WO2021024811A1 - 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ - Google Patents

共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ Download PDF

Info

Publication number
WO2021024811A1
WO2021024811A1 PCT/JP2020/028486 JP2020028486W WO2021024811A1 WO 2021024811 A1 WO2021024811 A1 WO 2021024811A1 JP 2020028486 W JP2020028486 W JP 2020028486W WO 2021024811 A1 WO2021024811 A1 WO 2021024811A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
integer
carbon atoms
formula
polymer
Prior art date
Application number
PCT/JP2020/028486
Other languages
English (en)
French (fr)
Inventor
省吾 角谷
謙太 久村
関川 新一
美紀 京
崇吏 当房
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN202080054053.5A priority Critical patent/CN114174350B/zh
Priority to US17/632,873 priority patent/US20220275130A1/en
Priority to BR112022000676A priority patent/BR112022000676A2/pt
Priority to KR1020217042609A priority patent/KR102684932B1/ko
Priority to JP2021537694A priority patent/JP7343589B2/ja
Priority to EP20849553.1A priority patent/EP4011642B1/en
Publication of WO2021024811A1 publication Critical patent/WO2021024811A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0041Compositions of the carcass layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/005Compositions of the bead portions, e.g. clinch or chafer rubber or cushion rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a conjugated diene polymer, a branching agent, a method for producing a conjugated diene polymer, an oil-extended conjugated diene polymer, a rubber composition, and a tire.
  • Examples of the rubber material that meets the above-mentioned requirements include a rubber material containing a rubber-like polymer and a reinforcing filler such as carbon black and silica.
  • a rubber material containing silica When a rubber material containing silica is used, the balance between low hysteresis loss and wet skid resistance can be improved. Further, by introducing a functional group having an affinity or reactivity with silica into the molecular terminal portion of the highly motility rubber-like polymer, the dispersibility of silica in the rubber material is improved, and further, silica Attempts have been made to reduce the reactivity of the molecular end of the rubbery polymer by binding to the particles to reduce the hysteresis loss.
  • Patent Documents 1 to 3 propose compositions of a modified conjugated diene polymer and silica obtained by reacting an amino group-containing alkoxysilane with an active terminal of a conjugated diene polymer.
  • Patent Document 4 proposes a modified conjugated diene-based polymer obtained by coupling a polymer active terminal with a polyfunctional silane compound.
  • the present inventors have a specific range of the degree of branching (Bn) and the change in oxidation start temperature before and after applying a heat load ( ⁇ T).
  • Bn degree of branching
  • ⁇ T change in oxidation start temperature before and after applying a heat load
  • the conjugated diene-based copolymer has been found to be extremely excellent in processability and thermal stability when made into a vulcanized product, and has completed the present invention. That is, the present invention is as follows.
  • the degree of branching (Bn) by the GPC-light scattering method with a viscosity detector is 8 or more.
  • the change in oxidation start temperature ( ⁇ T) before and after applying a heat load is 11.9 ° C. or less.
  • a conjugated diene polymer having a star-shaped polymer structure with three or more branches, and a branched chain having at least one star-shaped polymer structure. It has a moiety derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group, and has a further main chain branched structure in the moiety derived from the vinyl-based monomer containing the alkoxysilyl group or halosilyl group.
  • the conjugated diene-based polymer according to any one of the above [1] to [4].
  • the portion derived from the vinyl-based monomer containing an alkoxysilyl group or a halosilyl group is A monomer unit based on a compound represented by the following formula (1) or (2). It has a branch point of the polymer chain by the monomer unit based on the compound represented by the following formula (1) or (2). At least one end of the conjugated diene polymer is modified with a nitrogen atom-containing group, The conjugated diene polymer according to the above [5].
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 1 to R 3 are independent of each other.
  • X 1 represents an independent halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, even if a part thereof has a branched structure. Good. When there are a plurality of them, R 2 to R 5 are independent of each other.
  • X 2 ⁇ X 3 represent independent halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • M + n + l indicates 3.
  • a indicates an integer of 0 to 2
  • b indicates an integer of 0 to 3
  • c indicates an integer of 0 to 3.
  • M + n + l) indicates 3.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 1 to R 3 are independent of each other.
  • X 1 represents an independent halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, even if a part thereof has a branched structure. Good. When there are a plurality of them, R 2 to R 5 are independent of each other.
  • X 2 ⁇ X 3 represent independent halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • M + n + l indicates 3.
  • a indicates an integer of 0 to 2
  • b indicates an integer of 0 to 3
  • c indicates an integer of 0 to 3.
  • M + n + l) indicates 3.
  • the denaturant comprises a denaturant represented by any of the following general formulas (A) to (C). The method for producing a conjugated diene polymer according to the above [18] or [19].
  • R 1 to R 4 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 5 has 1 to 10 carbon atoms. It represents an alkylene group, and R 6 represents an alkylene group having 1 to 20 carbon atoms.
  • m represents an integer of 1 or 2
  • n represents an integer of 2 or 3
  • (m + n) represents an integer of 4 or more.
  • R 1 to R 6 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 7 to R 9 independently represent each other.
  • m, n, and l each independently represent an integer of 1 to 3, and (m + n + l) represents an integer of 4 or more. When there are a plurality of them, R 1 to R 6 are independent of each other.
  • R 12 to R 14 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms
  • R 15 to R 18 and R 20 each independently represent 1 carbon number
  • R 19 and R 22 each independently represent an alkylene group having 1 to 20 carbon atoms
  • R 21 represents an alkyl group having 1 to 20 carbon atoms or a trialkylsilyl group
  • m represents an integer of 1 to 3
  • p represents 1 or 2.
  • R 12 to R 22 , m, and p when a plurality of each exist are independent of each other, and may be the same or different.
  • A has a hydrocarbon group having 1 to 20 carbon atoms or at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and has no active hydrogen. Represents an organic group.
  • B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. B 1 in the case of a plurality of carbon atoms is independent of each other. There.
  • B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • B 3 represents an alkyl group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10 carbon atoms. Shown. B 2 and B 3 are independent when there are a plurality of them.
  • B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. B 4 in the case of a plurality of carbon atoms is independent of each other. There.
  • B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. B 5 in the case of a plurality of carbon atoms is independent of each other. There.
  • the rubber component is the conjugated diene polymer according to any one of [1] to [11] or the oil-extended conjugated diene polymer according to [22] with respect to the total amount of the rubber component.
  • a conjugated diene polymer having extremely excellent processability and heat stability can be obtained when it is made into a vulcanized product.
  • the present embodiment will be described in detail. It should be noted that the following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments. The present invention can be appropriately modified and carried out within the scope of the gist thereof.
  • the conjugated diene polymer of the present embodiment is The degree of branching (Bn) by the GPC-light scattering method with a viscosity detector is 8 or more, and the change in oxidation start temperature ( ⁇ T) before and after applying a heat load is 11.9 ° C. or less.
  • the conjugated diene-based polymer in which the degree of branching and the change ( ⁇ T) in the oxidation start temperature before and after applying heat is specified is extremely excellent in processability and heat resistance stability when prepared as a vulcanized product.
  • the "conjugated diene polymer” shall also include a modified conjugated diene polymer after modification.
  • the conjugated diene polymer of the present embodiment has a branching degree (Bn) of 8 or more from the viewpoint of processability and heat resistance stability.
  • the degree of branching (Bn) of 8 or more means that the conjugated diene polymer of the present embodiment has 8 or more side chain polymer chains with respect to the substantially longest polymer main chain. Means.
  • a polymer having a branch tends to have a smaller molecular size when compared with a linear polymer having the same absolute molecular weight.
  • the contraction factor (g') is an index of the ratio of the size occupied by the molecule to the linear polymer having the same absolute molecular weight. That is, the contraction factor (g') tends to decrease as the degree of branching of the polymer increases.
  • M is an absolute molecular weight.
  • the contractile factor (g') expresses the rate of decrease in the size of the molecule, and does not accurately represent the branched structure of the polymer. Therefore, the degree of branching (Bn) of the conjugated diene polymer is calculated using the value of the contraction factor (g') at each absolute molecular weight of the conjugated diene polymer.
  • the calculated "branch degree (Bn)” accurately represents the number of polymers directly or indirectly bonded to each other with respect to the longest main chain structure.
  • the calculated degree of branching (Bn) is an index expressing the branched structure of the conjugated diene-based polymer.
  • the conjugated diene-based polymer of the present embodiment has a branching degree (Bn) of 8 or more, but in such a case, the conjugated diene-based polymer having 10 branches as the star-shaped polymer structure has the same branching as the star-shaped polymer structure.
  • the "branch” is formed by directly or indirectly bonding one polymer with another polymer.
  • the “branching degree (Bn)” is the number of polymers directly or indirectly bonded to each other with respect to the longest main chain structure. When the degree of branching (Bn) is 8 or more, the conjugated diene polymer of the present embodiment has an excellent balance between low hysteresis loss property and wet skid resistance when used as a vulcanized product.
  • the absolute molecular weight when the absolute molecular weight is increased, the workability tends to be deteriorated, and when the absolute molecular weight is increased in a linear polymer structure, the viscosity of the vulcanized product is significantly increased and the workability is significantly deteriorated. Therefore, even when a large number of functional groups are introduced into the polymer to improve the affinity and / or reactivity with silica blended as a filler, the silica is sufficiently dispersed in the polymer in the kneading step. I can't let you.
  • the function of the introduced functional group is not exhibited, and the effects of low hysteresis loss and improvement of wet skid resistance due to the introduction of the functional group, which should be originally expected, are not exhibited.
  • the conjugated diene polymer of the present embodiment is specified to have a branching degree (Bn) of 8 or more, the increase in the viscosity of the vulcanized product due to the increase in the absolute molecular weight is significantly suppressed.
  • the mixture is sufficiently mixed with silica or the like, and the silica can be dispersed around the conjugated diene polymer.
  • the conjugated diene-based polymer As a result, by setting a large molecular weight of the conjugated diene-based polymer, it is possible to improve wear resistance and fracture characteristics, and silica can be dispersed around the polymer by sufficient kneading, and a functional group can be used. By being able to act and / or react with the above, it becomes possible to have a practically sufficient low hysteresis loss property and wet skid resistance.
  • the absolute molecular weight of the conjugated diene polymer can be measured by the method described in Examples described later.
  • the degree of branching (Bn) of the conjugated diene polymer of the present embodiment is 8 or more, preferably 10 or more, more preferably 12 or more, and further preferably 15 or more. Conjugated diene-based polymers having a degree of branching (Bn) in this range tend to be excellent in processability when made into a vulcanized product.
  • the upper limit of the degree of branching (Bn) is not particularly limited and may be equal to or higher than the detection limit value, but is preferably 84 or less, more preferably 80 or less, and further preferably 64 or less. Even more preferably, it is 57 or less. When it is 84 or less, it tends to have excellent wear resistance when it is made into a vulcanized product.
  • the degree of branching of the conjugated diene polymer can be controlled to 8 or more by combining the amount of the branching agent added and the amount of the terminal denaturing agent added. Specifically, the degree of branching can be controlled by adjusting the number of functional groups of the branching agent, the amount of the branching agent added, the timing of adding the branching agent, and the amount of the modifying agent added. More specifically, it will be described in [Method for producing conjugated diene polymer] described later.
  • the conjugated diene-based polymer of the present embodiment contains an aromatic vinyl compound monomer unit.
  • the thermal stability of the conjugated diene polymer can be improved.
  • the mass ratio of the aromatic vinyl compound monomer unit in the conjugated diene polymer of the present embodiment is preferably 1% by mass or more, and as will be described later, the outside of the conjugated diene polymer, particularly From the viewpoint of making the uneven distribution of the aromatic vinyl compound monomer unit to the terminal portion remarkable, 5% by mass or more is more preferable, and 10% by mass or more is further preferable.
  • the terminal portion of the conjugated diene-based polymer means the polymerization initiation terminal, and the content of the aromatic vinyl compound monomer unit in this portion is preferably 1% by mass or more.
  • the aromatic vinyl compound monomer unit is unevenly distributed outside the conjugated diene polymer, so that the thermal stability of the conjugated diene polymer can be enhanced.
  • it is difficult to directly investigate the three-dimensional structure of the conjugated diene polymer.
  • the "change in oxidation start temperature ( ⁇ T) before and after applying a heat load" measured in the state where the conjugated diene polymer is sterically present reflects the three-dimensional structure of the conjugated diene polymer. I came up with what I was doing and completed the present invention.
  • the change in the oxidation start temperature ( ⁇ T) before and after applying the heat load reflects the three-dimensional structure expected from the production conditions, and is considered to be a measured value indirectly corresponding to the three-dimensional structure of the polymer. Be done.
  • the change ( ⁇ T) of the oxidation start temperature before and after applying the heat load is not more than a certain level, the resistance to kneading becomes high when the conjugated diene polymer of the present embodiment is used as a material for the tire composition. , Thermal deterioration of the polymer can be sufficiently prevented. That is, the above ( ⁇ T) is also very highly related to the performance of the tire composition.
  • the conjugated diene polymer of the present embodiment excellent thermal stability can be obtained by specifying the change ( ⁇ T) of the oxidation start temperature before and after applying the heat load to 11.9 ° C. or lower.
  • the change in the oxidation start temperature before and after applying the heat load can be specifically measured by the method described later.
  • a copolymer containing an aromatic vinyl compound monomer unit tends to have excellent heat stability as compared with a homopolymer of a conjugated diene compound, and a copolymer of an aromatic vinyl compound and a conjugated diene compound.
  • the polymerized portion of the aromatic vinyl compound is superior in heat resistance to the polymerized portion of the conjugated diene compound. It is believed that the polymer exists in a sterically organized state rather than linearly, but in this steric arrangement, the outer part of the conjugated diene polymer, which is susceptible to heat load, is more likely to exist.
  • the heat resistance of the conjugated diene polymer as a whole can be improved. That is, by increasing the ratio of the aromatic vinyl compound monomer unit on the outer side of the polymer chain, the thermal stability of the conjugated diene polymer can be further improved.
  • the method for increasing the ratio of the aromatic vinyl compound monomer unit on the outer side of the polymer chain is not limited, but for example, a polyfunctional coupling agent is reacted at the end of the polymerization to form a star-branched conjugated diene polymer. When forming, the coupling agent is likely to be located on the center side of the three-dimensional arrangement, and the initiation side of the polymerization is likely to be located on the outside.
  • Aromatic vinyl compound monomer units tend to be unevenly distributed. Further, when the main chain branched structure is formed by the polymer chain having a high ratio of the aromatic vinyl compound monomer unit near the polymerization initiation terminal, the effect of uneven distribution of the aromatic vinyl compound monomer unit to the outside is further enhanced. Be done. That is, the heat resistance stability can be improved by increasing the degree of branching described above.
  • the degree of branching is preferably 8 or more.
  • the structure formed by branching the main chain of the aromatic vinyl polymer chain, then forming a conjugated diene block, and multi-branching coupling also has the viewpoint that the aromatic vinyl compound monomer unit is unevenly distributed on the outside.
  • the conjugated diene-based polymer used in the composition for tires is a random copolymer of aromatic vinyl and conjugated diene, and the ratios of the two are different between the outside and the inside ( It is preferable that the outside is aromatic vinyl rich) from the viewpoint of tire performance.
  • the conjugated diene compound is divided and added. By doing so, the ratio of the aromatic vinyl compound monomer unit on the outer side of the polymer chain can be increased.
  • the conjugated diene compound include 1,3-butadiene
  • examples of the aromatic vinyl compound include styrene.
  • the copolymerization reaction is started with the total amount of styrene and a part of 1,3-butadiene, and the remaining 1,3-butadiene is added during the copolymerization reaction.
  • a method of adding intermittently may be used.
  • the amount of the remaining 1,3-butadiene added in portions is not particularly limited, but is preferably 30% or more, more preferably 35% or more, still more preferably 40% or more of the total amount of 1,3-butadiene.
  • the "random copolymer” is a polymer in which an aromatic vinyl compound and a conjugated diene compound are randomly polymerized without regularity. From the viewpoint of improving fuel economy performance, the randomly polymerized conjugated diene polymer preferably has a small number or no blocks in which 30 or more aromatic vinyl units are linked.
  • the conjugated diene polymer is a butadiene-styrene copolymer
  • IM KOLTHOFF et al., J. Polym. Sci. 1,429 (1946)
  • a block in which 30 or more aromatic vinyl units are linked is preferable with respect to the total amount of the conjugated diene polymer. Is 5.0% by mass or less, more preferably 3.0% by mass or less.
  • the change ( ⁇ T) of the oxidation start temperature before and after applying a heat load is 11.9 ° C. or less, preferably 10 ° C. or less, and more preferably 8 ° C. or less. ..
  • “Giving a heat load” means giving thermal energy to a conjugated diene polymer. Adding thermal energy means adding thermal energy to the conjugated diene-based polymer.
  • the "oxidation start temperature” is a temperature at which the conjugated diene polymer undergoes an oxidation reaction when heated in the atmosphere and the mass increases.
  • the main body temperature of Labplast Mill 30C150 (Toyo Seiki Seisakusho) was set to 50 ° C., 50 g of conjugated diene polymer was added, kneaded at 120 rpm for 5 minutes, and stopped for 5 minutes as one cycle, for a total of 3 cycles.
  • a method of applying a heat load by kneading can be mentioned.
  • the heat load can be defined by the amount of heat per hour, but if this is done, there is a concern that the viscosity of the polymer or the like affects the amount of heat generated and impairs reproducibility. Therefore, it is effective to specify the heat load by the specific procedure as described above.
  • Conjugated diene-based polymers in which the change in oxidation start temperature ( ⁇ T) before and after kneading is in this range tend to be excellent in heat stability when made into a vulcanized product.
  • the change in the oxidation start temperature before and after applying the heat load can be measured by the method described in Examples in this specification.
  • the conjugated diene polymer of the present embodiment has a modification rate of 60 mass with respect to the total amount of the conjugated diene polymer from the viewpoint of the balance between low hysteresis loss and wet skid resistance, wear resistance, and fracture characteristics. % Or more is preferable.
  • the "modification rate” represents the mass ratio of the conjugated diene polymer having a nitrogen-containing functional group to the total amount of the conjugated diene polymer. For example, when a nitrogen-containing modifier is reacted at the terminal end, the mass ratio of the conjugated diene polymer having a nitrogen-containing functional group by the nitrogen-containing modifier to the total amount of the conjugated diene polymer is shown as the modification rate.
  • the conjugated diene-based polymer to be produced has a nitrogen-containing functional group, so that the branched polymer also has a denaturation rate for calculation. At that time, it will be counted. That is, in the present specification, when the conjugated diene polymer is a modified "modified conjugated diene polymer", the coupling polymer and / or the nitrogen-containing functional with a modifier having a nitrogen-containing functional group is used. The total mass ratio of the branched polymers with the branching agent having a group is the modification rate.
  • the polymer has a nitrogen-containing functional group, it is possible to improve the performance such as the balance between the low hysteresis loss property and the wet skid resistance required for the tire composition.
  • the change in oxidation start temperature ( ⁇ T) before and after applying a heat load shows a specific value and the conjugated diene polymer is modified
  • the conjugated diene weight is also applied in the kneading step with a filler such as silica. The coalescence tends to maintain the desired structure, and the composition using the conjugated diene polymer tends to exert the desired effect.
  • the modification rate of the conjugated diene polymer of the present embodiment is more preferably 65% by mass or more, further preferably 70% by mass or more, still more preferably 75% by mass or more, still more preferably 80% by mass or more, particularly preferably. Is 82% by mass or more.
  • the modification rate is 60% by mass or more, the processability in the vulcanized product tends to be excellent, and the wear resistance and the low hysteresis loss performance in the vulcanized product tend to be excellent.
  • the modification rate can be measured by chromatography capable of separating the functional group-containing modified component and the non-modified component.
  • chromatography capable of separating the functional group-containing modified component and the non-modified component.
  • a column for gel permeation chromatography using a polar substance such as silica that adsorbs a specific functional group as a filler is used, and the internal standard of the non-adsorbed component is quantified by comparison.
  • the method can be mentioned.
  • the modification rate is the adsorption of the sample solution containing the sample and low molecular weight internal standard polystyrene to the silica column from the difference between the chromatogram measured on the polystyrene gel column and the chromatogram measured on the silica column. Obtained by measuring the amount.
  • the denaturation rate can be measured by the method described in Examples.
  • the modification rate can be controlled by adjusting the addition amount of the modifier and the reaction method, whereby the modification rate can be controlled to 60% by mass or more.
  • a method of polymerizing using an organic lithium compound having at least one nitrogen atom in the molecule described later as a polymerization initiator a method of copolymerizing a monomer having at least one nitrogen atom in the molecule, which will be described later.
  • the above modification rate can be obtained by combining methods using a modifier having a structural formula and controlling the polymerization conditions.
  • the conjugated diene-based polymer of the present embodiment is a conjugated diene-based polymer having a star-shaped polymer structure having three or more branches from the viewpoint of workability and abrasion resistance balance, and has at least one star-shaped polymer structure.
  • the branched chain of the above has a portion derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group, and a portion derived from a vinyl-based monomer containing the alkoxysilyl group or a halosilyl group further comprises a main chain. It is preferably a conjugated diene polymer having a branched structure.
  • star-shaped polymer structure refers to a structure in which a plurality of polymer chains (arms) are bonded from one central branch point. Further, one central branch point referred to here has a substituent containing a nitrogen atom.
  • the "main chain branched structure” referred to in the present specification means that a branched point is formed at a portion where the polymer chain is derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group, and the polymer chain is further formed from the branched point. A structure in which the (arm) is extended.
  • the conjugated diene polymer of the present embodiment is preferably branched with a main chain branched structure composed of a moiety derived from a vinyl monomer containing an alkoxysilyl group or a halosilyl group.
  • the points are 4 branch points or more, and the branched structure derived from the star-shaped polymer structure formed by the modifier in the modification step is preferably 3 branches or more, more preferably 4 branches or more, and 8 branches. The above is more preferable.
  • the number of branches Bn increases in both the case of modification by the coupling agent having a star-shaped structure and the case of introducing the branching agent into the polymer, but the entire polymer chain is branched by the coupling agent.
  • the number of branches Bn can be controlled by selecting the coupling agent, selecting the type of the branching agent, and setting the amount, but the number of branches Bn can be controlled by considering the contribution rate. It tends to be easy.
  • the main chain branch structure is a structure having a branch point in a portion derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group, and the branch point is two or more branch points. It is preferably 3 branch points or more, and more preferably 4 branch points or more. Further, the branching point in the main chain branch structure preferably has at least two or more polymer chains, more preferably has three or more polymer chains that are not the main chain, and more preferably. It has four or more polymer chains that are not the main chain.
  • the conjugated diene polymer of the present embodiment has a star-shaped polymer structure from the viewpoint that it is easy to form a structure in which aromatic vinyl compound monomer units are unevenly distributed on the outside.
  • the number of branches derived from the star-shaped polymer structure is preferably 3 or more, more preferably 4 or more, further preferably 6 or more, and even more preferably 8 or more. ..
  • the conjugated diene polymer of the present embodiment is a conjugated diene polymer having three or more branched star-shaped polymer structures, and an alkoxysilyl group or a halosilyl group is formed in the branched chain of at least one star-shaped polymer structure.
  • a modified conjugated diene-based polymerization having a portion derived from a vinyl-based monomer containing the above and having a further main chain branched structure in the portion derived from the vinyl-based monomer containing an alkoxysilyl group or a halosilyl group.
  • the "star-shaped polymer structure” can be formed by adjusting the number of functional groups of the modifier and the amount of the modifier added, and the “main chain branched structure” is the number of functional groups of the branching agent. It can be controlled by adjusting the amount of the branching agent added and the timing of the addition of the branching agent.
  • an organic lithium-based compound is used as a polymerization initiator.
  • the main chain is preferably branched from the viewpoint that the above-mentioned aromatic vinyl compound monomer unit can easily form a structure unevenly distributed on the outside. This is because the aromatic vinyl compound monomer unit is unevenly distributed on the terminal side of the polymer after the main chain is branched, so that it becomes easy to design the conjugated diene-based polymer to further enhance the heat resistance.
  • the means for forming the branch is not particularly limited, but from the above viewpoint, the conjugated diene polymer of the present embodiment is a vinyl-based polymer containing an alkoxysilyl group or a halosilyl group in at least one branched chain having a star-shaped structure.
  • a vinyl-based moiety having a part derived from a polymer and having a further main chain branched structure in a portion derived from a vinyl-based monomer containing the alkoxysilyl group or a halosilyl group, and containing the alkoxysilyl group or a halosilyl group.
  • the part derived from the monomer is a monomer unit based on the compound represented by the following formula (1) or (2), and is simply based on the compound represented by the following formula (1) or (2). It is preferable that the compound has a branch point of the polymer chain depending on the polymer unit. Further, it is preferable that at least one end of the conjugated diene polymer is modified with a nitrogen atom-containing group.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 1 to R 3 are independent of each other.
  • X 1 represents an independent halogen atom.
  • m indicates an integer of 0 to 2
  • n indicates an integer of 0 to 3
  • l indicates an integer of 0 to 3.
  • R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and even if a part thereof has a branched structure. Good. When there are a plurality of them, R 2 to R 5 are independent of each other.
  • X 2 ⁇ X 3 represent independent halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • M + n + l indicates 3.
  • a indicates an integer of 0 to 2
  • b indicates an integer of 0 to 3
  • c indicates an integer of 0 to 3.
  • M + n + l) represents an integer of 3.
  • Branching agent In the conjugated diene polymer of the present embodiment, when constructing the main chain branching structure, it is preferable to use a branching agent represented by the following formula (1) or formula (2) as the branching agent.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 1 to R 3 are independent of each other.
  • X 1 represents an independent halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and even if a part thereof has a branched structure. Good. When there are a plurality of them, R 2 to R 5 are independent of each other.
  • X 2 ⁇ X 3 represent independent halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • M + n + l indicates 3.
  • a indicates an integer of 0 to 2
  • b indicates an integer of 0 to 3
  • c indicates an integer of 0 to 3.
  • M + n + l) indicates 3.
  • the branching agent used when constructing the main chain branching structure of the conjugated diene polymer is the formula (1) from the viewpoint of continuity of polymerization, modification rate and improvement of branching degree.
  • the branching agent used when constructing the main chain branching structure of the conjugated diene polymer is the above formula (1) from the viewpoint of continuity of polymerization, modification rate and improvement of branching degree.
  • the branching agent represented by the formula (1) is not limited to the following, but for example, Trimethoxy (4-vinylphenyl) silane, triethoxy (4-vinylphenyl) silane, tripropoxy (4-vinylphenyl) silane, tributoxy (4-vinylphenyl) silane, triisopropoxy (4-vinylphenyl) silane, trimethoxy ( 3-Vinylphenyl) silane, triethoxy (3-vinylphenyl) silane, tripropoxy (3-vinylphenyl) silane, tributoxy (3-vinylphenyl) silane, triisopropoxy (3-vinylphenyl) silane, trimethoxy (2-) Vinylphenyl) silane, triethoxy (2-vinylphenyl) silane, tripropoxy (2-vinylphenyl) silane, tributoxy (2-vinylphenyl) silane, triisopropoxy (2-vinylphen
  • the branching agent represented by the formula (2) is not limited to the following, but for example, 1,1-bis (4-trimethoxysilylphenyl) ethylene, 1,1-bis (4-triethoxysilylphenyl) ethylene, 1,1-bis (4-tripropoxycysilylphenyl) ethylene, 1,1- Bis (4-tripentoxysilylphenyl) ethylene, 1,1-bis (4-triisopropoxysilylphenyl) ethylene, 1,1-bis (3-trimethoxysilylphenyl) ethylene, 1,1-bis (3) -Triethoxysilylphenyl) ethylene, 1,1-bis (3-tripropoxysilylphenyl) ethylene, 1,1-bis (3-tripentoxysilylphenyl) ethylene, 1,1-bis (3-triiso) Propoxysilylphenyl) ethylene, 1,1-bis (2-trimethoxysilylphenyl) ethylene, 1,1-bis (2-triethoxysily
  • 1,1-bis (4-trimethoxysilylphenyl) ethylene 1,1-bis (4-triethoxysilylphenyl) ethylene, 1,1-bis (4-tripropoxycysilylphenyl) ethylene , 1,1-bis (4-tripentoxysilylphenyl) ethylene, 1,1-bis (4-triisopropoxysilylphenyl) ethylene is preferable, 1,1-bis (4-trimethoxysilylphenyl) ethylene, Is more preferable.
  • Method for producing conjugated diene polymer In the method for producing a conjugated diene polymer of the present embodiment, at least the conjugated diene compound is polymerized in the presence of an organic lithium-based compound, and at least one of the various branching agents described above is used to form a main chain branched structure. It has a polymerization / branching step of obtaining a conjugated diene-based polymer having the above.
  • Preferred forms include a step of polymerizing a conjugated diene compound and an aromatic vinyl compound in the presence of an organic lithium-based compound to obtain a copolymer, and a vinyl-based simple polymer containing an alkoxysilyl group or a halosilyl group in the copolymer.
  • the conjugated diene polymer constituting the conjugated diene polymer is a homopolymer of a single conjugated diene compound, a polymer of different kinds of conjugated diene compounds, that is, a copolymer, a conjugated diene compound and an aromatic vinyl compound. It may be any of the copolymers.
  • an organic lithium-based compound for example, an organic monolithium compound is used as a polymerization initiator, at least the conjugated diene compound is polymerized, and a branching agent is added.
  • a branching agent is added.
  • the polymerization step it is preferable to carry out the polymerization by a growth reaction by a living anionic polymerization reaction, whereby a conjugated diene-based polymer having an active terminal can be obtained.
  • the main chain branching can be appropriately controlled even in the branching step using a branching agent, and by continuing the polymerization on the active terminal after the main chain branching, a modified diene system having a high denaturation rate. There is a tendency to obtain a polymer.
  • the polymerization initiator it is preferable to use an organic lithium-based compound and at least an organic monolithium compound.
  • the organic monolithium compound is not limited to the following, and examples thereof include a low molecular weight compound organic monolithium compound and a solubilized oligomer organic monolithium compound.
  • examples of the organic monolithium compound include a compound having a carbon-lithium bond, a compound having a nitrogen-lithium bond, and a compound having a tin-lithium bond in the bonding mode of the organic group and the lithium thereof.
  • the amount of the organic monolithium compound used as the polymerization initiator is preferably determined by the molecular weight of the target conjugated diene polymer.
  • the amount of a monomer such as a conjugated diene compound used relative to the amount of the polymerization initiator used is related to the degree of polymerization of the targeted conjugated diene polymer. That is, it tends to be related to the number average molecular weight and / or the weight average molecular weight. Therefore, in order to increase the molecular weight of the conjugated diene polymer, it is preferable to adjust in the direction of decreasing the polymerization initiator, and in order to decrease the molecular weight, it is preferable to adjust in the direction of increasing the amount of the polymerization initiator.
  • the organic monolithium compound is preferably an alkyllithium compound having a substituted amino group or a dialkylaminolithium from the viewpoint that it is used in one method of introducing a nitrogen atom into a conjugated diene-based polymer.
  • a conjugated diene-based polymer having a nitrogen atom composed of an amino group at the polymerization initiation terminal can be obtained.
  • the substituted amino group is an amino group having no active hydrogen or having a structure in which active hydrogen is protected.
  • the alkyllithium compounds having an amino group without active hydrogen are not limited to, for example, 3-dimethylaminopropyllithium, 3-diethylaminopropyllithium, 4- (methylpropylamino) butyllithium, and 4 -Hexamethylene iminobutyllithium can be mentioned.
  • the alkyllithium compound having an amino group having a structure in which active hydrogen is protected is not limited to the following, and examples thereof include 3-bistrimethylsilylaminopropyllithium and 4-trimethylsilylmethylaminobutyllithium.
  • the dialkylaminolithium is not limited to the following, but is not limited to, for example, lithium dimethylamide, lithium diethylamide, lithium dipropylamide, lithium dibutylamide, lithiumdi-n-hexylamide, lithium diheptylamide, lithium diisopropylamide, and lithium dioctylamide.
  • organic monolithium compounds having a substituted amino group were solubilized in normal hexane and cyclohexane by reacting a small amount of polymerizable monomers such as 1,3-butadiene, isoprene, and styrene. It can also be used as an organic monolithium compound of an oligomer.
  • the organic monolithium compound is preferably an alkyllithium compound from the viewpoint of easy industrial availability and easy control of the polymerization reaction.
  • a conjugated diene-based polymer having an alkyl group at the polymerization initiation terminal can be obtained.
  • the alkyllithium compound include, but are not limited to, n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium, benzyllithium, phenyllithium, and stillbenlithium.
  • n-butyllithium and sec-butyllithium are preferable from the viewpoint of easy industrial availability and easy control of the polymerization reaction.
  • organic monolithium compounds may be used alone or in combination of two or more. In addition, it may be used in combination with other organometallic compounds.
  • the other organometallic compound include alkaline earth metal compounds, other organometallic compounds, and other organometallic compounds.
  • the alkaline earth metal compound is not limited to the following, and examples thereof include an organic magnesium compound, an organic calcium compound, and an organic strontium compound. Also included are compounds of alkaline earth metals alcoxides, sulfonates, carbonates, and amides. Examples of the organic magnesium compound include dibutylmagnesium and ethylbutylmagnesium. Examples of other organometallic compounds include organoaluminum compounds.
  • the polymerization reaction mode is not limited to the following, and examples thereof include a batch type (also referred to as “batch type”) and a continuous type polymerization reaction mode.
  • a batch type also referred to as “batch type”
  • a continuous type polymerization reaction mode In the continuous system, one or two or more connected reactors can be used.
  • the continuous reactor for example, a tank type or tube type reactor with a stirrer is used.
  • the monomer, the inert solvent, and the polymerization initiator are continuously fed to the reactor to obtain a polymer solution containing the polymer in the reactor, and the polymer solution is continuously weighted. The coalesced solution is drained.
  • a tank type reactor with a stirrer is used as the batch reactor.
  • the monomer, inert solvent, and polymerization initiator are fed, and if necessary, the monomer is added continuously or intermittently during the polymerization to bring the polymer in the reactor.
  • a polymer solution containing the mixture is obtained, and the polymer solution is discharged after the completion of the polymerization.
  • the polymer in order to obtain a conjugated diene polymer having an active terminal at a high ratio, the polymer must be continuously discharged and subjected to the next reaction in a short time. A possible, continuous system is preferred.
  • the polymerization step of the conjugated diene polymer is preferably polymerized in an inert solvent.
  • the inert solvent include hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons.
  • Specific hydrocarbon-based solvents are not limited to the following, but are, for example, aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; and alicyclic compounds such as cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane.
  • Hydrocarbons examples include hydrocarbons composed of aromatic hydrocarbons such as benzene, toluene and xylene and mixtures thereof.
  • a conjugated diene polymer having a high concentration of active terminals tends to be obtained, and a conjugated diene polymer having a high modification rate tends to be obtained. It is preferable because a diene polymer tends to be obtained.
  • a polar compound may be added. This allows the aromatic vinyl compound to be randomly copolymerized with the conjugated diene compound.
  • the polar compound tends to be used as a vinylizing agent for controlling the microstructure of the conjugated diene portion. It also tends to be effective in promoting the polymerization reaction.
  • the polar compound is not limited to the following, but is not limited to, for example, tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, 2,2-bis (2-oxolanyl).
  • Ethers such as propane; tertiary amine compounds such as tetramethylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; potassium-tert-amylate, potassium-tert-butyrate, sodium-tert-butyrate, Alkali metal alkoxide compounds such as sodium amylate; phosphine compounds such as triphenylphosphine can be used. These polar compounds may be used alone or in combination of two or more.
  • the amount of the polar compound used is not particularly limited and can be selected depending on the intended purpose and the like, but is preferably 0.01 mol or more and 100 mol or less with respect to 1 mol of the polymerization initiator.
  • a polar compound (vinyl agent) can be used in an appropriate amount as a regulator of the microstructure of the conjugated diene portion of the conjugated diene polymer, depending on the desired amount of vinyl bond.
  • Many polar compounds have an effective randomizing effect in the copolymerization of the conjugated diene compound and the aromatic vinyl compound at the same time, and tend to be used as an agent for adjusting the distribution of the aromatic vinyl compound and the amount of styrene block. It is in.
  • the total amount of styrene and a part of 1,3-butadiene are copolymerized.
  • a method of initiating the polymerization reaction and intermittently adding the remaining 1,3-butadiene during the copolymerization reaction may be used.
  • the amount of the remaining 1,3-butadiene added separately is not particularly limited. However, from the viewpoint of improving the modification rate, it is preferably 1% or more of the total amount of 1,3-butadiene.
  • the amount of 1,3-butadiene is preferably less than 20%, more preferably less than 15%, and even more preferably less than 10%.
  • the polymerization temperature in the polymerization step is preferably a temperature at which living anionic polymerization proceeds, more preferably 0 ° C. or higher, and even more preferably 120 ° C. or lower, from the viewpoint of productivity. Within such a range, the amount of reaction of the denaturant to the active terminal after the completion of polymerization tends to be sufficiently secured. Even more preferably, it is 50 ° C. or higher and 100 ° C. or lower.
  • the amount of the branching agent added in the branching step of forming the main chain branching structure is not particularly limited and can be selected depending on the purpose and the like. It is preferably 0.03 mol or more and 0.5 mol or less, more preferably 0.05 mol or more and 0.4 mol or less, and 0.01 mol or more and 0.25 mol or more, with respect to 1 mol of the polymerization initiator. It is even better that it is less than a molar.
  • An appropriate amount of the branching agent can be used according to the number of branching points of the main chain branching structure of the conjugated diene portion of the desired conjugated diene polymer.
  • the timing of adding the branching agent is not particularly limited and can be selected according to the purpose and the like, but from the viewpoint of improving the absolute molecular weight and the modification rate of the conjugated diene polymer, the polymerization is started.
  • a desired raw material may be additionally added to continue the polymerization step after branching, or the above description may be repeated.
  • the monomer to be added is not particularly limited, but is preferably 5% or more of the total amount of the conjugated diene-based monomer used in the polymerization step, for example, the total amount of butadiene, from the viewpoint of improving the modification rate of the conjugated diene-based polymer. It is more preferably 10% or more, further preferably 15% or more, even more preferably 20% or more, and even more preferably 25% or more.
  • the conjugated diene polymer obtained in the polymerization / branching step before the modification reaction step has a Mooney viscosity of 10 or more and 150 or less measured at 110 ° C. Is preferable, more preferably 15 or more and 140 or less, and further preferably 20 or more and 130 or less. Within this range, the conjugated diene polymer of the present embodiment tends to be excellent in processability and abrasion resistance.
  • the amount of the bonded conjugated diene in the conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 40% by mass or more and 100% by mass or less, and more preferably 55% by mass or more and 80% by mass or less. ..
  • the amount of bound aromatic vinyl in the conjugated diene polymer of the present embodiment is not particularly limited, but is preferably 1% by mass or more, more preferably 10% by mass or more, as described above.
  • the upper limit is not particularly limited, but as described above, it is preferably less than 60% by mass.
  • the amount of bound aromatic vinyl can be measured by the ultraviolet absorption of the phenyl group, and the amount of bound conjugated diene can also be determined from this. Specifically, the measurement is performed according to the method described in Examples described later.
  • the amount of vinyl bond in the conjugated diene bonding unit is not particularly limited, but is preferably 10 mol% or more and 75 mol% or less, and 20 mol% or more and 65 mol% or less. More preferably.
  • the vinyl bond amount is in the above range, the balance between low hysteresis loss property and wet skid resistance, wear resistance, and fracture strength in the vulcanized product tend to be more excellent.
  • the modified diene polymer is a copolymer of butadiene and styrene, it is contained in the butadiene bond unit by the Hampton method (RR Hampton, Analytical Chemistry, 21,923 (1949)).
  • the vinyl bond amount (1,2-bond amount) can be determined. Specifically, it can be measured by the method described in Examples described later.
  • the amount of each bond in the conjugated diene polymer of the present embodiment is within the above range, and the glass transition temperature of the conjugated diene polymer is ⁇ 45 ° C. or higher and ⁇ 15 ° C. or higher.
  • the glass transition temperature according to ISO 22768: 2006, the DSC curve is recorded while raising the temperature in a predetermined temperature range, and the peak top (Inflection point) of the DSC differential curve is defined as the glass transition temperature. Specifically, it can be measured by the method described in Examples described later.
  • the conjugated diene-based polymer of the present embodiment is a conjugated diene-aromatic vinyl copolymer
  • the aromatic vinyl unit is present alone in a large proportion from the viewpoint of improving fuel saving performance.
  • the copolymer is a butadiene-styrene copolymer
  • the copolymer is decomposed by a method by ozone decomposition known as the method of Tanaka et al. (Polymer, 22, 1721 (1981)).
  • the isolated styrene amount was 40% by mass or more and the chained styrene structure having 8 or more styrene chains was 5.0% by mass or less with respect to the total bound styrene amount. Is preferable. In this case, the obtained vulcanized rubber tends to be particularly excellent in low hysteresis loss property.
  • the conjugated diene-based polymer obtained through the above-mentioned polymerization / branching step is subjected to a modification step using a modifier having a nitrogen atom-containing group. Is preferable.
  • the modification step at least one end of the active terminal of the conjugated diene polymer is modified with a nitrogen atom-containing group to obtain a modified conjugated diene polymer.
  • the modifier is not limited to the following, but is, for example, tris (3-trimethoxysilylpropyl) amine, tris (3-triethoxysilylpropyl) amine, tris (3-tripropoxysilylpropyl) amine, bis ( 3-Trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] amine, tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine, tris (3-Trimethoxysilylpropyl)-[3- (1-methoxy-2-trimethylsilyl-1-sila-2-azacyclopentane) propyl] -1,3-propanediamine, tris (3-trimethoxysilylpropyl) -[3- (1-methoxy-2-methyl-1-sila-2-azacyclopentane) propyl] -1,3-prop
  • the denaturing agent used in the denaturing step preferably contains a compound represented by any of the following general formulas (A) to (C).
  • R 1 to R 4 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 5 has 1 to 10 carbon atoms. It represents an alkylene group, and R 6 represents an alkylene group having 1 to 20 carbon atoms.
  • m represents an integer of 1 or 2
  • n represents an integer of 2 or 3
  • (m + n) represents an integer of 4 or more.
  • R 1 to R 6 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 7 to R 9 independently represent each other.
  • m, n, and l each independently indicate an integer of 1 to 3, and (m + n + l) indicates an integer of 4 or more. When there are a plurality of them, R 1 to R 6 are independent of each other.
  • R 12 to R 14 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms
  • R 15 to R 18 and R 20 each independently represent 1 carbon number
  • R 19 and R 22 each independently represent an alkylene group having 1 to 20 carbon atoms
  • R 21 represents an alkyl group having 1 to 20 carbon atoms or a trialkylsilyl group
  • m represents an integer of 1 to 3
  • p represents 1 or 2.
  • R 12 to R 22 , m, and p when a plurality of each exist are independent of each other, and may be the same or different.
  • A has a hydrocarbon group having 1 to 20 carbon atoms or at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and has no active hydrogen. Represents an organic group.
  • the modifier represented by the formula (A) is not limited to the following, and is, for example, 2,2-dimethoxy-1- (3-trimethoxysilylpropyl) -1-aza-2-silacyclopentane. , 2,2-Diethoxy-1- (3-triethoxysilylpropyl) -1-aza-2-silacyclopentane, 2,2-dimethoxy-1- (4-trimethoxysilylbutyl) -1-aza-2 -Silacyclohexane, 2,2-dimethoxy-1- (5-trimethoxysilylpentyl) -1-aza-2-silacyclopentane, 2,2-dimethoxy-1- (3-dimethoxymethylsilylpropyl) -1- Aza-2-silacyclopentane, 2,2-diethoxy-1- (3-diethoxyethylsilylpropyl) -1-aza-2-silacyclopentane, 2-methoxy-2-methyl-1
  • those having m of 2 and n of 3 are preferable from the viewpoint of reactivity and interaction between the functional group of the modifier and the inorganic filler such as silica, and from the viewpoint of processability.
  • 2,2-dimethoxy-1- (3-trimethoxysilylpropyl) -1-aza-2-silacyclopentane, and 2,2-diethoxy-1- (3-triethoxysilylpropyl)- 1-aza-2-silacyclopentane is preferred.
  • the reaction temperature, reaction time, etc. when reacting the denaturant represented by the formula (A) with the polymerization active terminal are not particularly limited, but the reaction is carried out at 0 ° C. or higher and 120 ° C. or lower for 30 seconds or longer. Is preferable.
  • the total number of moles of the alkoxy groups bonded to the silyl group in the compound of the modifier represented by the formula (A) is 0, which is the number of moles of the alkali metal compound and / or the alkaline earth metal compound of the polymerization initiator added.
  • the range is preferably 6 times or more and 3.0 times or less, more preferably 0.8 times or more and 2.5 times or less, and 0.8 times or more and 2.0 times or less. Is more preferable.
  • the obtained modified conjugated diene polymer is preferably 0.6 times or more, and the polymer ends are coupled to each other in order to improve processability.
  • it is preferably 3.0 times or less from the viewpoint of denaturant cost.
  • the number of moles of the more specific polymerization initiator is preferably 3.0 times or more, more preferably 4.0 times or more, based on the number of moles of the modifier.
  • the modifying agent represented by the formula (B) is not limited to the following, and for example, tris (3-trimethoxysilylpropyl) amine, tris (3-methyldimethoxysilylpropyl) amine, and tris (3-).
  • Triethoxysilylpropyl) amine, tris (3-methyldiethoxysilylpropyl) amine, tris (trimethoxysilylmethyl) amine, tris (2-trimethoxysilylethyl) amine, and tris (4-trimethoxysilylbutyl) amine Can be mentioned.
  • n, m, and l are all 3 from the viewpoint of reactivity and interaction between the functional group of the modifier and the inorganic filler such as silica, and from the viewpoint of processability. preferable.
  • Preferred specific examples include tris (3-trimethoxysilylpropyl) amine and tris (3-triethoxysilylpropyl) amine.
  • the reaction temperature, reaction time, etc. when the denaturant represented by the formula (B) is reacted with the polymerization active terminal are not particularly limited, but the reaction is carried out at 0 ° C. or higher and 120 ° C. or lower for 30 seconds or longer. Is preferable.
  • the total number of moles of alkoxy groups bonded to the silyl group in the compound of the modifier represented by the formula (B) is 0.6 times or more and 3.0 times the number of moles of lithium constituting the above-mentioned polymerization initiator.
  • the range is preferably as follows, more preferably 0.8 times or more and 2.5 times or less, and further preferably 0.8 times or more and 2.0 times or less.
  • the modified conjugated diene polymer From the viewpoint of obtaining a sufficient modification rate, molecular weight and branched structure in the modified conjugated diene polymer, it is preferably 0.6 times or more, and the polymer ends are coupled to each other for branching in order to improve processability. In addition to obtaining a state polymer component, it is preferably 3.0 times or less from the viewpoint of denaturant cost.
  • the number of moles of the more specific polymerization initiator is preferably 4.0 times or more, more preferably 5.0 times or more, the number of moles of the modifier.
  • A is preferably represented by any of the following general formulas (II) to (V).
  • B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. B 1 in the case of a plurality of carbon atoms is independent of each other. There.
  • B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • B 3 represents an alkyl group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10 carbon atoms. Shown. B 2 and B 3 are independent when there are a plurality of them.
  • B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. B 4 in the case of a plurality of carbon atoms is independent of each other. There.
  • B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. B 5 in the case of a plurality of carbon atoms is independent of each other. There.
  • the modifier when A is represented by the formula (II) is not limited to the following, but for example, tris (3-trimethoxysilylpropyl) amine and bis (3-tri).
  • the modifier when A is represented by the formula (III) is not limited to the following, but for example, tris (3-trimethoxysilylpropyl) -methyl-1,3-.
  • Propyldiamine bis (2-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -methyl-1,3-propanediamine, bis [3-( 2,2-Dimethoxy-1-aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) -methyl-1,3-propanediamine, tris (3-triethoxysilylpropyl) -methyl-1 , 3-Propyldiamine, bis (2-triethoxysilylpropyl)-[3- (2,2-diethoxy-1-aza-2-silacyclopentane) propyl] -methyl-1,3-propanediamine, bis
  • the modifier when A is represented by the formula (IV) is not limited to the following, but for example, tetrakis [3- (2,2-dimethoxy-1-aza-2). -Silacyclopentane) propyl] silane, tris [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) silane, tris [3- (2,2) 2-Dimethoxy-1-aza-2-silacyclopentane) propyl]-[3- (1-methoxy-2-trimethylsilyl-1-sila-2-azacyclopentane) propyl] silane, bis (3-trimethoxysilyl) Propyl) -bis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] silane, (3-trimethoxysilyl)-[3- (1-methoxy-2-[thoxy-2-s
  • the modifier when A is represented by the formula (V) is not limited to the following, but for example, 3-tris [2- (2,2-dimethoxy-1-aza). -2-Silacyclopentane) ethoxy] Cyril-1- (2,2-dimethoxy-1-aza-2-silacyclopentane) Propane, and 3-Tris [2- (2,2-dimethoxy-1-aza-) 2-Silacyclopentane) ethoxy] silyl-1-trimethoxysilylpropane can be mentioned.
  • A is preferably represented by the formula (II) or the formula (III), and k represents 0.
  • Such modifiers tend to be easily available, and tend to have better wear resistance and low hysteresis loss performance when the conjugated diene polymer of the present embodiment is used as a vulcanized product. It is in.
  • Such modifiers are not limited to the following, but are, for example, bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl].
  • A is more preferably represented by the formula (II) or the formula (III), k represents 0, and in the formula (II) or the formula (III), a is 2 to 10. Indicates an integer of.
  • Such modifiers are not limited to the following, but are, for example, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tetrakis.
  • the amount of the compound represented by the formula (C) added as the modifier is a conjugated diene system so that the number of moles of the conjugated diene polymer to the number of moles of the modifier is a desired stoichiometric ratio.
  • the polymer can be adjusted to react with the modifier, which tends to achieve the desired star-shaped hyperbranched structure.
  • the specific number of moles of the conjugated diene polymer is preferably 5.0 times or more, more preferably 6.0 times or more, based on the number of moles of the modifier.
  • the number of functional groups ((m-1) ⁇ i + p ⁇ j + k) of the modifier is preferably an integer of 5 to 10, and more preferably an integer of 6 to 10.
  • the ratio of the modifying group-containing polymer in the conjugated diene polymer is represented by the modification rate.
  • the modification rate is preferably 60% by mass or more, more preferably 65% by mass or more, further preferably 70% by mass or more, still more preferably 75% by mass or more, and more. It is more preferably 80% by mass or more, and particularly preferably 82% by mass or more.
  • the modification rate is 60% by mass or more, the processability in the vulcanized product tends to be excellent, and the wear resistance and the low hysteresis loss performance in the vulcanized product tend to be excellent.
  • a condensation reaction step of carrying out a condensation reaction in the presence of a condensation accelerator may be performed after the modification step or before the modification step.
  • the conjugated diene portion may be hydrogenated.
  • the method for hydrogenating the conjugated diene portion of the conjugated diene-based polymer is not particularly limited, and a known method can be used.
  • a suitable hydrogenation method there is a method of hydrogenating by blowing gaseous hydrogen into the polymer solution in the presence of a catalyst.
  • a catalyst for example, a heterogeneous catalyst such as a catalyst in which a noble metal was supported on a porous inorganic substance; a catalyst in which salts such as nickel and cobalt were solubilized and reacted with organic aluminum and the like, and metallocene such as titanosen was used.
  • the titanocene catalyst is preferable from the viewpoint that mild hydrogenation conditions can be selected.
  • hydrogenation of the aromatic group can be carried out by using a supported catalyst of a noble metal.
  • the hydrogenation catalyst is not limited to the following, but for example, (1) a support type heterogeneous hydrogenation in which a metal such as Ni, Pt, Pd, Ru is supported on carbon, silica, alumina, Keisou soil or the like.
  • a catalyst a so-called Cheegler-type hydrogenated catalyst using an organic acid salt such as Ni, Co, Fe, Cr or a transition metal salt such as an acetylacetone salt and a reducing agent such as organic aluminum, (3) Ti, Ru, Examples thereof include so-called organometallic complexes such as organometallic compounds such as Rh and Zr.
  • examples of the hydrogenation catalyst include, for example, Tokusho 42-8704, Tokusho 43-6636, Tokusho 63-4841, Tokuho 1-377970, Tokuhei 1-53851, Also mentioned are known hydrogenation catalysts described in Japanese Patent Application Laid-Open No. 2-9041 and Japanese Patent Application Laid-Open No. 8-109219.
  • Preferred hydrogenation catalysts include reaction mixtures of titanocene compounds and reducing organometallic compounds.
  • a deactivating agent, a neutralizing agent, or the like may be added to the polymer solution after the reaction step, if necessary.
  • the inactivating agent is not limited to the following, and examples thereof include water; alcohols such as methanol, ethanol, and isopropanol.
  • the neutralizing agent is not limited to the following, but is, for example, a carboxylic acid such as stearic acid, oleic acid, and versatic acid (a carboxylic acid mixture having 9 to 11 carbon atoms and mainly 10 branches).
  • Acid An aqueous solution of an inorganic acid, carbon dioxide, and the like.
  • a stabilizer for rubber from the viewpoint of preventing gel formation after polymerization and improving the stability during processing.
  • the stabilizer for rubber is not limited to the following, and known ones can be used.
  • BHT 2,6-di-tert-butyl-4-hydroxytoluene
  • n-octadecyl-3 Antioxidants such as-(4'-hydroxy-3', 5'-di-tert-butylphenol) propinate, 2-methyl-4,6-bis [(octylthio) methyl] phenol are preferred.
  • the oil-extended conjugated diene copolymer of the present embodiment contains the above-mentioned conjugated diene-based polymer of the present embodiment and a stretched oil. Thereby, the processability of the conjugated diene polymer can be further improved.
  • the method of adding the spreading oil to the conjugated diene polymer is not limited to the following, but the spreading oil is added to the conjugated diene polymer solution and mixed to obtain an oil spreading polymer solution as a desolvent. The method is preferable. Examples of the spreading oil include aroma oil, naphthenic oil, paraffin oil and the like.
  • an aroma substitute oil having a polycyclic aromatic (PCA) component of 3% by mass or less according to the IP346 method is preferable from the viewpoint of environmental safety, prevention of oil bleeding, and wet grip characteristics.
  • the aroma substitute oil include TDAE (Treatd Distillate Aromatic Extracts) shown in Kautschuk Kunststoffe 52 (12) 799 (1999), MES (Mild Extraction Extract), and RA.
  • the amount of the spreading oil added is 1 to 60 parts by mass, preferably 10 to 60 parts by mass, and more preferably 15 to 37.5 parts by mass with respect to 100 parts by mass of the conjugated diene polymer of the present embodiment.
  • solvent removal step As a method for obtaining the conjugated diene-based polymer of the present embodiment from the polymer solution, a known method can be used. As the method, for example, after separating the solvent by steam stripping or the like, the conjugated diene polymer is filtered off, and further dehydrated and dried to obtain the conjugated diene polymer, concentrated in a flushing tank. Further, there are a method of devolatile with a vent extruder or the like, and a method of directly devolatile with a drum dryer or the like.
  • the rubber composition of the present embodiment contains a rubber component and a filler of 5.0 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the rubber component. Further, from the viewpoint of improving fuel saving performance, workability, and wear resistance, the rubber component is the conjugated diene polymer of the present embodiment described above, or the present, with respect to the total amount (100% by mass) of the rubber component.
  • the oil-extended conjugated diene-based polymer of the embodiment is contained in an amount of 10% by mass or more.
  • the filler preferably contains a silica-based inorganic filler.
  • the rubber composition of the present embodiment tends to be more excellent in processability when it is made into a vulcanized product by dispersing a silica-based inorganic filler, and has low hysteresis loss and wetness when it is made into a vulcanized product. It tends to be better in balance with skid resistance, abrasion resistance and fracture strength. Even when the rubber composition of the present embodiment is used for automobile parts such as tires and anti-vibration rubbers and vulcanized rubber applications such as shoes, it is preferable to contain a silica-based inorganic filler.
  • a rubber-like polymer other than the conjugated diene-based polymer of the present embodiment (hereinafter, simply referred to as “rubber-like polymer”) is combined with the conjugated diene-based polymer of the present embodiment. May be contained.
  • a rubber-like polymer is not limited to the following, but is, for example, a conjugated diene polymer or a hydrogenated product thereof, a random copolymer of a conjugated diene compound and a vinyl aromatic compound, or a hydrogenated product thereof. Examples thereof include a block copolymer of a conjugated diene-based compound and a vinyl aromatic compound or a hydrogenated product thereof, a non-diene-based polymer, and natural rubber.
  • the rubbery polymer is not limited to the following, but for example, butadiene rubber or its hydrogen additive, isoprene rubber or its hydrogen additive, styrene-butadiene rubber or its hydrogen additive, styrene-butadiene block co-weight.
  • examples thereof include coalescence or a hydrogenated product thereof, a styrene-based elastomer such as a styrene-isoprene block copolymer or a hydrogenated product thereof, acrylonitrile-butadiene rubber or a hydrogenated product thereof.
  • the non-diene polymer is not limited to the following, and is, for example, an olefin-based polymer such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, and ethylene-octene rubber.
  • Elastomer, butyl rubber, brominated butyl rubber, acrylic rubber, fluororubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylic acid ester-conjugated diene copolymer rubber, urethane rubber, and polysulfide rubber Can be mentioned.
  • the natural rubber is not limited to the following, and examples thereof include smoked sheets RSS3 to 5, SMR, and epoxidized natural rubber.
  • the various rubber-like polymers described above may be modified rubbers to which functional groups having polarities such as hydroxyl groups and amino groups are added.
  • functional groups having polarities such as hydroxyl groups and amino groups are added.
  • butadiene rubber, isoprene rubber, styrene-butadiene rubber, natural rubber, and butyl rubber are preferably used.
  • the weight average molecular weight of the rubber-like polymer is preferably 2000 or more and 20000,000 or less, and more preferably 5000 or more and 1500,000 or less, from the viewpoint of the balance between performance and processing characteristics. Further, a low molecular weight rubber-like polymer, so-called liquid rubber, can also be used. These rubber-like polymers may be used alone or in combination of two or more.
  • the content ratio (mass ratio) of the conjugated diene polymer of the present embodiment to the rubbery polymer is (the present embodiment).
  • the conjugated diene polymer / rubbery polymer) is preferably 10/90 or more and 100/0 or less, more preferably 20/80 or more and 90/10 or less, and further preferably 50/50 or more and 80/20 or less. Therefore, the rubber component constituting the rubber composition preferably contains 10 parts by mass or more and 100 parts by mass or less of the conjugated diene-based polymer of the present embodiment with respect to the total amount (100 parts by mass) of the rubber component.
  • It preferably contains 20 parts by mass or more and 90 parts by mass or less, and more preferably 50 parts by mass or more and 80 parts by mass or less.
  • content ratio of (conjugated diene polymer / rubber-like polymer of the present embodiment) is within the above range, the balance between low hysteresis loss and wet skid resistance and abrasion resistance when vulcanized are obtained. It is excellent and has excellent breaking strength.
  • the filler contained in the rubber composition of the present embodiment is not limited to the following, and examples thereof include silica-based inorganic fillers, carbon black, metal oxides, and metal hydroxides. Among these, silica-based inorganic fillers are preferable. One type of filler may be used alone, or two or more types may be used in combination.
  • the content of the filler in the rubber composition of the present embodiment is 5.0 parts by mass or more and 150 parts by mass with respect to 100 parts by mass of the rubber component containing the conjugated diene polymer of the present embodiment, which is 20 parts by mass. It is preferably 3 parts or more and 100 parts by mass or less, and more preferably 30 parts by mass or more and 90 parts by mass or less.
  • the content of the filler is 5.0 parts by mass or more from the viewpoint of exhibiting the effect of adding the filler, the filler is sufficiently dispersed, and the processability and mechanical strength of the rubber composition are practically sufficient. From the viewpoint of this, it is 150 parts by mass or less.
  • the silica-based inorganic filler is not particularly limited, but may be a known, solid particles preferably comprise SiO 2 or Si 3 Al as a constituent unit, the main structural units of SiO 2 or Si 3 Al Solid particles contained as a component are more preferable.
  • the main component means a component contained in the silica-based inorganic filler in an amount of 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the silica-based inorganic filler is not limited to the following, and examples thereof include inorganic fibrous substances such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber. Further, a silica-based inorganic filler having a hydrophobic surface, a mixture of a silica-based inorganic filler and a non-silica-based inorganic filler can also be mentioned. Among these, silica and glass fiber are preferable, and silica is more preferable, from the viewpoint of strength, abrasion resistance and the like. Examples of silica include dry silica, wet silica, and synthetic silicate silica. Among these silicas, wet silica is preferable from the viewpoint of improving the fracture characteristics and excellent balance of wet skid resistance.
  • the nitrogen adsorption specific surface area required by the BET adsorption method of the silica-based inorganic filler shall be 100 m 2 / g or more and 300 m 2 / g or less. Is preferable, and it is more preferably 170 m 2 / g or more and 250 m 2 / g or less.
  • a silica-based inorganic filler having a relatively small specific surface area for example, a specific surface area of less than 200 m 2 / g
  • a relatively large specific surface area for example, a specific surface area of 200 m 2 / g or more
  • Silica-based inorganic filler Silica-based inorganic filler
  • the conjugated diene-based polymer of the present embodiment improves the dispersibility of silica, particularly. It is effective in improving wear resistance, and tends to be able to highly balance good fracture characteristics and low hysteresis loss.
  • the content of the silica-based inorganic filler in the rubber composition of the present embodiment is preferably 5.0 parts by mass or more and 150 parts by mass with respect to 100 parts by mass of the rubber component containing the conjugated diene-based polymer of the present embodiment. , 20 parts by mass or more and 100 parts by mass or less are more preferable.
  • the content of the silica-based inorganic filler is preferably 5.0 parts by mass or more from the viewpoint of exhibiting the effect of adding the silica-based inorganic filler, and the silica-based inorganic filler is sufficiently dispersed so that the rubber composition can be processed easily. From the viewpoint of making the mechanical strength practically sufficient, 150 parts by mass or less is preferable.
  • the carbon black is not limited to the following, and examples thereof include carbon blacks of each class such as SRF, FEF, HAF, ISAF, and SAF. Among these, carbon black having a nitrogen adsorption specific surface area of 50 m 2 / g or more and a dibutyl phthalate (DBP) oil absorption of 80 mL / 100 g or less is preferable.
  • the content of carbon black is preferably 0.5 parts by mass or more and 100 parts by mass or less, and 3.0 parts by mass or more and 100 parts by mass or less, with respect to 100 parts by mass of the rubber component containing the conjugated diene polymer of the present embodiment. Is more preferable, and 5.0 parts by mass or more and 50 parts by mass or less are further preferable.
  • the content of carbon black is preferably 0.5 parts by mass or more from the viewpoint of exhibiting the performance required for applications such as tires such as dry grip performance and conductivity, and 100 parts by mass from the viewpoint of dispersibility. The following is preferable.
  • the metal oxide refers to solid particles having the chemical formula MxOy (M represents a metal atom, and x and y each independently represent an integer of 1 to 6) as a main component of the constituent unit. ..
  • the metal oxide is not limited to the following, and examples thereof include alumina, titanium oxide, magnesium oxide, and zinc oxide.
  • Metal hydroxides include, but are not limited to, aluminum hydroxide, magnesium hydroxide, and zirconium hydride.
  • the rubber composition may include a silane coupling agent.
  • the silane coupling agent has a function of closely interacting with the rubber component and the inorganic filler, and has an affinity or binding group for each of the rubber component and the silica-based inorganic filler.
  • a compound having a sulfur-bonded moiety and an alkoxysilyl group or silanol group moiety in one molecule is preferable.
  • Examples of such compounds include bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis- [3- (triethoxysilyl) -propyl] -disulfide, and bis- [2- (triethoxysilyl) -propyl Cyril) -ethyl] -tetrasulfide can be mentioned.
  • the content of the silane coupling agent is preferably 0.1 part by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less, and 1.0 part by mass with respect to 100 parts by mass of the filler described above. It is more preferably parts by mass or more and 15 parts by mass or less.
  • the content of the silane coupling agent is in the above range, the addition effect of the silane coupling agent tends to be more remarkable.
  • the rubber composition of the present embodiment may contain a softening agent for rubber from the viewpoint of improving the processability thereof.
  • a softening agent for rubber mineral oil or a liquid or low molecular weight synthetic softener is suitable.
  • a mineral oil-based rubber softener called process oil or extender oil used to soften, increase volume, and improve processability of rubber is a mixture of aromatic rings, naphthen rings, and paraffin chains.
  • the paraffin chain having 50% or more of carbon atoms in the total carbon is called paraffin-based, and the paraffin ring having 30% or more and 45% or less of all carbon atoms is naphthen-based, and the total number of aromatic carbon atoms is. Those that account for more than 30% of carbon are called aromatics.
  • the conjugated diene-based polymer of the present embodiment is a copolymer of a conjugated diene compound and a vinyl aromatic compound
  • a softening agent for rubber to be used having an appropriate aromatic content is familiar with the copolymer. Is preferable because it tends to be good.
  • the content of the softening agent for rubber is preferably 0 parts by mass or more and 100 parts by mass or less, preferably 10 parts by mass or more and 90 parts by mass or less, with respect to 100 parts by mass of the rubber component containing the conjugated diene polymer of the present embodiment. More preferably, it is more preferably 30 parts by mass or more and 90 parts by mass or less.
  • the content of the softener for rubber is 100 parts by mass or less with respect to 100 parts by mass of the rubber component, bleed-out is suppressed and stickiness of the surface of the rubber composition of the present embodiment tends to be suppressed.
  • the rubber composition of the present embodiment such as a rubber component containing a conjugated diene polymer of the present embodiment, a silica-based inorganic filler, carbon black and other fillers, a silane coupling agent, an additive such as a softening agent for rubber, and the like.
  • the method for mixing the constituent materials of the product is not limited to the following, but is generally used, for example, an open roll, a rubbery mixer, a kneader, a single-screw screw extruder, a twin-screw screw extruder, a multi-screw screw extruder, or the like.
  • melt-kneading method using a simple mixer examples thereof include a melt-kneading method using a simple mixer and a method of dissolving and mixing each component and then heating and removing the solvent.
  • the melt-kneading method using a roll, a Banbury mixer, a kneader, or an extruder is preferable from the viewpoint of productivity and good kneading.
  • a method of kneading the constituent materials of the rubber composition of the present embodiment at one time or a method of mixing them in a plurality of times can be applied.
  • the rubber composition of the present embodiment may be a vulcanized composition that has been vulcanized with a vulcanizing agent.
  • a vulcanizing agent examples include, but are not limited to, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur and sulfur compounds.
  • Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, high molecular weight polysulfur compounds and the like.
  • the content of the vulcanizing agent is preferably 0.01 part by mass or more and 20 parts by mass or less, and 0.1 part by mass or more and 15 parts by mass with respect to 100 parts by mass of the rubber component containing the conjugated diene polymer of the present embodiment.
  • the vulcanization temperature is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 140 ° C. or higher and 180 ° C. or lower.
  • a vulcanization accelerator may be used if necessary.
  • Conventionally known materials can be used as the vulcanization accelerator, and the vulcanization accelerator is not limited to the following, but is, for example, sulfenamide-based, guanidine-based, thiuram-based, aldehyde-amine-based, aldehyde-ammonia-based, and thiazole-based. , Thiourea-based and dithiocarbamate-based vulcanization accelerators.
  • the vulcanization aid is not limited to the following, and examples thereof include zinc oxide and stearic acid.
  • the content of the vulcanization accelerator is preferably 0.01 part by mass or more and 20 parts by mass or less, and 0.1 part by mass or more and 15 parts by mass with respect to 100 parts by mass of the rubber component containing the conjugated diene polymer of the present embodiment. Less than a part is more preferable.
  • the rubber composition of the present embodiment includes other softeners, fillers, heat-resistant stabilizers, antistatic agents, weather-resistant stabilizers, anti-aging agents, other than those described above, as long as the object of the present embodiment is not impaired.
  • Various additives such as colorants and lubricants may be used.
  • As the other softener a known softener can be used.
  • Specific examples of other fillers include calcium carbonate, magnesium carbonate, aluminum sulfate, and barium sulfate.
  • Known materials can be used as the heat-resistant stabilizer, antistatic agent, weather-resistant stabilizer, anti-aging agent, colorant, and lubricant.
  • the rubber composition of the present embodiment is suitably used as a rubber composition for tires. That is, the tire of the present embodiment is manufactured by containing the rubber composition of the present embodiment and processing the rubber composition of the present embodiment.
  • the rubber composition of the present embodiment is not limited to the following, but for example, various tires such as fuel-saving tires, all-season tires, high-performance tires, and studless tires: tires such as treads, carcass, sidewalls, and bead portions. It can be used for each part.
  • the rubber composition of the present embodiment is a rubber composition for a tire, it is excellent in balance between low hysteresis loss property and wet skid resistance and wear resistance when it is used as a vulcanized product, and thus saves fuel consumption. It is more preferably used for treads of tires and high-performance tires.
  • modified conjugated diene polymer is referred to as "modified conjugated diene polymer”.
  • unmodified conjugated diene polymer When it is unmodified, it is described as "unmodified conjugated diene polymer”.
  • Molecular weight measurement condition 1 A GPC measuring device (manufactured by Toso Co., Ltd.) in which three columns using a polystyrene gel as a filler are connected using an unmodified conjugated diene polymer or a modified conjugated diene polymer as a sample. Using the product name "HLC-8320GPC”), measure the chromatogram using an RI detector (trade name "HLC8020” manufactured by Toso), and based on the calibration line obtained using standard polystyrene, The weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw / Mn) were determined.
  • the eluent used was THF (tetrahydrofuran) containing 5 mmol / L triethylamine.
  • THF tetrahydrofuran
  • THFguardcolum SuperMP (HZ) -H was connected and used as a guard column in front of the column.
  • 10 mg of the sample for measurement was dissolved in 10 mL of THF to prepare a measurement solution, and 10 ⁇ L of the measurement solution was injected into a GPC measuring device and measured under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 0.35 mL / min.
  • Measurement condition 2 Using an unmodified conjugated diene polymer or a modified conjugated diene polymer as a sample, a chromatogram was measured using a GPC measuring device in which three columns using polystyrene gel as a filler were connected. , The weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined based on the calibration line using standard polystyrene. The eluate used was THF containing 5 mmol / L triethylamine.
  • a guard column a trade name "TSKguardcolumn SuperH-H” manufactured by Tosoh Corporation
  • a column a trade name "TSKgel SuperH5000", “TSKgel SuperH6000”, “TSKgel SuperH7000” manufactured by Tosoh Co., Ltd.
  • An RI detector (trade name "HLC8020” manufactured by Tosoh Corporation) was used under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 0.6 mL / min. 10 mg of the sample for measurement was dissolved in 20 mL of THF to prepare a measurement solution, and 20 ⁇ L of the measurement solution was injected into a GPC measuring device for measurement.
  • Tables 1 to 4 show the results of measurement under measurement condition 2 for samples whose molecular weight distribution value was less than 1.6 after measurement under measurement condition 1.
  • the range of M was input from 1,000 to 2,000,000 to clarify the relationship between the standard intrinsic viscosity [ ⁇ ] 0 and the molecular weight M.
  • 3D-GPC [ ⁇ ] / [ ⁇ ] 0 is calculated for each molecular weight M as the relationship between the intrinsic viscosity [ ⁇ ] at each molecular weight M of the sample obtained by the measurement and the intrinsic viscosity [ ⁇ ] with respect to the standard intrinsic viscosity [ ⁇ ] 0 .
  • the average value was taken as the contraction factor (g'). More specifically, it can be measured by the method shown below.
  • the eluate used was THF containing 5 mmol / L triethylamine.
  • the column was used by connecting the trade names "TSKgel G4000HXL", “TSKgel G5000HXL", and "TSKgel G6000HXL” manufactured by Tosoh Corporation.
  • the measurement was carried out under the measurement condition 1 of the above (physical property 3), and the sample having a molecular weight distribution value of 1.6 or more was measured under the following measurement condition 3.
  • the measurement was performed under the measurement condition 1 of the above (physical property 3), and the sample whose molecular weight distribution value was less than 1.6 was measured under the measurement condition 4 below.
  • the results are shown in Tables 1 to 4.
  • sample solution 10 mg of sample and 5 mg of standard polystyrene were dissolved in 20 mL of THF to prepare a sample solution.
  • Measurement condition 3 GPC measurement condition using polystyrene column: Using the trade name "HLC-8320GPC" manufactured by Tosoh Corporation, using 5 mmol / L THF containing triethylamine as an eluent, 10 ⁇ L of the sample solution was injected into the apparatus, the column oven temperature was 40 ° C., and the THF flow rate was 0.35 mL /. Chromatograms were obtained using an RI detector under the condition of minutes.
  • Measurement condition 4 GPC measurement condition using polystyrene column: Using the trade name "HLC-8320GPC” manufactured by Tosoh Corporation, 5 mmol / L THF containing triethylamine was used as an eluent, and 20 ⁇ L of the sample solution was injected into the apparatus for measurement.
  • a guard column a trade name "TSKguardcolumn SuperH-H” manufactured by Tosoh Corporation
  • a column a trade name "TSKgel SuperH5000", “TSKgel SuperH6000”, “TSKgel SuperH7000” manufactured by Tosoh Co., Ltd. were used.
  • Chromatograms were obtained by measurement using an RI detector (HLC8020 manufactured by Tosoh Corporation) under the conditions of a column oven temperature of 40 ° C. and a THF flow rate of 0.6 mL / min.
  • the range of M was input from 1,000 to 2,000,000 to clarify the relationship between the standard intrinsic viscosity [ ⁇ ] 0 and the molecular weight M.
  • 3D-GPC [ ⁇ ] / [ ⁇ ] 0 is calculated for each molecular weight M as the relationship between the intrinsic viscosity [ ⁇ ] at each molecular weight M of the sample obtained by the measurement and the intrinsic viscosity [ ⁇ ] with respect to the standard intrinsic viscosity [ ⁇ ] 0 .
  • the average value was taken as the contraction factor (g').
  • the eluate used was THF containing 5 mmol / L triethylamine.
  • the column was used by connecting the trade names "TSKgel G4000HXL”, “TSKgel G5000HXL”, and “TSKgel G6000HXL” manufactured by Tosoh Corporation. 20 mg of the sample for measurement was dissolved in 10 mL of THF to prepare a measurement solution, and 100 ⁇ L of the measurement solution was injected into a GPC measuring device to measure under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 1 mL / min.
  • the temperature at which the endothermic peak is confirmed is defined as the oxidation start temperature, and the modified conjugated diene before and after the heat load is applied.
  • the difference in the oxidation start temperature of the system polymer was defined as ⁇ T and used as an index of heat stability.
  • Example 1 Modified conjugated diene polymer
  • the internal volume is 10 L
  • the ratio (L / D) of the internal height (L) to the diameter (D) is 4.0
  • the reactor has an inlet at the bottom and an outlet at the top
  • a tank reactor with a stirrer Two tank-type pressure vessels having a stirrer and a jacket for temperature control were connected as a polymerization reactor.
  • the water was removed in advance, and 1,3-butadiene was mixed at 13.0 g / min, styrene at 10.0 g / min, and n-hexane at 175.2 g / min.
  • n-butyllithium for the residual impurity inert treatment was added at 0.103 mmol / min, mixed, and then added to the bottom of the reactive group. Supplied continuously. Further, 2,2-bis (2-oxolanyl) propane as a polar substance is vigorously mixed with a stirrer at a rate of 0.081 mmol / min and n-butyllithium as a polymerization initiator at a rate of 0.143 mmol / min1.
  • Antioxidant was continuously added to the modified polymer solution at 0.055 g / min (n-hexane solution) so as to be 0.2 g per 100 g of the polymer, and the modification reaction was completed.
  • oil JOMO Process NC140 manufactured by JX Nippon Oil Energy Co., Ltd.
  • Table 1 shows the physical characteristics of Sample 1.
  • Example 2 Modified conjugated diene polymer (Sample 2)
  • the denaturant is abbreviated as 2,2-dimethoxy-1- (3-trimethoxysilylpropyl) -1-aza-2-silacyclopentane to tris (3-trimethoxysilylpropyl) amine (in the table, "B”. )
  • a modified conjugated diene polymer (Sample 2) was obtained in the same manner as in Example 1 except that the addition amount was changed to 0.0250 mmol / min.
  • the physical characteristics of sample 2 are shown in Table 1.
  • Example 3 Modified conjugated diene polymer (Sample 3) Modifying agents from 2,2-dimethoxy-1- (3-trimethoxysilylpropyl) -1-aza-2-silacyclopentane to tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (in the table, A modified conjugated diene-based polymer (Sample 3) was obtained in the same manner as in Example 1 except that the addition amount was changed to 0.0190 mmol / min instead of “C”). The physical characteristics of Sample 3 are shown in Table 1.
  • Example 4 Modified conjugated diene polymer (Sample 4) Modifying agents from 2,2-dimethoxy-1- (3-trimethoxysilylpropyl) -1-aza-2-silacyclopentane to tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (in the table, A modified conjugated diene-based polymer (Sample 4) was obtained in the same manner as in Example 1 except that the addition amount was changed to 0.0160 mmol / min instead of “C”). The physical characteristics of sample 4 are shown in Table 1.
  • Example 5 Modified conjugated diene polymer (Sample 5)
  • the branching agent was changed from trimethoxy (4-vinylphenyl) silane to dimethylmethoxy (4-vinylphenyl) silane (abbreviated as "BS-2" in the table), and the amount added was changed to 0.0350 mmol / min.
  • a modified conjugated diene polymer (Sample 5) was obtained in the same manner as in Example 1 except for the above. The physical characteristics of Sample 5 are shown in Table 1.
  • Example 6 Modified conjugated diene polymer (Sample 6)
  • the branching agent was changed from trimethoxy (4-vinylphenyl) silane to dimethylmethoxy (4-vinylphenyl) silane (abbreviated as "BS-2" in the table), and the amount added was changed to 0.0350 mmol / min.
  • Modifiers are abbreviated as 2,2-dimethoxy-1- (3-trimethoxysilylpropyl) -1-aza-2-silacyclopentane to tris (3-trimethoxysilylpropyl) amine (in the table, "B”. )
  • a modified conjugated diene polymer (Sample 6) was obtained in the same manner as in Example 1 except that the addition amount was changed to 0.0250 mmol / min.
  • the physical characteristics of Sample 6 are shown in Table 1.
  • Example 7 Modified conjugated diene polymer (Sample 7)
  • the branching agent was changed from trimethoxy (4-vinylphenyl) silane to dimethylmethoxy (4-vinylphenyl) silane (abbreviated as "BS-2" in the table), and the amount added was changed to 0.0350 mmol / min.
  • Example 8 Modified conjugated diene polymer (Sample 8) The branching agent was changed from trimethoxy (4-vinylphenyl) silane to 1,1-bis (4- (dimethylmethoxysilyl) phenyl) ethylene (abbreviated as "BS-3" in the table), and the amount added was 0.
  • a modified conjugated diene polymer (Sample 8) was obtained in the same manner as in Example 1 except that the mixture was replaced with .0120 mmol / min.
  • the physical characteristics of Sample 8 are shown in Table 1.
  • Example 9 Modified conjugated diene polymer (Sample 9)
  • the branching agent was changed from trimethoxy (4-vinylphenyl) silane to 1,1-bis (4- (dimethylmethoxysilyl) phenyl) ethylene (abbreviated as "BS-3" in the table), and the amount added was 0.
  • BS-3 1,1-bis (4- (dimethylmethoxysilyl) phenyl) ethylene
  • BS-3 1,1-bis (4- (dimethylmethoxysilyl) phenyl) ethylene
  • Example 9 a modified conjugated diene-based polymer (Sample 9) was obtained in the same manner as in Example 1 except that the addition amount was changed to 0.0250 mmol / min.
  • the physical characteristics of Sample 9 are shown in Table 1.
  • Example 10 Modified conjugated diene polymer
  • the branching agent was changed from trimethoxy (4-vinylphenyl) silane to 1,1-bis (4- (dimethylmethoxysilyl) phenyl) ethylene (abbreviated as "BS-3" in the table), and the amount added was 0.
  • BS-3 1,1-bis (4- (dimethylmethoxysilyl) phenyl) ethylene
  • the amount added was 0.
  • BS-3 1,1-bis (4- (dimethylmethoxysilyl) phenyl) ethylene
  • Example 10 -Modified conjugated diene polymer (Sample 10) in the same manner as in Example 1 except that the amount of propanediamine (abbreviated as "C” in the table) was changed to 0.0160 mmol / min. Got The physical characteristics of sample 10 are shown in Table 1.
  • Example 11 Modified conjugated diene polymer (Sample 11) The branching agent was changed from trimethoxy (4-vinylphenyl) silane to 1,1-bis (4-trimethoxysilylphenyl) ethylene (abbreviated as "BS-4" in the table), and the amount added was 0.0210 mmol.
  • a modified conjugated diene polymer (Sample 11) was obtained in the same manner as in Example 1 except that the value was changed to / min.
  • the physical characteristics of Sample 11 are shown in Table 2.
  • Example 12 Modified conjugated diene polymer (Sample 12)
  • the branching agent was changed from trimethoxy (4-vinylphenyl) silane to 1,1-bis (4-trimethoxysilylphenyl) ethylene (abbreviated as "BS-4" in the table), and the amount added was 0.0210 mmol.
  • Example 13 Modified conjugated diene polymer
  • the branching agent was changed from trimethoxy (4-vinylphenyl) silane to 1,1-bis (4-trimethoxysilylphenyl) ethylene (abbreviated as "BS-4" in the table), and the amount added was 0.0210 mmol.
  • BS-4" 1,1-bis (4-trimethoxysilylphenyl) ethylene
  • Example 13 A modified conjugated diene polymer (Sample 13) was obtained in the same manner as in Example 1 except that the amount of diamine (abbreviated as “C” in the table) was changed to 0.0160 mmol / min. It was. Table 2 shows the physical characteristics of sample 13.
  • Example 14 Modified conjugated diene polymer
  • Example 14 Modified conjugation in the same manner as in Example 1 except that the branching agent was changed from trimethoxy (4-vinylphenyl) silane to trichloro (4-vinylphenyl) silane (abbreviated as "BS-5" in the table).
  • BS-5" trichloro (4-vinylphenyl) silane
  • a diene polymer (Sample 14) was obtained.
  • the physical characteristics of sample 14 are shown in Table 2.
  • Example 15 Modified conjugated diene polymer
  • the branching agent was changed from trimethoxy (4-vinylphenyl) silane to trichloro (4-vinylphenyl) silane (abbreviated as "BS-5" in the table), and the modifier was changed to 2,2-dimethoxy-1- (3).
  • BS-5" trichloro (4-vinylphenyl) silane
  • B trimethoxysilylpropyl
  • B trimethoxysilylpropyl
  • a modified conjugated diene-based polymer was obtained in the same manner as in Example 1 except that the mixture was changed to.
  • the physical characteristics of sample 15 are shown in Table 2.
  • Example 16 Modified conjugated diene polymer
  • BS-5" trichloro (4-vinylphenyl) silane
  • Example 16 2-Dimethoxy-1- (3-trimethoxysilylpropyl) -1-aza-2-silacyclopentane to tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (in the table, "C”
  • a modified conjugated diene-based polymer (Sample 16) was obtained in the same manner as in Example 1 except that the addition amount was changed to 0.0160 mmol / min instead of (abbreviated). The physical characteristics of sample 16 are shown in Table 2.
  • Example 17 Modified conjugated diene polymer (Sample 17) A modified conjugated diene polymer (Sample 17) was obtained in the same manner as in Example 1 except that the supply amount of butadiene was changed to 12.0 g / min and the supply amount of split butadiene was changed to 6.6 g / min. .. Table 2 shows the physical characteristics of sample 17.
  • Example 18 Modified conjugated diene polymer (Sample 18) was obtained in the same manner as in Example 1 except that the supply amount of butadiene was changed to 10.0 g / min and the supply amount of split butadiene was changed to 8.6 g / min. .. The physical characteristics of sample 18 are shown in Table 2.
  • Example 19 Modified conjugated diene polymer (Sample 19) was obtained in the same manner as in Example 1 except that the supply amount of butadiene was changed to 8.0 g / min and the supply amount of split butadiene was changed to 10.6 g / min. .. The physical characteristics of Sample 19 are shown in Table 2.
  • Example 20 Modified conjugated diene polymer (Sample 20) A modified conjugated diene polymer (Sample 20) was obtained in the same manner as in Example 1 except that the supply amount of butadiene was changed to 15.0 g / min and the supply amount of split butadiene was changed to 3.6 g / min. .. Table 2 shows the physical characteristics of the sample 20.
  • Example 21 Modified conjugated polymer (Sample 21) The denaturant was changed from 2,2-dimethoxy-1- (3-trimethoxysilylpropyl) -1-aza-2-silacyclopentane to tetraethoxysilane (abbreviated as "D” in the table), and the amount added was changed.
  • a modified conjugated diene polymer (Sample 21) was obtained in the same manner as in Example 1 except that the content was changed to 0.0160 m mmol / min. Table 2 shows the physical characteristics of sample 21.
  • Example 22 Modified conjugated diene polymer (Sample 22) A modified conjugated diene polymer (Sample 22) was obtained in the same manner as in Example 1 except that the supply amount of butadiene was changed to 15.0 g / min and the supply amount of split butadiene was changed to 3.6 g / min. .. The physical characteristics of sample 22 are shown in Table 3.
  • Example 23 Modified conjugated diene polymer (Sample 23) was obtained in the same manner as in Example 1 except that the supply amount of butadiene was changed to 17.2 g / min and the supply amount of split butadiene was changed to 1.4 g / min. .. The physical characteristics of sample 23 are shown in Table 3.
  • Example 24 A modified conjugated diene polymer (Sample 24) was obtained in the same manner as in Example 1 except that the supply amount of butadiene was changed to 18.6 g / min and the supply amount of split butadiene was changed to 0 g / min.
  • the physical characteristics of the sample 24 are shown in Table 3.
  • Example 25 Modified conjugated diene polymer (Sample 25) A modified conjugated diene polymer (Sample 25) was obtained in the same manner as in Example 1 except that no branching agent was added. The physical characteristics of sample 25 are shown in Table 3.
  • Example 22 Modified conjugated diene polymer (Sample 28) The same as in Example 3 except that the supply amount of butadiene was changed to 17.6 g / min, the supply amount of split butadiene was changed to 7.5 g / min, and the supply amount of styrene was changed to 3.5 g / min. , A modified conjugated diene polymer (Sample 28) was obtained. The physical characteristics of sample 28 are shown in Table 4.
  • Example 23 Modified conjugated diene polymer (Sample 29) The same as in Example 3 except that the supply amount of butadiene was changed to 19.7 g / min, the supply amount of split butadiene was changed to 8.4 g / min, and the supply amount of styrene was changed to 0.5 g / min. , A modified conjugated diene polymer (Sample 29) was obtained. The physical characteristics of sample 29 are shown in Table 4.
  • Example 24 Modified conjugated diene polymer
  • Example 30 A modified conjugated diene polymer in the same manner as in Example 3 except that the supply amount of n-butyllithium as a polymerization initiator was changed to 0.188 mmol / min and the supply amount of the modifier was changed to 0.0230 m mmol. (Sample 30) was obtained. Table 4 shows the physical characteristics of the sample 30.
  • Example 25 Modified conjugated diene polymer (Sample 31) The same as in Example 1 except that the supply amount of butadiene was changed to 17.6 g / min, the supply amount of split butadiene was changed to 7.5 g / min, and the supply amount of styrene was changed to 3.5 g / min. , A modified conjugated diene polymer (Sample 31) was obtained. The physical characteristics of sample 31 are shown in Table 4.
  • Example 26 Modified conjugated diene polymer (Sample 32) The same as in Example 3 except that the supply amount of butadiene was changed to 21.5 g / min, the supply amount of split butadiene was changed to 3.6 g / min, and the supply amount of styrene was changed to 3.5 g / min. , A modified conjugated diene polymer (Sample 32) was obtained. The physical characteristics of sample 32 are shown in Table 4.
  • Example 27 Modified conjugated diene polymer (Sample 33) The same as in Example 3 except that the supply amount of butadiene was changed to 11.6 g / min, the supply amount of split butadiene was changed to 5.0 g / min, and the supply amount of styrene was changed to 12.0 g / min. , A modified conjugated diene polymer (Sample 33) was obtained. The physical characteristics of sample 33 are shown in Table 4.
  • Example 34 A modified conjugated diene polymer in the same manner as in Example 3 except that styrene was not supplied, the supply amount of butadiene was changed to 20.0 g / min, and the supply amount of split butadiene was changed to 8.6 g / min. (Sample 34) was obtained. The physical characteristics of sample 34 are shown in Table 4.
  • Example 35 Modified conjugated diene polymer The same as in Example 3 except that the branching agent was not supplied, the divided butadiene was not supplied, the butadiene supply amount was changed to 18.6 g / min, and the styrene supply amount was changed to 10.0 g / min.
  • a modified conjugated diene polymer (Sample 35) was obtained. The physical characteristics of sample 35 are shown in Table 4.
  • Example 36 Modified conjugated diene polymer (Sample 36) The same as in Example 3 except that the supply amount of butadiene was changed to 24.7 g / min, the supply amount of split butadiene was changed to 4.4 g / min, and the supply amount of styrene was changed to 0.5 g / min. , A modified conjugated diene polymer (Sample 36) was obtained. The physical characteristics of sample 36 are shown in Table 4.
  • Anti-aging agent N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine
  • Sulfur 2.2 parts by mass
  • Refrigeration accelerator 1 N-cyclohexyl) -2-Benzothiazyl sulfine amide
  • Refrigeration accelerator 2 diphenylguanidine
  • the above materials were kneaded by the following method to obtain a rubber composition.
  • a closed kneader content capacity 0.3L equipped with a temperature control device, as the first stage kneading, raw rubber (samples 1 to 27) under the conditions of a filling rate of 65% and a rotor rotation speed of 30 to 50 rpm.
  • the filler sica 1, silica 2, carbon black
  • silane coupling agent silane coupling agent
  • process oil zinc oxide
  • stearic acid were kneaded.
  • the temperature of the closed mixer was controlled, and each rubber composition (blending) was obtained at an discharge temperature of 155 to 160 ° C.
  • the formulation obtained above was cooled to room temperature, an antioxidant was added, and the mixture was kneaded again to improve the dispersion of silica.
  • the discharge temperature of the compound was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
  • sulfur and vulcanization accelerators 1 and 2 were added and kneaded by an open roll set at 70 ° C. as the third stage kneading. Then, it was molded and vulcanized in a vulcanization press at 160 ° C. for 20 minutes.
  • the rubber composition before vulcanization and the rubber composition after vulcanization were evaluated. Specifically, it was evaluated by the following method. The results are shown in Tables 5 to 8.
  • Viscoelasticity parameters were measured in the torsion mode using a viscoelasticity tester "ARES" manufactured by Leometrics Scientific. Each measured value was indexed with the result for the rubber composition of Comparative Example 10 as 100. Tan ⁇ measured at 0 ° C. at a frequency of 10 Hz and a strain of 1% was used as an index of wet grip. The larger the index, the better the wet skid resistance. Further, tan ⁇ measured at a frequency of 10 Hz and a strain of 3% at 50 ° C. was used as an index of low hysteresis loss property. The smaller the index, the better the low hysteresis loss.
  • Examples 28 to 54 have an excellent balance between wet skid resistance and low hysteresis loss when made into a vulcanized product as compared with Comparative Examples 10 to 18, and have excellent wear resistance. It was confirmed that it is also excellent. It was also confirmed that it showed good heat stability. Furthermore, it was also confirmed that the compound Mooney viscosity when prepared as a vulcanized product was low and showed good processability.
  • the conjugated diene polymer of the present invention has industrial applicability as a material for tire treads, automobile interior / exterior parts, anti-vibration rubbers, belts, footwear, foams, various industrial supplies, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が8以上であり、 熱負荷を与える前後の酸化開始温度の変化(ΔT)が11.9℃以下であり、 芳香族ビニル化合物単量体単位を含む、 共役ジエン系重合体。

Description

共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ
 本発明は、共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤに関する。
 従来から、自動車に対する低燃費化要求が高まっており、自動車用タイヤ、特に地面と接するタイヤトレッドに用いられる材料の改良が求められている。
 近年、転がり抵抗が小さい、すなわち低ヒステリシスロス性を有する材料の開発が求められてきている。
 また、タイヤを軽量化するため、タイヤのトレッド部の厚みを減らす必要があり、耐摩耗性の高い材料も求められている。
 一方で、タイヤトレッド用に用いられる材料は、安全性の観点から、ウェットスキッド抵抗性に優れることと、実用上十分な破壊特性を有していることが要求されている。
 上述したような要求に応えるゴム材料として、ゴム状重合体と、カーボンブラック、シリカ等の補強性充填剤とを含むゴム材料が挙げられる。
 シリカを含むゴム材料を用いると、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス向上を図ることができる。また、運動性の高いゴム状重合体の分子末端部に、シリカとの親和性又は反応性を有する官能基を導入することによって、ゴム材料中におけるシリカの分散性を改良し、さらには、シリカ粒子との結合でゴム状重合体の分子末端部の運動性を低減して、ヒステリシスロスを低減化する試みがなされている。
 例えば、特許文献1~3には、アミノ基を含有するアルコキシシラン類を共役ジエン系重合体活性末端に反応させて得られる変性共役ジエン系重合体とシリカとの組成物が提案されている。
 また、特許文献4には、重合体活性末端と多官能性シラン化合物をカップリング反応させて得られる変性共役ジエン系重合体が提案されている。
特開2005-290355号公報 特開平11-189616号公報 特開2003-171418号公報 国際公開第07/114203号パンフレット
 上述したように、共役ジエン系重合体に、シリカ粒子と親和性又は反応性を有する官能基を導入し、シリカと官能基を効果的に反応させるといった重合体の設計が種々なされているが、設計した重合体が、タイヤ用組成物として所期の性能を発揮するためには、加硫物とする際の混練工程における熱負荷への耐性、すなわち耐熱安定性を高めるべきであることに本発明者は注目した。
 すなわち、末端変性等を行うことによって、重合体の設計を緻密に行った場合であっても、シリカ等との混練の段階でこのように設計した重合体の構造を維持できなければ、タイヤ用組成物としての性能が損なわれてしまう。
 しかしながら、上述した特許文献1~4に開示されている変性共役ジエン系重合体は、耐熱安定性に関し、未だ改善の余地がある、という問題点を有している。
 そこで、本発明においては、加硫物とする際の加工性と耐熱安定性に極めて優れた共役ジエン系重合体を提供することを目的とする。
 本発明者らは、上述した従来技術の課題を解決するために鋭意研究検討した結果、分岐度(Bn)、及び熱負荷を与えた前後の酸化開始温度の変化(ΔT)が特定範囲である、共役ジエン系共重合体が、加硫物とする際の加工性と耐熱安定性に極めて優れることを見出し、本発明を完成させるに至った。
 すなわち本発明は以下の通りである。
〔1〕
 粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が8以上であり、
 熱負荷を与える前後の酸化開始温度の変化(ΔT)が11.9℃以下であり、
 芳香族ビニル化合物単量体単位を含む、
共役ジエン系重合体。
〔2〕
 前記熱負荷を与える前後の酸化開始温度の変化(ΔT)が10℃以下である、前記〔1〕に記載の共役ジエン系重合体。
〔3〕
 変性率が60質量%以上である、前記〔1〕又は〔2〕に記載の共役ジエン系重合体。
〔4〕
 芳香族ビニル化合物単量体単位の含有量が10質量%以上である、前記〔1〕乃至〔3〕のいずれか一に記載の共役ジエン系重合体。
〔5〕
 3分岐以上の星形高分子構造を有する共役ジエン系重合体であって、少なくとも一つの星形高分子構造の分岐鎖に、
 アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において、更なる主鎖分岐構造を有する、
 前記〔1〕乃至〔4〕のいずれか一に記載の共役ジエン系重合体。
〔6〕
 前記アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分が、
下記式(1)又は(2)で表される化合物に基づく単量体単位であって、
下記式(1)又は(2)で表される化合物に基づく単量体単位による高分子鎖の分岐点を有し、
 共役ジエン系重合体の少なくとも一端が、窒素原子含有基で変性されている、
 前記〔5〕に記載の共役ジエン系重合体。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(式(1)中、Rは水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR~Rは、各々独立している。
 X1は、独立したハロゲン原子を表す。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
(式(2)中、R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。複数存在する場合のR~Rは、各々独立している。
 X~Xは、独立したハロゲン原子を表す。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。
 aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(m+n+l)は、3を示す。)
〔7〕
 前記式(1)中、Rが水素原子であり、m=0である、前記式(1)で表される化合物に基づく単量体単位を有する、前記〔6〕に記載の共役ジエン系重合体。
〔8〕
 前記式(2)中、m=0であり、かつb=0である、前記式(2)で表される化合物に基づく単量体単位を有する、前記〔6〕に記載の共役ジエン系重合体。
〔9〕
 前記式(1)中、Rが水素原子であり、m=0であり、l=0である、前記式(1)で表される化合物に基づく単量体単位を有する、前記〔6〕に記載の共役ジエン系重合体。
〔10〕
 前記式(2)中、m=0、l=0、a=0、b=0である、前記式(2)で表される化合物に基づく単量体単位を有する、前記〔6〕に記載の共役ジエン系重合体。
〔11〕
 前記式(1)中、Rは水素原子であり、l=0であり、n=3である、前記式(1)で表される化合物に基づく単量体単位を有する、前記〔6〕に記載の共役ジエン系重合体。
〔12〕
 前記〔6〕に記載の共役ジエン系重合体の分岐化剤であって、下記式(1)又は(2)で表される化合物である分岐化剤。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(式(1)中、Rは水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR~Rは、各々独立している。
 X1は、独立したハロゲン原子を表す。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
(式(2)中、R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。複数存在する場合のR~Rは、各々独立している。
 X~Xは、独立したハロゲン原子を表す。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。
 aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(m+n+l)は、3を示す。)
〔13〕
 前記式(1)中、Rが水素原子であり、m=0の化合物である、前記〔12〕に記載の分岐化剤。
〔14〕
 前記式(2)中、m=0であり、かつb=0の化合物である、前記〔12〕に記載の分岐化剤。
〔15〕
 前記式(1)中、Rが水素原子であり、m=0であり、l=0である化合物である、前記〔12〕に記載の分岐化剤。
〔16〕
 前記式(2)中、m=0、l=0、a=0、b=0である化合物である、前記〔12〕に記載の分岐化剤。
〔17〕
 前記式(1)中、Rが水素原子であり、l=0であり、n=3の化合物である、前記〔12〕に記載の分岐化剤。
〔18〕
 前記〔1〕乃至〔11〕のいずれか一に記載の共役ジエン系重合体の製造方法であって、
 有機リチウム系化合物の存在下、少なくとも共役ジエン化合物を重合し、前記〔12〕乃至〔17〕のいずれか一に記載の分岐化剤を用いて主鎖分岐構造を有する共役ジエン系重合体を得る重合・分岐工程を、有する、共役ジエン系重合体の製造方法。
〔19〕
 有機リチウム系化合物の存在下、共役ジエン化合物及び芳香族ビニル化合物を重合し、共重合体を得る工程と、
 共役ジエン化合物と芳香族ビニル化合物の共重合体に、アルコキシシリル基又はハロシリル基を含むビニル系単量体を反応させ、主鎖分岐構造を形成する工程と、
 主鎖分岐構造を有する重合体鎖に、少なくとも共役ジエン化合物を重合させる工程と、
を、有する、
共役ジエン系重合体の製造方法。
〔20〕
 前記共役ジエン系重合体を、窒素原子含有基を有する変性剤により変性させる変性工程をさらに有し、
 前記変性剤が、下記一般式(A)~(C)のいずれかで表される変性剤を含む、
 前記〔18〕又は〔19〕に記載の共役ジエン系重合体の製造方法。
Figure JPOXMLDOC01-appb-C000016
(式(A)中、R~Rは、各々独立して、炭素数1~20のアルキル基、又は炭素数6~20のアリール基を示し、Rは、炭素数1~10のアルキレン基を示し、Rは、炭素数1~20のアルキレン基を示す。
 mは、1又は2の整数を示し、nは、2又は3の整数を示し、(m+n)は、4以上の整数を示す。複数存在する場合のR~Rは、各々独立している。)
Figure JPOXMLDOC01-appb-C000017
(式(B)中、R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、R~Rは、各々独立して、炭素数1~20のアルキレン基を示す。
 m、n、及びlは、各々独立して、1~3の整数を示し、(m+n+l)は、4以上の整数を示す。複数存在する場合のR~Rは、各々独立している。)
Figure JPOXMLDOC01-appb-C000018
(式(C)中、R12~R14は、各々独立に、単結合又は炭素数1~20のアルキレン基を示し、R15~R18、及びR20は、各々独立に、炭素数1~20のアルキル基を示し、R19及びR22は、各々独立に、炭素数1~20のアルキレン基を示し、R21は、炭素数1~20のアルキル基又はトリアルキルシリル基を示す。
 mは、1~3の整数を示し、pは、1又は2を示す。
 それぞれ複数存在する場合のR12~R22、m、及びpは、各々独立しており、同じであっても異なっていてもよい。
 iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、4~10の整数である。
 Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、活性水素を有しない有機基を表す。)
〔21〕
 前記式(C)において、
 Aが、下記一般式(II)~(V)のいずれかで表される、前記〔20〕に記載の共役ジエン系重合体の製造方法。
Figure JPOXMLDOC01-appb-C000019
(式(II)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000020
(式(III)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、Bは、炭素数1~20のアルキル基を示し、aは、1~10の整数を示す。それぞれ複数存在する場合のB及びBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000021
(式(IV)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000022
(式(V)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
〔22〕
 前記〔1〕乃至〔11〕のいずれか一に記載の共役ジエン系重合体100質量部と、
 伸展油1~60質量部と、
を、含有する、
油展共役ジエン系重合体。
〔23〕
 ゴム成分と、
 当該ゴム成分100質量部に対して5.0質量部以上150質量部の充填剤と、を含む、ゴム組成物であって、
 前記ゴム成分は、当該ゴム成分の総量に対して、前記〔1〕乃至〔11〕のいずれか一に記載の共役ジエン系重合体、又は前記〔22〕に記載の油展共役ジエン系重合体を、10質量%以上含む、ゴム組成物。
〔24〕
 前記〔23〕に記載のゴム組成物を含有する、タイヤ。
 本発明によれば、加硫物とする際、極めて優れた加工性と耐熱安定性を有する、共役ジエン系重合体が得られる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。
 なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は以下の実施形態に限定されるものではない。本発明は、その要旨の範囲内で適宜に変形して実施することができる。
〔共役ジエン系重合体〕
 本実施形態の共役ジエン系重合体は、
 粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が8以上であり、熱負荷を与える前後の酸化開始温度の変化(ΔT)が11.9℃以下である。
 上記のように、分岐度、及び熱付加を与える前後の酸化開始温度の変化(ΔT)を特定した共役ジエン系重合体は、加硫物とする際の加工性と耐熱安定性に極めて優れる。
 なお、本明細書中、特に断りがない限り、「共役ジエン系重合体」には、変性後の変性共役ジエン系重合体も含まれるものとする。
(分岐度)
 本実施形態の共役ジエン系重合体は、加工性、耐熱安定性、の観点から、分岐度(Bn)が8以上である。
 当該分岐度(Bn)が8以上であるとは、本実施形態の共役ジエン系重合体が、実質的に最長の高分子主鎖に対して側鎖の高分子鎖が8本以上であることを意味する。
 共役ジエン系重合体の分岐度(Bn)は、粘度検出器付きGPC-光散乱法測定法により測定される収縮因子(g')を用いて、g'=6Bn/{(Bn+1)(Bn+2)}と定義される。
 一般的に、分岐を有する重合体は、同一の絶対分子量である直鎖状の重合体と比較した場合に、分子の大きさが小さくなる傾向にある。
 収縮因子(g')は、想定上同一の絶対分子量である直鎖状重合体に対する、分子の占める大きさの比率の指標である。すなわち、重合体の分岐度が大きくなれば、収縮因子(g')は小さくなる傾向にある。
 この収縮因子に対して本実施形態では、分子の大きさの指標として固有粘度を用い、直鎖状の重合体は、固有粘度[η]=-3.883M0.771の関係式に従うものとする。前記式中、Mは絶対分子量である。
 しかしながら、収縮因子(g')は分子の大きさの減少率を表現しているもので、重合体の分岐構造を正確に表現しているものではない。
 そこで当該共役ジエン系重合体の各絶対分子量のときの収縮因子(g')の値を用いて共役ジエン系重合体の分岐度(Bn)を算出する。算出された「分岐度(Bn)」は、最長の主鎖構造に対して、直接的又は間接的に互いに結合している重合体の数を正確に表現するものである。
 算出された分岐度(Bn)は、共役ジエン系重合体の分岐構造を表現する指標となる。例えば、一般的な4分岐星形高分子(中央部に、4本の重合体鎖が接続)の場合、最長の高分岐主鎖構造に対して高分子鎖の腕が2本結合しており、分岐度(Bn)は2と評価される。
 一般的な8分岐星形高分子の場合、最長の高分岐主鎖構造に対して高分子鎖の腕が6本結合しており、分岐度(Bn)は6と評価される。
 本実施形態の共役ジエン系重合体は、分岐度(Bn)が8以上であるが、かかる場合、星形高分子構造として10分岐した星形高分子構造と同様の分岐を有する共役ジエン系重合体であることを意味する。
 ここで、「分岐」とは、1つの重合体に対して、他の重合体とが直接的又は間接的に結合することにより形成されるものである。また、「分岐度(Bn)」は、最長の主鎖構造に対して、直接的又は間接的に互いに結合している重合体の数である。
 分岐度(Bn)が8以上であることにより、本実施形態の共役ジエン系重合体は、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れる。
 一般に絶対分子量が上昇すると加工性が悪化する傾向にあり、直鎖状の高分子構造で絶対分子量を上昇させた場合、加硫物の粘度が大幅に上昇し、加工性が大幅に悪化する。そのため、重合体中に多数の官能基を導入し、充填剤として配合されるシリカとの親和性及び/又は反応性向上を図った場合においても、混練工程でシリカを十分に重合体中に分散させることができない。その結果として、導入された官能基の機能が発揮されず、本来期待できるはずの官能基導入による低ヒステリシスロス性とウェットスキッド抵抗性の向上という効果が発揮されないことになる。
 一方、本実施形態の共役ジエン系重合体は、分岐度(Bn)を8以上であるものに特定したことにより、絶対分子量の上昇に伴う加硫物の粘度の上昇が大幅に抑制されるため、混練工程においてシリカ等と十分に混合するようになり、共役ジエン系重合体の周りにシリカを分散させることが可能になる。その結果、共役ジエン系重合体の分子量を大きく設定することにより耐摩耗性及び破壊特性の向上が可能になり、かつ、十分な混練によってシリカを重合体の周りに分散させることができ、官能基を作用及び/又は反応させることが可能になることにより、実用上十分な低ヒステリシスロス性とウェットスキッド抵抗性を有するものとすることが可能になる。
 共役ジエン系重合体の絶対分子量は、後述する実施例に記載の方法により測定することができる。
 本実施形態の共役ジエン系重合体の分岐度(Bn)は8以上であり、好ましくは10以上であり、より好ましくは12以上であり、さらに好ましくは15以上である。
 分岐度(Bn)がこの範囲である共役ジエン系重合体は、加硫物とする際の加工性に優れる傾向にある。
 また、分岐度(Bn)の上限値は特に限定されず、検出限界値以上であってもよいが、好ましくは84以下であり、より好ましくは80以下であり、さらに好ましくは64以下であり、さらにより好ましくは57以下である。
 84以下であることで加硫物とする際の耐摩耗性に優れる傾向にある。
 共役ジエン系重合体の分岐度は、分岐化剤の添加量と末端変性剤の添加量の組み合わせにより、8以上に制御することができる。具体的には、分岐度は、分岐化剤の官能基数、分岐化剤の添加量、分岐化剤の添加のタイミング、及び変性剤の添加量を調整することにより制御することができる。より具体的には後述に記載の〔共役ジエン系重合体の製造方法〕に示す。
 本実施形態の共役ジエン系重合体は芳香族ビニル化合物単量体単位を含む。
 共役ジエン系重合体における芳香族ビニル化合物単量体単位の質量比率を高めることで、共役ジエン系重合体の耐熱安定性を向上させることができる。
 耐熱安定性向上の観点から、本実施形態の共役ジエン系重合体における芳香族ビニル化合物単量体単位の質量比率は1質量%以上が好ましく、後述のように共役ジエン系重合体の外側、特に末端部への芳香族ビニル化合物単量体単位の偏在を顕著にする観点で5質量%以上がより好ましく、10質量%以上がさらに好ましい。
 また、実用上十分な低ヒステリシスロス性を得るための観点から、60質量%未満が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。
 なお、共役ジエン系重合体の末端部とは、重合開始末端を意味し、この部分における芳香族ビニル化合物単量体単位の含有量が1質量%以上であることが好ましい。
 共役ジエン系重合体の立体的な構造において、芳香族ビニル化合物単量体単位が、共役ジエン系重合体の外側に偏在していることにより、共役ジエン系重合体の耐熱安定性が高まることが期待できるが、共役ジエン系重合体の立体的な構造を直接的に調べることは困難である。
 本発明者は、共役ジエン系重合体が立体的に存在している状態で測定した「熱負荷を与える前後の酸化開始温度の変化(ΔT)」が、共役ジエン系重合体の立体構造を反映していることに想到し、本発明を完成させた。
 熱負荷を与える前後の酸化開始温度の変化(ΔT)は、製造条件から予想される立体構造を反映しており、間接的にではあるが重合体の立体構造に対応する測定値であると考えられる。
 熱負荷を与える前後の酸化開始温度の変化(ΔT)が一定以下であることで、本実施形態の共役ジエン系重合体をタイヤ用組成物の材料として利用した際、の混練に対する耐性が高くなり、重合体の熱的な劣化を十分防止できる。すなわち、前記(ΔT)は、タイヤ用組成物の性能との関連性も非常に高い。
 本実施形態の共役ジエン系重合体においては、熱負荷を与える前後の酸化開始温度の変化(ΔT)を、11.9℃以下に特定したことにより、優れた耐熱安定性が得られる。
 熱負荷を与えた前後の酸化開始温度の変化については、具体的に後述の手法によって測定できる。
 一般的に芳香族ビニル化合物単量体単位を含む共重合体は、共役ジエン化合物の単独重合体と比較して耐熱安定性に優れる傾向にあり、芳香族ビニル化合物と共役ジエン化合物の共重合体においては、芳香族ビニル化合物の重合部分が共役ジエン化合物の重合部分より耐熱性に優れている。
 重合体は直線的ではなく、立体的にまとまった状態で存在していると考えられているが、この立体的な配置において熱負荷の影響を受けやすい共役ジエン系重合体の外側部分に、より耐熱性の高い芳香族ビニル化合物の重合部を偏在させることで、共役ジエン系重合体全体としての耐熱性を向上させることができる。
 すなわち、ポリマー鎖の外側の芳香族ビニル化合物単量体単位の比率を高めることで、より共役ジエン系重合体の耐熱安定性を向上させることができる。
 ポリマー鎖の外側の芳香族ビニル化合物単量体単位の比率を高める方法は限定されないが、例えば、重合の終了末端に多官能のカップリング剤を反応させて星形分岐の共役ジエン系重合体を形成する場合、カップリング剤が立体配置の中央側に位置しやすく、重合の始まり側が外側に位置しやすい。そのため、重合開始直後には芳香族ビニル化合物の比率が高い状態で共重合させ、終了間際には共役ジエン化合物の比率を高めて共重合させた上でカップリングすることにより、立体構造の外側に芳香族ビニル化合物単量体単位が偏在しやすくなる。さらに、重合開始末端の近くで芳香族ビニル化合物単量体単位の比率の高い重合体鎖によって主鎖分岐構造を形成すると、一層、芳香族ビニル化合物単量体単位の外側への偏在効果を高められる。すなわち、前述の分岐度を高めることで、耐熱安定性を向上させることができる。
 すなわち、共役ジエン系重合体を後述の主鎖分岐構造として、分岐鎖の外側の芳香族ビニル化合物単量体単位の比率を高める方法を採用することが好ましい。耐熱安定性向上の観点から、分岐度は8以上が好ましい。
 また芳香族ビニル重合体鎖を主鎖分岐させ、その後に共役ジエンブロックを形成し、多分岐カップリングすることにより形成した構造も、芳香族ビニル化合物単量体単位が外側に偏在した、という観点から好ましい構造の一例であるが、タイヤ用組成物に用いる共役ジエン系重合体としては、芳香族ビニルと共役ジエンのランダム共重合体であって、両者の比率が外側と内側で異なっている(外側が芳香族ビニルリッチ)ことが、タイヤ性能の観点から好ましい。
 ランダム共重合体の分岐鎖中の芳香族ビニル化合物単量体単位の比率を高める手法としては、例えば、共役ジエン化合物と芳香族ビニル化合物とを重合する工程において、共役ジエン化合物を分割して添加することにより、ポリマー鎖の外側の芳香族ビニル化合物単量体単位の比率を高めることができる。
 共役ジエン化合物としては、例えば、1,3-ブタジエン、芳香族ビニル化合物としてはスチレンが挙げられる。
 共役ジエン化合物と芳香族ビニル化合物とを重合する工程において、スチレンの全量と1,3-ブタジエンの一部とで共重合反応を開始させ、共重合反応の途中で残りの1,3-ブタジエンを断続的に添加する方法を用いてもよい。分割して加える残りの1,3-ブタジエンの量は特に限定されないが、1,3-ブタジエンの総量の30%以上が好ましく、35%以上がより好ましく、40%以上がさらに好ましい。分割する1,3-ブタジエンの量をこの範囲とすることで、中のスチレン比率が向上し、分岐鎖の耐熱性が向上する傾向にある。
 なお、本明細書中、「ランダム共重合体」とは、芳香族ビニル化合物と共役ジエン化合物が規則性なく、ランダムに重合した重合体である。
 省燃費性能向上の観点から、ランダム重合した共役ジエン系重合体は、芳香族ビニル単位が30以上連鎖しているブロックの数が、少ないか又はないものであることが好ましい。より具体的には、共役ジエン系重合体がブタジエン-スチレン共重合体の場合、Kolthoffの方法(I.M.KOLTHOFF,et al.,J.Polym.Sci.1,429(1946)に記載の方法)により共重合体を分解し、メタノールに不溶なポリスチレン量を分析する公知の方法において、芳香族ビニル単位が30以上連鎖しているブロックが、共役ジエン系重合体の総量に対して、好ましくは5.0質量%以下、より好ましくは3.0質量%以下である。
(熱負荷を与えた前後の酸化開始温度の変化(ΔT))
 本実施形態の共役ジエン系重合体は、熱負荷を与える前後の酸化開始温度の変化(ΔT)が11.9℃以下であり、好ましくは10℃以下であり、より好ましくは8℃以下である。
 「熱負荷を与える」とは、共役ジエン系重合体に対して熱的エネルギーを与えることである。熱的エネルギーを加えるとは、共役ジエン系重合体に対して、熱エネルギーを付加することを意味する。
 また、「酸化開始温度」とは、共役ジエン系重合体が、大気中で加熱した際に、酸化反応し、質量増加するときの温度である。
 具体的には、ラボプラストミル30C150(東洋精機製作所)の本体温度を50℃とし、共役ジエン系重合体を50g投入し、120rpmで5分間混練し、5分停止を1サイクルとして、合計3サイクル混練を行うことで熱負荷を与える方法が挙げられる。熱負荷は、時間当たりの熱量によって定義することができるが、そうすると、重合体の粘度などが発熱量に影響し、再現性を損なうことが懸念される。そのため、上記のような具体的な手順により熱負荷を特定することが有効である。
 混練前後の酸化開始温度の変化(ΔT)がこの範囲にある共役ジエン系重合体は、加硫物とする際の耐熱安定性に優れる傾向にある。
 熱負荷を与えた前後の酸化開始温度の変化については、本明細書では実施例に記載する方法により測定することができる。
(変性率)
 本実施形態の共役ジエン系重合体は、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、耐摩耗性、及び破壊特性の観点から、共役ジエン系重合体の総量に対して変性率が60質量%以上であることが好ましい。
 本明細書中、「変性率」は、共役ジエン系重合体の総量に対する窒素含有官能基を有する共役ジエン系重合体の質量比率を表す。
 例えば、窒素含有変性剤を終末端に反応させた場合、当該窒素含有変性剤による窒素含有官能基を有する共役ジエン系重合体の、共役ジエン系重合体の総量に対する質量比率は、変性率として表される。
 他方、窒素を含有する分岐化剤によって、重合体を分岐させた場合も、生成する共役ジエン系重合体に窒素含有官能基を有することになるため、この分岐した重合体も変性率の算出の際、カウントされることになる。
 すなわち、本明細書中、共役ジエン系重合体が特に、変性された「変性共役ジエン系重合体」である場合は、窒素含有官能基を有する変性剤によるカップリング重合体及び/又は窒素含有官能基を有する分岐化剤による分岐化重合体の合計の質量比率が、変性率である。
 重合体が窒素含有官能基を有することにより、タイヤ用組成物に求められる低ヒステリシスロス性とウェットスキッド抵抗性とのバランスといった性能を向上させることが可能である。
 熱負荷を与える前後の酸化開始温度の変化(ΔT)が特定の値を示し、かつ共役ジエン系重合体が変性されていることにより、シリカ等の充填剤との混練工程においても共役ジエン系重合体が望ましい構造を維持しやすくなり、当該共役ジエン系重合体を用いた組成物が、所期の効果を発揮しやすくなる傾向にある。
 本実施形態の共役ジエン系重合体の変性率は、より好ましくは65質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは75質量%以上、よりさらに好ましくは80質量%以上、特に好ましくは82質量%以上である。
 変性率を60質量%以上とすることにより、加硫物とする際の加工性に優れ、加硫物としたときにおける耐摩耗性及び低ヒステリシスロス性能により優れる傾向にある。
 変性率は、官能基含有の変性成分と非変性成分を分離できるクロマトグラフィーによって測定することができる。
 このクロマトグラフィーを用いた方法としては、特定官能基を吸着するシリカ等の極性物質を充填剤としたゲル浸透クロマトグラフィー用のカラムを使用し、非吸着成分の内部標準を比較に用いて定量する方法が挙げられる。
 より具体的には、変性率は、試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系ゲルカラムで測定したクロマトグラムとシリカ系カラムで測定したクロマトグラムとの差分から、シリカカラムへの吸着量を測定することにより得られる。さらに具体的には、変性率は、実施例に記載の方法により測定することができる。
 本実施形態の共役ジエン系重合体において、変性率は、変性剤の添加量及び反応方法を調整するによって制御することができ、これにより60質量%以上に制御することができる。
 例えば、重合開始剤として、後述する分子内に少なくとも1つ窒素原子を有する有機リチウム化合物を用いて重合する方法、分子内に少なくとも1つ窒素原子を有する単量体を共重合する方法、後述する構造式の変性剤を用いる方法を組み合わせ、重合条件を制御することによって、上記変性率とすることができる。
(分岐構造)
 本実施形態の共役ジエン系重合体は、加工性と耐摩耗性バランスの観点から、3分岐以上の星形高分子構造を有する共役ジエン系重合体であって、少なくとも一つの星形高分子構造の分岐鎖に、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において、更なる主鎖分岐構造を有する共役ジエン系重合体であることが好ましい。
 本明細書でいう「星形高分子構造」とは、1つの中心分岐点から高分子鎖(腕)が複数結合している構造を言う。
 また、ここでいう一つの中心分岐点は、窒素原子を含有した置換基を有している。
 本明細書でいう「主鎖分岐構造」とは、高分子鎖がアルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分で分岐点を形成し、さらにその分岐点から高分子鎖(腕)が伸長している構造をいう。
 本実施形態の共役ジエン系重合体は、分岐数Bnの向上の観点から、好ましくは、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分によって構成される主鎖分岐構造の分岐点は4分岐点以上であり、変性工程で変性剤によって形成される星形高分子構造由来の分岐構造は、3分岐以上であることが好ましく、4分岐以上であることがより好ましく、8分岐以上であることがさらに好ましい。
 なお、星型構造になるカップリング剤によって変性する場合と、分岐化剤を重合体中に導入する場合とでは、いずれも分岐数Bnが大きくなるが、カップリング剤によって高分子鎖全体を分岐させる方が分岐数Bnへの寄与が大きい。
 重合体の設計において、分岐数Bnは、カップリング剤の選択と、分岐化剤の種類の選択や量の設定とによって制御可能であるが、寄与率も勘案することで分岐数Bnの制御が容易になりやすい傾向にある。
<主鎖分岐構造>
 前記主鎖分岐構造は、上述したように、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分における分岐点を有する構造であり、当該分岐点は、2分岐点以上であり、3分岐点以上であることが好ましく、4分岐点以上であることがより好ましい。
 また、主鎖分岐構造における分岐点は、少なくとも2つ以上の高分子鎖を有していることが好ましく、より好ましくは主鎖ではない高分子鎖を3つ以上有しており、さらに好ましくは主鎖ではない高分子鎖を4つ以上有している。
<星形高分子構造>
 本実施形態の共役ジエン系重合体は、上述のように、芳香族ビニル化合物単量体単位が外側に偏在した構造を形成させやすいという観点で、星形高分子構造を有していることが好ましく、星形高分子構造由来の分岐が3分岐以上であることが好ましく、4分岐以上であることがより好ましく、6分岐以上であることがさらに好ましく、8分岐以上であることがさらにより好ましい。
 本実施形態の共役ジエン系重合体として、3分岐以上の星形高分子構造を有する共役ジエン系重合体であって、少なくとも一つの星形高分子構造の分岐鎖に、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において更なる主鎖分岐構造を有する変性された共役ジエン系重合を得るための方法に関して、前記「星形高分子構造」は、変性剤の官能基数、変性剤の添加量を調整することによって形成でき、「主鎖分岐構造」は、分岐化剤の官能基数、分岐化剤の添加量、分岐化剤の添加のタイミングを調整することによって制御することができる。
 3分岐以上の星形高分子構造を有する共役ジエン系重合体であって、少なくとも一つの星形高分子構造の分岐鎖にアルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において更なる主鎖分岐構造を有する共役ジエン系重合を得るためには、例えば、有機リチウム系化合物を重合開始剤として用い、重合を行い、重合中又は重合後にさらに特定の分岐点を与える分岐化剤を添加し、重合を継続した後に特定の分岐率を与える変性剤を用いて変性する方法が挙げられる。
 このような重合条件の制御手段は、後述する実施例中の製造方法に記載する。
(主鎖分岐構造の詳細構造)
 本実施形態の共役ジエン系重合体は、上述のような芳香族ビニル化合物単量体単位が外側に偏在した構造を形成させやすいという観点から、主鎖が分岐していることが好ましい。
 主鎖を分岐させた上で芳香族ビニル化合物単量体単位を重合体の末端側に偏在させることで、共役ジエン系重合体の耐熱性をより高める設計をし易くなるためである。
 分岐を形成するための手段は特に限定されないが、本実施形態の共役ジエン系重合体は、上記観点から、少なくとも一つの星形構造の分岐鎖に、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において、さらなる主鎖分岐構造を有し、前記アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分が、下記式(1)又は(2)で表される化合物に基づく単量体単位であって、下記式(1)又は(2)で表される化合物に基づく単量体単位による高分子鎖の分岐点を有するものであることが好ましい。
 また、共役ジエン系重合体の少なくとも一端が窒素原子含有基で変性されているものであることが好ましい。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(式(1)中、Rは水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。複数存在する場合のR~Rは、各々独立している。
 Xは、独立したハロゲン原子を表す。
 mは、0~2の整数を示し整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
(式(2)中、R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR~Rは、各々独立している。
 X~Xは、独立したハロゲン原子を表す。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。
 (m+n+l)は、3を示す。
 aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(m+n+l)は、3の整数を示す。)
 本実施形態の共役ジエン系重合体は、上述した式(1)のRが水素原子であり、m=0である、前記式(1)で表される化合物に基づく単量体単位を有するものであることが好ましい。
 これにより、分岐数が向上し、耐摩耗性と加工性の向上の効果が得られる。
 また、本実施形態の共役ジエン系重合体は、前記式(2)中、m=0であり、かつb=0である、前記式(2)で表される化合物に基づく単量体単位を有する、共役ジエン系重合体であることが好ましい。
 これにより、耐摩耗性と加工性の向上効果が得られる。
 また、本実施形態の共役ジエン系重合体は、上述した式(1)のRが水素原子であり、m=0あり、l=0である、式(1)で表される化合物に基づく単量体単位を有するものであることが好ましい。
 これにより、分岐度が向上し、耐摩耗性及び加工性の向上の効果が得られる。
 また、本実施形態の共役ジエン系重合体は、前記式(2)中、m=0、l=0、a=0、b=0である、前記式(2)で表される化合物に基づく単量体単位を有する、共役ジエン系重合体であることが好ましい。
 これにより、耐摩耗性と加工性向上の効果が得られる。
 また、本実施形態の共役ジエン系重合体は、さらに好ましくは、前記式(1)中、Rが水素原子であり、l=0であり、n=3である、前記式(1)で表される化合物に基づく単量体単位を有する、共役ジエン系重合体であることが好ましい。
 これにより、変性率と分岐度が向上し省燃費性能、耐摩耗性、加工性向上の効果が得られる。
〔分岐化剤〕
 本実施形態の共役ジエン系重合体においては、主鎖分岐構造を構築する際に、分岐化剤として、下記式(1)又は式(2)で表される分岐化剤を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(式(1)中、Rは水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR~Rは、各々独立している。
 Xは、独立したハロゲン原子を表す。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。
 (m+n+l)は、3を示す。)
(式(2)中、R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR~Rは、各々独立している。
 X~Xは、独立したハロゲン原子を表す。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。
 (m+n+l)は、3を示す。
 aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(m+n+l)は、3を示す。)
 本実施形態においては、共役ジエン系重合体の主鎖分岐構造を構築する際に使用される分岐化剤は、重合の継続性と分岐度向上の観点から、式(1)のRが水素原子であり、m=0の化合物であることが好ましい。
 また、本実施形態においては、共役ジエン系重合体の主鎖分岐構造を構築する際に使用される分岐化剤は、分岐度向上の観点から、式(2)中、m=0であり、かつb=0の化合物であることが好ましい。
 また、本実施形態においては、共役ジエン系重合体の主鎖分岐構造を構築する際に使用される分岐化剤は、重合の継続性、変性率と分岐度向上の観点から、式(1)のRが水素原子であり、m=0であり、l=0である化合物であることがより好ましい。
 また、本実施形態においては、共役ジエン系重合体の主鎖分岐構造を構築する際に使用される分岐化剤は、変性率と分岐度向上の観点から、前記式(2)中、m=0、l=0、a=0、b=0である化合物が好ましい。
 また、本実施形態においては、共役ジエン系重合体の主鎖分岐構造を構築する際に使用される分岐化剤は、重合の継続性、変性率と分岐度向上の観点から、前記式(1)中のRは水素原子であり、l=0であり、n=3の化合物であることがより好ましい。
 前記式(1)で表される分岐化剤としては、以下のものに限定されないが、例えば、
トリメトキシ(4-ビニルフェニル)シラン、トリエトキシ(4-ビニルフェニル)シラン、トリプロポキシ(4-ビニルフェニル)シラン、トリブトキシ(4-ビニルフェニル)シラン、トリイソプロポキシ(4-ビニルフェニル)シラン、トリメトキシ(3-ビニルフェニル)シラン、トリエトキシ(3-ビニルフェニル)シラン、トリプロポキシ(3-ビニルフェニル)シラン、トリブトキシ(3-ビニルフェニル)シラン、トリイソプロポキシ(3-ビニルフェニル)シラン、トリメトキシ(2-ビニルフェニル)シラン、トリエトキシ(2-ビニルフェニル)シラン、トリプロポキシ(2-ビニルフェニル)シラン、トリブトキシ(2-ビニルフェニル)シラン、トリイソプロポキシ(2-ビニルフェニル)シラン、ジメトキシメチル(4-ビニルフェニル)シラン、ジエトキシメチル(4-ビニルフェニル)シラン、ジプロポキシメチル(4-ビニルフェニル)シラン、ジブトキシメチル(4-ビニルフェニル)シラン、ジイソプロポキシメチル(4-ビニルフェニル)シラン、ジメトキシメチル(3-ビニルフェニル)シラン、ジエトキシメチル(3-ビニルフェニル)シラン、ジプロポキシメチル(3-ビニルフェニル)シラン、ジブトキシメチル(3-ビニルフェニル)シラン、ジイソプロポキシメチル(3-ビニルフェニル)シラン、ジメトキシメチル(2-ビニルフェニル)シラン、ジエトキシメチル(2-ビニルフェニル)シラン、ジプロポキシメチル(2-ビニルフェニル)シラン、ジブトキシメチル(2-ビニルフェニル)シラン、ジイソプロポキシメチル(2-ビニルフェニル)シラン、ジメチルメトキシ(4-ビニルフェニル)シラン、ジメチルエトキシ(4-ビニルフェニル)シラン、ジメチルプロポキシ(4-ビニルフェニル)シラン、ジメチルブトキシ(4-ビニルフェニル)シラン、ジメチルイソプロポキシ(4-ビニルフェニル)シラン、ジメチルメトキシ(3-ビニルフェニル)シラン、ジメチルエトキシ(3-ビニルフェニル)シラン、ジメチルプロポキシ(3-ビニルフェニル)シラン、ジメチルブトキシ(3-ビニルフェニル)シラン、ジメチルイソプロポキシ(3-ビニルフェニル)シラン、ジメチルメトキシ(2-ビニルフェニル)シラン、ジメチルエトキシ(2-ビニルフェニル)シラン、
ジメチルプロポキシ(2-ビニルフェニル)シラン、ジメチルブトキシ(2-ビニルフェニル)シラン、ジメチルイソプロポキシ(2-ビニルフェニル)シラン、トリメトキシ(4-イソプロぺニルフェニル)シラン、トリエトキシ(4-イソプロぺニルフェニル)シラン、トリプロポキシ(4-イソプロぺニルフェニル)シラン、トリブトキシ(4-イソプロぺニルフェニル)シラン、トリイソプロポキシ(4-イソプロぺニルフェニル)シラン、トリメトキシ(3-イソプロぺニルフェニル)シラン、トリエトキシ(3-イソプロぺニルフェニル)シラン、トリプロポキシ(3-イソプロぺニルフェニル)シラン、トリブトキシ(3-イソプロぺニルフェニル)シラン、トリイソプロポキシ(3-イソプロぺニルフェニル)シラン、トリメトキシ(2-イソプロぺニルフェニル)シラン、トリエトキシ(2-イソプロぺニルフェニル)シラン、トリプロポキシ(2-イソプロぺニルフェニル)シラン、トリブトキシ(2-イソプロぺニルフェニル)シラン、トリイソプロポキシ(2-イソプロぺニルフェニル)シラン、ジメトキシメチル(4-イソプロぺニルフェニル)シラン、ジエトキシメチル(4-イソプロぺニルフェニル)シラン、ジプロポキシメチル(4-イソプロぺニルフェニル)シラン、ジブトキシメチル(4-イソプロぺニルフェニル)シラン、ジイソプロポキシメチル(4-イソプロぺニルフェニル)シラン、ジメトキシメチル(3-イソプロぺニルフェニル)シラン、ジエトキシメチル(3-イソプロぺニルフェニル)シラン、ジプロポキシメチル(3-イソプロぺニルフェニル)シラン、ジブトキシメチル(3-イソプロぺニルフェニル)シラン、ジイソプロポキシメチル(3-イソプロぺニルフェニル)シラン、ジメトキシメチル(2-イソプロぺニルフェニル)シラン、ジエトキシメチル(2-イソプロぺニルフェニル)シラン、ジプロポキシメチル(2-イソプロぺニルフェニル)シラン、ジブトキシメチル(2-イソプロぺニルフェニル)シラン、ジイソプロポキシメチル(2-イソプロぺニルフェニル)シラン、ジメチルメトキシ(4-イソプロぺニルフェニル)シラン、ジメチルエトキシ(4-イソプロぺニルフェニル)シラン、ジメチルプロポキシ(4-イソプロぺニルフェニル)シラン、ジメチルブトキシ(4-イソプロぺニルフェニル)シラン、ジメチルイソプロポキシ(4-イソプロぺニルフェニル)シラン、ジメチルメトキシ(3-イソプロぺニルフェニル)シラン、ジメチルエトキシ(3-イソプロぺニルフェニル)シラン、ジメチルプロポキシ(3-イソプロぺニルフェニル)シラン、ジメチルブトキシ(3-イソプロぺニルフェニル)シラン、ジメチルイソプロポキシ(3-イソプロぺニルフェニル)シラン、ジメチルメトキシ(2-イソプロぺニルフェニル)シラン、ジメチルエトキシ(2-イソプロぺニルフェニル)シラン、ジメチルプロポキシ(2-イソプロぺニルフェニル)シラン、ジメチルブトキシ(2-イソプロぺニルフェニル)シラン、ジメチルイソプロポキシ(2-イソプロぺニルフェニル)シラン、トリクロロ(4-ビニルフェニル)シラン、トリクロロ(3-ビニルフェニル)シラン、トリクロロ(2-ビニルフェニル)シラン、トリブロモ(4-ビニルフェニル)シラン、トリブロモ(3-ビニルフェニル)シラン、トリブロモ(2-ビニルフェニル)シラン、ジクロロメチル(4-ビニルフェニル)シラン、ジクロロメチル(3-ビニルフェニル)シラン、ジクロロメチル(2-ビニルフェニル)シラン、ジブロモメチル(4-ビニルフェニル)シラン、ジブロモメチル(3-ビニルフェニル)シラン、ジブロモメチル(2-ビニルフェニル)シラン、ジメチルクロロ(4-ビニルフェニル)シラン、ジメチルクロロ(3-ビニルフェニル)シラン、ジメチルクロロ(2-ビニルフェニル)シラン、ジメチルブロモ(4-ビニルフェニル)シラン、ジメチルブロモ(3-ビニルフェニル)シラン、ジメチルブロモ(2-ビニルフェニル)シランが挙げられる。
 これらの中では、トリメトキシ(4-ビニルフェニル)シラン、トリエトキシ(4-ビニルフェニル)シラン、トリプロポキシ(4-ビニルフェニル)シラン、トリブトキシ(4-ビニルフェニル)シラントリイソプロポキシ(4-ビニルフェニル)シラン、トリメトキシ(3-ビニルフェニル)シラン、トリエトキシ(3-ビニルフェニル)シラン、トリプロポキシ(3-ビニルフェニル)シラン、トリブトキシ(3-ビニルフェニル)シラン、トリイソプロポキシ(3-ビニルフェニル)シラン、トリクロロ(4-ビニルフェニル)シランが好ましく、トリメトキシ(4-ビニルフェニル)シラン、トリエトキシ(4-ビニルフェニル)シラン、トリプロポキシ(4-ビニルフェニル)シラン、トリブトキシ(4-ビニルフェニル)シラントリイソプロポキシ(4-ビニルフェニル)シラン、がより好ましい。
 前記式(2)で表される分岐化剤としては、以下のものに限定されないが、例えば、
1,1-ビス(4-トリメトキシシリルフェニル)エチレン、1,1-ビス(4-トリエトキシシリルフェニル)エチレン、1,1-ビス(4-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(4-トリペントキシシリルフェニル)エチレン、1,1-ビス(4-トリイソプロポキシシリルフェニル)エチレン、1,1-ビス(3-トリメトキシシリルフェニル)エチレン、1,1-ビス(3-トリエトキシシリルフェニル)エチレン、1,1-ビス(3-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(3-トリペントキシシリルフェニル)エチレン、1,1-ビス(3-トリイソプロポキシシリルフェニル)エチレン、1,1-ビス(2-トリメトキシシリルフェニル)エチレン、1,1-ビス(2-トリエトキシシリルフェニル)エチレン、1,1-ビス(3-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(2-トリペントキシシリルフェニル)エチレン、1,1-ビス(2-トリイソプロポキシシリルフェニル)エチレン、1,1-ビス(4-(ジメチルメトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジエチルメトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジプロピルメトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジメチルエトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジエチルエトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジプロピルエトキシシリル)フェニル)エチレンが挙げられる。
 これらの中では、1,1-ビス(4-トリメトキシシリルフェニル)エチレン、1,1-ビス(4-トリエトキシシリルフェニル)エチレン、1,1-ビス(4-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(4-トリペントキシシリルフェニル)エチレン、1,1-ビス(4-トリイソプロポキシシリルフェニル)エチレンが好ましく、1,1-ビス(4-トリメトキシシリルフェニル)エチレン、がより好ましい。
〔共役ジエン系重合体の製造方法〕
 本実施形態の共役ジエン系重合体の製造方法は、有機リチウム系化合物の存在下、少なくとも共役ジエン化合物を重合し、上述した各種の分岐化剤のうちの少なくともいずれかを用いて主鎖分岐構造を有する共役ジエン系重合体を得る重合・分岐工程と、を有する。 好ましい形態としては、有機リチウム系化合物の存在下、共役ジエン化合物及び芳香族ビニル化合物を重合し、共重合体を得る工程と、当該共重合体に、アルコキシシリル基又はハロシリル基を含むビニル系単量体を反応させ、主鎖分岐構造を形成する工程と、当該主鎖分岐構造を有する重合体鎖に、少なくとも共役ジエン化合物を重合させる工程と、を有するものとする。
 また、本実施形態の共役ジエン系重合体の製造方法においては、窒素原子含有基を有する変性剤により変性させる変性工程を有することが好ましい。
 共役ジエン系重合体を構成する共役ジエン系重合体は、単一の共役ジエン化合物の単独重合体、異なる種類の共役ジエン化合物の重合体すなわち共重合体、共役ジエン化合物と芳香族ビニル化合物との共重合体のいずれであってもよい。
(重合・分岐工程)
 本実施形態の共役ジエン系重合体の製造方法における重合・分岐工程は、有機リチウム系化合物、例えば有機モノリチウム化合物を重合開始剤とし、少なくとも共役ジエン化合物を重合し、分岐化剤を添加することで、主鎖分岐構造を有する共役ジエン系重合体を得る。
 重合工程においては、リビングアニオン重合反応による成長反応によって重合を行うことが好ましく、これにより、活性末端を有する共役ジエン系重合体を得ることができる。その後、分岐化剤を用いた分岐工程でも主鎖分岐化を適切に制御でき、主鎖分岐化した後の活性末端に対して重合を継続させることで、高変性率の、変性されたジエン系重合体を得ることができる傾向にある。
<重合開始剤>
 重合開始剤としては、有機リチウム系化合物を用い、少なくとも有機モノリチウム化合物を用いることが好ましい。
 有機モノリチウム化合物としては、以下のものに限定されないが、例えば、低分子化合物の有機モノリチウム化合物、可溶化したオリゴマーの有機モノリチウム化合物が挙げられる。
 また、有機モノリチウム化合物としては、その有機基とそのリチウムの結合様式において、例えば、炭素-リチウム結合を有する化合物、窒素-リチウム結合を有する化合物、及び錫-リチウム結合を有する化合物が挙げられる。
 重合開始剤としての有機モノリチウム化合物の使用量は、目標とする共役ジエン系重合体の分子量によって決めることが好ましい。
 重合開始剤の使用量に対する、共役ジエン化合物等の単量体の使用量が、目標とする共役ジエン系重合体の重合度に関係する。すなわち、数平均分子量及び/又は重量平均分子量に関係する傾向にある。
 したがって、共役ジエン系重合体の分子量を増大させるためには、重合開始剤を減らす方向に調整するとよく、分子量を低下させるためには、重合開始剤量を増やす方向に調整するとよい。
 有機モノリチウム化合物は、共役ジエン系重合体へ窒素原子を導入する一つの手法で用いられるという観点から、好ましくは、置換アミノ基を有するアルキルリチウム化合物、又はジアルキルアミノリチウムである。
 この場合、重合開始末端にアミノ基からなる窒素原子を有する、共役ジエン系重合体が得られる。
 置換アミノ基とは、活性水素を有しない、又は、活性水素を保護した構造の、アミノ基である。
 活性水素を有しないアミノ基を有するアルキルリチウム化合物としては、以下のものに限定されないが、例えば、3-ジメチルアミノプロピルリチウム、3-ジエチルアミノプロピルリチウム、4-(メチルプロピルアミノ)ブチルリチウム、及び4-ヘキサメチレンイミノブチルリチウムが挙げられる。
 活性水素を保護した構造のアミノ基を有するアルキルリチウム化合物としては、以下のものに限定されないが、例えば、3-ビストリメチルシリルアミノプロピルリチウム、及び4-トリメチルシリルメチルアミノブチルリチウムが挙げられる。
 ジアルキルアミノリチウムとしては、以下のものに限定されないが、例えば、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジプロピルアミド、リチウムジブチルアミド、リチウムジ-n-ヘキシルアミド、リチウムジへプチルアミド、リチウムジイソプロピルアミド、リチウムジオクチルアミド、リチウム-ジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムモルホリド、1-リチオアザシクロオクタン、6-リチオ-1,3,3-トリメチル-6-アザビシクロ[3.2.1]オクタン、及び1-リチオ-1,2,3,6-テトラヒドロピリジンが挙げられる。
 これらの置換アミノ基を有する有機モノリチウム化合物は、重合可能な単量体、例えば、1,3-ブタジエン、イソプレン、スチレン等の単量体を少量反応させて、ノルマルヘキサン、シクロヘキサンに可溶化したオリゴマーの有機モノリチウム化合物として用いることもできる。
 有機モノリチウム化合物は、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、好ましくは、アルキルリチウム化合物である。この場合、重合開始末端にアルキル基を有する、共役ジエン系重合体が得られる。
 前記アルキルリチウム化合物としては、以下のものに限定されないが、例えば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、及びスチルベンリチウムが挙げられる。
 アルキルリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n-ブチルリチウム、及びsec-ブチルリチウムが好ましい。
 これらの有機モノリチウム化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。また、他の有機金属化合物と併用してもよい。
 前記他の有機金属化合物としては、例えば、アルカリ土類金属化合物、他のアルカリ金属化合物、その他有機金属化合物が挙げられる。
 アルカリ土類金属化合物としては、以下のものに限定されないが、例えば、有機マグネシウム化合物、有機カルシウム化合物、及び有機ストロンチウム化合物が挙げられる。また、アルカリ土類金属のアルコキサイド、スルフォネート、カーボネート、及びアミドの化合物も挙げられる。
 有機マグネシウム化合物としては、例えば、ジブチルマグネシウム、及びエチルブチルマグネシウムが挙げられる。その他有機金属化合物としては、例えば、有機アルミニウム化合物が挙げられる。
 重合工程において、重合反応様式としては、以下のものに限定されないが、例えば、回分式(「バッチ式」ともいう。)、連続式の重合反応様式が挙げられる。
 連続式においては、1個又は2個以上の連結された反応器を用いることができる。連続式の反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。連続式においては、好ましくは、連続的に単量体、不活性溶媒、及び重合開始剤が反応器にフィードされ、該反応器内で重合体を含む重合体溶液が得られ、連続的に重合体溶液が排出される。
 回分式の反応器は、例えば、攪拌機付の槽型のものが用いられる。回分式においては、好ましくは、単量体、不活性溶媒、及び重合開始剤がフィードされ、必要により単量体が重合中に連続的又は断続的に追加され、当該反応器内で重合体を含む重合体溶液が得られ、重合終了後に重合体溶液が排出される。
 本実施形態の共役ジエン系重合体の製造方法において、高い割合で活性末端を有する共役ジエン系重合体を得るには、重合体を連続的に排出し、短時間で次の反応に供することが可能な、連続式が好ましい。
 共役ジエン系重合体の重合工程は、不活性溶媒中で重合することが好ましい。
 不活性溶媒としては、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が挙げられる。具体的な炭化水素系溶媒としては、以下のものに限定されないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素が挙げられる。
 重合反応に供する前に、不純物であるアレン類、及びアセチレン類を有機金属化合物で処理することで、高濃度の活性末端を有する共役ジエン系重合体が得られる傾向にあり、高い変性率の共役ジエン系重合体が得られる傾向にあるため好ましい。
 重合工程においては、極性化合物を添加してもよい。これにより、芳香族ビニル化合物を共役ジエン化合物とランダムに共重合させることができる。極性化合物は、共役ジエン部のミクロ構造を制御するためのビニル化剤としても用いることができる傾向にある。また、重合反応の促進等にも効果がある傾向にある。
 極性化合物としては、以下のものに限定されないが、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第3級アミン化合物;カリウム-tert-アミラート、カリウム-tert-ブチラート、ナトリウム-tert-ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等を用いることができる。
 これらの極性化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
 極性化合物の使用量は、特に限定されず、目的等に応じて選択することができるが、重合開始剤1モルに対して、0.01モル以上100モル以下であることが好ましい。
 このような極性化合物(ビニル化剤)は、共役ジエン系重合体の共役ジエン部分のミクロ構造の調節剤として、所望のビニル結合量に応じて、適量用いることができる。
 多くの極性化合物は、同時に共役ジエン化合物と芳香族ビニル化合物との共重合において有効なランダム化効果を有し、芳香族ビニル化合物の分布の調整やスチレンブロック量の調整剤として用いることができる傾向にある。
 共役ジエン化合物と芳香族ビニル化合物とをランダム化する方法としては、例えば、特開昭59-140211号公報に記載されているように、スチレンの全量と1,3-ブタジエンの一部とで共重合反応を開始させ、共重合反応の途中で残りの1,3-ブタジエンを断続的に添加する方法を用いてもよい。
 本実施形態の共役ジエン系重合体の製造方法における、重合・分岐工程で、1,3-ブタジエンを分割して添加する場合、分割して加える残りの1,3-ブタジエンの量は特に限定されないが、変性率向上の観点から、1,3-ブタジエンの総量の1%以上であることが好ましい。また耐熱安定性向上の観点から、20%未満であることが好ましく、15%未満であることがより好ましく、10%未満であることがさらに好ましい。分割する1,3-ブタジエンの量をこの範囲とすることで、主鎖分岐構造の分岐点間の距離が短くなり、混練時の粘度が低下して発熱が抑えられ、耐熱安定性が向上する傾向にある。
 重合工程における重合温度は、リビングアニオン重合が進行する温度であることが好ましく、生産性の観点から、0℃以上であることがより好ましく、120℃以下であることがさらに好ましい。このような範囲にあることで、重合終了後の活性末端に対する変性剤の反応量を充分に確保することができる傾向にある。よりさらに好ましくは50℃以上100℃以下である。
 本実施形態の共役ジエン系重合体の製造方法において、主鎖分岐構造を形成する分岐工程の、分岐化剤の添加量は、特に限定されず、目的等に応じて選択することができるが、重合開始剤1モルに対して、0.03モル以上0.5モル以下であることが好ましく、0.05モル以上0.4モル以下であることがより好ましく、0.01モル以上0.25モル以下であることがさらにこのましい。
 分岐化剤は、目的とする共役ジエン系重合体の共役ジエン部分の主鎖分岐構造の分岐点数に応じて、適量用いることができる。
 分岐工程において、分岐化剤を添加するタイミングは、特に限定されず、目的等に応じて選択することができるが、共役ジエン系重合体の絶対分子量の向上と変性率向上の観点から、重合開始剤添加後、原料転化率が20%以上であるタイミングが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましく、65%以上であることがさらにより好ましく、75%以上であることがよりさらに好ましい。
 また、分岐化剤を添加後、さらに所望の原料を追添加して、分岐化後に重合工程を継続してもよく、前記記載の内容を繰り返してもよい。
 追加するモノマーは、特に限定されないが、共役ジエン系重合体の変性率向上の観点から、重合工程で使用される共役ジエン系単量体総量、例えばブタジエン総量の5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましく、20%以上であることがさらにより好ましく、25%以上であることがよりさらに好ましい。
 本実施形態の共役ジエン系重合体の製造方法における、重合・分岐工程で得られる、変性反応工程前の共役ジエン系重合体は、110℃で測定されるムーニー粘度が10以上150以下であることが好ましく、より好ましくは15以上140以下であり、さらに好ましくは20以上130以下である。
 この範囲であると、本実施形態の共役ジエン系重合体は加工性及び耐摩耗性に優れる傾向にある。
 本実施形態の共役ジエン系重合体中の結合共役ジエン量は、特に限定されないが、40質量%以上100質量%以下であることが好ましく、55質量%以上80質量%以下であることがより好ましい。
 また、本実施形態の共役ジエン系重合体中の結合芳香族ビニル量は、特に限定されないが、上述したように1質量%以上が好ましく、10質量%以上がより好ましい。上限は特に限定されないが、上述したように60質量%未満が好ましい。
 ここで、結合芳香族ビニル量は、フェニル基の紫外吸光によって測定でき、ここから結合共役ジエン量も求めることができる。具体的には、後述する実施例に記載の方法に準じて測定する。
 本実施形態の共役ジエン系重合体において、共役ジエン結合単位中のビニル結合量は、特に限定されないが、10モル%以上75モル%以下であることが好ましく、20モル%以上65モル%以下であることがより好ましい。
 ビニル結合量が上記範囲であると、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性のバランス及び耐摩耗性と、破壊強度とにより優れる傾向にある。
 ここで、変性ジエン系重合体がブタジエンとスチレンとの共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry,21,923(1949))により、ブタジエン結合単位中のビニル結合量(1,2-結合量)を求めることができる。具体的には、後述する実施例に記載の方法により測定することができる。
 共役ジエン系重合体のミクロ構造については、本実施形態の共役ジエン系重合体中の各結合量が上記範囲にあり、さらに、共役ジエン系重合体のガラス転移温度が-45℃以上-15℃以下の範囲にあるときに、低ヒステリシスロス性とウェットスキッド抵抗性のバランスにより一層優れた加硫物を得ることができる傾向にある。
 ガラス転移温度については、ISO 22768:2006に従い、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とする。具体的には、後述する実施例に記載の方法により測定することができる。
 本実施形態の共役ジエン系重合体が、共役ジエン-芳香族ビニル共重合体である場合、省燃費性能向上の観点から芳香族ビニル単位が単独で存在する割合が多い方が好ましい。
 具体的には、共重合体がブタジエン-スチレン共重合体の場合、田中らの方法(Polymer,22,1721(1981))として知られているオゾン分解による方法で、前記共重合体を分解し、GPCによりスチレン連鎖分布を分析した場合、全結合スチレン量に対し、単離スチレン量が40質量%以上であり、スチレンの連鎖が8個以上の連鎖スチレン構造が5.0質量%以下であることが好ましい。
 この場合、得られる加硫ゴムが、特に低ヒステリシスロス性に優れる傾向にある。
(変性工程)
 本実施形態の共役ジエン系重合体の製造方法においては、上述した重合・分岐工程を経て得られた共役ジエン系重合体に対し、窒素原子含有基を有する変性剤を用いて変性工程を行うことが好ましい。
 変性工程においては、共役ジエン系重合体の活性末端に対して、少なくとも一端を窒素原子含有基で変性反応させ、変性された共役ジエン系重合体を得る。
<変性剤>
 変性剤としては、以下のものに限定されないが、例えば、トリス(3-トリメトキシシリルプロピル)アミン、トリス(3-トリエトキシシリルプロピル)アミン、トリス(3-トリプロポキシシリルプロピル)アミン、ビス(3-トリメトキシシリルプロピル)―[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、トリス(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-メチル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、テトラキス(3-トリメトキシシリルプロピル)-1,6-ヘキサメチレンジアミン、ペンタキス(3-トリメトキシシリルプロピル)-ジエチレントリアミン、トリス(3-トリメトキシシリルプロピル)-メチル-1,3-プロパンジアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、ビス(3-トリメトキシシリルプロピル)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)シラン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]シラン、3-トリス[2-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)エトキシ]シリル-1-トリメトキシシリルプロパン、1-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-3,4,5-トリス(3-トリメトキシシリルプロピル)-シクロヘキサン、1-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-3,4,5-トリス(3-トリメトキシシリルプロピル)-シクロヘキサン、3,4,5-トリス(3-トリメトキシシリルプロピル)-シクロヘキシル-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]エーテル、(3-トリメトキシシリルプロピル)ホスフェイト、ビス(3-トリメトキシシリルプロピル)―[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]ホスフェイト、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)ホスフェイト、及びトリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]ホスフェイトが挙げられる。
 変性工程で用いられる変性剤としては、下記一般式(A)~(C)のいずれかで表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000027
(式(A)中、R~Rは、各々独立して、炭素数1~20のアルキル基、又は炭素数6~20のアリール基を示し、Rは、炭素数1~10のアルキレン基を示し、Rは、炭素数1~20のアルキレン基を示す。
 mは、1又は2の整数を示し、nは、2又は3の整数を示し、(m+n)は、4以上の整数を示す。複数存在する場合のR~Rは、各々独立している。)
Figure JPOXMLDOC01-appb-C000028
(式(B)中、R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、R~Rは、各々独立して、炭素数1~20のアルキレン基を示す。
 m、n、及びlは、各々独立して、1~3の整数を示し、(m+n+l)は、4以上の整数を示す。複数存在する場合のR~Rは、各々独立している。)
Figure JPOXMLDOC01-appb-C000029
(式(C)中、R12~R14は、各々独立に、単結合又は炭素数1~20のアルキレン基を示し、R15~R18、及びR20は、各々独立に、炭素数1~20のアルキル基を示し、R19及びR22は、各々独立に、炭素数1~20のアルキレン基を示し、R21は、炭素数1~20のアルキル基又はトリアルキルシリル基を示す。
 mは、1~3の整数を示し、pは、1又は2を示す。
 それぞれ複数存在する場合のR12~R22、m、及びpは、各々独立しており、同じであっても異なっていてもよい。
 iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、4~10の整数である。
 Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、活性水素を有しない有機基を表す。)
 前記式(A)で表される変性剤としては、以下のものに限定されないが、例えば、2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、2,2-ジエトキシ-1-(3-トリエトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、2,2-ジメトキシ-1-(4-トリメトキシシリルブチル)-1-アザ-2-シラシクロヘキサン、2,2-ジメトキシ-1-(5-トリメトキシシリルペンチル)-1-アザ-2-シラシクロヘプタン、2,2-ジメトキシ-1-(3-ジメトキシメチルシリルプロピル)-1-アザ-2-シラシクロペンタン、2,2-ジエトキシ-1-(3-ジエトキシエチルシリルプロピル)-1-アザ-2-シラシクロペンタン、2-メトキシ-2-メチル-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、2-エトキシ,2-エチル-1-(3-トリエトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、2-メトキシ-2-メチル-1-(3-ジメトキシメチルシリルプロピル)-1-アザ-2-シラシクロペンタン、及び2-エトキシ-2-エチル-1-(3-ジエトキシエチルシリルプロピル)-1-アザ-2-シラシクロペンタンが挙げられる。
 これらの中でも、変性剤の官能基とシリカ等の無機充填剤との反応性及び相互作用性の観点、並びに加工性の観点から、mが2、nが3を示すものが好ましい。具体的には、2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン、及び2,2-ジエトキシ-1-(3-トリエトキシシリルプロピル)-1-アザ-2-シラシクロペンタンが好ましい。
 前記式(A)で表される変性剤を、重合活性末端に反応させる際の、反応温度、反応時間等については、特に限定されないが、0℃以上120℃以下で、30秒以上反応させることが好ましい。
 前記式(A)で表される変性剤の化合物中のシリル基に結合したアルコキシ基の合計モル数が、重合開始剤のアルカリ金属化合物及び/又はアルカリ土類金属化合物の添加モル数の0.6倍以上3.0倍以下となる範囲であることが好ましく、0.8倍以上2.5倍以下となる範囲であることがより好ましく、0.8倍以上2.0倍以下となる範囲であることがさらに好ましい。得られる変性された共役ジエン系重合体が十分な変性率及び分子量と分岐構造を得る観点から、0.6倍以上とすることが好ましく、加工性改良のために重合体末端同士をカップリングさせ分岐状重合体成分を得ることが好ましいことに加え、変性剤コストの観点から、3.0倍以下とすることが好ましい。
 より具体的な重合開始剤のモル数は、変性剤のモル数に対して、好ましくは3.0倍以上、より好ましくは4.0倍以上である。
 前記式(B)で表される変性剤としては、以下のものに限定されないが、例えば、トリス(3-トリメトキシシリルプロピル)アミン、トリス(3-メチルジメトキシシリルプロピル)アミン、トリス(3-トリエトキシシリルプロピル)アミン、トリス(3-メチルジエトキシシリルプロピル)アミン、トリス(トリメトキシシリルメチル)アミン、トリス(2-トリメトキシシリルエチル)アミン、及びトリス(4-トリメトキシシリルブチル)アミンが挙げられる。
 これらの中でも、変性剤の官能基とシリカ等の無機充填剤との反応性及び相互作用性の観点、並びに加工性の観点から、n、m、及びlが全て3を示すものであることが好ましい。好ましい具体例としては、トリス(3-トリメトキシシリルプロピル)アミン、及びトリス(3-トリエトキシシリルプロピル)アミンが挙げられる。
 前記式(B)で表される変性剤を、重合活性末端に反応させる際の、反応温度、反応時間等については、特に限定されないが、0℃以上120℃以下で、30秒以上反応させることが好ましい。
 前記式(B)で表される変性剤の化合物中のシリル基に結合したアルコキシ基の合計モル数が、上述した重合開始剤を構成するリチウムのモル数の0.6倍以上3.0倍以下となる範囲であることが好ましく、0.8倍以上2.5倍以下となる範囲であることがより好ましく、0.8倍以上2.0倍以下となる範囲であることがさらに好ましい。変性された共役ジエン系重合体において十分な変性率及び分子量と分岐構造とを得る観点から、0.6倍以上とすることが好ましく、加工性改良のために重合体末端同士をカップリングさせ分岐状重合体成分を得ることが好ましいことに加え、変性剤コストの観点から、3.0倍以下とすることが好ましい。
 より具体的な重合開始剤のモル数は、変性剤のモル数に対して、好ましくは4.0倍以上、より好ましくは5.0倍以上である。
 前記式(C)において、Aは、好ましくは下記一般式(II)~(V)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000030
(式(II)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000031
(式(III)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、Bは、炭素数1~20のアルキル基を示し、aは、1~10の整数を示す。それぞれ複数存在する場合のB及びBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000032
(式(IV)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
Figure JPOXMLDOC01-appb-C000033
(式(V)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
 前記式(C)において、Aが式(II)で表される場合の変性剤としては、以下のものに限定されないが、例えば、トリス(3-トリメトキシシリルプロピル)アミン、ビス(3-トリメトキシシリルプロピル)―[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)アミン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、トリス(3-エトキシシリルプロピル)アミン、ビス(3-トリエトキシシリルプロピル)―[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)アミン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリメトキシシリルプロピル)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、トリス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリエトキシシリルプロピル)-ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス(3-トリエトキシシリルプロピル)-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリメトキシシリルプロピル)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、テトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、トリス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリエトキシシリルプロピル)-ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、トリス(3-トリエトキシシリルプロピル)-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス(3-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-エトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、テトラキス(3-トリメトキシシリルプロピル)-1,6-ヘキサメチレンジアミン、及びペンタキス(3-トリメトキシシリルプロピル)-ジエチレントリアミンが挙げられる。
 前記式(C)において、Aが式(III)で表される場合の変性剤としては、以下のものに限定されないが、例えば、トリス(3-トリメトキシシリルプロピル)-メチル-1,3-プロパンジアミン、ビス(2-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-メチル-1,3-プロパンジアミン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)-メチル-1,3-プロパンジアミン、トリス(3-トリエトキシシリルプロピル)-メチル-1,3-プロパンジアミン、ビス(2-トリエトキシシリルプロピル)-[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-メチル-1,3-プロパンジアミン、ビス[3-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリエトキシシリルプロピル)-メチル-1,3-プロパンジアミン、N,N'-(プロパン-1,3-ジイル)ビス(N-メチル-N,N-ビス(3-(トリメトキシシリル)プロピル)-1,3-プロパンジアミン)、及びN-(3-(ビス(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N-メチル-N-(3-(メチル(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N-(3-(トリメトキシシリル)プロピル)-1,3-プロパンジアミンが挙げられる。
 前記式(C)において、Aが式(IV)で表される場合の変性剤としては、以下のものに限定されないが、例えば、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリメトキシシリルプロピル)シラン、トリス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]シラン、ビス(3-トリメトキシシリルプロピル)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、(3-トリメトキシシリル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、ビス[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)-ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、ビス(3-トリメトキシシリルプロピル)-[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]シラン、ビス[3-(1-メトキシ-2-トリメチルシリル-1-シラ-2-アザシクロペンタン)プロピル]-ビス(3-トリメトキシシリルプロピル)シラン、及びビス(3-トリメトキシシリルプロピル)-ビス[3-(1-メトキシ-2-メチル-1-シラ-2-アザシクロペンタン)プロピル]シランが挙げられる。
 前記式(C)において、Aが式(V)で表される場合の変性剤としては、以下のものに限定されないが、例えば、3-トリス[2-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)エトキシ]シリル-1-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロパン、及び3-トリス[2-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)エトキシ]シリル-1-トリメトキシシリルプロパンが挙げられる。
 前記式(C)において、Aは、好ましくは式(II)又は式(III)で表され、kは、0を示す。
 このような変性剤は、入手が容易である傾向にあり、また、本実施形態の共役ジエン系重合体を加硫物としたときにおける耐摩耗性及び低ヒステリシスロス性能がより優れるものとなる傾向にある。
 このような変性剤としては、以下のものに限定されないが、例えば、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、トリス(3-トリメトキシシリルプロピル)アミン、トリス(3-トリエトキシシリルプロピル)アミン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-メチル-1,3-プロパンジアミン、及びビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリスメトキシシリルプロピル)-メチル-1,3-プロパンジアミンが挙げられる。
 前記式(C)において、Aが、より好ましくは式(II)又は式(III)で表され、kは、0を示し、式(II)又は式(III)において、aは、2~10の整数を示す。
 これにより、加硫したときにおける耐摩耗性及び低ヒステリシスロス性能がより優れるものとなる傾向にある。
 このような変性剤としては、以下のものに限定されないが、例えば、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、及びN-(3-(ビス(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N-メチル-N-(3-(メチル(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N-(3-(トリメトキシシリル)プロピル)-1,3-プロパンジアミンが挙げられる。
 変性剤としての前記式(C)で表される化合物の添加量は、共役ジエン系重合体のモル数対変性剤のモル数が、所望の化学量論的比率となるように、共役ジエン系重合体に変性剤を反応させるよう調整することができ、これにより所望の星形高分岐構造が達成される傾向にある。
 具体的な共役ジエン系重合体のモル数は、変性剤のモル数に対して、好ましくは5.0倍以上、より好ましくは6.0倍以上である。
 この場合、式(C)において、変性剤の官能基数((m-1)×i+p×j+k)は、5~10の整数であることが好ましく、6~10の整数であることがより好ましい。
 本実施形態の、変性された共役ジエン系重合体においては、その共役ジエン系重合体中の変性基含有重合体の割合は、変性率で表される。
 本実施形態の共役ジエン系重合体において、変性率は60質量%以上であることが好ましく、より好ましくは65質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは75質量%以上、よりさらに好ましくは80質量%以上、特に好ましくは82質量%以上である。
 変性率を60質量%以上とすることにより、加硫物とする際の加工性に優れ、加硫物としたときにおける耐摩耗性及び低ヒステリシスロス性能により優れる傾向にある。
 本実施形態においては、変性工程後、又は変性工程前に、縮合促進剤の存在下で縮合反応させる縮合反応工程を行ってもよい。
 本実施形態の共役ジエン系重合体は、共役ジエン部を水素化してもよい。
 共役ジエン系重合体の共役ジエン部を水素化する方法は、特に限定されず、公知の方法が利用できる。
 好適な水素化の方法としては、触媒の存在下、重合体溶液に気体状水素を吹き込む方法で水素化する方法が挙げられる。
 触媒としては、例えば、貴金属を多孔質無機物質に担持させた触媒等の不均一系触媒;ニッケル、コバルト等の塩を可溶化し有機アルミニウム等と反応させた触媒、チタノセン等のメタロセンを用いた触媒等の均一系触媒が挙げられる。これら中でも、マイルドな水素化条件を選択できる観点から、チタノセン触媒が好ましい。
 また、芳香族基の水素化は、貴金属の担持触媒を用いることによって行うことができる。
 水素化触媒としては、以下のものに限定されないが、例えば、(1)Ni,Pt,Pd,Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等に担持させた担持型不均一系水添触媒、(2)Ni,Co,Fe,Cr等の有機酸塩又はアセチルアセトン塩等の遷移金属塩と有機アルミニウム等の還元剤とを用いる、いわゆるチーグラー型水添触媒、(3)Ti,Ru,Rh,Zr等の有機金属化合物等のいわゆる有機金属錯体等が挙げられる。さらに、水素化触媒としては、例えば、特公昭42-8704号公報、特公昭43-6636号公報、特公昭63-4841号公報、特公平1-37970号公報、特公平1-53851号公報、特公平2-9041号公報、特開平8-109219号公報に記載された公知の水素化触媒も挙げられる。好ましい水素化触媒としては、チタノセン化合物と還元性有機金属化合物との反応混合物が挙げられる。
 本実施形態の共役ジエン系重合体の製造方法においては、反応工程の後、重合体溶液に、必要に応じて、失活剤、中和剤等を添加してもよい。
 失活剤としては、以下のものに限定されないが、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。
 中和剤としては、以下のものに限定されないが、例えば、ステアリン酸、オレイン酸、バーサチック酸(炭素数9~11個で、10個を中心とする、分岐の多いカルボン酸混合物)等のカルボン酸;無機酸の水溶液、炭酸ガスが挙げられる。
 本実施形態の共役ジエン系重合体は、重合後のゲル生成を防止する観点、及び加工時の安定性を向上させる観点から、ゴム用安定剤を添加することが好ましい。
 ゴム用安定剤としては、以下のものに限定されず、公知のものを用いることができるが、例えば、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4'-ヒドロキシ-3',5'-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が好ましい。
〔油展共役ジエン系重合体〕
 本実施形態の油展共役ジエン共重合体は、上述した本実施形態の共役ジエン系重合体と、伸展油を含有する。
 これにより、共役ジエン系重合体の加工性をより改善することができる。
 伸展油を共役ジエン系重合体に添加する方法としては、以下のものに限定されないが、伸展油を共役ジエン系重合体溶液に加え、混合して、油展重合体溶液としたものを脱溶媒する方法が好ましい。
 伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。これらの中でも、環境安全上の観点、並びにオイルブリード防止及びウェットグリップ特性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。アロマ代替油としては、Kautschuk Gummi Kunststoffe 52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等の他、RAE(Residual Aromatic Extracts)が挙げられる。
 伸展油の添加量は、本実施形態の共役ジエン系重合体100質量部に対し、伸展油1~60質量部とし、10~60質量部が好ましく、15~37.5質量部がより好ましい。
(脱溶媒工程)
 本実施形態の共役ジエン系重合体を、重合体溶液から取得する方法としては、公知の方法を用いることができる。その方法として、例えば、スチームストリッピング等で溶媒を分離した後、共役ジエン系重合体を濾別し、さらにそれを脱水及び乾燥して、共役ジエン系重合体を取得する方法、フラッシングタンクで濃縮し、さらにベント押出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法が挙げられる。
〔ゴム組成物〕
 本実施形態のゴム組成物は、ゴム成分と、当該ゴム成分100質量部に対して5.0質量部以上150質量部以下の充填剤とを含む。
 また、前記ゴム成分は、省燃費性能、加工性、耐摩耗性向上の観点から、当該ゴム成分の総量(100質量%)に対して、上述した本実施形態の共役ジエン系重合体、又は本実施形態の油展共役ジエン系重合体を10質量%以上含む。
 また、当該充填剤は、シリカ系無機充填剤を含むことが好ましい。
 本実施形態のゴム組成物は、シリカ系無機充填剤を分散させることで、加硫物とする際の加工性に、より優れる傾向にあり、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、耐摩耗性及び破壊強度に、より優れる傾向にある。
 本実施形態のゴム組成物が、タイヤ、防振ゴム等の自動車部品、靴等の加硫ゴム用途に用いられる場合にも、シリカ系無機充填剤を含むことが好ましい。
 本実施形態のゴム組成物は、本実施形態の共役ジエン系重合体以外のゴム状重合体(以下、単に「ゴム状重合体」という。)を、本実施形態の共役ジエン系重合体と組み合わせて含有してもよい。
 このようなゴム状重合体としては、以下のものに限定されないが、例えば、共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、非ジエン系重合体、天然ゴムが挙げられる。
 前記ゴム状重合体としては、以下のものに限定されないが、例えば、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物、スチレン-ブタジエンゴム又はその水素添加物、スチレン-ブタジエンブロック共重合体又はその水素添加物、スチレン-イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー、アクリロニトリル-ブタジエンゴム又はその水素添加物が挙げられる。
 非ジエン系重合体としては、以下のものに限定されないが、例えば、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム、エチレン-ブテンゴム、エチレン-ヘキセンゴム、エチレン-オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β-不飽和ニトリル-アクリル酸エステル-共役ジエン共重合ゴム、ウレタンゴム、及び多硫化ゴムが挙げられる。
 天然ゴムとしては、以下のものに限定されないが、例えば、スモークドシートであるRSS3~5号、SMR、エポキシ化天然ゴムが挙げられる。
 上述した各種ゴム状重合体は、水酸基、アミノ基等の極性を有する官能基を付与した変性ゴムであってもよい。タイヤ用に用いる場合、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム、天然ゴム、及びブチルゴムが好ましく用いられる。
 ゴム状重合体の重量平均分子量は、性能と加工特性のバランスの観点から、2000以上2000000以下であることが好ましく、5000以上1500000以下であることがより好ましい。また、低分子量のゴム状重合体、いわゆる液状ゴムを用いることもできる。これらのゴム状重合体は、1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態の共役ジエン系重合体とゴム状重合体とを含むゴム組成物において、当該ゴム状重合体に対する本実施形態の共役ジエン系重合体の含有比率(質量比)は、(本実施形態の共役ジエン系重合体/ゴム状重合体)として、10/90以上100/0以下が好ましく、20/80以上90/10以下がより好ましく、50/50以上80/20以下がさらに好ましい。
 したがって、ゴム組成物を構成するゴム成分は、当該ゴム成分の総量(100質量部)に対して、本実施形態の共役ジエン系重合体を、好ましくは10質量部以上100質量部以下含み、より好ましくは20質量部以上90質量部以下含み、さらに好ましくは50質量部以上80質量部以下含む。
 (本実施形態の共役ジエン系重合体/ゴム状重合体)の含有比率が上記範囲であると、加硫物としたときにおける低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性に優れ、破壊強度も優れたものとなる。
 本実施形態のゴム組成物に含まれる充填剤としては、以下のものに限定されないが、例えば、シリカ系無機充填剤、カーボンブラック、金属酸化物、金属水酸化物が挙げられる。これらの中でも、シリカ系無機充填剤が好ましい。
 充填剤は1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態のゴム組成物中の充填剤の含有量は、本実施形態の共役ジエン系重合体を含むゴム成分100質量部に対して、5.0質量部以上150質量部であり、20質量部以上100質量部以下が好ましく、30質量部以上90質量部以下がより好ましい。
 充填剤の含有量は、充填剤の添加効果が発現する観点から、5.0質量部以上であり、充填剤を十分に分散させ、ゴム組成物の加工性及び機械強度を実用上十分なものとする観点から、150質量部以下である。
 シリカ系無機充填剤としては、特に限定されず、公知のものを用いることができるが、SiO又はSiAlを構成単位として含む固体粒子が好ましく、SiO又はSiAlを構成単位の主成分として含む固体粒子がより好ましい。ここで、主成分とは、シリカ系無機充填剤中に50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上含有される成分をいう。
 シリカ系無機充填剤としては、以下のものに限定されないが、例えば、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質が挙げられる。
 また、表面を疎水化したシリカ系無機充填剤、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も挙げられる。これらの中でも、強度及び耐摩耗性等の観点から、シリカ及びガラス繊維が好ましく、シリカがより好ましい。シリカとしては、例えば、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカが挙げられる。これらのシリカの中でも、破壊特性の改良効果及びウェットスキッド抵抗性のバランスに優れる観点から、湿式シリカが好ましい。
 ゴム組成物の実用上良好な耐摩耗性及び破壊特性を得る観点から、シリカ系無機充填剤のBET吸着法で求められる窒素吸着比表面積は、100m/g以上300m/g以下であることが好ましく、170m/g以上250m/g以下であることがより好ましい。また必要に応じて、比較的比表面積が小さい(例えば、比表面積が200m/g未満の)シリカ系無機充填剤と、比較的比表面積の大きい(例えば、比表面積が200m/g以上の)シリカ系無機充填剤)と、を組み合わせて用いることができる。
 特に比較的比表面積の大きい(例えば、比表面積が200m/g以上の)シリカ系無機充填剤を用いる場合に、本実施形態の共役ジエン系重合体は、シリカの分散性を改善し、特に耐摩耗性の向上に効果があり、良好な破壊特性と低ヒステリシスロス性とを高度にバランスさせることができる傾向にある。
 本実施形態のゴム組成物中のシリカ系無機充填剤の含有量は、本実施形態の共役ジエン系重合体を含むゴム成分100質量部に対して、5.0質量部以上150質量部が好ましく、20質量部以上100質量部以下がより好ましい。シリカ系無機充填剤の含有量は、シリカ系無機充填剤の添加効果が発現する観点から、5.0質量部以上が好ましく、シリカ系無機充填剤を十分に分散させ、ゴム組成物の加工性及び機械強度を実用的に十分なものとする観点から、150質量部以下が好ましい。
 カーボンブラックとしては、以下のものに限定されないが、例えば、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが挙げられる。これらの中でも、窒素吸着比表面積が50m/g以上、かつ、ジブチルフタレート(DBP)吸油量が80mL/100g以下のカーボンブラックが好ましい。
 カーボンブラックの含有量は、本実施形態の共役ジエン系重合体を含むゴム成分100質量部に対して、0.5質量部以上100質量部以下が好ましく、3.0質量部以上100質量部以下がより好ましく、5.0質量部以上50質量部以下がさらに好ましい。カーボンブラックの含有量は、ドライグリップ性能、導電性等のタイヤ等の用途に求められる性能を発現する観点から、0.5質量部以上とすることが好ましく、分散性の観点から、100質量部以下とすることが好ましい。
 金属酸化物とは、化学式MxOy(Mは、金属原子を示し、x及びyは、各々独立して、1~6の整数を示す。)を構成単位の主成分とする固体粒子のことをいう。
 金属酸化物としては、以下のものに限定されないが、例えば、アルミナ、酸化チタン、酸化マグネシウム、及び酸化亜鉛が挙げられる。
 金属水酸化物としては、以下のものに限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム、及び水酸化ジルコニウムが挙げられる。
 ゴム組成物は、シランカップリング剤を含んでもよい。
 シランカップリング剤は、ゴム成分と無機充填剤との相互作用を緊密にする機能を有しており、ゴム成分及びシリカ系無機充填剤のそれぞれに対する親和性又は結合性の基を有しており、特に、硫黄結合部分とアルコキシシリル基又はシラノール基部分とを一分子中に有する化合物が好ましい。このような化合物としては、例えば、ビス-[3-(トリエトキシシリル)-プロピル]-テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド、ビス-[2-(トリエトキシシリル)-エチル]-テトラスルフィドが挙げられる。
 シランカップリング剤の含有量は、上述した充填剤100質量部に対して、0.1質量部以上30質量部以下が好ましく、0.5質量部以上20質量部以下がより好ましく、1.0質量部以上15質量部以下がさらに好ましい。シランカップリング剤の含有量が上記範囲であると、シランカップリング剤による添加効果を一層顕著なものにできる傾向にある。
 本実施形態のゴム組成物は、その加工性の改良を図る観点から、ゴム用軟化剤を含んでもよい。
 ゴム用軟化剤としては、鉱物油、又は、液状若しくは低分子量の合成軟化剤が好適である。
 ゴムの軟化、増容、及び加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が全炭素中30%以上45%以下を占めるものがナフテン系、芳香族炭素数が全炭素中30%を超えて占めるものが芳香族系と呼ばれている。
 本実施形態の共役ジエン系重合体が共役ジエン化合物とビニル芳香族化合物との共重合体である場合、用いるゴム用軟化剤としては、適度な芳香族含量を有するものが共重合体との馴染みがよい傾向にあるため好ましい。
 ゴム用軟化剤の含有量は、本実施形態の共役ジエン系重合体を含有するゴム成分100質量部に対して、0質量部以上100質量部以下が好ましく、10質量部以上90質量部以下がより好ましく、30質量部以上90質量部以下がさらに好ましい。ゴム用軟化剤の含有量が、前記ゴム成分100質量部に対して100質量部以下であることで、ブリードアウトを抑制し、本実施形態のゴム組成物表面のベタツキを抑制する傾向にある。
 本実施形態の共役ジエン系重合体を含むゴム成分、シリカ系無機充填剤、カーボンブラックやその他の充填剤、シランカップリング剤、ゴム用軟化剤等の添加剤等の、本実施形態のゴム組成物の構成材料を混合する方法については、以下のものに限定されないが、例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶剤を加熱除去する方法が挙げられる。
 これらのうち、ロール、バンバリーミキサー、ニーダー、押出機による溶融混練法が生産性、良混練性の観点から好ましい。また、本実施形態のゴム組成物の構成材料を一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
 本実施形態のゴム組成物は、加硫剤により加硫処理を施した加硫組成物としてもよい。加硫剤としては、以下のものに限定されないが、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が挙げられる。
 硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。
 加硫剤の含有量は、本実施形態の共役ジエン系重合体を含むゴム成分100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。加硫方法としては、従来公知の方法を適用でき、加硫温度は、120℃以上200℃以下が好ましく、より好ましくは140℃以上180℃以下である。
 加硫に際しては、必要に応じて加硫促進剤を用いてもよい。
 加硫促進剤としては、従来公知の材料を用いることができ、以下のものに限定されないが、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系の加硫促進剤が挙げられる。
 また、加硫助剤としては、以下のものに限定されないが、例えば、亜鉛華、ステアリン酸が挙げられる。
 加硫促進剤の含有量は、本実施形態の共役ジエン系重合体を含むゴム成分100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。
 本実施形態のゴム組成物には、本実施形態の目的を損なわない範囲内で、上述した以外のその他の軟化剤、充填剤、耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤等の各種添加剤を用いてもよい。
 その他の軟化剤としては、公知の軟化剤を用いることができる。
 その他の充填剤としては、具体的には、炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウムが挙げられる。
 上記の耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、潤滑剤としては、それぞれ公知の材料を用いることができる。
〔タイヤ〕
 本実施形態のゴム組成物は、タイヤ用ゴム組成物として好適に用いられる。
 すなわち、本実施形態のタイヤは、本実施形態のゴム組成物を含有し、本実施形態のゴム組成物を加工することにより製造される。
 本実施形態のゴム組成物は、以下のものに限定されないが、例えば、省燃費タイヤ、オールシーズンタイヤ、高性能タイヤ、スタッドレスタイヤ等の各種タイヤ:トレッド、カーカス、サイドウォール、ビード部等のタイヤ各部位への利用が可能である。特に、本実施形態のゴム組成物をタイヤ用ゴム組成物とした場合、加硫物としたときに低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性に優れているため、省燃費タイヤ、高性能タイヤのトレッド用として、より好適に用いられる。
 以下、具体的な実施例及び比較例を挙げて、本実施形態を更に詳しく説明するが、本実施形態は以下の実施例及び比較例により何ら限定されるものではない。
 実施例及び比較例における各種の物性は下記に示す方法により測定した。
 以下の実施例及び比較例においては、変性後の共役ジエン系重合体を「変性共役ジエン系重合体」と記載する。未変性である場合には、「未変性の共役ジエン系重合体」と記載する。
(物性1)結合スチレン量
 変性共役ジエン系重合体を試料として、試料100mgを、クロロホルムで100mLにメスアップし、溶解して測定サンプルとした。スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料である変性共役ジエン系重合体100質量%に対する結合スチレン量(質量%)を測定した(島津製作所社製の分光光度計「UV-2450」)。
(物性2)ブタジエン部分のミクロ構造(1,2-ビニル結合量)
 変性共役ジエン系重合体を試料として、試料50mgを、10mLの二硫化炭素に溶解して測定サンプルとした。
 溶液セルを用いて、赤外線スペクトルを600~1000cm-1の範囲で測定して、所定の波数における吸光度によりハンプトンの方法(R.R.Hampton,Analytical Chemistry 21,923(1949)に記載の方法)の計算式に従い、ブタジエン部分のミクロ構造、すなわち、1,2-ビニル結合量(mol%)を求めた(日本分光社製のフーリエ変換赤外分光光度計「FT-IR230」)。
(物性3)分子量
 測定条件1:未変性の共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(東ソー社製の商品名「HLC-8320GPC」)を使用して、RI検出器(東ソー社製の商品名「HLC8020」)を用いてクロマトグラムを測定し、標準ポリスチレンを使用して得られる検量線に基づいて、重量平均分子量(Mw)と数平均分子量(Mn)と分子量分布(Mw/Mn)とを求めた。
 溶離液は5mmol/Lのトリエチルアミン入りTHF(テトラヒドロフラン)を使用した。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
 測定用の試料10mgを10mLのTHFに溶解して測定溶液とし、測定溶液10μLをGPC測定装置に注入して、オーブン温度40℃、THF流量0.35mL/分の条件で測定した。
 上記の測定条件1で測定した各種試料の中で、分子量分布(Mw/Mn)の値が1.6未満であった試料は、改めて下記の測定条件2により測定した。測定条件1で測定し、その分子量分布の値が1.6以上であった試料に対しては、測定条件1で測定した結果を表1~表4に示す。
 測定条件2:未変性の共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線に基づいて重量平均分子量(Mw)と数平均分子量(Mn)を求めた。
 溶離液は5mmol/Lのトリエチルアミン入りTHFを使用した。カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」、カラム:東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」を使用した。
 オーブン温度40℃、THF流量0.6mL/分の条件で、RI検出器(東ソー社製の商品名「HLC8020」)を用いた。測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液20μLをGPC測定装置に注入して測定した。
 測定条件1で測定し、その分子量分布の値が1.6未満であった試料に対しては、測定条件2で測定した結果を表1~表4に示す。
(物性4)収縮因子(g')
 変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(Malvern社製の商品名「GPCmax VE-2001」)を使用した。光散乱検出器、RI検出器、粘度検出器(Malvern社製の商品名「TDA305」)の順番に接続されている3つの検出器を用いて測定を実施し、標準ポリスチレンに基づいて、光散乱検出器とRI検出器の結果から絶対分子量を求め、RI検出器と粘度検出器の結果から固有粘度を求めた。
 固有粘度と分子量との関係式([η]=KMα([η]:固有粘度、M:分子量)における定数(K、α)を、logK=-3.883、α=0.771として、分子量Mの範囲を1,000~2,000,000まで入力し、標準固有粘度[η]0と分子量Mとの関係を明らかにした。この標準固有粘度[η]0に対して、3D-GPC測定で得られたサンプルの各分子量Mでの固有粘度[η]を標準固有粘度[η]0に対する固有粘度[η]の関係として[η]/[η]0を各分子量Mで算出し、その平均値を収縮因子(g')とした。
 より具体的には、以下に示す方法により測定することができる。
 溶離液は5mmol/Lのトリエチルアミン入りTHFを使用した。
 カラムは、東ソー社製の商品名「TSKgel G4000HXL」、「TSKgel G5000HXL」、及び「TSKgel G6000HXL」を接続して使用した。
 測定用の試料20mgを10mLのTHFに溶解して測定溶液とし、測定溶液100μLをGPC測定装置に注入して、オーブン温度40℃、THF流量1mL/分の条件で測定した。
(物性5)重合体ムーニー粘度
 未変性の共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、JIS K6300に準拠し、L形ローターを用いてムーニー粘度を測定した。
 測定温度は、未変性の共役ジエン系重合体を試料とする場合には110℃とし、変性共役ジエン系重合体を試料とする場合には100℃とした。
 まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定してムーニー粘度(ML(1+4))とした。
(物性6)ガラス転移温度(Tg)
 変性共役ジエン系重合体を試料として、ISO 22768:2006に準拠して、マックサイエンス社製の示差走査熱量計「DSC3200S」を用い、ヘリウム50mL/分の流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
(物性7)変性率
 変性共役ジエン系重合体を試料として、シリカ系ゲルを充填剤としたGPCカラムに、変性した塩基性重合体成分が吸着する特性を応用することにより、測定した。
 試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系カラムで測定したクロマトグラムと、シリカ系カラムで測定したクロマトグラムと、の差分よりシリカ系カラムへの吸着量を測定し、変性率を求めた。
 具体的には、以下に示すとおりである。
 また、上記の(物性3)の測定条件1で測定し、その分子量分布の値が1.6以上であった試料に対しては下記の測定条件3で測定した。上記(物性3)の測定条件1で測定し、その分子量分布の値が1.6未満であった試料に対しては下記の測定条件4で測定した。その結果を表1~表4に示す。
 試料溶液の調製:試料10mg及び標準ポリスチレン5mgを20mLのTHFに溶解させて、試料溶液とした。
 測定条件3:ポリスチレン系カラムを用いたGPC測定条件:
 東ソー社製の商品名「HLC-8320GPC」を使用して、5mmol/Lのトリエチルアミン入りTHFを溶離液として用い、試料溶液10μLを装置に注入し、カラムオーブン温度40℃、THF流量0.35mL/分の条件で、RI検出器を用いてクロマトグラムを得た。
 カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
 測定条件4:ポリスチレン系カラムを用いたGPC測定条件:
 東ソー社製の商品名「HLC-8320GPC」を使用して、5mmol/Lのトリエチルアミン入りTHFを溶離液として用い、試料溶液20μLを装置に注入して測定した。
 カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」、カラム:東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」を使用した。カラムオーブン温度40℃、THF流量0.6mL/分の条件で、RI検出器(東ソー社製 HLC8020)を用いて測定しクロマトグラムを得た。
 シリカ系カラムを用いたGPC測定条件:
 東ソー社製の商品名「HLC-8320GPC」を使用して、THFを溶離液として用い、試料溶液50μLを装置に注入し、カラムオーブン温度40℃、THF流量0.5ml/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、商品名「Zorbax PSM-1000S」、「PSM-300S」、「PSM-60S」を接続して使用し、その前段にガードカラムとして商品名「DIOL 4.6×12.5mm 5micron」を接続して使用した。
 変性率の計算方法:
 ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP1、標準ポリスチレンのピーク面積をP2、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP3、標準ポリスチレンのピーク面積をP4として、下記式より変性率(%)を求めた。
 変性率(%)=[1-(P2×P3)/(P1×P4)]×100
(ただし、P1+P2=P3+P4=100)
(物性8)分岐度(Bn)
 変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(Malvern社製の商品名「GPCmax VE-2001」)を使用して、光散乱検出器、RI検出器、粘度検出器(Malvern社製の商品名「TDA305」)の順番に接続されている3つの検出器を用いて測定し、標準ポリスチレンに基づいて、光散乱検出器とRI検出器結果から絶対分子量を、RI検出器と粘度検出器の結果から固有粘度を求めた。
 固有粘度と分子量との関係式([η]=KMα([η]:固有粘度、M:分子量)における定数(K、α)を、logK=-3.883、α=0.771として、分子量Mの範囲を1,000~2,000,000まで入力し、標準固有粘度[η]0と分子量Mとの関係を明らかにした。この標準固有粘度[η]0に対して、3D-GPC測定で得られたサンプルの各分子量Mでの固有粘度[η]を標準固有粘度[η]0に対する固有粘度[η]の関係として[η]/[η]0を各分子量Mで算出し、その平均値を収縮因子(g')とした。
 その後、得られた収縮因子(g')を用いてg'=6Bn/{(Bn+1)(Bn+2)}と定義される分岐度(Bn)を算出した。
 溶離液は5mmol/Lのトリエチルアミン入りTHFを使用した。
 カラムは、東ソー社製の商品名「TSKgel G4000HXL」、「TSKgel G5000HXL」、及び「TSKgel G6000HXL」を接続して使用した。
 測定用の試料20mgを10mLのTHFに溶解して測定溶液とし、測定溶液100μLをGPC測定装置に注入して、オーブン温度40℃、THF流量1mL/分の条件で測定した。
(物性9)熱負荷を与えた前後の酸化開始温度の変化(ΔT)
 耐熱安定性を、熱負荷を与えた前後の酸化開始温度の変化を測定することにより評価した。
 ラボプラストミル30C150(東洋精機製作所)の本体温度を50℃とし、変性共役ジエン系重合体を50g投入し、120rpmで5分間混練し、5分停止を1サイクルとして、合計3サイクル混練を行った。
 混練前後の変性共役ジエン系重合体の酸化開始温度を、熱重量示差熱分析装置(STA 7200RV、HITACHI)で測定した。
 大気雰囲気下にて、10℃/minの条件で30℃から500℃まで昇温した際、吸熱ピークが確認された温度を酸化開始温度と定義し、熱負荷を与えた前後での変性共役ジエン系重合体の酸化開始温度の差を、ΔTとして耐熱安定性の指標とした。
(実施例1)変性共役ジエン系重合体(試料1)
 内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器として2基連結した。
 予め水分除去した、1,3-ブタジエンを13.0g/分、スチレンを10.0g/分、n-ヘキサンを175.2g/分の条件で混合した。この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウムを0.103mmol/分で添加、混合した後、反応基の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパンを0.081mmol/分の速度で、重合開始剤としてn-ブチルリチウムを0.143mmol/分の速度で、攪拌機で激しく混合する1基目反応器の底部へ供給し、更に1基目反応器上部より分割1,3-ブタジエンを5.6g/分の条件で添加し、反応器内温を67℃に保持した。
 1基目反応器頂部より重合体溶液を連続的に抜き出し、2基目反応器の底部に連続的に供給し70℃で反応を継続し、さらに2基目の頂部よりスタティックミキサーへ供給した。重合が十分に安定したところで、2基目の反応基の底部より、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(表中、「BS-1」と略す。)を0.0190mmol/分の速度で添加し、さらに重合反応と分岐化反応が安定したところで、変性剤添加前の共役ジエン系重合体溶液を少量抜出し、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように添加した後に溶媒を除去し、110℃のムーニー粘度及び各種の分子量を測定した。その他の物性も併せて表1に示す。
 次に、反応器の出口より流出した重合体溶液に、変性剤として、2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(表中、「A」と略す。)を0.0360mmol/分の速度で連続的に添加し、スタティックミキサーを用いて混合し、変性反応した。このとき、反応器の出口より流出した重合溶液に変性剤が添加されるまでの時間は4.8分、温度は68℃であり、重合工程における温度と、変性剤を添加するまでの温度との差は2℃であった。変性反応した重合体溶液に、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように0.055g/分(n-ヘキサン溶液)で連続的に添加し、変性反応を終了した。酸化防止剤と同時に、重合体100gに対してオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が37.5gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、変性共役ジエン系重合体(試料1)を得た。試料1の物性を表1に示す。
(実施例2)変性共役ジエン系重合体(試料2)
 変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからトリス(3-トリメトキシシリルプロピル)アミン(表中、「B」と略す。)に替え、その添加量を0.0250mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料2)を得た。試料2の物性を表1に示す。
(実施例3)変性共役ジエン系重合体(試料3)
 変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「C」と略す。)に替え、その添加量を0.0190mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料3)を得た。試料3の物性を表1に示す。
(実施例4)変性共役ジエン系重合体(試料4)
 変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「C」と略す。)に替え、その添加量を0.0160mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料4)を得た。試料4の物性を表1に示す。
(実施例5)変性共役ジエン系重合体(試料5)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランからジメチルメトキシ(4-ビニルフェニル)シラン(表中、「BS-2」と略す。)に替え、その添加量を0.0350mmol/分に替えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料5)を得た。試料5の物性を表1に示す。
(実施例6)変性共役ジエン系重合体(試料6)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランからジメチルメトキシ(4-ビニルフェニル)シラン(表中、「BS-2」と略す。)に替え、その添加量を0.0350mmol/分に替え、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからトリス(3-トリメトキシシリルプロピル)アミン(表中、「B」と略す。)に替え、その添加量を0.0250mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料6)を得た。試料6の物性を表1に示す。
(実施例7)変性共役ジエン系重合体(試料7)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランからジメチルメトキシ(4-ビニルフェニル)シラン(表中、「BS-2」と略す。)に替え、その添加量を0.0350mmol/分に替え、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「C」と略す。)に替え、その添加量を0.0160mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料7)を得た。試料7の物性を表1に示す。
(実施例8)変性共役ジエン系重合体(試料8)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランから1,1-ビス(4-(ジメチルメトキシシリル)フェニル)エチレン(表中、「BS-3」と略す。)に替え、その添加量を0.0120mmol/分に替えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料8)を得た。試料8の物性を表1に示す。
(実施例9)変性共役ジエン系重合体(試料9)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランから1,1-ビス(4-(ジメチルメトキシシリル)フェニル)エチレン(表中、「BS-3」と略す。)に替え、その添加量を0.0120mmol/分に替え、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからトリス(3-トリメトキシシリルプロピル)アミン(表中、「B」と略す。)に替え、その添加量を0.0250mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料9)を得た。試料9の物性を表1に示す。
(実施例10)変性共役ジエン系重合体(試料10)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランから1,1-ビス(4-(ジメチルメトキシシリル)フェニル)エチレン(表中、「BS-3」と略す。)に替え、その添加量を0.0120mmol/分に替え、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「C」と略す。)に替え、その添加量を0.0160mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料10)を得た。試料10の物性を表1に示す。
(実施例11)変性共役ジエン系重合体(試料11)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランから1,1-ビス(4-トリメトキシシリルフェニル)エチレン(表中、「BS-4」と略す。)に替え、その添加量を0.0210mmol/分に替えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料11)を得た。試料11の物性を表2に示す。
(実施例12)変性共役ジエン系重合体(試料12)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランから1,1-ビス(4-トリメトキシシリルフェニル)エチレン(表中、「BS-4」と略す。)に替え、その添加量を0.0210mmol/分に替え、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからトリス(3-トリメトキシシリルプロピル)アミン(表中、「B」と略す。)に替え、その添加量を0.0250mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料12)を得た。試料12の物性を表2に示す。
(実施例13)変性共役ジエン系重合体(試料13)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランから1,1-ビス(4-トリメトキシシリルフェニル)エチレン(表中、「BS-4」と略す。)に替え、その添加量を0.0210mmol/分に替え、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「C」と略す。)に替え、その添加量を0.0160mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料13)を得た。試料13の物性を表2に示す。
(実施例14)変性共役ジエン系重合体(試料14)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランからトリクロロ(4-ビニルフェニル)シラン(表中、「BS-5」と略す。)に替えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料14)を得た。試料14の物性を表2に示す。
(実施例15)変性共役ジエン系重合体(試料15)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランからトリクロロ(4-ビニルフェニル)シラン(表中、「BS-5」と略す。)に替え、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからトリス(3-トリメトキシシリルプロピル)アミン(表中、「B」と略す。)に替え、その添加量を0.0250mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料15)を得た。試料15の物性を表2に示す。
(実施例16)変性共役ジエン系重合体(試料16)
 分岐化剤をトリメトキシ(4-ビニルフェニル)シランからトリメトキシ(4-ビニルフェニル)シランからトリクロロ(4-ビニルフェニル)シラン(表中、「BS-5」と略す。)に替え、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「C」と略す。)に替え、その添加量を0.0160mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料16)を得た。試料16の物性を表2に示す。
(実施例17)変性共役ジエン系重合体(試料17)
 ブタジエンの供給量を12.0g/分に変え、分割ブタジエンの供給量を6.6g/分に変えた以外は実施例1と同様にして、変性共役ジエン系重合体(試料17)を得た。試料17の物性を表2に示す。
(実施例18)変性共役ジエン系重合体(試料18)
 ブタジエンの供給量を10.0g/分に変え、分割ブタジエンの供給量を8.6g/分に変えた以外は実施例1と同様にして、変性共役ジエン系重合体(試料18)を得た。試料18の物性を表2に示す。
(実施例19)変性共役ジエン系重合体(試料19)
 ブタジエンの供給量を8.0g/分に変え、分割ブタジエンの供給量を10.6g/分に変えた以外は実施例1と同様にして、変性共役ジエン系重合体(試料19)を得た。試料19の物性を表2に示す。
(実施例20)変性共役ジエン系重合体(試料20)
 ブタジエンの供給量を15.0g/分に変え、分割ブタジエンの供給量を3.6g/分に変えた以外は実施例1と同様にして、変性共役ジエン系重合体(試料20)を得た。試料20の物性を表2に示す。
(実施例21)変性共役系重合体(試料21)
 変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからテトラエトキシシラン(表中「D」と略す。)に変え、その添加量を0.0160mmmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料21)を得た。試料21の物性を表2に示す。
(比較例1)変性共役ジエン系重合体(試料22)
 ブタジエンの供給量を15.0g/分に変え、分割ブタジエンの供給量を3.6g/分に変えた以外は実施例1と同様にして、変性共役ジエン系重合体(試料22)を得た。試料22の物性を表3に示す。
(比較例2)変性共役ジエン系重合体(試料23)
 ブタジエンの供給量を17.2g/分に変え、分割ブタジエンの供給量を1.4g/分に変えた以外は実施例1と同様にして、変性共役ジエン系重合体(試料23)を得た。試料23の物性を表3に示す。
(比較例3)変性共役ジエン系重合体(試料24)
 ブタジエンの供給量を18.6g/分に変え、分割ブタジエンの供給量を0g/分に変えた以外は実施例1と同様にして、変性共役ジエン系重合体(試料24)を得た。試料24の物性を表3に示す。
(比較例4)変性共役ジエン系重合体(試料25)
 分岐化剤添加しない以外は実施例1と同様にして、変性共役ジエン系重合体(試料25)を得た。試料25の物性を表3に示す。
(比較例5)変性共役ジエン系重合体(試料26)
 分岐化剤を添加せず、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからトリス(3-トリメトキシシリルプロピル)アミン(表中、「B」と略す。)に替え、その添加量を0.0250mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料26)を得た。試料26の物性を表3に示す。
(比較例6)変性共役ジエン系重合体(試料27)
 分岐化剤を添加せず、変性剤を2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1-アザ-2-シラシクロペンタンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「C」と略す。)に替え、その添加量を0.0160mmol/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料27)を得た。試料27の物性を表3に示す。
(実施例22)変性共役ジエン系重合体(試料28)
 ブタジエンの供給量を17.6g/分に変え、分割ブタジエンの供給量を7.5g/分に変え、スチレンの供給量を3.5g/分に変えた以外は、実施例3と同様にして、変性共役ジエン系重合体(試料28)を得た。試料28の物性を表4に示す。
(実施例23)変性共役ジエン系重合体(試料29)
 ブタジエンの供給量を19.7g/分に変え、分割ブタジエンの供給量を8.4g/分に変え、スチレンの供給量を0.5g/分に変えた以外は、実施例3と同様にして、変性共役ジエン系重合体(試料29)を得た。試料29の物性を表4に示す。
(実施例24)変性共役ジエン系重合体(試料30)
 重合開始剤としてのn-ブチルリチウムの供給量を0.188mmol/分に変え、変性剤の供給量を0.0230mmmolに変えた以外は、実施例3と同様にして、変性共役ジエン系重合体(試料30)を得た。試料30の物性を表4に示す。
(実施例25)変性共役ジエン系重合体(試料31)
 ブタジエンの供給量を17.6g/分に変え、分割ブタジエンの供給量を7.5g/分に変え、スチレンの供給量を3.5g/分に変えた以外は、実施例1と同様にして、変性共役ジエン系重合体(試料31)を得た。試料31の物性を表4に示す。
(実施例26)変性共役ジエン系重合体(試料32)
 ブタジエンの供給量を21.5g/分に変え、分割ブタジエンの供給量を3.6g/分に変え、スチレンの供給量を3.5g/分に変えた以外は、実施例3と同様にして、変性共役ジエン系重合体(試料32)を得た。試料32の物性を表4に示す。
(実施例27)変性共役ジエン系重合体(試料33)
 ブタジエンの供給量を11.6g/分に変え、分割ブタジエンの供給量を5.0g/分に変え、スチレンの供給量を12.0g/分に変えた以外は、実施例3と同様にして、変性共役ジエン系重合体(試料33)を得た。試料33の物性を表4に示す。
(比較例7)変性共役ジエン系重合体(試料34)
 スチレンを供給せず、ブタジエンの供給量を20.0g/分に変え、分割ブタジエンの供給量を8.6g/分に変えた以外は、実施例3と同様にして、変性共役ジエン系重合体(試料34)を得た。試料34の物性を表4に示す。
(比較例8)変性共役ジエン系重合体(試料35)
 分岐化剤を供給せず、分割ブタジエンを供給せず、ブタジエンの供給量を18.6g/分に変え、スチレンの供給量を10.0g/分に変えた以外は、実施例3と同様にして、変性共役ジエン系重合体(試料35)を得た。試料35の物性を表4に示す。
(比較例9)変性共役ジエン系重合体(試料36)
 ブタジエンの供給量を24.7g/分に変え、分割ブタジエンの供給量を4.4g/分に変え、スチレンの供給量を0.5g/分に変えた以外は、実施例3と同様にして、変性共役ジエン系重合体(試料36)を得た。試料36の物性を表4に示す。
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
(実施例28~54、比較例10~18)
 表1~表4に示す試料1~36を原料ゴムとして、以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を得た。
 変性共役ジエン系重合体(試料1~36):100質量部(オイル抜き)
 シリカ1(エボニック デグサ社製の商品名「Ultrasil 7000GR」窒素吸着比表面積170m2/g):50.0質量部
 シリカ2(ローディア社製の商品名「Zeosil Premium 200MP」窒素吸着比表面積220m2/g):25.0質量部
 カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
 シランカップリング剤(エボニック デグサ社製の商品名「Si75」、ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
 S-RAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):37.5質量部
 亜鉛華:2.5質量部
 ステアリン酸:1.0質量部
 老化防止剤(N-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン):2.0質量部
 硫黄:2.2質量部
 加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
 加硫促進剤2(ジフェニルグアニジン):2.0質量部
合計:239.4質量部
 上記した材料を次の方法により混練してゴム組成物を得た。温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム(試料1~27)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
 次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練した。その後、成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。その結果を、表5~表8に示す。
(評価1)配合物ムーニー粘度
 上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、JIS K6300-1に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。比較例10の結果を100として指数化した。指数が小さいほど加工性が良好であることを示す。
(評価2)スコーチ
 上記で得た第二段の混練後、かつ第三段の混練前の配合物を試料として、JIS K6300-1に準拠して、試験温度130℃の条件でスコーチタイムを測定した。比較例10の結果100として指数化した。指数が大きいほど、スコーチタイムが長く、耐熱安定性に優れることを示す。
(評価3)粘弾性パラメータ
 レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。各々の測定値は、比較例10のゴム組成物に対する結果を100として指数化した。0℃において周波数10Hz、ひずみ1%で測定したtanδをウェットグリップ性の指標とした。指数が大きいほどウェットスキッド抵抗性が良好であることを示す。また、50℃において周波数10Hz、ひずみ3%で測定したtanδを低ヒステリシスロス性の指標とした。指数が小さいほど低ヒステリシスロス性が良好であることを示す。
(評価4)耐摩耗性
 アクロン摩耗試験機(安田精機製作所社製)を使用し、JIS K6264-2に準拠して、荷重44.4N、1000回転の摩耗量を測定し、比較例10の結果を100として指数化した。指数が大きいほど耐摩耗性が良好であることを示す。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
 表5~表8に示す通り、実施例28~54は、比較例10~18と比較して、加硫物としたときにおけるウェットスキッド抵抗性と低ヒステリシスロス性のバランスに優れ、耐摩耗性にも優れることが確認された。
 また良好な耐熱安定性を示すことも確認された。
 さらに、加硫物とする際の配合物ムーニー粘度が低く、良好な加工性を示すことも確認された。
 本出願は、2019年8月6日に日本国特許庁に出願された日本特許出願(特願2019-144669)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の共役ジエン系重合体は、タイヤトレッド、自動車の内装・外装品、防振ゴム、ベルト、履物、発泡体、各種工業用品用途の材料等として、産業上の利用可能性がある。

Claims (24)

  1.  粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が8以上であり、
     熱負荷を与える前後の酸化開始温度の変化(ΔT)が11.9℃以下であり、
    芳香族ビニル化合物単量体単位を含む、
    共役ジエン系重合体。
  2.  前記熱負荷を与える前後の酸化開始温度の変化(ΔT)が10℃以下である、請求項1に記載の共役ジエン系重合体。
  3.  変性率が60質量%以上である、請求項1又は2に記載の共役ジエン系重合体。
  4.  芳香族ビニル化合物単量体単位の含有量が10質量%以上である、請求項1乃至3のいずれか一項に記載の共役ジエン系重合体。
  5.  3分岐以上の星形高分子構造を有する共役ジエン系重合体であって、少なくとも一つの星形高分子構造の分岐鎖に、
     アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において、更なる主鎖分岐構造を有する、
     請求項1乃至4のいずれか一項に記載の共役ジエン系重合体。
  6.  前記アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分が、
    下記式(1)又は(2)で表される化合物に基づく単量体単位であって、
    下記式(1)又は(2)で表される化合物に基づく単量体単位による高分子鎖の分岐点を有し、
     共役ジエン系重合体の少なくとも一端が、窒素原子含有基で変性されている、
    請求項5に記載の共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、Rは水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
     R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
     複数存在する場合のR~Rは、各々独立している。
     X1は、独立したハロゲン原子を表す。
     mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
    (式(2)中、R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。複数存在する場合のR~Rは、各々独立している。
     X~Xは、独立したハロゲン原子を表す。
     mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。
     aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(m+n+l)は、3を示す。)
  7.  前記式(1)中、Rが水素原子であり、m=0である、前記式(1)で表される化合物に基づく単量体単位を有する、請求項6に記載の共役ジエン系重合体。
  8.  前記式(2)中、m=0であり、かつb=0である、前記式(2)で表される化合物に基づく単量体単位を有する、請求項6に記載の共役ジエン系重合体。
  9.  前記式(1)中、Rが水素原子であり、m=0であり、l=0である、前記式(1)で表される化合物に基づく単量体単位を有する、請求項6に記載の共役ジエン系重合体。
  10.  前記式(2)中、m=0、l=0、a=0、b=0である、前記式(2)で表される化合物に基づく単量体単位を有する、請求項6に記載の共役ジエン系重合体。
  11.  前記式(1)中、Rは水素原子であり、l=0であり、n=3である、前記式(1)で表される化合物に基づく単量体単位を有する、請求項6に記載の共役ジエン系重合体。
  12.  請求項6に記載の共役ジエン系重合体の分岐化剤であって、
     下記式(1)又は(2)で表される化合物である分岐化剤。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Rは水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
     R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
     複数存在する場合のR~Rは、各々独立している。
     X1は、独立したハロゲン原子を表す。
     mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
    (式(2)中、R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。複数存在する場合のR~Rは、各々独立している。
     X~Xは、独立したハロゲン原子を表す。
     mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。
     aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(m+n+l)は、3を示す。)
  13.  前記式(1)中、Rが水素原子であり、m=0の化合物である、請求項12に記載の分岐化剤。
  14.  前記式(2)中、m=0であり、かつb=0の化合物である、請求項12に記載の分岐化剤。
  15.  前記式(1)中、Rが水素原子であり、m=0であり、l=0である化合物である、請求項12に記載の分岐化剤。
  16.  前記式(2)中、m=0、l=0、a=0、b=0である化合物である、請求項12に記載の分岐化剤。
  17.  前記式(1)中、Rが水素原子であり、l=0であり、n=3の化合物である、請求項12に記載の分岐化剤。
  18.  請求項1乃至11のいずれか一項に記載の共役ジエン系重合体の製造方法であって、
     有機リチウム系化合物の存在下、少なくとも共役ジエン化合物を重合し、請求項12乃至17のいずれか一項に記載の分岐化剤を用いて主鎖分岐構造を有する共役ジエン系重合体を得る重合・分岐工程を、有する、共役ジエン系重合体の製造方法。
  19.  有機リチウム系化合物の存在下、共役ジエン化合物及び芳香族ビニル化合物を重合し、共重合体を得る工程と、
     共役ジエン化合物と芳香族ビニル化合物の共重合体に、アルコキシシリル基又はハロシリル基を含むビニル系単量体を反応させ、主鎖分岐構造を形成する工程と、
     主鎖分岐構造を有する重合体鎖に、少なくとも共役ジエン化合物を重合させる工程と、
    を、有する、
    共役ジエン系重合体の製造方法。
  20.  前記共役ジエン系重合体を、窒素原子含有基を有する変性剤により変性させる変性工程をさらに有し、
     前記変性剤が、下記一般式(A)~(C)のいずれかで表される変性剤を含む、
     請求項18又は19に記載の共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(A)中、R~Rは、各々独立して、炭素数1~20のアルキル基、又は炭素数6~20のアリール基を示し、Rは、炭素数1~10のアルキレン基を示し、Rは、炭素数1~20のアルキレン基を示す。
     mは、1又は2の整数を示し、nは、2又は3の整数を示し、(m+n)は、4以上の整数を示す。複数存在する場合のR~Rは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000006
    (式(B)中、R~Rは、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、R~Rは、各々独立して、炭素数1~20のアルキレン基を示す。
     m、n、及びlは、各々独立して、1~3の整数を示し、(m+n+l)は、4以上の整数を示す。複数存在する場合のR~Rは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000007
    (式(C)中、R12~R14は、各々独立に、単結合又は炭素数1~20のアルキレン基を示し、R15~R18、及びR20は、各々独立に、炭素数1~20のアルキル基を示し、R19及びR22は、各々独立に、炭素数1~20のアルキレン基を示し、R21は、炭素数1~20のアルキル基又はトリアルキルシリル基を示す。
     mは、1~3の整数を示し、pは、1又は2を示す。
     それぞれ複数存在する場合のR12~R22、m、及びpは、各々独立しており、同じであっても異なっていてもよい。
     iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、4~10の整数である。
     Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、活性水素を有しない有機基を表す。)
  21.  前記式(C)において、
     Aが、下記一般式(II)~(V)のいずれかで表される、
     請求項20に記載の共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (式(II)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000009
    (式(III)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、Bは、炭素数1~20のアルキル基を示し、aは、1~10の整数を示す。それぞれ複数存在する場合のB及びBは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000010
    (式(IV)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
    Figure JPOXMLDOC01-appb-C000011
    (式(V)中、Bは、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示す。複数存在する場合のBは、各々独立している。)
  22.  請求項1乃至11のいずれか一項に記載の共役ジエン系重合体100質量部と、
     伸展油1~60質量部と、
    を、含有する、
    油展共役ジエン系重合体。
  23.  ゴム成分と、
     当該ゴム成分100質量部に対して5.0質量部以上150質量部の充填剤と、を含む、ゴム組成物であって、
     前記ゴム成分は、当該ゴム成分の総量に対して、請求項1乃至11のいずれか一項に記載の共役ジエン系重合体、又は請求項22に記載の油展共役ジエン系重合体を、10質量%以上含む、ゴム組成物。
  24.  請求項23に記載のゴム組成物を含有する、タイヤ。
PCT/JP2020/028486 2019-08-06 2020-07-22 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ WO2021024811A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080054053.5A CN114174350B (zh) 2019-08-06 2020-07-22 共轭二烯系聚合物及其制造方法、充油共轭二烯系聚合物、橡胶组合物以及轮胎
US17/632,873 US20220275130A1 (en) 2019-08-06 2020-07-22 Conjugated Diene-Based Polymer, Branching Agent, Production Method for Conjugated Diene-Based Polymer, Oil Extended Conjugated Diene-Based Polymer, Rubber Composition, and Tire
BR112022000676A BR112022000676A2 (pt) 2019-08-06 2020-07-22 Polímero à base de dieno conjugado, agente de ramificação, método de produção para polímero à base de dieno conjugado, polímero à base de dieno conjugado estendido em óleo, composição de borracha e pneu
KR1020217042609A KR102684932B1 (ko) 2019-08-06 2020-07-22 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 유전 공액 디엔계 중합체, 고무 조성물 및 타이어
JP2021537694A JP7343589B2 (ja) 2019-08-06 2020-07-22 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ
EP20849553.1A EP4011642B1 (en) 2019-08-06 2020-07-22 Conjugated-diene-based polymer, branching agent, method for producing conjugated-diene-based polymer, oil-extended conjugated-diene-based polymer, rubber composition, and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019144669 2019-08-06
JP2019-144669 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021024811A1 true WO2021024811A1 (ja) 2021-02-11

Family

ID=74503522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028486 WO2021024811A1 (ja) 2019-08-06 2020-07-22 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ

Country Status (8)

Country Link
US (1) US20220275130A1 (ja)
EP (1) EP4011642B1 (ja)
JP (1) JP7343589B2 (ja)
KR (1) KR102684932B1 (ja)
CN (1) CN114174350B (ja)
BR (1) BR112022000676A2 (ja)
HU (1) HUE064687T2 (ja)
WO (1) WO2021024811A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201289A1 (ja) * 2020-04-03 2021-10-07 旭化成株式会社 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物
JP7143964B1 (ja) * 2021-10-19 2022-09-29 三菱電機株式会社 金属積層造形体の製造装置および製造方法
RU2826498C1 (ru) * 2020-04-03 2024-09-11 Асахи Касеи Кабусики Кайся Полимер на основе сопряженного диена, способ его производства, полимерная композиция на основе сопряженного диена и резиновая композиция

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044921A1 (ja) * 2019-09-05 2021-03-11 旭化成株式会社 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。
JPWO2023095844A1 (ja) 2021-11-25 2023-06-01

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS428704B1 (ja) 1963-12-26 1967-04-20
JPS436636B1 (ja) 1963-04-25 1968-03-12
JPS59140211A (ja) 1983-02-01 1984-08-11 Nippon Erasutomaa Kk スチレン−ブタジエン共重合体の製造方法
JPS634841A (ja) 1986-06-25 1988-01-09 Hitachi Ltd プラズマ処理装置
JPS6437970A (en) 1987-07-30 1989-02-08 Jiyoeru Roon Aaru Ski exercise apparatus
JPS6453851A (en) 1987-08-25 1989-03-01 Hitachi Ltd Printing system
JPH029041A (ja) 1988-06-28 1990-01-12 Sony Corp 回転ドラムのアース装置
JPH08109219A (ja) 1994-10-11 1996-04-30 Asahi Chem Ind Co Ltd 水添重合体
JPH11189616A (ja) 1997-12-26 1999-07-13 Bridgestone Corp 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
JP2003171418A (ja) 2001-09-27 2003-06-20 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2005290355A (ja) 2004-03-11 2005-10-20 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
US20060142500A1 (en) * 2004-02-17 2006-06-29 Kwan-Young Lee Multi-branched styrene-conjugated diene block copolymer and its preparation method
WO2007114203A1 (ja) 2006-03-31 2007-10-11 Zeon Corporation 共役ジエン系ゴム、その製造方法、タイヤ用ゴム組成物、及びタイヤ
JP2011089086A (ja) * 2009-10-26 2011-05-06 Sumitomo Rubber Ind Ltd 変性共重合体およびそれを用いたゴム組成物
CN105837751A (zh) * 2016-04-05 2016-08-10 大连理工大学 含硅氧基团链端链中多功能化溶聚丁苯橡胶及其制备方法
WO2016133154A1 (ja) * 2015-02-19 2016-08-25 旭化成株式会社 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP2019144669A (ja) 2018-02-16 2019-08-29 トヨタ自動車株式会社 車両制御装置、プログラム更新方法およびプログラム
WO2020070961A1 (ja) * 2018-10-03 2020-04-09 旭化成株式会社 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111499A1 (ko) * 2015-12-24 2017-06-29 주식회사 엘지화학 고분자 화합물, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
BR112019002831B1 (pt) * 2016-08-19 2022-10-25 Asahi Kasei Kabushiki Kaisha Polímeros de dieno conjugado modificado, composição de borracha e pneu
JP6780521B2 (ja) * 2017-01-27 2020-11-04 Jsr株式会社 変性共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
WO2021044921A1 (ja) * 2019-09-05 2021-03-11 旭化成株式会社 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS436636B1 (ja) 1963-04-25 1968-03-12
JPS428704B1 (ja) 1963-12-26 1967-04-20
JPS59140211A (ja) 1983-02-01 1984-08-11 Nippon Erasutomaa Kk スチレン−ブタジエン共重合体の製造方法
JPS634841A (ja) 1986-06-25 1988-01-09 Hitachi Ltd プラズマ処理装置
JPS6437970A (en) 1987-07-30 1989-02-08 Jiyoeru Roon Aaru Ski exercise apparatus
JPS6453851A (en) 1987-08-25 1989-03-01 Hitachi Ltd Printing system
JPH029041A (ja) 1988-06-28 1990-01-12 Sony Corp 回転ドラムのアース装置
JPH08109219A (ja) 1994-10-11 1996-04-30 Asahi Chem Ind Co Ltd 水添重合体
JPH11189616A (ja) 1997-12-26 1999-07-13 Bridgestone Corp 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
JP2003171418A (ja) 2001-09-27 2003-06-20 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
US20060142500A1 (en) * 2004-02-17 2006-06-29 Kwan-Young Lee Multi-branched styrene-conjugated diene block copolymer and its preparation method
JP2005290355A (ja) 2004-03-11 2005-10-20 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
WO2007114203A1 (ja) 2006-03-31 2007-10-11 Zeon Corporation 共役ジエン系ゴム、その製造方法、タイヤ用ゴム組成物、及びタイヤ
JP2011089086A (ja) * 2009-10-26 2011-05-06 Sumitomo Rubber Ind Ltd 変性共重合体およびそれを用いたゴム組成物
WO2016133154A1 (ja) * 2015-02-19 2016-08-25 旭化成株式会社 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
CN105837751A (zh) * 2016-04-05 2016-08-10 大连理工大学 含硅氧基团链端链中多功能化溶聚丁苯橡胶及其制备方法
JP2019144669A (ja) 2018-02-16 2019-08-29 トヨタ自動車株式会社 車両制御装置、プログラム更新方法およびプログラム
WO2020070961A1 (ja) * 2018-10-03 2020-04-09 旭化成株式会社 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M. KOLTHOFF ET AL., J. POLYM. SCI., vol. 1, 1946, pages 429
R. R. HAMPTON, ANALYTICAL CHEMISTRY, vol. 21, 1949, pages 923
TANAKA ET AL., POLYMER, vol. 22, 1981, pages 1721

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201289A1 (ja) * 2020-04-03 2021-10-07 旭化成株式会社 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物
RU2826498C1 (ru) * 2020-04-03 2024-09-11 Асахи Касеи Кабусики Кайся Полимер на основе сопряженного диена, способ его производства, полимерная композиция на основе сопряженного диена и резиновая композиция
JP7143964B1 (ja) * 2021-10-19 2022-09-29 三菱電機株式会社 金属積層造形体の製造装置および製造方法
WO2023067701A1 (ja) * 2021-10-19 2023-04-27 三菱電機株式会社 金属積層造形体の製造装置および製造方法

Also Published As

Publication number Publication date
EP4011642A1 (en) 2022-06-15
US20220275130A1 (en) 2022-09-01
EP4011642A4 (en) 2022-10-19
KR20220013407A (ko) 2022-02-04
CN114174350A (zh) 2022-03-11
HUE064687T2 (hu) 2024-04-28
EP4011642B1 (en) 2023-10-11
JP7343589B2 (ja) 2023-09-12
JPWO2021024811A1 (ja) 2021-02-11
KR102684932B1 (ko) 2024-07-16
BR112022000676A2 (pt) 2022-03-03
CN114174350B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
JP6796903B2 (ja) 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP6830103B2 (ja) 変性共役ジエン系重合体、ゴム組成物、及びタイヤ
JP6864160B2 (ja) 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ
JP2018028018A (ja) 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ
JP7315686B2 (ja) 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。
JP7343589B2 (ja) 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ
JP2021120448A (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物、ゴム組成物の製造方法、及びタイヤの製造方法
JP2019131723A (ja) 変性共役ジエン系重合体組成物及び製造方法、並びにタイヤ
JP2021165356A (ja) 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ。
JP2021165370A (ja) 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物
JP2021172722A (ja) 液状共役ジエン系ゴム、ブレンドポリマー、伸展共役ジエン系ゴム、及びブレンドポリマーの製造方法
JP7356390B2 (ja) ゴム組成物、及びタイヤ
JP7356881B2 (ja) 共役ジエン系重合体組成物、及びタイヤ
RU2793934C9 (ru) Полимер на основе сопряженного диена, разветвляющий агент, способ производства полимера на основе сопряженного диена, маслонаполненный полимер на основе сопряженного диена, каучуковая композиция и покрышка
RU2793934C1 (ru) Полимер на основе сопряженного диена, разветвляющий агент, способ производства полимера на основе сопряженного диена, маслонаполненный полимер на основе сопряженного диена, каучуковая композиция и покрышка
JP2021143324A (ja) 共役ジエン系重合体組成物、及びタイヤ
JP2023117613A (ja) 分岐化共役ジエン系重合体の製造方法、分岐化共役ジエン系重合体、ゴム組成物、ゴム組成物の製造方法、及びタイヤ
KR20230145924A (ko) 변성 공액 디엔계 중합체 및 변성 공액 디엔계 중합체의 제조 방법, 그리고 변성 공액 디엔계 중합체 조성물 및 고무 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537694

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217042609

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000676

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022000676

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220113

WWE Wipo information: entry into national phase

Ref document number: 2022102714

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2020849553

Country of ref document: EP

Effective date: 20220307