WO2021022801A1 - 一种纳米镍的制备方法 - Google Patents

一种纳米镍的制备方法 Download PDF

Info

Publication number
WO2021022801A1
WO2021022801A1 PCT/CN2020/074981 CN2020074981W WO2021022801A1 WO 2021022801 A1 WO2021022801 A1 WO 2021022801A1 CN 2020074981 W CN2020074981 W CN 2020074981W WO 2021022801 A1 WO2021022801 A1 WO 2021022801A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
nano
reaction
temperature
heating
Prior art date
Application number
PCT/CN2020/074981
Other languages
English (en)
French (fr)
Inventor
涂传鉷
Original Assignee
涂传鉷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 涂传鉷 filed Critical 涂传鉷
Publication of WO2021022801A1 publication Critical patent/WO2021022801A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides

Definitions

  • the invention belongs to the field of nano materials, and specifically relates to a method for preparing nano nickel.
  • Nickel is an important metal material, which is widely used in almost all modern industrial fields. Combining the micro/nano hierarchical structure construction technology with traditional craftsmanship, the properties of the assembly can be adjusted more precisely by adjusting the composition, size, shape and organization of the structural unit at the molecular level, which can greatly change Metals maintain their performance in applications such as catalysis, electrodes, chemical protective coatings, soft magnetic materials, and low-temperature superplastic materials.
  • the preparation methods of metal town nanostructures have recently obtained considerable development.
  • the synthesized nanostructures include chemical reduction nanospheres and electrochemical template deposition nanorings.
  • the nano-nickel material prepared by the existing method has the following problems: 1. It is easy to agglomerate and is difficult to disperse uniformly in the solution; 2. The nano-nickel material is spherical, and the conductivity needs to be improved; 3. The preparation process is complicated, the purity is low, and waste pollution surroundings.
  • the technical problem to be solved by the present invention is the above-mentioned problem existing in the current nano-metal nickel material.
  • the present invention provides a method for preparing nano nickel, which includes the following steps:
  • step S3 The nickel carbonate obtained in step S2 is heated in a stepped manner in a reducing atmosphere, and undergoes a thermal decomposition reduction reaction to generate nano-nickel.
  • the thermal decomposition and reduction adopts a stepped heating method, which may include the following steps: raising the temperature from the initial reaction temperature to 100-200°C, holding the reaction, and then raising the temperature to 250-800°C to generate nano-nickel.
  • the thermal decomposition reduction includes:
  • the first stage heating up heating up to 100 ⁇ 200°C within 3 hours;
  • the second stage heat preservation reaction heat preservation reaction at 100 ⁇ 200°C for more than 8 hours;
  • the third stage heating up heating up to 250-800°C within 15 hours.
  • the thermal decomposition reduction reaction in step S3 includes:
  • the first stage of heating up the initial temperature of the reaction is room temperature, and the temperature is raised to 100-150°C within 0.5-2 hours;
  • the second stage heat preservation reaction heat preservation reaction at 100 ⁇ 150°C for 10 ⁇ 20 hours;
  • the third stage heating up heating up to 300-600°C within 3-8 hours.
  • step S2 the nickel-ammonia complex solution is stirred at a temperature of 80-180°C to decompose into nickel carbonate and ammonia gas.
  • step S1 includes:
  • Nickel metal is added to the ammonium bicarbonate solution, and air or oxygen is introduced to carry out the complex reaction to generate a nickel-ammonia complex solution; wherein the nickel ion concentration in the nickel-ammonia complex solution is 40-100 g/L, and the ammonium bicarbonate The concentration of NH3 in the solution is 80-200g/L, and the concentration of CO 2 is 40-200g/L.
  • a cooling step is further included, and the thermal decomposition and reduction products are naturally cooled to room temperature.
  • the reducing atmosphere is one or a combination of hydrogen or ethanol.
  • the reducing atmosphere is hydrogen: during the thermal decomposition and reduction reaction of nickel carbonate, hydrogen is continuously fed, and the amount of hydrogen fed is more than 1 times the amount of nickel carbonate.
  • the reducing atmosphere is hydrogen: during the thermal decomposition and reduction reaction of nickel carbonate, hydrogen is continuously introduced, and the amount of hydrogen introduced is more than twice the amount of nickel carbonate.
  • the present invention also provides the nano nickel prepared by the above method, which has a long strip structure, the length is below 600 nm, and the aspect ratio is 2-50:1.
  • the nano-nickel prepared by the preparation method provided by the present invention has a strip structure, the length is less than 600nm, the aspect ratio is 2-50:1; its purity is as high as 99.8% or more, the specific surface area is 15-35m 2 /g, and the resistance is 1 ⁇ 10 -5 ⁇ 2.5 ⁇ 10 -5 ⁇ cm; and it is evenly dispersed in the solution, and can be cross-linked to increase the conductivity of the solution.
  • the preparation method provided by the invention is environmentally friendly and has no waste discharge that pollutes the environment.
  • Figure 1 is an electron micrograph 1 of the nano-nickel prepared in Example 1 of the present invention.
  • Example 2 is the second electron microscope image of the nano-nickel prepared in Example 1 of the present invention.
  • the invention provides a method for preparing nano nickel.
  • Nickel carbonate adopts a stepped heating in a reducing atmosphere to perform thermal decomposition and reduction, which includes the following steps:
  • Nickel metal is added to the ammonium bicarbonate solution, and air or oxygen is introduced to carry out the complex reaction to generate a nickel-ammonia complex solution; wherein the nickel ion concentration in the nickel-ammonia complex solution is 40-100 g/L, and the ammonium bicarbonate The concentration of NH 3 in the solution is 80-200 g/L, and the concentration of CO 2 is 40-200 g/L.
  • Nickel carbonate is generated after the decomposition of nickel-ammonia complex, which specifically includes the following steps:
  • Step S2 The nickel ammonia complex solution is stirred at a temperature of 80-180° C. to decompose into nickel carbonate and ammonia gas.
  • step S3 The nickel carbonate obtained in step S2 is thermally decomposed and reduced in a reducing atmosphere to generate nano-nickel; the thermal decomposition and reduction adopts a stepped temperature increase: the reaction starting temperature is raised to 100-200°C, the reaction is kept warm, and then the temperature is raised to 250-800°C , Generate nano-nickel.
  • the nickel carbonate prepared by the decomposition of the nickel-ammonia complex is stably pyrolyzed and reduced, and the stepped temperature rise and the reducing gas flow make the nickel carbonate pyrolyzed and reduced to form striped nano-sized metallic nickel.
  • the reducing atmosphere can select one of hydrogen or ethanol or a combination thereof.
  • the amount of hydrogen introduced is more than twice the amount of nickel carbonate, the reduction reaction is complete, the purity of nickel is high, and it is beneficial to the formation of strip-shaped nano nickel.
  • the flow rate of the reducing gas can be set reasonably in combination with the reaction time and the amount of reducing atmosphere required.
  • the nickel carbonate prepared by decomposition of the nickel-ammonia complex has a nano-sized strip structure, which will produce a cross-linked structure in application, and has better conductivity than granular nano-nickel and better performance.
  • the filtered nickel-ammonia complex aqueous solution is added to the decomposition reaction device. At a temperature of 100°C, the reaction is complete to produce nickel carbonate precipitation and ammonia gas. The ammonia gas is condensed and absorbed and recycled, and the nickel carbonate is dehydrated and dried;
  • the reaction starting temperature is room temperature, and the temperature is raised to 120°C for 1 hour;
  • the second stage heat preservation reaction heat preservation reaction at 120°C for 12 hours;
  • the purity of the nano-nickel prepared in this embodiment is 99.9%; as shown in Figure 1 and Figure 2, the nano-nickel in this embodiment has a strip structure with a length of 50 nm to 600 nm and an aspect ratio of 2 to 50:1; The specific surface area of nano-nickel is 35m 2 /g.
  • the resistance is measured by the probe method, and the resistance is 1 ⁇ 10 -5 ⁇ cm.
  • Dispersion test 0.5kg nickel powder and 2kg nickel balls with a diameter of 1mm are added to a container with a diameter of 200mm, and grind in an alcohol medium at a speed of 100 revolutions/min for 1 min. After observation, the dispersion is good, and there is no agglomeration.
  • the reaction starting temperature is room temperature, and the temperature is raised to 100°C within 0.5 hours;
  • the second stage insulation reaction insulation reaction at 100°C for 20 hours;
  • the third stage heating up heating up to 300°C within 3 hours.
  • the purity of the nano-nickel prepared by the present invention is 99.8%; the nano-nickel in this example has a strip structure with a length of 50nm-400nm and an aspect ratio of 2-50:1; the specific surface area of the nano-nickel is 23m 2 /g .
  • the probe method is used to detect the resistance, and the resistance is 1.4 ⁇ 10 -5 ⁇ cm.
  • Dispersion experiment the same as in Example 1, after observation, the dispersion is good and there is no agglomeration.
  • the filtered nickel-ammonia complex aqueous solution is added to the decomposition reaction device, and the reaction is complete at a temperature of 120°C under a pressure environment to generate nickel carbonate precipitation and ammonia gas. After the ammonia gas is condensed and absorbed, it is recycled and reused. The nickel carbonate is dehydrated and dried. ;
  • the first stage heating up the reaction starting temperature is room temperature, and the temperature is raised to 150°C within 2 hours;
  • the second stage insulation reaction insulation reaction at 150°C for 8 hours;
  • the third stage of heating up heating up to 600°C within 8 hours.
  • the purity of the nano-nickel prepared by the present invention is 99.8%; the nano-nickel in this embodiment has a strip structure with a length of 50nm-400nm and an aspect ratio of 2-50:1; the specific surface area of the nano-nickel is 25m 2 /g .
  • the resistance is measured by the probe method, and the resistance is 1.3 ⁇ 10 -5 ⁇ cm.
  • Dispersion experiment the same as in Example 1, after observation, the dispersion is good and there is no agglomeration.
  • the filtered nickel-ammonia complex aqueous solution is added to the decomposition reaction device. At a temperature of 80°C, the reaction is complete to produce nickel carbonate precipitation and ammonia gas. The ammonia gas is condensed and absorbed and recycled, and the nickel carbonate is dehydrated and dried;
  • the initial temperature of the reaction is room temperature, and the temperature is raised to 200°C within 3 hours;
  • the second stage insulation reaction insulation reaction at 200°C for 8 hours;
  • the third stage heating up heating up to 250°C within 2 hours.
  • the purity of the nano-nickel prepared by the present invention is 99.9%; the nano-nickel in this example has a strip structure with a length of 50 nm to 400 nm and an aspect ratio of 2 to 50:1; the specific surface area of the nano nickel is 25 m 2 /g .
  • the resistance is measured by the probe method, and the resistance is 1.8 ⁇ 10 -5 ⁇ cm.
  • Dispersion experiment the same as in Example 1, after observation, the dispersion is good and there is no agglomeration.
  • the filtered nickel-ammonia complex aqueous solution is added to the decomposition reaction device. At a temperature of 100°C, the reaction is complete to produce nickel carbonate precipitation and ammonia gas. The ammonia gas is condensed and absorbed and recycled, and the nickel carbonate is dehydrated and dried;
  • the initial temperature of the reaction is room temperature, and the temperature is raised to 120°C within 1 hour;
  • the second stage insulation reaction insulation reaction at 120°C for 10 hours;
  • the third stage heating up: 15 hours, heating up to 800 °C.
  • the purity of the nano-nickel prepared in this embodiment is 99.9%; as shown in Figure 1, the nano-nickel in this embodiment has a strip structure with a length of 50nm-400nm and an aspect ratio of 2-50:1; The specific surface area is 28m 2 /g.
  • the resistance is measured by the probe method, and the resistance is 1 ⁇ 10 -5 ⁇ cm.
  • Dispersion experiment the same as in Example 1, after observation, the dispersion is good and there is no agglomeration.
  • the initial temperature of the reaction is room temperature, and the temperature is raised to 120°C in 1 hour;
  • the second stage heat preservation reaction heat preservation reaction at 120°C for 12 hours;
  • the purity of the nano-nickel prepared by the present invention is 99.7%; the nano-nickel in this embodiment is in the form of particles with a particle size of 400-500 nm; and the specific surface area of the nano-nickel is 15 m 2 /g.
  • the resistance is measured by the probe method, and the resistance is 1 ⁇ 10 -4 ⁇ cm.
  • the filtered nickel-ammonia complex aqueous solution is added to the decomposition reaction device. At a temperature of 100°C, the reaction is complete to produce nickel carbonate precipitation and ammonia gas. The ammonia gas is condensed and absorbed and recycled, and the nickel carbonate is dehydrated and dried;
  • the dehydrated and dried nickel carbonate is added to the reduction furnace, and hydrogen is introduced.
  • the reaction starting temperature is room temperature, the temperature is raised to 600°C in 8 hours, and the reaction is kept for 10 hours;
  • the purity of the nano-nickel prepared by the present invention is 99.8%; the nano-nickel in this example has a strip structure and a granular mixed structure, and there is agglomeration phenomenon.
  • the length of the strip structure is 50 nm to 400 nm, and the aspect ratio is 2 to 50. :1.
  • the particle size of the granular structure is about 100nm; the specific surface area is 10m 2 /g, and the melting point is 401°C.
  • the resistance is measured by the probe method, and the resistance is 4 ⁇ 10 -5 ⁇ cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种纳米镍的制备方法,包括以下步骤:S1:金属镍与碳铵溶液,进行络合反应,生成镍氨络合物溶液;S2:镍氨络合物分解后生成碳酸镍;S3:步骤S2得到的碳酸镍在还原气氛中阶梯升温,进行热分解还原反应,生成纳米镍。制备的纳米镍为纳米尺寸的条状结构,易分散、比表面积大、电阻小。

Description

一种纳米镍的制备方法 技术领域
本发明属于纳米材料领域,具体涉及一种纳米镍的制备方法。
背景技术
镍是-类重要的金属材料,几乎在所有的现代工业领域获得广泛的应用。将微/纳米多级结构构筑技术和传统工艺结合起来,通过从分子水平上调节结构单元的组分、只寸、形状及组织方式对组装体的性质进行更精确的调控,能够极大的改变金属保在催化、电极、化学保护涂层、软磁材料以及低温超塑性材料等应用领域中的性能。金属镇纳米结构的制各方法近来得到了长足的发展,合成的纳米结构包括化学还原法的纳米球、电化学模板沉积纳米环等。
现有的方法制备的纳米镍材料存在如下问题:1、易团聚,在溶液中难以分散均匀;2、纳米镍材料呈球形,导电性有待提高;3、制备工艺复杂,纯度低,废弃物污染环境。
发明内容
本发明所要解决的技术问题是目前的纳米金属镍材料存在的上述问题。
为了解决上述技术问题,本发明提供一种纳米镍的制备方法,包括如下步骤:
S1:金属镍与碳铵溶液,进行络合反应,生成镍氨络合物溶液;
S2:镍氨络合物分解后生成碳酸镍;
S3:步骤S2得到的碳酸镍在还原气氛中阶梯升温,进行热分解还原反应,生成纳米镍。
其中热分解还原采用阶梯升温的方法,可包括如下步骤:由反应起始温度升温至100~200℃,保温反应,再升温至250~800℃,生成纳米镍。
作为优选技术方案,所述热分解还原包括:
第一阶段升温:在3小时内升温至100~200℃;
第二阶段保温反应:在100~200℃保温反应8小时以上;
第三阶段升温:在15小时内升温至250~800℃。
进一步优选地,步骤S3中所述热分解还原反应包括:
第一阶段升温:反应起始温度为室温,在0.5~2小时内升温至100~150℃;
第二阶段保温反应:在100~150℃保温反应10~20小时;
第三阶段升温:在3~8小时内升温至300~600℃。
作为优选方案,步骤S2镍氨络合物溶液在温度80~180℃下,搅拌,分解为碳酸镍和氨气。
作为优选方案,步骤S1包括:
金属镍加入碳铵溶液中,通入空气或氧气,进行络合反应,生成镍氨络合物溶液;其中,所述镍氨络合物溶液中镍离子浓度为40~100g/L,碳铵溶液中NH3浓度为80~200g/L,CO 2浓度为40~200g/L。
作为优选方案,步骤S3中所述热分解还原反应后,还包括冷却步骤,热分解还原产物,自然冷却至室温。
作为优选方案,所述还原气氛为氢气或乙醇其中之一或其组合。
作为优选方案,所述还原气氛为氢气:碳酸镍热分解还原反应时,持续通入氢气,氢气的通入量是碳酸镍物质的量的1倍以上。进一步优选地,所述还原气氛为氢气:碳酸镍热分解还原反应时,持续通入氢气,氢气的通入量是碳酸镍物质的量的2倍以上。
本发明还提供上述方法制备的纳米镍,其为长条状结构,长度在600nm以下,长径比为2~50:1。本发明提供的制备方法制备的纳米镍呈条状结构,长度600nm以下,长径比为2~50:1;其纯度高达99.8%以上,比表面积为15~35m 2/g,电阻小1×10 -5~2.5×10 -5Ω·cm;并且其在溶液中分散均匀,且能够相互交联增加溶液导电性。本发明提供的制备方法,环保,无污染环境的废弃物排放。
附图说明
图1为本发明实施例1制备的纳米镍的电镜图一;
图2为本发明的实施例1制备的纳米镍的电镜图二。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合具体实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种纳米镍的制备方法,碳酸镍在还原气氛中采用阶梯升温,进行热分解还原,包括以下步骤:
S1:金属镍与碳铵溶液,进行络合反应,生成镍氨络合物溶液,具体包括如下步骤:
金属镍加入碳铵溶液中,通入空气或氧气,进行络合反应,生成镍氨络合物溶液;其中,所述镍氨络合物溶液中镍离子浓度为40~100g/L,碳铵溶液中NH 3浓度为80~200g/L,CO 2浓度为40~200g/L。
S2:镍氨络合物分解后生成碳酸镍,具体包括如下步骤:
步骤S2镍氨络合物溶液在温度80~180℃下,搅拌,分解为碳酸镍和氨气。
S3:步骤S2得到的碳酸镍在还原气氛中热分解还原,生成纳米镍;其中热分解还原采用阶梯 升温:由反应起始温度升温至100~200℃,保温反应,再升温至250~800℃,生成纳米镍。在本发明的阶梯升温条件下,镍氨络合物分解制得的碳酸镍稳定热解还原,阶梯升温与的还原气流使得碳酸镍热解还原形成条状的纳米尺寸金属镍。
还原气氛可选择氢气或乙醇其中之一或其组合。当还原气氛为氢气时,氢气的通入量是碳酸镍物质的量的2倍以上,还原反应完全,镍的纯度高,并有利于条状纳米镍的形成。可结合反应时间和所需还原气氛的量合理设置还原气体的流速。
镍氨络合物分解制备得到的碳酸镍,为纳米尺寸的条形结构,应用中会产生交联结构,导电性优于颗粒状的纳米镍,性能更佳。
实施例1
本实施例的纳米镍的制备方法包括:
1)于络合反应装置中加入金属镍6kg,在加入110L碳铵溶液(碳铵溶液中氨的浓度为100g/L和CO 2的浓度为60g/L),通入空气,反应完全,得到镍氨络合物水溶液,过滤;
2)过滤后的镍氨络合物水溶液加入分解反应装置中,在温度100℃下,反应完全,生成碳酸镍沉淀和氨气,氨气冷凝吸收后回收利用,碳酸镍脱水、干燥;
3)脱水干燥后的碳酸镍加入还原炉中,通入氢气(整个反应过程持续通入氢气,氢气的通入量为碳酸镍物质的量的2倍),
第一阶段升温:反应起始温度为室温,1小时,升温至120℃;
第二阶段保温反应:在120℃保温反应12小时;
第三阶段升温:3小时,升温至600℃。
4)冷却至室温,制备得到的纳米镍。
经检测,本实施例制备的纳米镍纯度99.9%;如图1和图2所示,本实施例的纳米镍呈条状结构,长度在50nm~600nm,长径比为2~50:1;纳米镍的比表面积为35m 2/g。刺探针法检测电阻,电阻为1×10 -5Ω·cm。
分散性实验:0.5kg镍粉、2kg直径1mm的镍球加入直径为200mm的容器中,在酒精介质中,以100转/min的速度研磨1min。经观测,分散性良好,无团聚现象。
实施例2
本实施例的纳米镍的制备方法包括:
1)于络合反应装置中加入金属镍6kg,在加入110L碳铵溶液(碳铵溶液中氨的浓度为100g/L和CO 2的浓度为60g/L),通入空气,反应完全,得到镍氨络合物水溶液,过滤;
2)过滤后的镍氨络合物水溶液加入分解反应装置中,在压力环境下,升温至温度180℃,反 应完全,生成碳酸镍沉淀和氨气,氨气冷凝吸收后回收利用,碳酸镍脱水、干燥;
3)脱水干燥后的碳酸镍加入还原炉中,通入氢气(整个反应过程持续通入氢气,氢气的通入量为碳酸镍物质的量的2倍),
第一阶段升温:反应起始温度为室温,在0.5小时内升温至100℃;
第二阶段保温反应:在100℃保温反应20小时;
第三阶段升温:在3小时内升温至300℃。
4)冷却至室温,制备得到的纳米镍。
经检测,本发明制备的纳米镍纯度99.8%;本实施例的纳米镍呈条状结构,长度在50nm~400nm,长径比为2~50:1;纳米镍的比表面积为23m 2/g。刺探针法检测电阻,电阻为1.4×10 -5Ω·cm。
分散性实验:同实施例1,经观测,分散性良好,无团聚现象。
实施例3
本实施例的纳米镍的制备方法包括:
1)于络合反应装置中加入金属镍6kg,在加入110L碳铵溶液(碳铵溶液中氨的浓度为100g/L和CO 2的浓度为60g/L),通入空气,反应完全,得到镍氨络合物水溶液,过滤;
2)过滤后的镍氨络合物水溶液加入分解反应装置中,在压力环境,温度120℃下,反应完全,生成碳酸镍沉淀和氨气,氨气冷凝吸收后回收利用,碳酸镍脱水、干燥;
3)脱水干燥后的碳酸镍加入还原炉中,通入氢气(整个反应过程持续通入氢气,氢气的通入量为碳酸镍物质的量的2倍),
第一阶段升温:反应起始温度为室温,在2小时内升温至150℃;
第二阶段保温反应:在150℃保温反应8小时;
第三阶段升温:在8小时内升温至600℃。
4)冷却至室温,制备得到的纳米镍。
经检测,本发明制备的纳米镍纯度99.8%;本实施例的纳米镍呈条状结构,长度在50nm~400nm,长径比为2~50:1;纳米镍的比表面积为25m 2/g。刺探针法检测电阻,电阻为1.3×10 -5Ω·cm。
分散性实验:同实施例1,经观测,分散性良好,无团聚现象。
实施例4
本实施例的纳米镍的制备方法包括:
1)于络合反应装置中加入金属镍6kg,在加入60L碳铵溶液(碳铵溶液中氨的浓度为180g/L和CO 2的浓度为200g/L),通入空气,反应完全,得到镍氨络合物水溶液,过滤;
2)过滤后的镍氨络合物水溶液加入分解反应装置中,在温度80℃下,反应完全,生成碳酸镍 沉淀和氨气,氨气冷凝吸收后回收利用,碳酸镍脱水、干燥;
3)脱水干燥后的碳酸镍加入还原炉中,通入氢气(整个反应过程持续通入氢气,氢气的通入量为碳酸镍物质的量的2倍),
第一阶段升温:反应起始温度为室温,在3小时内升温至200℃;
第二阶段保温反应:在200℃保温反应8小时;
第三阶段升温:在2小时内升温至250℃。
4)冷却至室温,制备得到的纳米镍。
经检测,本发明制备的纳米镍纯度99.9%;本实施例的纳米镍呈条状结构,长度在50nm~400nm,长径比为2~50:1;纳米镍的比表面积为25m 2/g。刺探针法检测电阻,电阻为1.8×10 -5Ω·cm。
分散性实验:同实施例1,经观测,分散性良好,无团聚现象。
实施例5
本实施例的纳米镍的制备方法包括:
1)于络合反应装置中加入金属镍6kg,在加入110L碳铵溶液(碳铵溶液中氨的浓度为100g/L和CO 2的浓度为60g/L),通入空气,反应完全,得到镍氨络合物水溶液,过滤;
2)过滤后的镍氨络合物水溶液加入分解反应装置中,在温度100℃下,反应完全,生成碳酸镍沉淀和氨气,氨气冷凝吸收后回收利用,碳酸镍脱水、干燥;
3)脱水干燥后的碳酸镍加入还原炉中,通入氢气(整个反应过程持续通入氢气,氢气的通入量为碳酸镍物质的量的2倍),
第一阶段升温:反应起始温度为室温,在1小时内升温至120℃;
第二阶段保温反应:在120℃保温反应10小时;
第三阶段升温:15小时,升温至800℃。
4)冷却至室温,制备得到的纳米镍。
经检测,本实施例制备的纳米镍纯度99.9%;如图1所示,本实施例的纳米镍呈条状结构,长度在50nm~400nm,长径比为2~50:1;纳米镍的比表面积为28m 2/g。刺探针法检测电阻,电阻为1×10 -5Ω·cm。
分散性实验:同实施例1,经观测,分散性良好,无团聚现象。
对比例1
本实施例的纳米镍的制备方法包括:
1)取市售碳酸镍12kg干燥;
3)干燥后的碳酸镍加入还原炉中,通入氢气,
第一阶段升温:反应起始温度为室温,1小时升温至120℃;
第二阶段保温反应:在120℃保温反应12小时;
第三阶段升温:6小时,升温至600℃。
4)冷却至室温,制备得到的纳米镍。
经检测,本发明制备的纳米镍纯度99.7%;本实施例的纳米镍呈颗粒状,粒径在400~500nm;纳米镍的比表面积为15m 2/g。刺探针法检测电阻,电阻为1×10 -4Ω·cm。
分散性实验:同实施例1,经观测,有团聚现象。
对比例2
本实施例的纳米镍的制备方法包括:
1)于络合反应装置中加入金属镍6kg,在加入110L碳铵溶液(碳铵溶液中氨的浓度为100g/L和CO 2的浓度为60g/L),通入空气,反应完全,得到镍氨络合物水溶液,过滤;
2)过滤后的镍氨络合物水溶液加入分解反应装置中,在温度100℃下,反应完全,生成碳酸镍沉淀和氨气,氨气冷凝吸收后回收利用,碳酸镍脱水、干燥;
3)脱水干燥后的碳酸镍加入还原炉中,通入氢气,反应起始温度为室温,8小时升温至600℃,保温反应10小时;
4)冷却至室温,制备得到的纳米镍。
经检测,本发明制备的纳米镍纯度99.8%;本实施例的纳米镍呈条状结构和颗粒状混合结构,有团聚现象,条状结构的长度在50nm~400nm,长径比为2~50:1,颗粒状结构的粒径在100nm左右;比表面积为10m 2/g,熔点为401℃。刺探针法检测电阻,电阻为4×10 -5Ω·cm。
分散性实验:同实施例1,经观测,有部分团聚现象。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种纳米镍的制备方法,其特征在于,包括以下步骤:
    S1:金属镍与碳铵溶液,进行络合反应,生成镍氨络合物溶液;
    S2:镍氨络合物分解后生成碳酸镍;
    S3:步骤S2得到的碳酸镍在还原气氛中阶梯升温,进行热分解还原反应,生成纳米镍。
  2. 根据权利要求1所述的纳米镍的制备方法,其特征在于,步骤S3中所述热分解还原反应的阶梯升温包括:由反应起始温度升温至100~200℃,保温反应,再升温至250~800℃,生成纳米镍。
  3. 根据权利要求1所述的纳米镍的制备方法,其特征在于,步骤S3中所述热分解还原反应的阶梯升温包括:
    第一阶段升温:在3小时内升温至100~200℃;
    第二阶段保温反应:在100~200℃保温反应8小时以上;
    第三阶段升温:在15小时内升温至250~800℃。
  4. 根据权利要求1所述的纳米镍的制备方法,其特征在于,步骤S3中所述热分解还原反应的阶梯升温包括:
    第一阶段升温:反应起始温度为室温,在0.5~2小时内升温至100~150℃;
    第二阶段保温反应:在100~150℃保温反应10~20小时;
    第三阶段升温:在3~8小时内升温至300~600℃。
  5. 根据权利要求1所述的纳米镍的制备方法,其特征在于,步骤S2镍氨络合物溶液在温度80~180℃下,搅拌,分解为碳酸镍和氨气。
  6. 根据权利要求1所述碳酸镍的制备方法,其特征在于,步骤S1包括:
    金属镍加入碳铵溶液中,通入空气或氧气,进行络合反应,生成镍氨络合物溶液;其中,所述镍氨络合物溶液中镍离子浓度为40~100g/L,碳铵溶液中NH 3浓度为80~200g/L,CO 2浓度为40~200g/L。
  7. 根据权利要求1所述的纳米镍的制备方法,其特征在于,步骤S3中所述热分解还原反应后,还包括冷却步骤,热分解还原反应产物自然冷却至室温,得到纳米镍。
  8. 根据权利要求1所述的纳米镍的制备方法,其特征在于,所述还原气氛为氢气或乙醇其中 之一或其组合。
  9. 根据权利要求7所述的纳米镍的制备方法,其特征在于,所述还原气氛为氢气:碳酸镍热分解还原反应时,持续通入氢气,氢气的通入量是碳酸镍物质的量的1倍以上。
  10. 权利要求1~9任一项所述的制备方法制备得到的纳米镍。
PCT/CN2020/074981 2019-08-05 2020-02-13 一种纳米镍的制备方法 WO2021022801A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910716348.3 2019-08-05
CN201910716348 2019-08-05

Publications (1)

Publication Number Publication Date
WO2021022801A1 true WO2021022801A1 (zh) 2021-02-11

Family

ID=74319603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074981 WO2021022801A1 (zh) 2019-08-05 2020-02-13 一种纳米镍的制备方法

Country Status (2)

Country Link
CN (1) CN112317758B (zh)
WO (1) WO2021022801A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003618A (zh) * 2021-03-01 2021-06-22 杭州申柯新材料有限公司 一种金属镍直接氧化法生产高纯氧化亚镍生产线及其生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647423A (en) * 1969-10-27 1972-03-07 Floyd Acoveno Production of copper, nickel oxide and zinc oxide
EP0388808A2 (en) * 1989-03-20 1990-09-26 Inco Limited Nickel hydroxide
CN1344190A (zh) * 1999-11-19 2002-04-10 堺化学工业株式会社 微小球状金属镍粉末的制造方法
CN1596317A (zh) * 2001-11-29 2005-03-16 Qni技术有限公司 镍的整合的含氨的溶剂萃取和氢气还原
CN1765549A (zh) * 2005-11-25 2006-05-03 北京科技大学 一种沉淀-氢还原工艺制备纳米镍粉的方法
CN106861701A (zh) * 2017-02-28 2017-06-20 山西大学 一种纳米粉体镍催化剂及制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE788787A (fr) * 1971-09-14 1973-01-02 Nickel Le Procede pour l'obtention de poudre de nickel
US4089676A (en) * 1976-05-24 1978-05-16 Williams Gold Refining Company Incorporated Method for producing nickel metal powder
JP4341119B2 (ja) * 1999-09-24 2009-10-07 堺化学工業株式会社 球状ニッケル粉末の製造方法
JP4839854B2 (ja) * 2006-01-20 2011-12-21 堺化学工業株式会社 ニッケル微粒子の製造方法
JP5355095B2 (ja) * 2006-02-16 2013-11-27 ブリガム・ヤング・ユニバーシティ 超高純度の金属酸化物、混合金属酸化物、金属、および合金の均一なナノ粒子の製造
US7758668B1 (en) * 2006-04-18 2010-07-20 Chemnano, Inc. Process of manufacturing metallic nano-scale powders
CN100455386C (zh) * 2007-01-24 2009-01-28 深圳市格林美高新技术股份有限公司 一种环境友好镍板及其生产工艺、设备
CN102091789A (zh) * 2010-12-21 2011-06-15 丹阳市求精合金钢有限公司 一种亚微米级链球状超细镍粉的制备方法
CN102489718A (zh) * 2011-12-14 2012-06-13 丹阳市博高新材料技术有限公司 一种亚微米级片状超细镍粉的制备方法
CN104708008B (zh) * 2013-12-13 2017-02-01 格林美股份有限公司 一种钴镍合金粉末的制造方法
JP5828923B2 (ja) * 2014-01-30 2015-12-09 国立大学法人高知大学 ニッケル粉の製造方法
US10537885B2 (en) * 2014-07-02 2020-01-21 Invista North America S.A.R.L. Nickel metal particle production
CN104625082B (zh) * 2015-02-12 2017-05-03 湖南微科新材料有限公司 一种纳米级镍粉的制备方法
CN109689257A (zh) * 2016-09-27 2019-04-26 住友金属矿山株式会社 镍粉的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647423A (en) * 1969-10-27 1972-03-07 Floyd Acoveno Production of copper, nickel oxide and zinc oxide
EP0388808A2 (en) * 1989-03-20 1990-09-26 Inco Limited Nickel hydroxide
CN1344190A (zh) * 1999-11-19 2002-04-10 堺化学工业株式会社 微小球状金属镍粉末的制造方法
CN1596317A (zh) * 2001-11-29 2005-03-16 Qni技术有限公司 镍的整合的含氨的溶剂萃取和氢气还原
CN1765549A (zh) * 2005-11-25 2006-05-03 北京科技大学 一种沉淀-氢还原工艺制备纳米镍粉的方法
CN106861701A (zh) * 2017-02-28 2017-06-20 山西大学 一种纳米粉体镍催化剂及制备方法和应用

Also Published As

Publication number Publication date
CN112317758A (zh) 2021-02-05
CN112317758B (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
CN110248731B (zh) 用于氧还原反应的源自废生物质的无金属催化剂
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
Wang et al. Enhanced performance of “flower‐like” Li4Ti5O12 motifs as anode materials for high‐rate lithium‐ion batteries
CN102942177B (zh) 一种石墨烯片的制备方法
JP4546975B2 (ja) 気相反応法を用いた金属ナノ粉末の製造方法
CN106207196B (zh) 一种花状氮化钛/氮化碳/石墨烯复合纳米材料的制备方法
CN111483999B (zh) 一种氮掺杂碳纳米管的制备方法、氮掺杂碳纳米管及其应用
WO2020125483A1 (zh) 金属氧化物或其复合材料的制备方法、金属氧化物或其复合材料和应用、电池
CN105355881B (zh) 一种石墨烯复合材料及其制备方法
CN104701544B (zh) 超容量纳米磷酸铁锂正极材料及其制备方法和锂离子电池
WO2021022801A1 (zh) 一种纳米镍的制备方法
WO2015131745A1 (zh) 一种动力型镍钴锰酸锂正极材料的制备方法
CN103880000A (zh) 一种超轻石墨烯粉体的制备方法
WO2019205758A1 (zh) 太阳能光热发电传热蓄热介质及其制备方法
CN107904570B (zh) 一种制备镍纳米粒子-石墨烯-泡沫镍材料的方法
WO2019227811A1 (zh) 一种超细过渡金属硼化物粉体及其制备方法和应用
Ramírez-Meneses et al. Synthesis and electrochemical characterization of Ni nanoparticles by hydrazine reduction using hydroxyethyl cellulose as capping agent
Zhu et al. NiCo‐glycolate‐derived porous spherical NiCo2S4 for high‐performance asymmetric supercapacitors
CN110790305A (zh) 一种黑色二氧化钛粉末的制备方法
CN106257597A (zh) 碳纳米管海绵导电浆料及其制备方法和用途
CN104117356B (zh) 用于氧还原反应的非贵金属催化剂的制备方法
CN105921742A (zh) 一种制备六方氮化硼包裹纳米镍颗粒的方法
CN105921761B (zh) 一种六方氮化硼包裹钴镍合金材料的制备方法
CN105945277B (zh) 洋葱状富勒烯包覆金属钯核壳结构纳米粒子及其制备方法
CN109647381A (zh) 一种可控制备铂颗粒高度分散介孔碳基复合材料作为高效产氢电催化剂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850873

Country of ref document: EP

Kind code of ref document: A1