WO2015131745A1 - 一种动力型镍钴锰酸锂正极材料的制备方法 - Google Patents

一种动力型镍钴锰酸锂正极材料的制备方法 Download PDF

Info

Publication number
WO2015131745A1
WO2015131745A1 PCT/CN2015/072620 CN2015072620W WO2015131745A1 WO 2015131745 A1 WO2015131745 A1 WO 2015131745A1 CN 2015072620 W CN2015072620 W CN 2015072620W WO 2015131745 A1 WO2015131745 A1 WO 2015131745A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
lithium
solution
furnace
cobalt
Prior art date
Application number
PCT/CN2015/072620
Other languages
English (en)
French (fr)
Inventor
谢英豪
余海军
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普报废汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普报废汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2015131745A1 publication Critical patent/WO2015131745A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of preparation of battery positive electrode materials, in particular to a preparation method of a power type lithium cobalt manganese manganate cathode material.
  • the positive electrode material directly determines the performance of the lithium ion battery.
  • the lithium nickel cobalt manganate cathode material replaces a large amount of cobalt in lithium cobalt oxide with relatively inexpensive nickel and manganese, so it has a significant advantage in reducing cost, and at the same time, due to considerable charge and discharge capacity and excellent cycle stability, The production and use of lithium nickel cobalt manganate cathode materials has become increasingly widespread, showing a huge market prospect.
  • lithium nickel cobalt manganate itself play an important role in the performance of electrical properties. Studies have shown that spherical material particles allow the material to have greater tap density and service life. In addition, an excellent lithium nickel cobalt manganate material must have a suitable size and a narrow particle size distribution, and be a non-agglomerated pellet. Coprecipitation method for preparing spherical nickel-cobalt-manganese oxide by conventional method, because ammonia or NaOH is used in the process When the lye is precipitated, the NH4+, Na+ plasma is easily contaminated by the water body and the surrounding environment.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a method for preparing a power type lithium nickel cobalt manganate cathode material.
  • a preparation method of a dynamic lithium cobalt cobalt manganate cathode material comprising the following steps:
  • the mixed powder obtained in the step (3) is sintered at a temperature of 600 to 1000 ° C for 5 to 20 hours to obtain a nickel-cobalt-manganese oxide positive electrode material.
  • the organic solvent in the step (1) is a linear carboxylic acid having 12 to 18 carbon atoms in a molten state.
  • the concentration of metal ions in solution I is from 0.5 to 3 mol/L.
  • the lithium ion concentration in the solution II is 1 to 5 mol/L.
  • the viscosity modifier in the step (1) is at least one of triethylamine, glyoxal, glutaraldehyde, benzaldehyde, benzoic acid, isobutyraldehyde, cinnamaldehyde, and cinnamic acid; and step (2)
  • the viscosity modifier is ethylene glycol, glycerol, triethanolamine, ethylenediamine, tetraethylene glycol, ethyleneimine, acetamide, dibutyl ether, isobutylamine, 2-butanone, propylamine, At least one of 2-propanol.
  • the concentration of the viscosity modifier in solution I is from 1 to 5 g/L.
  • the concentration of the viscosity modifier in the solution II is 2 to 10 g/L.
  • the working pressure of the control nozzle A is 0.1-0.6 MPa, the feeding speed is 500-5000 mL/h; the working pressure of the control nozzle B is 0.05-0.3 MPa, and the feeding speed is 300-2050 mL. /h.
  • the granulation temperature in the furnace of the pyrolysis furnace is controlled to be 400 to 600 °C.
  • the pyrolysis furnace is divided into a drying section, a pyrolysis section, a combustion section, a burnout section and a cooling section from top to bottom, and hot air is blown in the burnout section, so that the particles obtained in the step (3) are at In the tumbling state, the particles stay in the furnace for 1 to 5 minutes.
  • the lithium source is at least one of lithium acetate, lithium oxalate, lithium citrate, and lithium hydroxide; and the nickel source is at least one of nickel acetate, nickel oxalate, nickel citrate, and nickel hydroxide.
  • the cobalt source is at least one of cobalt acetate, cobalt oxalate, cobalt citrate, and cobalt hydroxide; and the manganese source is at least one of manganese acetate, manganese oxalate, manganese citrate, and manganese hydroxide.
  • the invention adopts a molten carboxylic acid as a solvent, and the carboxylic acid solvent also has a triple action of a solvent, a compounding agent and a surfactant, so that various metal ions are uniformly and stably mixed in the liquid phase, and water to metal salt can be avoided.
  • Hydrolysis The carboxylic acid solvent molecules form a hydrogen bond association with the molecules, and the number of entanglements between the molecules increases, and the interaction between the molecules is enhanced. Therefore, the nickel-cobalt-manganese hydride obtained by sintering has a large tap density.
  • the invention mixes part of the lithium source with the nickel, cobalt and manganese source solution, and the components are mixed at the atomic level, the lithium source is evenly distributed in the precursor solution; the precursor solution containing the lithium source is heated from the double nozzle The nozzle A of the furnace is sprayed out, and another part of the lithium source solution is sprayed from the nozzle B, and mixed with the air stream to obtain a uniform mixed powder of the precursor and the lithium source; the mixed powder is sintered at a high temperature, and the organic solvent is
  • the porous structure of the precursor particles is imparted after combustion at a high temperature, which facilitates the full diffusion of Li2O from the molten lithium source into the interior of the precursor to make the material composition distribution more uniform.
  • the lithium source is introduced in two steps to further optimize the material composition distribution and obtain a more desirable stoichiometric chemical after sintering.
  • the invention adopts a double nozzle pyrolysis furnace to simultaneously granulate the precursor and the lithium source, and mixes in the furnace by the air flow, thereby avoiding the defect that the conventional ball milling mixing method may destroy the spherical porous structure of the precursor. .
  • the process of the invention does not use alkali such as ammonia or NaOH for precipitation, and does not cause pollution of water by NH4+, Na+ plasma in the conventional process, and greatly reduces environmental pollution.
  • the obtained lithium nickel cobalt manganese oxide product has high yield, good sphericity, high tap density, excellent cycle stability during charge and discharge cycles, and significant increase in initial discharge specific capacity.
  • 1 is an SEM image of a lithium nickel cobalt manganate cathode material
  • 2 is a charge and discharge graph of a lithium nickel cobalt manganate cathode material assembled battery
  • Fig. 3 is a cycle performance diagram of a nickel-cobalt-manganese-cerium oxide positive electrode assembled battery.
  • a method for preparing a dynamic lithium nickel cobalt manganese oxide comprising the following specific steps:
  • the burnout section and the cooling section hot air is blown in the burnout section, and the obtained pellets are in a tumbling state, and the granulation temperature in the controlled furnace is 400 ° C, and the pellets stay in the furnace for 5 min; the granulation is completed, and the precursor is obtained.
  • the precursor powder and the lithium source mixed powder obtained in the step (3) are placed in a muffle furnace and sintered in the air, and sintered at 600 ° C for 20 hours to obtain a power-type lithium nickel cobalt manganate cathode material.
  • a method for preparing a dynamic lithium nickel cobalt manganese oxide comprising the following specific steps:
  • Lithium acetate, nickel acetate, cobalt acetate tetrahydrate, and manganese acetate were added to a volume of 1.5 L of tetradecanedioic acid at 135 ° C in a mass of 6.60 g, 17.68 g, 124.54 g, and 69.2 g, respectively, and stirred. 2h, and then add 3.0g of glyoxal while stirring, continue to stir for 3h to mix, to obtain a solution I;
  • the burnout section and the cooling section hot air is blown in the burnout section, and the obtained pellets are in a tumbling state, and the granulation temperature in the controlled furnace is 450 ° C, and the pellet stays in the furnace for 4 min; the granulation is completed, and the precursor is obtained.
  • the precursor powder and the lithium source mixed powder obtained in the step (3) were placed in a muffle furnace and sintered in the air, and sintered at 700 ° C for 15 hours to obtain a power-type lithium nickel cobalt manganate cathode material.
  • a method for preparing a dynamic lithium nickel cobalt manganese oxide comprising the following specific steps:
  • Lithium oxalate, nickel oxalate, cobalt oxalate and manganese oxalate were added to a volume of 0.8 L of 65 ° C hexadecanoic acid in a mass of 19.19 g, 48.90 g, 48.97 g and 47.65 g, respectively, and stirred for 3 h, then While stirring, 2.4 g of glutaraldehyde was added dropwise, and stirring was continued for 2 h to obtain a solution I;
  • the obtained granules are in a tumbling state, and the granulation temperature in the furnace is controlled to be 500 ° C, the particles stay in the furnace for 3 min; the granulation is completed, and a mixed powder of the precursor and the lithium source is obtained;
  • the precursor powder and the lithium source mixed powder obtained in the step (3) were placed in a muffle furnace and sintered in the air, and sintered at 800 ° C for 10 hours to obtain a power-type lithium nickel cobalt manganate cathode material.
  • a method for preparing a dynamic lithium nickel cobalt manganese oxide comprising the following specific steps:
  • the obtained granules are in a tumbling state, and the granulation temperature in the furnace is controlled to be 550 ° C, the particles are kept in the furnace for 1 min; the granulation is completed, and a mixed powder of the precursor and the lithium source is obtained;
  • the precursor powder and the lithium source mixed powder obtained in the step (3) were placed in a muffle furnace and sintered in the air, and sintered at 900 ° C for 8 hours to obtain a power-type lithium nickel cobalt manganate cathode material.
  • a method for preparing a dynamic lithium nickel cobalt manganese oxide comprising the following specific steps:
  • the obtained granules are in a tumbling state, and the granulation temperature in the furnace is controlled to be 600 ° C, and the granules are kept in the furnace for 1 min; the granulation is completed to obtain a mixed powder of the precursor and the lithium source;
  • the precursor powder and the lithium source mixed powder obtained in the step (3) were placed in a muffle furnace and sintered in the air, and sintered at 1000 ° C for 5 hours to obtain a power-type lithium nickel cobalt manganate cathode material.
  • Figure 1 is an SEM image of a lithium nickel cobalt manganate cathode material prepared in Example 1. It can be seen that the obtained sample has a regular spherical shape, regular morphology, good dispersibility, good particle size consistency, and particle size distribution. Between 6 and 12 ⁇ m, not only can the bulk density of the material be increased, the volumetric energy density of the battery can be increased, but also the processing performance during slurry coating and electrode preparation can be significantly improved. The SEM images of the lithium nickel cobalt manganate cathode materials prepared in other examples were not significantly different from those in Example 1.
  • Example 2 The lithium nickel cobalt manganese oxide prepared in Example 3 and the comparative examples was used as a positive electrode, and the lithium metal was used as a negative electrode to assemble a battery, and the first discharge test was performed at a rate of 1 C.
  • the results are shown in FIG. 2 .
  • the results show that the initial discharge specific capacity of the lithium nickel cobalt manganate cathode material prepared in Example 3 is higher than that of the ordinary solid phase method at 1 C rate, and the specific capacity of Example 3 is 151.9 mAh/g, and the ratio of the comparative examples.
  • the capacity is only 136.2 mAh / g.
  • Example 3 100 charge and discharge cycle tests were performed at 1 C rate, as shown in FIG. The results showed that the specific capacity of the lithium nickel cobalt manganate cathode material prepared in Example 3 was higher than that of the ordinary solid phase method after 100 cycles, and the capacity retention ratio of Example 3 was 90.7%, and the capacity retention ratio of the comparative example. Only 82.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种动力型镍钴锰酸锂正极材料的制备方法,首先将部分锂源与镍、钴、锰源溶于有机溶剂,再将另一部分锂源溶于水,同时通过双喷头热解炉造粒,并在炉内混匀,然后对混合粉末进行高温烧结,得到镍钴锰酸锂正极材料。该制备过程中不产生NH4 +、Na+等离子,极大降低了对环境的污染,所得镍钴锰酸锂材料球形度好,成分分布均匀,振实密度高,充放电循环过程中具有优异的循环稳定性,并且首次放电比容量显著提高。

Description

一种动力型镍钴锰酸锂正极材料的制备方法
技术领域
本发明属于电池正极材料制备技术领域,特别涉及一种动力型镍钴锰酸锂正极材料的制备方法。
背景技术
我国《节能与新能源汽车产业发展规划(2012-2020年)》电动汽车累计销售到2015年达50 万辆,2020年达500万辆。在国家政策的指导下,动力电池产业得到飞速发展。因锂离子电池具有安全性好,放电比能量高,充放电寿命长,无污染等优点被人们认为是最有前途的动力电池之一。
正极材料直接决定锂离子电池的性能。镍钴锰酸锂正极材料采用相对廉价的镍和锰取代了钴酸锂中大量的钴,因而其在降低成本方面具有非常明显的优势,同时因可观的充放电容量和优异的循环稳定性,镍钴锰酸锂正极材料的生产和使用日益广泛,显示出巨大的市场前景。
镍钴锰酸锂自身的形貌和尺寸对电性能的发挥起着重要的作用。研究表明,球形材料颗粒可以使材料拥有更大的振实密度和使用寿命。此外,优良的镍钴锰酸锂材料必须具有合适的尺寸和较窄的粒度分布,并且是非团聚的小球。常规制备球形镍钴锰酸锂的共沉淀法,由于工艺过程中采用氨水或NaOH 等碱液进行沉淀,NH4+、Na+等离子易对水体和周遭环境造成污染。且共沉淀法因镍、钴、锰各元素对应的氢氧化物的溶度积的差异导致在同一体系中难以得到稳定且化学计量比固定的共沉淀物。常规采用的固相法,其工艺过程中烧结前需对材料进行粉碎、混料,且尽管在焙烧前经过长时间研磨,但锂盐、镍盐和钴盐都难以达到分子级别的均匀接触,材料的均匀度较差导致其电化学性能稳定性不高。
发明内容
本发明的目的在于克服现有技术的不足,提供一种动力型镍钴锰酸锂正极材料的制备方法。
本发明所采取的技术方案是:
一种动力型镍钴锰酸锂正极材料的制备方法,包括以下步骤:
(1) 将锂源、镍源、钴源、锰源按摩尔比Li:Ni:Co:Mn=x:y:z:(1-y-z)溶于有机溶剂中,加入适量黏度调节剂,混合均匀,得溶液Ⅰ;其中,0.1≤x≤0.3,0.1≤y≤0.9,0.1≤z≤0.5,y+z<1;
(2) 将(1.0~1.1)-x的锂源溶于水,加入适量黏度调节剂,混合均匀,得溶液Ⅱ;
(3) 将溶液Ⅰ通过双喷头热解炉的喷头A、溶液Ⅱ通过喷头B同时进行压力喷雾造粒,得到前驱体和锂源的混合粉末;
(4) 将步骤(3)得到的混合粉末于600~1000℃温度下烧结5~20h,得到镍钴锰酸锂正极材料。
优选的,步骤(1)所述有机溶剂为熔融状态的碳原子数为12~18的直链羧酸。
优选的,溶液Ⅰ中金属离子浓度为0.5~3mol/L。
优选的,溶液Ⅱ中锂离子浓度为1~5mol/L。
优选的,步骤(1)所述黏度调节剂为三乙胺、乙二醛、戊二醛、苯甲醛、苯甲酸、异丁醛、肉桂醛、肉桂酸中的至少一种;步骤(2)所述黏度调节剂为乙二醇、丙三醇、三乙醇胺、乙二胺、四甘醇、亚乙基亚胺、乙酰胺、二丁基醚、异丁胺、2-丁酮、丙胺、2-丙醇中的至少一种。
优选的,溶液Ⅰ中黏度调节剂的浓度为1~5 g/L。
优选的,溶液Ⅱ中黏度调节剂的浓度为2~10g/L。
优选的,步骤(3)中,控制喷头A的工作压力为0.1~0.6MPa,进料速度为500~5000mL/h;控制喷头B的工作压力为0.05~0.3MPa,进料速度为300~2050mL/h。
优选的,步骤(3)中,控制热解炉炉内造粒温度为400~600℃。
优选的,热解炉炉内自上而下分为干燥段、热解段、燃烧段、燃尽段和冷却段,在燃尽段鼓入热空气,使步骤(3)制得的颗粒处于翻滚状态,颗粒在炉内停留时间为1~5min。
优选的,所述锂源为醋酸锂、草酸锂、柠檬酸锂、氢氧化锂中的至少一种;所述镍源为醋酸镍、草酸镍、柠檬酸镍、氢氧化镍中的至少一种;所述钴源为醋酸钴、草酸钴、柠檬酸钴、氢氧化钴中的至少一种;所述锰源为醋酸锰、草酸锰、柠檬酸锰、氢氧化锰中的至少一种。
本发明的有益效果是:
1、本发明采用熔融羧酸作为溶剂,羧酸溶剂同时兼有溶剂、配合剂、表面活性剂三重作用,使各种金属离子在液相中均匀稳定的混合,还可避免水对金属盐的水解作用。羧酸溶剂分子与分子间形成氢键缔合等结构,使分子之间缠绕点增多,分子之间作用力增强,因此,使烧结得到的镍钴锰酸锂具有较大的振实密度。
2、本发明将部分锂源与镍、钴、锰源溶液混合,各组分在原子水平进行混合,锂源将均匀分布在前驱体溶液中;内含锂源的前驱体溶液从双喷头热解炉的喷头A中喷出,另一部分锂源溶液从喷头B中喷出,在气流带动下与之混合,得到前驱体和锂源的均匀混合粉末;对混合粉末进行高温烧结,有机溶剂在高温下燃烧后赋予前驱体颗粒多孔结构,有利于使熔融锂源的Li2O从孔隙中充分扩散进入前驱体内部,使材料成分分布更加均匀。锂源分两步引入,进一步优化材料成分分布,烧结后得到更理想的计量比化学物。
3、本发明采用双喷头热解炉同时对前驱体和锂源造粒,并在炉内通过气流的带动进行混匀,避免了常规球磨的混料方式可能破坏前驱体的球形多孔结构的缺陷。
4、本发明的工艺过程中不采用氨水或NaOH等碱进行沉淀,不产生传统工艺中NH4+、Na+等离子对水的污染,极大的降低了对环境的污染。所得镍钴锰酸锂产品产率高,球形度好,振实密度高,充放电循环过程中具有优异的循环稳定性,并且首次放电比容量显著提高。
附图说明
图1为镍钴锰酸锂正极材料的SEM图;
图2为镍钴锰酸锂正极材料组装电池的充放电曲线图;
图3为镍钴锰酸锂正极材料组装电池的循环性能图。
具体实施方式
下面结合具体实施例,进一步阐述本发明内容。
实施例1
一种动力型镍钴锰酸锂的制备方法,包括以下具体步骤:
(1)将醋酸锂、醋酸镍、四水合醋酸钴、醋酸锰分别按质量6.60g、17.68g、124.54g、69.2g加入到体积为2.2L的50℃的十二烷酸中溶解,搅拌2h混匀,然后边搅拌边滴加入2.2g三乙胺,继续搅拌3h混匀,得溶液Ⅰ;
(2)将59.39g醋酸锂溶于0.9L水中,加入1.8g乙二醇,搅拌1h混匀,得溶液Ⅱ;
(3)将溶液Ⅰ在双喷头热解炉的喷头A进行压力喷雾造粒,控制压力为0.6MPa,进料速度为5000mL/h,同时,将溶液Ⅱ在双喷头热解炉的喷头B进行压力喷雾造粒,控制压力为0.3MPa,进料速度为2050mL/h;喷头A、B之间有一块长度可调的挡板,炉内自上而下划分为干燥段、热解段、燃烧段、燃尽段和冷却段,在燃尽段鼓入热空气,制得的颗粒处于翻滚状态,且控制炉内造粒温度为400℃、颗粒在炉内停留5min;造粒完成,得到前驱体和锂源混合粉末;
(4)将步骤(3)得到的前驱体和锂源混合粉末置于马弗炉在空气中进行烧结,600℃恒温烧结20h,得到动力型镍钴锰酸锂正极材料。
实施例2
一种动力型镍钴锰酸锂的制备方法,包括以下具体步骤:
(1)将醋酸锂、醋酸镍、四水合醋酸钴、醋酸锰分别按质量6.60g、17.68g、124.54g、69.2g加入到体积为1.5L的135℃的十四烷二酸中溶解,搅拌2h混匀,然后边搅拌边滴加入3.0g乙二醛,继续搅拌3h混匀,得溶液Ⅰ;
(2)将59.39g醋酸锂溶于0.6L水中,加入2.0g丙三醇,搅拌1h混匀,得溶液Ⅱ;
(3)将溶液Ⅰ在双喷头热解炉的喷头A进行压力喷雾造粒,控制压力为0.5MPa,进料速度为4000mL/h,同时,将溶液Ⅱ在双喷头热解炉的喷头B进行压力喷雾造粒,控制压力为0.2MPa,进料速度为1600mL/h;喷头A、B之间有一块长度可调的挡板,炉内自上而下划分为干燥段、热解段、燃烧段、燃尽段和冷却段,在燃尽段鼓入热空气,制得的颗粒处于翻滚状态,且控制炉内造粒温度为450℃、颗粒在炉内停留4min;造粒完成,得到前驱体和锂源混合粉末;
(4)将步骤(3)得到的前驱体和锂源混合粉末置于马弗炉在空气中进行烧结,700℃恒温烧结15h,得到动力型镍钴锰酸锂正极材料。
实施例3
一种动力型镍钴锰酸锂的制备方法,包括以下具体步骤:
(1)将草酸锂、草酸镍、草酸钴、草酸锰分别按质量19.19g、48.90g、48.97g、47.65g加入到体积为0.8L的65℃的十六烷酸中溶解,搅拌3h,然后边搅拌边滴加入2.4g戊二醛,继续搅拌2h,得溶液Ⅰ;
(2)将76.78g草酸锂溶于0.267L水中,加入1.33g三乙醇胺,搅拌2h混匀,得溶液Ⅱ;
(3)将溶液Ⅰ在双喷头热解炉的喷头A进行压力喷雾造粒,控制压力为0.3MPa,进料速度为3000mL/h;同时,将溶液Ⅱ在双喷头热解炉的喷头B进行压力喷雾造粒,控制压力为0.15MPa,进料速度为1000mL/h;炉内自上而下划分为干燥段、热解段、燃烧段、燃尽段和冷却段,在燃尽段鼓入热空气,制得的颗粒处于翻滚状态,且控制炉内造粒温度为500℃、颗粒在炉内停留3min;造粒完成,得到前驱体和锂源混合粉末;
(4)将步骤(3)得到的前驱体和锂源混合粉末置于马弗炉在空气中进行烧结,800℃烧结10h,得到动力型镍钴锰酸锂正极材料。
实施例4
一种动力型镍钴锰酸锂的制备方法,包括以下具体步骤:
(1)将氢氧化锂、氢氧化镍、氢氧化钴、氢氧化锰分别按质量7.18g、74.17g、9.29g、8.89g加入到体积为0.6L的130℃的十六烷二酸中溶解,搅拌4h,然后边搅拌边滴加入2.5g苯甲醛,继续搅拌1h,得溶液Ⅰ;
(2)将76.78g草酸锂溶于0.3L水中,加入2.25g乙二胺,搅拌2h混匀,得溶液Ⅱ;
(3)将溶液Ⅰ在双喷头热解炉的喷头A进行压力喷雾造粒,控制压力为0.2MPa,进料速度为1500mL/h,同时,将溶液Ⅱ在双喷头热解炉的喷头B进行压力喷雾造粒,控制压力为0.1MPa,进料速度为750mL/h;炉内自上而下划分为干燥段、热解段、燃烧段、燃尽段和冷却段,在燃尽段鼓入热空气,制得的颗粒处于翻滚状态,且控制炉内造粒温度为550℃、颗粒在炉内停留1min;造粒完成,得到前驱体和锂源混合粉末;
(4)将步骤(3)得到的前驱体和锂源混合粉末置于马弗炉在空气中进行烧结,900℃烧结8h,得到动力型镍钴锰酸锂正极材料。
实施例5
一种动力型镍钴锰酸锂的制备方法,包括以下具体步骤:
(1)将氢氧化锂、氢氧化镍、氢氧化钴、氢氧化锰分别按质量7.18g、74.17g、9.29g、8.89g加入到体积为0.433L的85℃的十八烷酸中溶解,搅拌5h,然后边搅拌边滴加入2.17g苯甲酸,继续搅拌1h,得溶液Ⅰ;
(2)将76.78g草酸锂溶于0.267L水中,加入1.34g四甘醇,搅拌2h混匀,得溶液Ⅱ;
(3)将溶液Ⅰ在双喷头热解炉的喷头A进行压力喷雾造粒,控制压力为0.1MPa,进料速度为500mL/h,同时,将溶液Ⅱ在双喷头热解炉的喷头B进行压力喷雾造粒,控制压力为0.05MPa,进料速度为300mL/h;炉内自上而下划分为干燥段、热解段、燃烧段、燃尽段和冷却段,在燃尽段鼓入热空气,制得的颗粒处于翻滚状态,且控制炉内造粒温度为600℃、颗粒在炉内停留1min;造粒完成,得到前驱体和锂源混合粉末;
(4)将步骤(3)得到的前驱体和锂源混合粉末置于马弗炉在空气中进行烧结,1000℃烧结5h,得到动力型镍钴锰酸锂正极材料。
对比例
分别称取65.99g醋酸锂,58.93g醋酸镍,82.03g四水合醋酸钴,57.67g醋酸锰,加入200mL无水乙醇作分散剂,用行星球磨机球磨2h,烘箱105℃烘干后将得到的粉末置于马弗炉在空气中进行烧结,烧结温度为600℃,恒温20h。得到镍钴锰酸锂对比样品。
性能检测:
1、图1为实施例1制得镍钴锰酸锂正极材料的SEM图,可以看出,所得样品呈规则的球形,形貌规则,分散性好,颗粒尺寸一致性好,粒径分布在6~12μm之间,不仅能提高材料的堆积密度、增加电池的体积能量密度,而且能够显著改善浆料涂布、电极制备过程中的加工性能。其他实施例制备的镍钴锰酸锂正极材料的SEM图与实施例1无较大差别。
2、分别以实施例3和对比例制得的镍钴锰酸锂为正极,以金属锂为负极,组装成电池,以1C倍率进行首次放电测试,结果如图2所示。结果显示,在1C倍率下,实施例3制备的镍钴锰酸锂正极材料的首次放电比容量比普通固相法的高,实施例3的比容量为151.9mAh/g,而对比例的比容量只有136.2mAh/g。
以1C倍率进行100次充放电循环测试,如图3所示。结果显示,实施例3制备的镍钴锰酸锂正极材料的比容量经过100次循环后,比普通固相法的高,实施例3的容量保持率为90.7%,而对比例的容量保持率只有82.4%。

Claims (10)

  1. 一种动力型镍钴锰酸锂正极材料的制备方法,包括以下步骤:
    (1) 将锂源、镍源、钴源、锰源按摩尔比Li:Ni:Co:Mn=x:y:z:(1-y-z)溶于有机溶剂中,加入适量黏度调节剂,混合均匀,得溶液Ⅰ;其中,0.1≤x≤0.3,0.1≤y≤0.9,0.1≤z≤0.5,y+z<1;
    (2) 将(1.0~1.1)-x的锂源溶于水,加入适量黏度调节剂,混合均匀,得溶液Ⅱ;
    (3) 将溶液Ⅰ通过双喷头热解炉的喷头A、溶液Ⅱ通过喷头B同时进行压力喷雾造粒,得到前驱体和锂源的混合粉末;
    (4) 将步骤(3)得到的混合粉末于600~1000℃温度下烧结5~20h,得到镍钴锰酸锂正极材料。
  2. 根据权利要求1所述的制备方法,其特征在于:步骤(1)所述有机溶剂为熔融状态的碳原子数为12~18的直链羧酸。
  3. 根据权利要求1所述的制备方法,其特征在于:溶液Ⅰ中金属离子浓度为0.5~3mol/L。
  4. 根据权利要求1所述的制备方法,其特征在于:溶液Ⅱ中锂离子浓度为1~5mol/L。
  5. 根据权利要求1所述的制备方法,其特征在于:步骤(1)所述黏度调节剂为三乙胺、乙二醛、戊二醛、苯甲醛、苯甲酸、异丁醛、肉桂醛、肉桂酸中的至少一种;步骤(2)所述黏度调节剂为乙二醇、丙三醇、三乙醇胺、乙二胺、四甘醇、亚乙基亚胺、乙酰胺、二丁基醚、异丁胺、2-丁酮、丙胺、2-丙醇中的至少一种。
  6. 根据权利要求1或5所述的制备方法,其特征在于:溶液Ⅰ中黏度调节剂的浓度为1~5 g/L。
  7. 根据权利要求1或5所述的制备方法,其特征在于:溶液Ⅱ中黏度调节剂的浓度为2~10g/L。
  8. 根据权利要求1所述的制备方法,其特征在于:步骤(3)中,控制喷头A的工作压力为0.1~0.6MPa,进料速度为500~5000mL/h;控制喷头B的工作压力为0.05~0.3MPa,进料速度为300~2050mL/h。
  9. 根据权利要求1所述的制备方法,其特征在于:步骤(3)中,控制热解炉炉内造粒温度为400~600℃。
  10. 根据权利要求1、8或9所述的制备方法,其特征在于:热解炉炉内自上而下分为干燥段、热解段、燃烧段、燃尽段和冷却段,在燃尽段鼓入热空气,使步骤(3)制得的颗粒处于翻滚状态,颗粒在炉内停留时间为1~5min。
PCT/CN2015/072620 2014-03-04 2015-02-10 一种动力型镍钴锰酸锂正极材料的制备方法 WO2015131745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410076330.9 2014-03-04
CN201410076330.9A CN103904319B (zh) 2014-03-04 2014-03-04 一种动力型镍钴锰酸锂正极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2015131745A1 true WO2015131745A1 (zh) 2015-09-11

Family

ID=50995543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072620 WO2015131745A1 (zh) 2014-03-04 2015-02-10 一种动力型镍钴锰酸锂正极材料的制备方法

Country Status (2)

Country Link
CN (1) CN103904319B (zh)
WO (1) WO2015131745A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518209A (zh) * 2019-08-27 2019-11-29 广东风华新能源股份有限公司 正极材料制备方法及制备的正极材料
CN114497530A (zh) * 2022-01-11 2022-05-13 中科锂电新能源有限公司 一种压缩型磷酸铁锰锂正极材料及其生产工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904319B (zh) * 2014-03-04 2015-10-07 广东邦普循环科技有限公司 一种动力型镍钴锰酸锂正极材料的制备方法
JP6356333B2 (ja) * 2014-07-25 2018-07-11 台湾立凱電能科技股▲ふん▼有限公司 リチウムニッケルマンガン酸化物電池カソード材料の調製方法及びリチウムニッケルマンガン酸化物電池カソード材料
CN108899513A (zh) * 2018-07-03 2018-11-27 江苏乐能电池股份有限公司 一种含有有机盐的三元复合材料的制备方法
CN109360949A (zh) * 2018-09-13 2019-02-19 德阳威旭锂电科技有限责任公司 一种水/溶剂热法大量制备碳包覆磷酸锰铁锂的方法
CN113735187B (zh) * 2020-05-29 2023-06-09 东莞东阳光科研发有限公司 一种镍钴锰酸锂前驱体的制备方法
CN113178565B (zh) * 2021-03-29 2023-06-16 广东邦普循环科技有限公司 制备高镍正极材料的混料工艺及其应用
CN113809319B (zh) * 2021-08-03 2022-11-15 广东邦普循环科技有限公司 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110229751A1 (en) * 2010-03-18 2011-09-22 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
CN102300806A (zh) * 2008-12-08 2011-12-28 蒂肖有限公司 多组分纳米粒子材料及其方法和设备
CN102583579A (zh) * 2012-02-14 2012-07-18 佛山市邦普循环科技有限公司 一种锂离子电池的富锂钴锰酸锂正极材料的改性方法
CN102956884A (zh) * 2012-11-29 2013-03-06 四川大学 一种富锂锰基材料及其制备方法
CN103000893A (zh) * 2012-12-20 2013-03-27 中国东方电气集团有限公司 一种锂电池磷酸锰锂正极材料的喷雾热解制备方法
CN103094546A (zh) * 2013-01-25 2013-05-08 湖南邦普循环科技有限公司 一种制备锂离子电池正极材料镍钴铝酸锂的方法
CN103904319A (zh) * 2014-03-04 2014-07-02 广东邦普循环科技有限公司 一种动力型镍钴锰酸锂正极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300806A (zh) * 2008-12-08 2011-12-28 蒂肖有限公司 多组分纳米粒子材料及其方法和设备
US20110229751A1 (en) * 2010-03-18 2011-09-22 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
CN102583579A (zh) * 2012-02-14 2012-07-18 佛山市邦普循环科技有限公司 一种锂离子电池的富锂钴锰酸锂正极材料的改性方法
CN102956884A (zh) * 2012-11-29 2013-03-06 四川大学 一种富锂锰基材料及其制备方法
CN103000893A (zh) * 2012-12-20 2013-03-27 中国东方电气集团有限公司 一种锂电池磷酸锰锂正极材料的喷雾热解制备方法
CN103094546A (zh) * 2013-01-25 2013-05-08 湖南邦普循环科技有限公司 一种制备锂离子电池正极材料镍钴铝酸锂的方法
CN103904319A (zh) * 2014-03-04 2014-07-02 广东邦普循环科技有限公司 一种动力型镍钴锰酸锂正极材料的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518209A (zh) * 2019-08-27 2019-11-29 广东风华新能源股份有限公司 正极材料制备方法及制备的正极材料
CN110518209B (zh) * 2019-08-27 2022-04-22 广东风华新能源股份有限公司 正极材料制备方法及制备的正极材料
CN114497530A (zh) * 2022-01-11 2022-05-13 中科锂电新能源有限公司 一种压缩型磷酸铁锰锂正极材料及其生产工艺

Also Published As

Publication number Publication date
CN103904319A (zh) 2014-07-02
CN103904319B (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2015131745A1 (zh) 一种动力型镍钴锰酸锂正极材料的制备方法
CN103000870B (zh) LiZNiXCoYMn1‑X‑YO2材料复配方法
CN108550843B (zh) 镍钴锰三元材料的制备方法、镍钴锰三元材料、锂离子电池正极材料和锂离子电池
CN111793824B (zh) 一种表面修饰高镍正极材料及其制备方法和应用
CN114583155B (zh) 一种磷酸铁锰锂材料的制备方法
CN108717976B (zh) 一种高密度动力型镍钴锰酸锂正极材料的制备方法
CN112794369B (zh) 纳米钴酸锂正极材料的制备方法及其应用
CN113991112A (zh) 一种掺杂纳米二氧化钛磷酸铁锂正极材料的制备方法
CN112794371A (zh) 低成本高镍三元锂离子电池正极材料及其制备方法
CN111342015B (zh) 一种高压实、低电阻磷酸铁锂及其制备方法
CN112885992A (zh) 一种锂离子电池负极材料的制备方法及应用
CN105720242A (zh) 锂离子电池正极材料nca的改性方法
CN108134091A (zh) 一种纳米锡/碳复合材料及其制备方法
CN108682839B (zh) 一种锂电子电池正极材料及其制备方法
US20240018014A1 (en) High-performance lithium-nickel-manganese-cobalt oxide (lnmco) cathode material for power batteries and preparation method thereof
CN110380022B (zh) 一种高电压单晶镍钴锰三元正极材料及制备方法
CN114645314B (zh) 一种单晶形貌三元正极材料的制备方法
CN112301271A (zh) 一种碳-氧化物电解质包覆的电池负极材料及其制备方法
CN115911357A (zh) 一种碳包覆铁酸锂材料的制备方法及其应用
CN112139512B (zh) 一种铜基复合材料前驱体粉末的制备方法
CN108832083B (zh) 一种包覆型动力电池用镍钴锰酸锂的制备方法
CN113443659A (zh) 湿法掺杂与碳包覆共修饰的四元正极材料及其制备方法
WO2018108043A1 (zh) 一种锰酸锂粉尘再利用的方法
CN111653763A (zh) 三元锂离子电池正极材料及其制备方法
CN106876703A (zh) 一种钌掺杂的磷酸钒锂正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758085

Country of ref document: EP

Kind code of ref document: A1