格子形状を成すパターンを構成するラインのピッチが、50μm~2000μmの範囲内であることを特徴とする多層膜付き単結晶基板の製造方法。 
  35.  請求項21~34のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記熱変性層が設けられ、前記多層膜が形成される前の前記単結晶基板の曲率が200km-1以下の範囲内であることを特徴とする多層膜付き単結晶基板の製造方法。 
  36.  請求項21~35のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記基板の材質が、サファイアであることを特徴とする多層膜付き単結晶基板の製造方法。 
  37.  請求項21~36のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記基板の直径が50mm以上300mm以下であることを特徴とする多層膜付き単結晶基板の製造方法。 
  38.  請求項21~37のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記基板の厚みが0.05mm以上5.0mm以下であることを特徴とする多層膜付き単結晶基板の製造方法。 
  39.  請求項21~38のいずれか1つに記載の多層膜付き単結晶基板の製造方法において、
     前記多層膜を構成する少なくともいずれか1層が、窒化物半導体結晶層であることを特徴とする多層膜付き単結晶基板の製造方法。 
  40.  単結晶基板の厚み方向において2等分して得られる第1領域および第2領域からなる2つの領域のうち、上記どちらか一方の領域内に熱変性層が設けられ、かつ、上記熱変性層が設けられている領域の面側が凸を成すように反っている単結晶基板の、上記第2領域側の面に、 
     2つ以上の層を有する多層膜を形成する多層膜形成工程を、少なくとも経ることにより、多層膜付き単結晶基板を製造し、 
     さらに、当該多層膜付き単結晶基板の上記多層膜に対して、少なくともパターニング処理を施すことにより、発光素子、光発電素子、半導体素子から選択されるいずれか1つの素子として機能する素子部分を作製する素子部分形成工程を少なくとも経て、上記素子部分と当該素子部分に略対応するサイズを有する単結晶基板とを含む素子を製造することを特徴とする素子製造方法。 
PCT/JP2011/055076 2010-03-05 2011-03-04 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法 WO2011108706A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180011562.0A CN102792420B (zh) 2010-03-05 2011-03-04 单晶衬底、单晶衬底的制造方法、带多层膜的单晶衬底的制造方法以及元件制造方法
JP2012503288A JP5732684B2 (ja) 2010-03-05 2011-03-04 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
EP11750815.0A EP2544220A4 (en) 2010-03-05 2011-03-04 SEMICONDUCTOR SUBSTRATE, PRODUCTION METHOD FOR THE SINGLE CRYSTAL SUBSTRATE, PRODUCTION PROCESS FOR A SINGLE CRYSTAL SUBSTRATE WITH A MULTILAYER FILM AND DEVICE MANUFACTURING METHOD
KR20127022613A KR101491528B1 (ko) 2010-03-05 2011-03-04 단결정 기판, 단결정 기판의 제조 방법, 다층막이 형성된 단결정 기판의 제조 방법 및 소자 제조 방법
US13/582,587 US20130161797A1 (en) 2010-03-05 2011-03-04 Single crystal substrate, manufacturing method for single crystal substrate, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-049859 2010-03-05
JP2010049859 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108706A1 true WO2011108706A1 (ja) 2011-09-09

Family

ID=44542350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055076 WO2011108706A1 (ja) 2010-03-05 2011-03-04 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法

Country Status (7)

Country Link
US (1) US20130161797A1 (ja)
EP (1) EP2544220A4 (ja)
JP (1) JP5732684B2 (ja)
KR (1) KR101491528B1 (ja)
CN (1) CN102792420B (ja)
TW (1) TWI489016B (ja)
WO (1) WO2011108706A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223858A1 (ja) * 2022-05-18 2023-11-23 株式会社ジャパンディスプレイ 半導体デバイス及びその作製方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201759A (ja) * 2010-03-05 2011-10-13 Namiki Precision Jewel Co Ltd 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
TWI508327B (zh) * 2010-03-05 2015-11-11 Namiki Precision Jewel Co Ltd An internal modified substrate for epitaxial growth, a multilayer film internal modified substrate, a semiconductor device, a semiconductor bulk substrate, and the like
TWI525664B (zh) * 2010-03-05 2016-03-11 Namiki Precision Jewel Co Ltd A crystalline film, a device, and a method for producing a crystalline film or device
WO2011129246A1 (ja) * 2010-04-13 2011-10-20 並木精密宝石株式会社 単結晶基板、結晶性膜付き単結晶基板、結晶性膜、結晶性膜付き単結晶基板の製造方法、結晶性基板の製造方法、及び素子製造方法
JP4948629B2 (ja) * 2010-07-20 2012-06-06 ウシオ電機株式会社 レーザリフトオフ方法
CN102634850A (zh) * 2012-03-31 2012-08-15 江苏鑫和泰光电科技有限公司 一种蓝宝石晶片的退火方法
DE102013111705A1 (de) 2012-10-29 2014-04-30 Electronics And Telecommunications Research Institute Vorrichtung und verfahren zum bereitstellen eines digitalen rundfunksignals
KR20150115740A (ko) * 2013-02-08 2015-10-14 나미키 세이미츠 호오세키 가부시키가이샤 GaN 기판 및 GaN 기판의 제조 방법
JP6119712B2 (ja) * 2014-10-08 2017-04-26 トヨタ自動車株式会社 半導体装置の製造方法
US10475953B2 (en) * 2015-04-24 2019-11-12 Shimadzu Corporation Optical analyzer and method for producing the same
EP3442038A4 (en) * 2016-04-08 2019-11-06 Stanley Electric Co., Ltd. SEMICONDUCTOR WAFER
KR101954864B1 (ko) * 2017-10-24 2019-03-06 울산과학기술원 결정질 실리콘계 유연태양전지 및 이의 제조방법
TW202107553A (zh) * 2019-07-18 2021-02-16 日商東京威力科創股份有限公司 處理裝置及處理方法
DE102020106768B4 (de) 2020-03-12 2023-06-15 Institut Für Nanophotonik Göttingen E.V. Verfahren zur umformenden Bearbeitung eines Trägersubstrates für ein optisches Funktionsbauteil
CN111785814B (zh) * 2020-07-13 2021-10-26 福建晶安光电有限公司 一种衬底及其加工方法、发光二极管及其制造方法
WO2023028729A1 (en) * 2021-08-30 2023-03-09 Yangtze Memory Technologies Co., Ltd. Wafer stress control and semiconductor structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794408A (ja) * 1990-04-13 1995-04-07 Thomson Csf 2つの結晶化半導体材料を整合させる方法及び半導体素子
JPH1140849A (ja) * 1997-07-17 1999-02-12 Mitsubishi Cable Ind Ltd GaN系結晶成長用基板およびその用途
JP3250438B2 (ja) 1995-03-29 2002-01-28 日亜化学工業株式会社 窒化物半導体発光素子
JP2002324758A (ja) * 2001-04-26 2002-11-08 Nichia Chem Ind Ltd 窒化物半導体基板、及びそれを用いた窒化物半導体素子の製造方法
JP2006196558A (ja) * 2005-01-12 2006-07-27 Namiki Precision Jewel Co Ltd 窒化物半導体基板の製造方法
JP2006347776A (ja) 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd サファイア基板およびその製造方法
JP2008006492A (ja) 2006-06-30 2008-01-17 Disco Abrasive Syst Ltd サファイア基板の加工方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201262B1 (en) * 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
JP3788037B2 (ja) * 1998-06-18 2006-06-21 住友電気工業株式会社 GaN単結晶基板
US6211095B1 (en) * 1998-12-23 2001-04-03 Agilent Technologies, Inc. Method for relieving lattice mismatch stress in semiconductor devices
CN100362710C (zh) * 2003-01-14 2008-01-16 松下电器产业株式会社 氮化物半导体元件及其制造方法和氮化物半导体基板的制造方法
JP2004343008A (ja) * 2003-05-19 2004-12-02 Disco Abrasive Syst Ltd レーザ光線を利用した被加工物分割方法
WO2005069705A1 (ja) * 2004-01-15 2005-07-28 Matsushita Electric Industrial Co., Ltd. 金属パターン及びその製造方法
JP4917257B2 (ja) * 2004-11-12 2012-04-18 浜松ホトニクス株式会社 レーザ加工方法
KR100616656B1 (ko) * 2005-01-03 2006-08-28 삼성전기주식회사 질화갈륨계 단결정 기판의 제조방법 및 제조장치
JP4451811B2 (ja) * 2005-05-09 2010-04-14 ローム株式会社 窒化物半導体素子の製法
JP4939014B2 (ja) * 2005-08-30 2012-05-23 国立大学法人徳島大学 Iii族窒化物半導体発光素子およびiii族窒化物半導体発光素子の製造方法
JP5183892B2 (ja) * 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
EP1875983B1 (en) * 2006-07-03 2013-09-11 Hamamatsu Photonics K.K. Laser processing method and chip
US8121163B2 (en) * 2007-03-16 2012-02-21 Sanyo Electric Co., Ltd. Semiconductor laser diode apparatus and method of fabricating the same
US8900715B2 (en) * 2008-06-11 2014-12-02 Infineon Technologies Ag Semiconductor device
JP5552627B2 (ja) * 2009-01-15 2014-07-16 並木精密宝石株式会社 エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
EP2394775B1 (en) * 2009-02-09 2019-04-03 Hamamatsu Photonics K.K. Workpiece cutting method
TWI508327B (zh) * 2010-03-05 2015-11-11 Namiki Precision Jewel Co Ltd An internal modified substrate for epitaxial growth, a multilayer film internal modified substrate, a semiconductor device, a semiconductor bulk substrate, and the like
TWI525664B (zh) * 2010-03-05 2016-03-11 Namiki Precision Jewel Co Ltd A crystalline film, a device, and a method for producing a crystalline film or device
JP2011201759A (ja) * 2010-03-05 2011-10-13 Namiki Precision Jewel Co Ltd 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794408A (ja) * 1990-04-13 1995-04-07 Thomson Csf 2つの結晶化半導体材料を整合させる方法及び半導体素子
JP3250438B2 (ja) 1995-03-29 2002-01-28 日亜化学工業株式会社 窒化物半導体発光素子
JPH1140849A (ja) * 1997-07-17 1999-02-12 Mitsubishi Cable Ind Ltd GaN系結晶成長用基板およびその用途
JP2002324758A (ja) * 2001-04-26 2002-11-08 Nichia Chem Ind Ltd 窒化物半導体基板、及びそれを用いた窒化物半導体素子の製造方法
JP2006196558A (ja) * 2005-01-12 2006-07-27 Namiki Precision Jewel Co Ltd 窒化物半導体基板の製造方法
JP2006347776A (ja) 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd サファイア基板およびその製造方法
JP2008006492A (ja) 2006-06-30 2008-01-17 Disco Abrasive Syst Ltd サファイア基板の加工方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E. ARMOUR: "LED growth compatibility between 2'', 4'' and 6'' sapphire", SEMICONDUCTOR TODAY COMPOUNDS & ADVANCED SILICON, vol. 4, no. 3, April 2009 (2009-04-01)
J. CRYST. GROWTH., vol. 272, no. 1-4, 2004, pages 94 - 99
JPN. J. APPL. PHYS., vol. 32, 1993, pages 1528 - 1533

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223858A1 (ja) * 2022-05-18 2023-11-23 株式会社ジャパンディスプレイ 半導体デバイス及びその作製方法

Also Published As

Publication number Publication date
KR101491528B1 (ko) 2015-02-09
TWI489016B (zh) 2015-06-21
EP2544220A4 (en) 2015-12-02
US20130161797A1 (en) 2013-06-27
CN102792420A (zh) 2012-11-21
EP2544220A1 (en) 2013-01-09
KR20120120384A (ko) 2012-11-01
JPWO2011108706A1 (ja) 2013-06-27
CN102792420B (zh) 2016-05-04
TW201144495A (en) 2011-12-16
JP5732684B2 (ja) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5732684B2 (ja) 単結晶基板、単結晶基板の製造方法、多層膜付き単結晶基板の製造方法および素子製造方法
JP5674759B2 (ja) 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
JP5802943B2 (ja) エピタキシャル成長用内部改質基板の製造方法および多層膜付き内部改質基板の製造方法
JP5552627B2 (ja) エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
JP4597259B2 (ja) Iii族窒化物半導体成長用基板、iii族窒化物半導体エピタキシャル基板、iii族窒化物半導体素子およびiii族窒化物半導体自立基板、ならびに、これらの製造方法
TWI525664B (zh) A crystalline film, a device, and a method for producing a crystalline film or device
US20160265140A1 (en) Single crystal substrate, manufacturing method for single crystal substrate, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method
JP6405767B2 (ja) 窒化ガリウム基板
JP5254263B2 (ja) Iii族窒化物結晶の形成方法、積層体、およびエピタキシャル基板
WO2023119916A1 (ja) 窒化物半導体基板および窒化物半導体基板の製造方法
JP2010278470A (ja) Iii族窒化物半導体成長用基板、iii族窒化物半導体エピタキシャル基板、iii族窒化物半導体素子およびiii族窒化物半導体自立基板、ならびに、これらの製造方法
JP2007049180A (ja) Iii族窒化物半導体の製造方法
JP2017095343A (ja) 化合物半導体膜構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011562.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1946/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012503288

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127022613

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011750815

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13582587

Country of ref document: US