WO2021025146A1 - 封止樹脂組成物、および電子部品 - Google Patents

封止樹脂組成物、および電子部品 Download PDF

Info

Publication number
WO2021025146A1
WO2021025146A1 PCT/JP2020/030344 JP2020030344W WO2021025146A1 WO 2021025146 A1 WO2021025146 A1 WO 2021025146A1 JP 2020030344 W JP2020030344 W JP 2020030344W WO 2021025146 A1 WO2021025146 A1 WO 2021025146A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sealing resin
sealing
temperature
circuit board
Prior art date
Application number
PCT/JP2020/030344
Other languages
English (en)
French (fr)
Inventor
哲也 北田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN202080056448.9A priority Critical patent/CN114206976A/zh
Priority to JP2020565504A priority patent/JP6892024B1/ja
Priority to EP20850968.7A priority patent/EP3828220A4/en
Priority to US17/630,566 priority patent/US20220315695A1/en
Priority to BR112022000980A priority patent/BR112022000980A2/pt
Publication of WO2021025146A1 publication Critical patent/WO2021025146A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5216Dustproof, splashproof, drip-proof, waterproof, or flameproof cases characterised by the sealing material, e.g. gels or resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a sealing resin composition and an electronic component.
  • a structure is known in which a connector is attached to an electronic circuit board and sealed with a sealing resin composition from above in order to cope with miniaturization and thinning of electronic components (for example, Patent Document 1).
  • Patent Document 1 focuses on the fact that the connector portion and the substrate expand and contract due to the thermal history of solder bonding, causing warpage, and devises a method for fixing the connector portion. It did not focus on the characteristics of the composition.
  • thermoplastic resin when used as the resin material of the connector portion, it is heated to about 170 to 180 ° C. at the time of resin sealing, so that the difference in linear expansion coefficient from the circuit board is obtained in the subsequent cooling process. As a result, stress is likely to occur between the circuit board and the connector portion. Further, since a thermosetting resin is used as the sealing resin, there is a problem that peeling is likely to occur at the interface with the connector portion where the thermoplastic resin is used. Therefore, it has been required to be able to seal at a lower temperature.
  • the present inventor has determined the low-temperature curing characteristics and storage stability of the sealing resin composition used for collectively sealing the connector portion using the thermoplastic resin together with the circuit board. Focusing on compatibility, we conducted a diligent study. As a result, the sealing resin composition uses the maximum exothermic peak temperature in the DSC curve by differential scanning calorimetry (DSC) as an index, so that the connector portion using the thermoplastic resin can be used as a circuit board. It was found that stable low-temperature curing can be achieved while obtaining storage stability when the batch is sealed together.
  • DSC differential scanning calorimetry
  • a sealing resin composition used for collectively sealing a circuit board and at least a part of a connector portion that electrically connects the circuit board and an external device contains a curing accelerator and contains
  • the connector portion has a terminal that electrically connects the circuit board and an external device, and a housing that is arranged on the outer periphery of the terminal and is sealed by the sealing resin composition.
  • the housing contains a thermoplastic resin
  • the maximum exothermic peak temperature is 100 ° C.
  • a sealing resin composition having a temperature of 163 ° C. or lower and a half-value width of a maximum exothermic peak of 5 ° C. or higher and 25 ° C. or lower.
  • An electronic component in which a circuit board and a connector portion that electrically connects the circuit board and an external device are collectively sealed by the above-mentioned sealing resin composition.
  • the connector portion has a terminal that electrically connects the circuit board and an external device, and a housing that is arranged on the outer periphery of the terminal and is sealed by the sealing resin composition.
  • Electronic components are provided in which the housing contains a thermoplastic resin.
  • the "particle size" of various particles in the present specification is determined by, for example, a laser diffraction / scattering type particle size distribution measuring device (for example, a wet particle size distribution measuring machine LA-950 manufactured by Horiba Seisakusho Co., Ltd.). It can be obtained by acquiring data on the particle size distribution based on volume and processing the data. For example, the "average particle size” can be obtained by the arithmetic mean of the obtained particle size distribution data. Further, the cumulative 10% value (D10), the cumulative 50% value (median diameter, D50), the cumulative 90% value (D90), and the like can be obtained from the particle size distribution data.
  • a laser diffraction / scattering type particle size distribution measuring device for example, a wet particle size distribution measuring machine LA-950 manufactured by Horiba Seisakusho Co., Ltd.
  • the average particle size can be obtained by the arithmetic mean of the obtained particle size distribution data.
  • FIG. 1 is a schematic cross-sectional view showing the electronic component 100 of the present embodiment.
  • the circuit board 10 and the connector portion 20 that electrically connects the circuit board 10 and the external device are collectively sealed by a sealing resin composition described later. More specifically, the circuit board 10 is sealed together with the connector portion 20 by a sealing body 50 which is a cured product of the sealing resin composition.
  • the circuit board 10 has a conductor pattern or the like formed on an insulating base material.
  • a printed circuit board or a ceramic substrate can be used.
  • the circuit board 10 is, for example, a flat plate-shaped substrate.
  • the connector portion 20 has a terminal 21 that electrically connects the circuit board 10 and an external device, and a housing 22 that is arranged on the outer periphery of the terminal 21 and is sealed by a sealing resin composition. Contains a thermoplastic resin. It is a so-called plastic connector or resin connector. Specifically, the connector portion 20 electrically relays the circuit board 10 and the external device, is mounted on the circuit board 10, and is integrated by the sealing body 50. A part of the terminal 21 in the connector portion 20 is exposed to the outside, and the periphery thereof is surrounded by the housing 22.
  • the thermoplastic resin constituting the housing 22 is not particularly limited, and for example, a polyamide resin such as nylon 6 and nylon 66, a polyolefin resin such as polyester and polypropylene, a polyphenylene sulfide resin, a polyacetal resin, a polyether etherimide resin, and a poly.
  • a polyamide resin such as nylon 6 and nylon 66
  • a polyolefin resin such as polyester and polypropylene
  • a polyphenylene sulfide resin such as polyester and polypropylene
  • a polyphenylene sulfide resin such as polyester and polypropylene
  • a polyphenylene sulfide resin such as polyester and polypropylene
  • a polyphenylene sulfide resin such as polyester and polypropylene
  • a polyphenylene sulfide resin such as polyester and polypropylene
  • a polyphenylene sulfide resin such as polyester and polypropylene
  • engineering plastics include one or more selected from the group consisting of polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), syndiotactic polystyrene (SPS) or polyamide (PA).
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • SPS syndiotactic polystyrene
  • PA polyamide
  • the sealing resin composition of the present embodiment is used for the above-mentioned electronic component 100, and satisfies the following conditions. As a result, both storage stability and sealing at a low temperature can be achieved, and the appearance and reliability of the electronic component are maintained. It can be lower than the conventional sealing temperature of 170 to 180 ° C., for example, it is preferably sealed at 165 ° C. or lower, and more preferably less than 140 ° C. and less than 5 MPa. From the viewpoint of curing the resin and appropriately sealing the resin, the temperature is preferably 100 ° C. or higher and 1 MPa or higher.
  • the details of the mechanism that can achieve both storage stability and sealing at low temperature by satisfying the following conditions are not clear, but in general, when the heat generation peak of DSC is wide and the base extends to the low temperature side, Even if it is stored at a low temperature, the curing reaction proceeds relatively quickly, and the storage stability tends to deteriorate. Therefore, in the present invention, the exothermic peak of the DSC curve is narrowed to suppress the reaction from proceeding during low-temperature storage, and the narrow peak is in a relatively low-temperature region. It is considered that the reaction rate of curing in the above can be increased.
  • the maximum exothermic peak temperature is The temperature is 100 ° C. or higher and 163 ° C. or lower, and the half-value width of the maximum heat generation peak is 5 ° C. or higher and 25 ° C. or lower.
  • the upper limit of the maximum exothermic peak temperature is preferably 160 ° C. or lower, more preferably 150 ° C. or lower.
  • the upper limit of the half width of the maximum exothermic peak is preferably 23 ° C. or lower, more preferably 20 ° C. or lower.
  • the heat generation start temperature in the DSC curve under the above conditions is preferably in the range of 70 ° C. or higher and 130 ° C. or lower, more preferably in the range of 75 ° C. or higher and 120 ° C. or lower, and 80 ° C. or higher and 115 ° C. or lower. It is more preferable that the temperature is within the range of 90 ° C. or higher and 110 ° C. or lower.
  • the maximum heat generation peak temperature and the heat generation start temperature in the DSC curve under the above conditions can be realized by selecting the material or devising the manufacturing method. For example, controlling the content of the inorganic filler (B) according to the type of the thermosetting resin (A) described later, selecting the type of the curing accelerator (D), and controlling the content thereof. Alternatively, the kneading conditions at the time of producing the sealing resin composition described later may be controlled, or a method of not kneading may be adopted.
  • the sealing resin composition of the present embodiment is not limited to such materials and manufacturing methods.
  • the glass transition temperature of the cured product of the sealing resin composition of the present embodiment is preferably 140 ° C. or higher and 250 ° C. or lower, and more preferably 150 ° C. or higher and 230 ° C. or lower.
  • the cured product of the sealing resin composition is intended to be molded at 140 ° C. for 2 minutes and post-cured at 140 ° C. for 4 hours.
  • the curing accelerator (D) of the present embodiment has strong activity. As a result, while low-temperature curing is realized, if it is used as it is without any special measures, the reaction proceeds during storage and the storage stability is deteriorated.
  • the curing accelerator (D) include phosphorus atom-containing compounds such as organic phosphine, tetra-substituted phosphonium compound, phosphobetaine compound, adduct of phosphine compound and quinone compound, or adduct of phosphonium compound and silane compound.
  • the curing accelerator (D) preferably contains an amidine-based compound, and more preferably contains an imidazole compound.
  • the imidazole compound include, but are not limited to, 2-methylimidazole, 2-phenylimidazole, imidazole-2-carbaldehyde, 5-azabenzoimidazole, 4-azabenzoimidazole and the like. Of these, 2-methylimidazole is preferably used.
  • the content of the curing accelerator (D) in the sealing resin composition is not particularly limited, but is preferably 0.1% by mass or more and 5% by mass or less with respect to the entire sealing resin composition, for example. More preferably, it is 0.2% by mass or more and 4% by mass or less.
  • the sealing resin composition can be easily cured appropriately.
  • the content of the curing accelerator (D) to the above upper limit value or less, the molten state can be lengthened and the low viscosity state can be lengthened, and as a result, low-temperature sealing can be easily realized.
  • thermosetting resin (A) examples include phenol resin, epoxy resin, unsaturated polyester resin, melamine resin, polyurethane and the like. These may be used alone or in combination of two or more. Among them, it is preferable to contain at least one of a phenol resin and an epoxy resin, and it is more preferable to contain an epoxy resin.
  • the epoxy resin a monomer, an oligomer, or a polymer having two or more epoxy groups in one molecule can be used in general, and the molecular weight and molecular structure thereof are not particularly limited.
  • Specific examples of the epoxy resin include biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as tetramethyl bisphenol F type epoxy resin, stillben type epoxy resin, and hydroquinone type epoxy resin.
  • Crystalline epoxy resin such as cresol novolac type epoxy resin, phenol novolac type epoxy resin, naphthol novolac type epoxy resin and the like novolac type epoxy resin; Aralkyl type epoxy resin such as skeleton-containing naphthol aralkyl type epoxy resin and alkoxynaphthalene skeleton-containing phenol aralkyl epoxy resin; trifunctional epoxy resin such as triphenol methane type epoxy resin and alkyl-modified triphenol methane type epoxy resin; tetrakisphenol ethane type Examples thereof include tetrafunctional epoxy resins such as epoxy resins; modified phenol-type epoxy resins such as dicyclopentadiene-modified phenol-type epoxy resins and terpene-modified phenol-type epoxy resins; and heterocycle-containing epoxy resins such as triazine nucleus-containing epoxy resins.
  • Aralkyl type epoxy resin such as skeleton-containing naphthol aralkyl type epoxy resin and alkoxynaphthal
  • One of these may be used alone, or two or more thereof may be used in combination.
  • the epoxy resins it is preferable to include an epoxy resin having an epoxy equivalent of 160 g / eq or more and 250 g / eq or less, and more preferably to contain an epoxy resin having an epoxy equivalent of 180 g / eq or more and 220 g / eq or less. This makes it easier to improve the balance between storage stability and low temperature curability.
  • the ICI viscosity of the thermosetting resin (A) at 150 ° C. is preferably set appropriately according to the content of the inorganic filler (B), but for example, the upper limit is preferably 60 poise or less. It is more preferably 50 poises or less, and even more preferably 40 poises or less. This improves the fluidity of the sealing resin composition and facilitates low-temperature sealing.
  • the lower limit of the ICI viscosity of the thermosetting resin (A) at 150 ° C. is not particularly limited, but may be, for example, 0.01 poise or more. Note that 1 poise is 0.1 Pa ⁇ s.
  • the content of the thermosetting resin (A) is not particularly limited, but is preferably 1% by mass or more and 50% by mass or less, preferably 2% by mass or more and 30% by mass or less, based on the entire sealing resin composition. It is more preferable that it is 5% by mass or more and 20% by mass or less.
  • inorganic filler (B) examples include silica, alumina, kaolin, talc, clay, mica, rock wool, wollastonite, glass powder, glass flakes, glass beads, glass fiber, silicon carbide, silicon nitride, and aluminum nitride. , Carbon black, graphite, titanium dioxide, calcium carbonate, calcium sulfate, barium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, cellulose, aramid, wood and the like. These may be used alone or in combination of two or more.
  • silica examples include crystalline silica (crushed crystalline silica), molten silica (crushed amorphous silica, spherical amorphous silica), and liquid sealing silica (spherical amorphous stationary silica for liquid sealing).
  • crystalline silica crushed crystalline silica
  • molten silica crushed amorphous silica, spherical amorphous silica
  • liquid sealing silica spherical amorphous stationary silica for liquid sealing.
  • fused spherical silica is preferable from the viewpoint of facilitating low-temperature sealing while maintaining storage stability.
  • the average particle size of the inorganic filler (B) is not particularly limited, but is typically 0.1 to 100 ⁇ m, preferably 0.2 to 50 ⁇ m. It is considered that if the average particle size is appropriate, the shell containing the molten mixture can be coated more uniformly in the granulation step described later. Further, when the finally obtained core-shell particles are used as a sealing material for a connector, the filling property in the mold cavity can be improved.
  • the volume-based particle size distribution of the inorganic filler (B) can be measured with a commercially available laser particle size distribution meter (for example, SALD-7000 manufactured by Shimadzu Corporation).
  • the content of the inorganic filler (B) is not particularly limited, but is preferably 50% by mass or more and 95% by mass or less, and 60% by mass or more and 95% by mass or less, for example, with respect to the entire sealing resin composition. It is more preferable that there is 65% by mass or more and 85% by mass or less.
  • the sealing resin composition of the present embodiment may contain the following components in addition to the above.
  • the sealing resin composition can contain a curing agent (C).
  • the curing agent (C) is not particularly limited as long as it is cured by reacting with the thermosetting resin (A), but for example, carbon such as ethylenediamine, trimethylenediamine, tetramethylenediamine, and hexamethylenediamine. Nos.
  • Acid anhydrides and the like containing anhydrides and the like; polyether compounds such as polysulfide, thioester and thioether; isocyanate compounds such as isocyanate prepolymer and blocked isocyanate; organic acids such as carboxylic acid-containing polyester resin can be mentioned.
  • polyether compounds such as polysulfide, thioester and thioether
  • isocyanate compounds such as isocyanate prepolymer and blocked isocyanate
  • organic acids such as carboxylic acid-containing polyester resin.
  • One of these may be used alone, or two or more of them may be used in combination.
  • the content of the curing agent (C) in the sealing resin composition is not particularly limited, but is preferably 1% by mass or more and 12% by mass or less with respect to the entire sealing resin composition, for example, 3% by mass. It is more preferably 10% by mass or less.
  • the sealing resin composition can be easily cured appropriately.
  • the content of the curing agent (C) is set to the above upper limit value or less, appropriate fluidity is maintained and low temperature sealing can be easily realized.
  • the sealing resin composition can contain, for example, the coupling agent (E).
  • the coupling agent (E) include known cups of various silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, and vinylsilane, titanium compounds, aluminum chelate, and aluminum / zirconium compounds.
  • a ring agent can be used.
  • vinyltrichlorosilane vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltri.
  • the content of the coupling agent (E) in the sealing resin composition is not particularly limited, but is preferably 0.05% by mass or more and 3% by mass or less with respect to the entire sealing resin composition, for example. More preferably, it is 0.1% by mass or more and 2% by mass or less.
  • a colorant such as carbon black
  • a release agent such as natural wax, synthetic wax, higher fatty acid or metal salt thereof, paraffin, polyethylene oxide and the like. It can contain an ion trapping agent such as hydrotalcite; a low stress agent such as silicone oil and silicone rubber; a flame retardant agent such as aluminum hydroxide; and various additives such as an antioxidant.
  • the sealing resin composition of the present embodiment is obtained by a known method, and for example, a method of kneading and granulating the above-mentioned components may be used, or a particulate sealing described below may be used.
  • a method for producing a stop resin composition may be used.
  • a method for producing the particulate encapsulant resin composition will be described.
  • the method for producing the particulate encapsulant resin composition of the present embodiment includes the following steps.
  • thermosetting resin (A) is melted by an appropriate method.
  • the method of melt-mixing is not particularly limited, but for example, the thermosetting resin (A) and the curing agent (C) are heated and mixed at 120 to 180 ° C., and then cooled and pulverized to obtain a pulverized product (crushed product).
  • a molten mixture (X) in the form of granules or particles can be obtained.
  • a coupling agent, a mold release agent, and a low stress agent may be additionally used.
  • molten mixture (X) for example, the inorganic filler (B) and the other material (Y) are charged into a stirring device provided with stirring blades.
  • examples of other materials include colorants, ion scavengers, flame retardants, antioxidants and the like.
  • the stirring device provided with the stirring blade includes a stirring blade capable of stirring the molten mixture (X), the inorganic filler (B) and the material (Y), and the stirring blade. It is preferable that the linear velocity at the tip of the blade is 0.1 m / s or more when the blade is driven.
  • the components charged into the stirring device in the charging step are heated and mixed by driving the stirring blades. It is preferably 110 to 180 ° C, more preferably 120 to 170 ° C.
  • the temperature is equal to or higher than the lower limit, the molten mixture (X) is moderately softened, and it becomes easy to coat a uniform shell.
  • the temperature is set to the upper limit or less, deterioration of the raw material and the like can be suppressed, and the performance of the finally obtained particulate sealing resin composition can be further improved.
  • the time for keeping the components charged into the stirring device at 110 ° C. or higher is preferably 5 to 200 minutes, more preferably 10 to 180 minutes, still more preferably. Is 20 to 150 minutes.
  • time for keeping the components at 110 ° C. or higher is preferably 5 to 200 minutes, more preferably 10 to 180 minutes, still more preferably. Is 20 to 150 minutes.
  • Part or all of the granulation step is preferably carried out under reduced pressure. Specifically, part or all of the granulation step is preferably under a reduced pressure of 30 kPa or less, more preferably under a reduced pressure of 0.01 to 20 kPa, still more preferably under a reduced pressure of 0.05 to 15 kPa, particularly preferably. It is carried out under a reduced pressure of 0.1 to 10 kPa.
  • the granulation step can be performed under reduced pressure by using a stirring device 1 capable of reducing the pressure during stirring. The depressurization is preferably carried out for at least half or more of the total time of the granulation step.
  • the core-shell particles obtained after the granulation step are mixed with the curing accelerator (D) to obtain a sealing resin composition.
  • the sealing resin composition can be obtained without applying heat to the curing accelerator (D).
  • the following steps may be further included.
  • the method for producing the sealing resin composition is not limited to such cases, and may be changed as long as the curing accelerator (D) is not heated.
  • the sealing resin composition may be obtained by mixing pulverized core-shell particles and a curing accelerator after the following steps.
  • the method for producing particles of the present embodiment preferably includes a cooling stirring step of cooling the components in the stirring device while stirring after the granulating step.
  • a cooling stirring step of cooling the components in the stirring device while stirring after the granulating step.
  • the core-shell particles are cooled to a temperature equal to or lower than the softening point of the molten mixture (X) by a cooling and stirring step.
  • the core-shell particles are preferably cooled to 60 ° C. or lower, more preferably 55 ° C. or lower, even more preferably 50 ° C. or lower, to room temperature by a cooling and stirring step. It is particularly preferred to be cooled.
  • decompression may be performed in part or in whole.
  • the pressure at the time of depressurization is, for example, 20 kPa or less, preferably 0.01 to 20 kPa, and more preferably 0.05 to 15 kPa. It is considered that the reduction of water content and the reattachment of water content can be suppressed by reducing the pressure even during cooling, and as a result, the aggregation of particles and the like can be further reduced.
  • crushing process If the particles granulated in the present embodiment are agglomerated (two or more core-shell particles are attached to each other), a crushing step for crushing the agglomerates may be performed. At this time, it may be mixed and pulverized together with the curing accelerator (D).
  • the specific method of pulverization is not particularly limited, but for example, an impact type such as a hammer mill can be used.
  • the raw material supply rate can be set to 1 to 1000 kg / h.
  • a ball mill such as a vibrating ball mill, a continuous rotary ball mill or a batch type ball mill; a pot mill such as a wet pot mill or a planetary pot mill; a roller mill or the like may be used.
  • Embodiments of the present invention will be described in detail based on Examples and Comparative Examples. The present invention is not limited to the examples.
  • Thermosetting resin (A) Orthocresol novolac type epoxy resin (CNE-195LL manufactured by Changchun Artificial Resin Co., Ltd., epoxy equivalent 198 g / eq)
  • Thermosetting resin (A) Triphenol methane type epoxy resin (manufactured by Mitsubishi Chemical Corporation, 1032H-60, epoxy equivalent 171 g / eq)
  • Thermosetting resin (A) Tetrakis phenol ethane type epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1031S, epoxy equivalent 200 g / eq)
  • a sealing resin composition was produced by the following procedure based on the components and formulations shown in Table 1.
  • each component was mixed at 15 to 28 ° C. using a mixer so as to have the composition (mass%) shown in Table 1. Then, the obtained mixture was roll-kneaded at 70 to 100 ° C., cooled and pulverized to obtain a sealing resin composition.
  • each component was mixed at 15 to 28 ° C. using a mixer so as to have the composition (mass%) shown in Table 1. Then, the obtained mixture was roll-kneaded at 70 to 100 ° C., cooled and pulverized to obtain each sealing resin composition.
  • DSC measurement Using a differential scanning calorimeter (manufactured by SII, DSC7020), a 10 mg sealing resin composition under a nitrogen stream at a heating rate of 10 ° C./min under a temperature range of 30 ° C. to 200 ° C. was measured. The difference between the calorific value height H1 at 70 ° C. and the calorific value height HMAX at the maximum heat generation peak temperature was set to ⁇ H1, and the calorific value height reached 10% of ⁇ H1 when the calorific value height H1 was used as a reference. The temperature at time was defined as the heat generation start temperature. The maximum exothermic peak temperature was determined from the obtained DSC curve. The results are shown in Table 1. Further, the DSC charts of the sealing resin compositions of Examples 1 and 2 and Comparative Examples 1 to 4 are shown in FIG.
  • a connector whose housing is made of PPS (polyphenylene sulfide) resin is solder-mounted on a circuit board using a copper-clad laminate containing glass fiber, and each sealing resin composition obtained above is used. The product was collectively sealed and molded to obtain a molded product.
  • Examples 1 and 2 and Comparative Examples 1 and 2 were molded at 140 ° C. for 2 minutes, and Comparative Examples 3 and 4 were molded at 175 ° C. for 2 minutes. Since Comparative Examples 3 and 4 did not cure properly under the condition of 140 ° C. for 2 minutes, molding was performed by changing the effect conditions.
  • the level at which the interface between the connector and the encapsulant did not peel off after molding was set as ⁇ , and the level at which the interface between the connector and the sealing body did not peel off was set as x.
  • the sealing resin composition was stored at 5 ° C. for 6 months, and then the spiral flow was measured. If the measured spiral flow was 90% or more of the initial value (spiral flow of the sealing resin composition before storage), it was evaluated as ⁇ , and if it was less than 90%, it was evaluated as x.

Abstract

封止樹脂組成物は、回路基板(10)と、コネクタ部(20)の少なくとも一部と、を一括封止するために用いられるものであって、コネクタ部(20)は、回路基板(10)と外部機器とを電気的に接続する端子(21)と、当該封止樹脂組成物は、硬化促進剤を含み、端子(21)の外周に配置され、封止樹脂組成物によって封止されるハウジング(22)を有し、ハウジング(22)が熱可塑性樹脂を含み、示差走査熱量計を用いて昇温速度10℃/分の条件下で30℃から200℃まで昇温した際に得られる当該封止樹脂組成物のDSC曲線において、最大発熱ピーク温度が、100℃以上163℃以下であり、最大発熱ピークの半値幅が5℃以上25℃以下である。

Description

封止樹脂組成物、および電子部品
 本発明は、封止樹脂組成物、および電子部品に関する。
 電子部品の小型化・薄型化に対応するため、コネクタを電子回路基板に取り付け、その上から封止樹脂組成物により封止する構造が知られている(例えば、特許文献1)。
国際公開第2017/056728号
 しかしながら、特許文献1に記載される技術は、はんだ接合による熱履歴によってコネクタ部と基板が膨張・収縮し反りが生じることに着目し、コネクタ部の固定方法を工夫するものであり、封止樹脂組成物の特性に着目したものではなかった。
 一方、コネクタ部の樹脂材料として熱可塑性樹脂が使用されている場合、樹脂封止の際には170~180℃程度まで加熱されるため、その後の冷却過程において、回路基板との線膨張係数差により、回路基板とコネクタ部の間に応力が発生しやすい。また、封止樹脂として熱硬化性樹脂が用いられるため、熱可塑性樹脂が使用されたコネクタ部との界面で剥がれが生じやすいといった問題があった。そのため、より低温で封止できることが求められていた。
 一方、封止樹脂組成物の低温硬化性を得るためには、活性の強い硬化促進剤を用いることが有効であることが知られている。しかしながら、活性の強い硬化促進剤を用いた場合、封止樹脂組成物の保管中に反応が促進する等の問題があり、封止樹脂組成物の保存性が低下するという問題があった。
 そこで、本発明者は、かかる問題を解決する観点から、熱可塑性樹脂が使用されたコネクタ部を、回路基板とともに一括封止する際に用いられる封止樹脂組成物における低温硬化特性と保存性を両立することに着目し、鋭意検討を行った。その結果、当該封止樹脂組成物が、示差走査熱量測定(Differential scanning calorimetry:DSC)によるDSC曲線における最大発熱ピーク温度を指標とすることにより、熱可塑性樹脂が使用されたコネクタ部を、回路基板とともに一括封止する際に、保存性を得つつ、安定的に低温硬化を実現できることを見出した。
 本発明によれば、
 回路基板と、当該回路基板と外部機器とを電気的に接続するコネクタ部の少なくとも一部と、を一括封止するために用いられる封止樹脂組成物であって、
 当該封止樹脂組成物が、硬化促進剤を含み、
 前記コネクタ部は、前記回路基板と外部機器とを電気的に接続する端子と、当該端子の外周に配置され、前記封止樹脂組成物によって封止されるハウジングを有し、
 前記ハウジングが熱可塑性樹脂を含み、
 示差走査熱量計を用いて昇温速度10℃/分の条件下で30℃から200℃まで昇温した際に得られる当該封止樹脂組成物のDSC曲線において、最大発熱ピーク温度が、100℃以上163℃以下であり、最大発熱ピークの半値幅が5℃以上25℃以下である、封止樹脂組成物が提供される。
 また、本発明によれば、
 回路基板と、当該回路基板と外部機器とを電気的に接続するコネクタ部とが、上記の封止樹脂組成物により一括封止されてなる、電子部品であって、
 前記コネクタ部は、前記回路基板と外部機器とを電気的に接続する端子と、当該端子の外周に配置され、前記封止樹脂組成物によって封止されるハウジングを有し、
 前記ハウジングが熱可塑性樹脂を含む、電子部品
が提供される。
 本発明によれば、保存性を得つつ、安定的に低温硬化を実現できる封止樹脂組成物が提供できる。
本実施形態の電子部品100を示す模式断面図である 実施例および比較例の各封止樹脂組成物のDSC曲線を示すチャート図である。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応するものではない。
 本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」の意である。
 本明細書における各種粒子の「粒径」は、特に断りが無い限り、例えば、レーザー回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所製の湿式粒度分布測定機LA-950)により体積基準の粒子径分布のデータを取得し、そのデータを処理することで求めることができる。
 例えば、「平均粒径」は、得られた粒子径分布のデータの算術平均により求めることができる。また、粒子径分布のデータから、累積10%値(D10)、累積50%値(メディアン径、D50)、累積90%値(D90)などを求めることもできる。
<電子部品>
 図1は、本実施形態の電子部品100を示す模式断面図である。
 本実施形態の電子部品100は、回路基板10と、回路基板10と外部機器とを電気的に接続するコネクタ部20とが、後述の封止樹脂組成物により一括封止されてなる。より詳細には、回路基板10はコネクタ部20ともに封止樹脂組成物の硬化物である封止体50により封止されている。回路基板10は、絶縁基材に導体パターンなどが形成されたものである。回路基板10としては、プリント基板やセラミック基板を用いることができる。また、回路基板10は、例えば、平板形状の基板である。
 コネクタ部20は、回路基板10と外部機器とを電気的に接続する端子21と、端子21の外周に配置され、封止樹脂組成物によって封止されるハウジング22と、を有し、ハウジング22が熱可塑性樹脂を含むものである。いわゆるプラスチックコネクタや樹脂製コネクタと呼ばれるものである。詳細には、コネクタ部20は、回路基板10と外部機器とを電気的に中継するものであり、回路基板10に実装され、封止体50により一体化されている。コネクタ部20内の端子21の一部は外部に露出し、その周囲はハウジング22により囲われている。
 ハウジング22を構成する熱可塑性樹脂としては、特に限定されないが、たとえば、ナイロン6およびナイロン66等のポリアミド樹脂、ポリエステルおよびポリプロピレン等のポリオレフィン樹脂、ポリフェニレンサルファイド樹脂、ポリアセタール樹脂、ポリエーテルエーテルイミド樹脂、ポリブチレンテレフタレート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、およびエンジニアリングプラスチックの中から選ばれる1種または2種以上が挙げられる。
 なかでも、エンジニアリングプラスチックであることが好ましい。また、エンジニアリングプラスチックとしては、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)、シンジオタクチックポリスチレン(SPS)またはポリアミド(PA)からなる群より選ばれる1種または2種以上が挙げられる。
 ハウジング22が熱可塑性樹脂を含む場合であっても、本実施形態の封止樹脂組成物によれば、低温での封止が実現できるため、電子部品の良好な外観および信頼性が保持される。
<封止樹脂組成物>
 本実施形態の封止樹脂組成物は、上述の電子部品100に用いられるものであり、以下の条件を満たすものである。これにより、保存性と、低温での封止が両立でき、電子部品の外観および信頼性が保持される。従来の170~180℃の封止温度よりも低くすることができ、例えば、165℃以下で封止されることが好ましく、140℃未満、5MPa未満で封止されることがより好ましい。なお、樹脂を硬化させ、適切に封止を行う観点からは、100℃以上、1MPa以上であることが好ましい。
 また、以下の条件を満たすことで、保存性と、低温での封止が両立できるメカニズムの詳細は定かでないが、一般に、DSCの発熱ピークが幅広であり低温側まで裾野が広がっている場合、低温保管していても硬化反応の進行が比較的早くなり、保存性が低下しやすい傾向がある。そこで、本発明においては、DSC曲線の発熱ピークを幅狭とすることで低温保存中に反応が進行することを抑制しつつ、かかる幅狭のピークが比較的低温領域であることにより、低温領域での硬化の反応率を高くできると考えられる。言い換えると、半値幅が小さいほど保存性が高くなり、半値幅が大きいほど保存性が低下し、また、発熱ピークが低温側であるほど、低温で硬化できるといえる。
条件:示差走査熱量計を用いて昇温速度10℃/分の条件下で30℃から200℃まで昇温した際に得られる当該封止樹脂組成物のDSC曲線において、最大発熱ピーク温度が、100℃以上163℃以下であり、最大発熱ピークの半値幅が5℃以上25℃以下である。
 最大発熱ピーク温度の上限値は、好ましくは160℃以下、より好ましくは150℃以下である。また、最大発熱ピークの半値幅の上限値は、好ましくは23℃以下、より好ましくは20℃以下である。
 また、上記条件のDSC曲線における発熱開始温度は、70℃以上130℃以下の範囲内にあることが好ましく、75℃以上120℃以下の範囲内にあることがより好ましく、80℃以上115℃以下の範囲内にあることがさらに好ましく、90℃以上110℃以下であることがことさらに好ましい。
 発熱開始温度を上記下限値以上とすることにより、保存性を良好にでき、一方、上記上限値以下とすることにより、低温硬化性が得られる。
 上記条件のDSC曲線における最大発熱ピーク温度、および発熱開始温度は、材料の選択、または製法上の工夫を施すことにより、実現することができる。例えば、後述する熱硬化性樹脂(A)の種類に応じて無機充填材(B)の含有量を制御したり、硬化促進剤(D)の種類を選択したり、その含有量を制御すること、または、後述する封止樹脂組成物の製造時の混練条件を制御したり、混練しない方法を採用することなどが挙げられる。ただし、本実施形態の封止樹脂組成物は、かかる材料や製造方法に限定されるものではない。
 本実施形態の封止樹脂組成物の硬化物のガラス転移温度は、好ましくは140℃以上250℃以下であり、より好ましくは150℃以上230℃以下である。なお、封止樹脂組成物の硬化物とは、140℃2分の条件で成形し、140℃4時間の条件で後硬化させたものを意図する。
 以下、封止樹脂組成物の各成分について、説明する。
[硬化促進剤(D)]
 本実施形態の硬化促進剤(D)は、活性が強いものである。これにより、低温硬化を実現する一方で、特段の工夫をせずにそのまま用いると保存中に反応が進行する等し、保存性が低下する。
 硬化促進剤(D)としては、たとえば、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、または、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8-ジアザビシクロ(5,4,0)ウンデセン-7、イミダゾール等のアミジン系化合物;ジメチル尿素、ベンジルジメチルアミン等の3級アミン、アミジニウム塩、またはアンモニウム塩等の窒素原子含有化合物等が挙げられる。なかでも、硬化促進剤(D)が、アミジン系化合物を含むことが好ましく、イミダゾール化合物を含むことがより好ましい。イミダゾール化合物としては、2-メチルイミダゾール、2-フェニルイミダゾール、イダゾール-2-カルボアルデヒド、5-アザベンゾイミダゾール、4-アザベンゾイミダゾール等が挙げられるがこれらに限定されない。中でも、2-メチルイミダゾールが好ましく用いられる。
 封止樹脂組成物中における硬化促進剤(D)の含有量は、とくに限定されないが、たとえば封止樹脂組成物全体に対して、0.1質量%以上5質量%以下であることが好ましく、0.2質量%以上4質量%以下であることがより好ましい。
 硬化促進剤(D)の含有量を上記下限値以上とすることにより、封止樹脂組成物を適切に硬化しやすくなる。一方、硬化促進剤(D)の含有量を上記上限値以下とすることにより、溶融状態を長くし、より低粘度状態を長くできる結果、低温封止を実現しやすくなる。
[熱硬化性樹脂(A)]
 熱硬化性樹脂(A)としては、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹脂、およびポリウレタン等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。中でも、フェノール樹脂およびエポキシ樹脂のうちの少なくとも一方を含むことが好ましく、エポキシ樹脂を含むことがより好ましい。
 エポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は特に限定されない。
 エポキシ樹脂としては、具体的には、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂、アルコキシナフタレン骨格含有フェノールアラルキルエポキシ樹脂等のアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂;テトラキスフェノールエタン型エポキシ樹脂等の4官能エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、保存性と低温硬化性を両立させ、成形性を向上させる観点からは、ノボラック型エポキシ樹脂、3官能型エポキシ樹脂および4官能エポキシ樹脂のうちの少なくとも一方を用いることがより好ましい。
 また、エポキシ樹脂の中でも、エポキシ当量が160g/eq以上250g/eq以下であるエポキシ樹脂を含むことが好ましく、エポキシ当量が180g/eq以上220g/eq以下であるエポキシ樹脂を含むことがより好ましい。これにより、保存性と低温硬化性のバランスを向上しやすくなる。
 熱硬化性樹脂(A)の150℃におけるICI粘度は、無機充填材(B)の含有量により適宜設定されることが好適であるが、たとえば、上限値は、好ましくは60ポアズ以下であり、より好ましくは50ポアズ以下であり、さらに好ましくは40ポアズ以下である。これにより、封止樹脂組成物の流動性を向上させ、また、低温封止を実現しやすくする。
 一方、熱硬化性樹脂(A)の150℃におけるICI粘度の下限値は、特に限定されないが、例えば、0.01ポアズ以上としてもよい。
 なお、1ポアズは、0.1Pa・sである。
 熱硬化性樹脂(A)の含有量は、とくに限定されないが、たとえば封止樹脂組成物全体に対して、1質量%以上50質量%以下であることが好ましく、2質量%以上30質量%以下であることがより好ましく、5質量%以上20質量%以下であることがさらに好ましい。
 熱硬化性樹脂(A)の含有量を上記下限値以上とすることにより、封止樹脂組成物の流動性や成型性をより効果的に向上させることができる。また、熱硬化性樹脂(A)の含有量を上記上限値以下とすることにより、保存性と低温硬化性をより効果的に向上させることができる。
[無機充填材(B)]
 無機充填材(B)としては、例えば、シリカ、アルミナ、カオリン、タルク、クレイ、マイカ、ロックウール、ウォラストナイト、ガラスパウダー、ガラスフレーク、ガラスビーズ、ガラスファイバー、炭化ケイ素、窒化ケイ素、窒化アルミ、カーボンブラック、グラファイト、二酸化チタン、炭酸カルシウム、硫酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、硫酸バリウム、セルロース、アラミド、または木材等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 上記のシリカとしては、結晶性シリカ(破砕状の結晶性シリカ)、溶融シリカ(破砕状のアモルファスシリカ、球状のアモルファスシリカ)、および液状封止シリカ(液状封止用の球状のアモルファス止シリカ)が挙げられる。なかでも、保存性を保持しつつ、低温封止を実現しやすくする観点から、溶融球状シリカであることが好ましい。
 無機充填剤(B)の平均粒径は、特に限定されないが、典型的には0.1~100μmであり、好ましくは0.2~50μmである。平均粒径が適当であることにより、後述の造粒工程において、溶融混合物を含むシェルがより均一にコーティングされる等の効果が得られると考えられる。また、最終的に得られたコアシェル粒子をコネクタ用封止材として使用するときに、金型キャビティ内での充填性を高めることができる。
 なお、無機充填材(B)の体積基準粒度分布は、市販のレーザー式粒度分布計(たとえば、株式会社島津製作所製、SALD-7000)で測定することができる。
 無機充填材(B)の含有量は、とくに限定されないが、たとえば封止樹脂組成物全体に対して、50質量%以上95質量%以下であることが好ましく、60質量%以上95質量%以下であることがより好ましく、65質量%以上85質量%以下であることがさらに好ましい。
 無機充填材(B)の含有量を上記下限値以上とすることにより、封止樹脂組成物により封止された保存性と低温硬化性を効果的に向上させることができる。また、無機充填材(B)の含有量を上記上限値以下とすることにより、封止樹脂組成物の流動性を良好なものとし、成形性をより効果的に向上させることが可能となる。
 本実施形態の封止樹脂組成物は、上記以外に、以下の成分を含んでもよい。
[硬化剤(C)]
 封止樹脂組成物は、硬化剤(C)を含むことができる。硬化剤(C)としては、熱硬化性樹脂(A)と反応して硬化させるものであればとくに限定されないが、たとえば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、および、ヘキサメチレンジアミン等の炭素数2~20の直鎖脂肪族ジアミン、ならびに、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、ジシアノジアミド等のアミン類;アニリン変性レゾール樹脂、ジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂等のフェノールアラルキル樹脂;ナフタレン骨格やアントラセン骨格のような縮合多環構造を有するフェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物等を含む酸無水物等;ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物;カルボン酸含有ポリエステル樹脂等の有機酸類が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、封止樹脂組成物の低温封止を実現させる観点からは、ノボラック型フェノール樹脂またはフェノールアラルキル樹脂のうちの少なくとも一方を用いることがより好ましい。
 封止樹脂組成物中における硬化剤(C)の含有量は、とくに限定されないが、たとえば封止樹脂組成物全体に対して、1質量%以上12質量%以下であることが好ましく、3質量%以上10質量%以下であることがより好ましい。
 硬化剤(C)の含有量を上記下限値以上とすることにより、封止樹脂組成物を適切に硬化しやすくなる。一方、硬化剤(C)の含有量を上記上限値以下とすることにより、適度な流動性を保持し、低温封止を実現しやすくなる。
[カップリング剤(E)]
 封止樹脂組成物は、たとえばカップリング剤(E)を含むことができる。カップリング剤(E)としては、たとえばエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を用いることができる。
 より具体的には、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミンの加水分解物等のシラン系カップリング剤;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 封止樹脂組成物中におけるカップリング剤(E)の含有量は、とくに限定されないが、たとえば封止樹脂組成物全体に対して、0.05質量%以上3質量%以下であることが好ましく、0.1質量%以上2質量%以下であることがより好ましい。カップリング剤(E)の含有量を上記下限値以上とすることにより、封止樹脂組成物中における無機充填材(B)の分散性を良好なものとすることができる。また、カップリング剤(E)の含有量を上記上限値以下とすることにより、封止樹脂組成物の流動性を良好なものとし、成形性の向上を図ることができる。
 さらに、本実施形態の封止樹脂組成物は、上記成分の他に、たとえば、カーボンブラック等の着色剤;天然ワックス、合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン、酸化ポリエチレン等の離型剤;ハイドロタルサイト等のイオン捕捉剤;シリコーンオイル、シリコーンゴム等の低応力剤;水酸化アルミニウム等の難燃剤;酸化防止剤等の各種添加剤を含むことができる。
<封止樹脂組成物の製造方法>
 本実施形態の封止樹脂組成物は、公知の方法により得られるものであり、例えば、上述した成分を混練し、造粒する方法を用いてもよく、または、以下に説明する粒子状の封止樹脂組成物の製造方法を用いてもよい。
 以下、粒子状の封止樹脂組成物の製造方法について、説明する。
 本実施形態の粒子状の封止樹脂組成物の製造方法は、以下の工程を含む。
・ベースとなる樹脂(熱硬化性樹脂(A))を含む溶融混合物(X)を得る溶融混合工程と、
・溶融混合物(X)、および無機充填剤(B)等のその他の材料(Y)とを、攪拌羽根を備えた攪拌装置に投入する投入工程と、
・当該攪拌装置内で、加熱混合し、例えば、無機充填剤(B)等を含む材料(Y)を含むコアの外側に溶融混合物(X)を含むシェルを備えたコアシェル粒子を得る造粒工程と、
・コアシェル粒子と、硬化促進剤(D)を混合し、封止樹脂組成物を得る工程と、
を含む。
 上記の各工程、各工程で用いられる素材、任意に含んでもよい工程などについて説明する。
(溶融混合工程)
 溶融混合工程では、熱硬化性樹脂(A)を適当な方法により溶融する。なお、熱硬化性樹脂(A)以外に、硬化剤(C)とともに溶融し、溶融混合物(X)とすることが好ましい。
 溶融混合の方法は特に限定されないが、例えば、熱硬化性樹脂(A)および硬化剤(C)を120~180℃で加熱混合し、その後、冷却、粉砕工程を経て粉砕物とし、粉砕物(顆粒状または粒子状)である溶融混合物(X)を得ることができる。
 なお、例えば、カップリング剤、離型剤、低応力剤を追加で用いてもよい。
(投入工程)
 投入工程では、少なくとも、上述の溶融混合物(X)と、例えば、無機充填剤(B)と、その他の材料(Y)とを、攪拌羽根を備えた攪拌装置に投入する。なお、その他の材料としては、着色剤、イオン捕捉剤、難燃剤、酸化防止剤等が挙げられる。
 攪拌羽根を備えた攪拌装置(以下、単に「攪拌装置」とも表記する)は、溶融混合物(X)、無機充填剤(B)および材料(Y)を撹拌できる攪拌羽根を備え、また、攪拌羽根を駆動させたときに、羽根先端の線速度を0.1m/s以上の速さとすることが好ましい。
(造粒工程)
 上記の投入工程の後の造粒工程では、投入工程で攪拌装置に投入された成分を、攪拌羽根を駆動させて加熱混合する。好ましくは110~180℃、より好ましくは120~170℃である。温度が下限値以上であることで溶融混合物(X)が適度に軟化し、均一なシェルをコーティングしやすくなる。一方、温度を上限値以下とすることで原材料の劣化等が抑えられ、最終的に得られる粒子状の封止樹脂組成物の性能をより高めることができる。
 造粒工程において、攪拌装置に投入された成分を110℃以上とする時間(成分を110℃以上に保つ時間)は、好ましくは5~200分であり、より好ましくは10~180分、さらに好ましくは20~150分ある。この時間を10分以上とすることで、十分な厚みのシェルを形成しやすくなる、シェルの厚みを一層均一にすることができる、等の効果がある。また、この時間を200分以下とすることで、素材の劣化等が抑えられる。よって、このコアシェル粒子を封止用エポキシ樹脂組成物に適用した場合、各種性能を一層良化させることができる。
 造粒工程の一部または全部は、好ましくは、減圧下で行われる。具体的には、造粒工程の一部または全部は、好ましくは30kPa以下の減圧下、より好ましくは0.01~20kPaの減圧下、さらに好ましくは0.05~15kPaの減圧下、特に好ましくは0.1~10kPaの減圧下で行われる。
 減圧は、例えば、攪拌時の減圧が可能な攪拌装置1を用いることで、減圧下で造粒工程を行うことができる。
 減圧は、好ましくは、造粒工程の全時間中の少なくとも半分以上の時間で行われることが好ましい。
(封止樹脂組成物の混合)
 造粒工程の後に得られたコアシェル粒子と、硬化促進剤(D)を混合し、封止樹脂組成物を得る。こうすることにより、硬化促進剤(D)に熱がかけられることなく封止樹脂組成物を得ることができる。なお、造粒工程のあと、さらに、以下の工程を含んでもよい。
 また、本実施形態において、封止樹脂組成物の製造方法は、かかる場合に限られず、硬化促進剤(D)に熱がかからない範囲において変更されてもよい。例えば、封止樹脂組成物は、以下の工程のあと、粉砕されたコアシェル粒子と、硬化促進剤とを混合して得られたものであってもよい。
(冷却攪拌工程)
 本実施形態の粒子の製造方法は、好ましくは、造粒工程の後に、攪拌装置内の成分を攪拌しつつ冷却する冷却攪拌工程を含む。これにより、上述の造粒工程で得られたコアシェル粒子が、冷却時に凝集する(塊状になる)ことが一層抑えられ、好ましい。
 コアシェル粒子は、冷却攪拌工程により、溶融混合物(X)の軟化点以下の温度まで冷却されることが好ましい。典型的には、コアシェル粒子は、冷却攪拌工程により60℃以下まで冷却されることが好ましく、55℃以下まで冷却されることがより好ましく、50℃以下まで冷却されることがさらに好ましく、室温まで冷却されることが特に好ましい。
 冷却攪拌工程においても、造粒工程と同様、その一部または全部で減圧が行われてもよい。減圧の際の圧力としては、例えば20kPa以下、好ましくは0.01~20kPa、より好ましくは0.05~15kPaである。冷却時にも減圧することで、水分の低減や水分の再付着が抑えられ、結果、粒子の凝集等を一層低減できると考えられる。
(粉砕工程)
 本実施形態において造粒された粒子が、もし凝集している(2つ以上のコアシェル粒子がくっついている)場合などには、その凝集物を粉砕するための粉砕工程を行ってもよい。この際、硬化促進剤(D)とともに、混合、粉砕してもよい。
 粉砕の具体的なやり方は、特に限定されないが、例えば、ハンマーミル等の衝撃式のもの用いて行うことができる。原料供給速度は1~1000kg/hの条件とすることができる。
 また、粉砕に際しては、振動ボールミル、連続式回転ボールミル、バッチ式ボールミル等のボールミル;湿式ポットミル、遊星ポットミル等のポットミル;ローラーミル等を用いてもよい。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。なお、本発明は実施例に限定されるものではない。
 封止樹脂組成物の原材料としては、以下のものを用いた。
熱硬化性樹脂(A):オルトクレゾールノボラック型エポキシ樹脂(長春人造樹脂社製 CNE-195LL、エポキシ当量198g/eq)
熱硬化性樹脂(A):トリフェノールメタン型エポキシ樹脂(三菱化学株式会社製、1032H-60、エポキシ当量171g/eq)
熱硬化性樹脂(A):テトラキスフェノールエタン型エポキシ樹脂(三菱化学株式会社製、JER1031S、エポキシ当量200g/eq)
無機充填材(B):フィラー1(FB-950 電気化学工業社製 メジアン径D50:23μm)
無機充填材(B):フィラー2(SO-25R アドマテックス社製 メジアン径D50:0.5μm)
硬化剤(C):フェノールノボラック樹脂(住友ベークライト社製、PRーHF-3、水酸基当量105g/eq)
硬化剤(C):トリフェニルメタン骨格を有するフェノール樹脂(エア・ウオーター社製、HE910-20、水酸基当量101g/eq)
硬化促進剤(D):2-フェニルイミダゾール(四国化成工業製 2PZ-PW)
硬化促進剤(D):トリフェニルホスフィン(ケイ・アイ化成製 PP-360)
硬化促進剤(D):1,3-ジメチル尿素(東京化成工業株式会社製 1,3-ジメチル尿素)
カップリング剤(E):フェニルアミノプロピルトリメトキシシラン(東レ・ダウコーニング社製 CF-4083)
カップリング剤(E):γ-メルカプトプロピルトリメトキシシラン(信越化学工業社製、KBM-803)
着色剤:カーボンブラック(三菱化学株式会社製、#5)
イオン捕捉剤:ハイドロタルサイト(協和化学社製、DHT-4H)
離型剤:カルナバワックス(東亜合成社製TOWAX―132)
低応力剤:シリコーンオイル(東レ・ダウコーニング製、FZ―3730)
<実施例1、2>
 各実施例について、表1に記載の成分および配合に基づき、以下の手順で封止樹脂組成物を製造した。
1.溶融混合工程
 表1に示した原料のうち、熱硬化性樹脂(A)、硬化剤(C)の一部および離型剤を加熱釜中に投入し、150℃の熱媒体油により加温した。材料温度が100℃を超えたところで攪拌羽根での攪拌を開始し、また、材料温度が120℃を超えたところでカップリング剤(E)を添加し、その後5分攪拌した。
 攪拌終了後、混合物を別の容器に移し替え、10℃で冷却した。材料温度が20℃以下となるまで冷却し、その後ハンマーミルで粉砕した。
 以上により、平均粒径700μmの、溶融混合物の粉砕物を得た。
2.投入工程
 攪拌装置の槽本体の中に、上記1.で得られた溶融混合物の粉砕物、無機充填材(B)、着色剤および低応力剤を投入した。
 攪拌装置としては、クリアランス(攪拌羽根の先端と槽本体との距離)が3.0mmであるものを用いた。この攪拌装置は、攪拌のためのモーターや速度調整器、密閉状態で攪拌するための蓋、減圧の為のポンプ、温度調節のためのヒーター、覗き窓などを備えていた。
3.造粒工程
 上記2.で槽本体内に投入した成分を、先端の線速度が1.0m/sとなるように攪拌羽根を回転させて混ぜつつ、攪拌装置が備えるヒーターにより加熱した。槽本体内の内容物の温度が120℃となるように維持して、30分間、常圧下で、攪拌羽根の回転を続けた。なお、槽本体内の内容物の温度は、攪拌装置が備える覗き窓から放射温度計で確認した。
 これにより、無機充填材(B)および着色剤を含むコアの外側に、溶融混合物を含むシェルを備えたコアシェル粒子を造粒した。
4.冷却攪拌工程
 上記3.の工程後、ヒーターの加熱を弱めたうえで、先端の線速度が1.0m/sとなるように攪拌羽根を回転させて、コアシェル粒子の温度が45℃以下になるまで120分冷却した。
5.粉砕工程
 コアシェル粒子の一部凝集が確認された場合には、上記4.で冷却されたコアシェル粒子をハンマーミルに投入して処理した。
 得られたコアシェル粒子86.6質量部と、上記の溶融混合工程で得られた溶融混合物の粉砕物12.2質量部と、別途調製した、硬化剤(C)1.0質量部および硬化促進剤(D)0.2質量部を含有する粒子を準備した。これらを、混合、ハンマーミルで微粉砕するなどして、表1に示す組成のパウダー状の封止樹脂組成物を得た。
<実施例3>
 上記の原材料を用い、表1の組成(質量%)となるように各成分を、ミキサーを用いて15~28℃で混合した。次いで、得られた混合物を、70~100℃でロール混練後、冷却、粉砕して、封止樹脂組成物を得た。
<比較例1~4>
 上記の原材料を用い、表1の組成(質量%)となるように各成分を、ミキサーを用いて15~28℃で混合した。次いで、得られた混合物を、70~100℃でロール混練後、冷却、粉砕して、各封止樹脂組成物を得た。
<測定・評価>
 得られた各封止樹脂組成物について、以下の評価・測定を行った。
・DSC測定:示差走査熱量計(SII製、DSC7020)を用い、窒素気流下で、昇温速度を10℃/分で30℃から200℃の温度範囲条件にて、10mgの封止樹脂組成物について測定した。70℃における発熱量高さH1と最大発熱ピーク温度における発熱量高さHMAXとの差をΔH1とし、発熱量高さH1を基準にしたときに発熱量高さが、ΔH1の10%に達した時の温度を、発熱開始温度とした。得られたDSC曲線から最大発熱ピーク温度を求めた。結果を表1に示す。また、実施例1,2および比較例1~4の各封止樹脂組成物のDSCチャートを図2に示す。
・低温成形性:ガラス繊維入り銅張積層板を用いた回路基板上に、ハウジング部がPPS(ポリフェニレンサルファイド)樹脂製のコネクタをはんだ実装し、上記で得られた各封止樹脂組成物を用いて一括封止成形し、成形物を得た。実施例1,2、及び比較例1,2は、140℃2分で成形し、比較例3,4は、175℃2分で成形した。なお、比較例3,4は、140℃2分の条件では適切に硬化しなかったため、効果条件を変えて、成形を行った。
 成形後にコネクタと封止体との界面が剥離しなかった水準を〇とし、剥離した水準を×とした。
・保存性:封止樹脂組成物を5℃で6カ月保管し、その後、スパイラルフローを測定した。測定されたスパイラルフローが、初期値(保管前の封止樹脂組成物のスパイラルフロー)の90%以上であれば〇とし、90%未満であれば×とした。
Figure JPOXMLDOC01-appb-T000001
 この出願は、2019年8月8日に出願された日本出願特願2019-146043を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10  回路基板
20  コネクタ
21  端子
22  ハウジング
100  電子部品

Claims (10)

  1.  回路基板と、当該回路基板と外部機器とを電気的に接続するコネクタ部の少なくとも一部と、を一括封止するために用いられる封止樹脂組成物であって、
     当該封止樹脂組成物が、硬化促進剤を含み、
     前記コネクタ部は、前記回路基板と外部機器とを電気的に接続する端子と、当該端子の外周に配置され、前記封止樹脂組成物によって封止されるハウジングを有し、
     前記ハウジングが熱可塑性樹脂を含み、
     示差走査熱量計を用いて昇温速度10℃/分の条件下で30℃から200℃まで昇温した際に得られる当該封止樹脂組成物のDSC曲線において、最大発熱ピーク温度が、100℃以上163℃以下であり、最大発熱ピークの半値幅が5℃以上25℃以下である、封止樹脂組成物。
  2.  前記DSC曲線における発熱開始温度が、70℃以上130℃以下の範囲内にある、請求項1に記載の封止樹脂組成物。
  3.  前記封止樹脂組成物が、熱硬化性樹脂(A)と、無機充填材(B)とを含む、請求項1または2に記載の封止樹脂組成物。
  4.  硬化剤(C)を含む、請求項1乃至3いずれか一項に記載の封止樹脂組成物。
  5.  前記硬化促進剤が、イミダゾール系硬化促進剤を含む、請求項1乃至4いずれか一項に記載の封止樹脂組成物。
  6.  熱硬化性樹脂(A)が、エポキシ樹脂を含む、請求項1乃至5いずれか一項に記載の封止樹脂組成物。
  7.  前記硬化促進剤の含有量が、前記封止樹脂組成物全体に対して0.1質量%以上、5質量%以下である、請求項1乃至6いずれか一項に記載の封止樹脂組成物。
  8.  回路基板と、当該回路基板と外部機器とを電気的に接続するコネクタ部とが、請求項1~7いずれか一項に記載の封止樹脂組成物により一括封止されてなる、電子部品であって、
     前記コネクタ部は、前記回路基板と外部機器とを電気的に接続する端子と、当該端子の外周に配置され、前記封止樹脂組成物によって封止されるハウジングを有し、
     前記ハウジングが熱可塑性樹脂を含む、電子部品。
  9.  前記熱可塑性樹脂がエンジニアリングプラスチックを含む、請求項8に記載の電子部品。
  10.  前記エンジニアリングプラスチックは、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)、シンジオタクチックポリスチレン(SPS)またはポリアミド(PA)からなる群より選ばれる1種または2種以上である、請求項8または9に記載の電子部品。
PCT/JP2020/030344 2019-08-08 2020-08-07 封止樹脂組成物、および電子部品 WO2021025146A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080056448.9A CN114206976A (zh) 2019-08-08 2020-08-07 密封树脂组合物和电子部件
JP2020565504A JP6892024B1 (ja) 2019-08-08 2020-08-07 封止樹脂組成物、および電子部品
EP20850968.7A EP3828220A4 (en) 2019-08-08 2020-08-07 COMPOSITION OF SEAL RESIN AND ELECTRONIC COMPONENT
US17/630,566 US20220315695A1 (en) 2019-08-08 2020-08-07 Encapsulating resin composition and electronic component
BR112022000980A BR112022000980A2 (pt) 2019-08-08 2020-08-07 Composição de resina encapsulante e componente eletrônico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146043 2019-08-08
JP2019-146043 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021025146A1 true WO2021025146A1 (ja) 2021-02-11

Family

ID=74503018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030344 WO2021025146A1 (ja) 2019-08-08 2020-08-07 封止樹脂組成物、および電子部品

Country Status (6)

Country Link
US (1) US20220315695A1 (ja)
EP (1) EP3828220A4 (ja)
JP (1) JP6892024B1 (ja)
CN (1) CN114206976A (ja)
BR (1) BR112022000980A2 (ja)
WO (1) WO2021025146A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074488A4 (en) * 2021-02-17 2023-01-25 Sumitomo Bakelite Co., Ltd. SEALING RESIN COMPOSITION FOR INJECTION MOLDING

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168286A (ja) * 1996-12-13 1998-06-23 Nitto Denko Corp 硬化促進剤含有マイクロカプセルおよびそれを用いた熱硬化性樹脂組成物ならびに半導体装置
JP2013040298A (ja) * 2011-08-18 2013-02-28 Sekisui Chem Co Ltd エポキシ樹脂材料及び多層基板
WO2017056728A1 (ja) 2015-09-29 2017-04-06 日立オートモティブシステムズ株式会社 電子制御装置またはその製造方法
WO2017126307A1 (ja) * 2016-01-19 2017-07-27 三菱ケミカル株式会社 エポキシ樹脂組成物、繊維強化複合材料用プリプレグおよび繊維強化複合材料
JP2019041010A (ja) * 2017-08-25 2019-03-14 日立オートモティブシステムズ株式会社 樹脂封止型車載電子制御装置
JP2019125624A (ja) * 2018-01-12 2019-07-25 株式会社デンソー 電子装置
JP2019146043A (ja) 2018-02-21 2019-08-29 サトーホールディングス株式会社 アンテナパターン、rfidインレイ、rfidラベル及びrfid媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010559A1 (ja) * 2012-07-09 2014-01-16 新日鉄住金化学株式会社 エポキシ樹脂、エポキシ樹脂組成物、その硬化方法及び硬化物
JPWO2014065152A1 (ja) * 2012-10-26 2016-09-08 新日鉄住金化学株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物の製造方法、及び半導体装置
KR102026123B1 (ko) * 2016-11-02 2019-09-30 스미또모 베이크라이트 가부시키가이샤 에폭시 수지 조성물 및 구조체

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168286A (ja) * 1996-12-13 1998-06-23 Nitto Denko Corp 硬化促進剤含有マイクロカプセルおよびそれを用いた熱硬化性樹脂組成物ならびに半導体装置
JP2013040298A (ja) * 2011-08-18 2013-02-28 Sekisui Chem Co Ltd エポキシ樹脂材料及び多層基板
WO2017056728A1 (ja) 2015-09-29 2017-04-06 日立オートモティブシステムズ株式会社 電子制御装置またはその製造方法
WO2017126307A1 (ja) * 2016-01-19 2017-07-27 三菱ケミカル株式会社 エポキシ樹脂組成物、繊維強化複合材料用プリプレグおよび繊維強化複合材料
JP2019041010A (ja) * 2017-08-25 2019-03-14 日立オートモティブシステムズ株式会社 樹脂封止型車載電子制御装置
JP2019125624A (ja) * 2018-01-12 2019-07-25 株式会社デンソー 電子装置
JP2019146043A (ja) 2018-02-21 2019-08-29 サトーホールディングス株式会社 アンテナパターン、rfidインレイ、rfidラベル及びrfid媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3828220A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074488A4 (en) * 2021-02-17 2023-01-25 Sumitomo Bakelite Co., Ltd. SEALING RESIN COMPOSITION FOR INJECTION MOLDING

Also Published As

Publication number Publication date
JPWO2021025146A1 (ja) 2021-09-13
EP3828220A4 (en) 2022-08-03
BR112022000980A2 (pt) 2022-06-14
US20220315695A1 (en) 2022-10-06
EP3828220A1 (en) 2021-06-02
CN114206976A (zh) 2022-03-18
JP6892024B1 (ja) 2021-06-18

Similar Documents

Publication Publication Date Title
CN106867198B (zh) 高介电树脂组合物和静电容量型传感器
CN109890894B (zh) 环氧树脂组合物和结构体
JP2022066237A (ja) 半導体封止用エポキシ樹脂組成物および半導体装置
JP7302166B2 (ja) ステータコア絶縁用樹脂組成物
JP2019151839A (ja) エポキシ樹脂組成物
WO2021025146A1 (ja) 封止樹脂組成物、および電子部品
JP6854589B2 (ja) 高誘電樹脂組成物、静電容量型センサおよび静電容量型センサの製造方法
JP5526027B2 (ja) 非晶質シリカ質粉末、その製造方法、樹脂組成物、及び半導体封止材
JP2022003130A (ja) 封止用樹脂組成物、半導体装置、及び半導体装置の製造方法
JP4967353B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
CN111433284B (zh) 环氧树脂组合物和电子装置
JP2021113241A (ja) 封止用樹脂組成物および一次電池付モジュール
JP2020152823A (ja) 封止用樹脂組成物、フィルムコンデンサおよびその製造方法
JP2021158176A (ja) 電子装置および封止用樹脂組成物
JP2021038311A (ja) 半導体封止用樹脂組成物、および半導体装置
JP7302300B2 (ja) 封止樹脂組成物およびアルミニウム電解コンデンサ
JP6679944B2 (ja) 静電容量型センサおよび静電容量型センサの製造方法
WO2020189711A1 (ja) 成形材料用樹脂組成物、成形体および構造体
JP2022146120A (ja) 封止用樹脂組成物、および半導体装置
JP2022018599A (ja) モジュール
JP2020152822A (ja) 封止用樹脂組成物、フィルムコンデンサおよびその製造方法
JP2019196462A (ja) 封止用エポキシ樹脂組成物の構成成分として用いられる粒子の製造方法、封止用エポキシ樹脂組成物の構成成分として用いられるコアシェル粒子、および、封止用エポキシ樹脂組成物
JP2019099726A (ja) エポキシ樹脂および電子装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020565504

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020850968

Country of ref document: EP

Effective date: 20210225

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850968

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000980

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022000980

Country of ref document: BR

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2018-146043 DE 08/08/2019 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA CONFORME O ART. 15 DA PORTARIA 39/2021. O DOCUMENTO APRESENTADO NAO ESTA TRADUZIDO E A DECLARACAO NAO CONTEM OS DADOS DA PRIORIDADE.

ENP Entry into the national phase

Ref document number: 112022000980

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220118