WO2021014822A1 - 燃料電池システムおよび燃料電池システムの制御方法 - Google Patents

燃料電池システムおよび燃料電池システムの制御方法 Download PDF

Info

Publication number
WO2021014822A1
WO2021014822A1 PCT/JP2020/023439 JP2020023439W WO2021014822A1 WO 2021014822 A1 WO2021014822 A1 WO 2021014822A1 JP 2020023439 W JP2020023439 W JP 2020023439W WO 2021014822 A1 WO2021014822 A1 WO 2021014822A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
flow rate
solid oxide
cell system
Prior art date
Application number
PCT/JP2020/023439
Other languages
English (en)
French (fr)
Inventor
健 寺山
智宏 黒羽
恭平 川田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080021782.0A priority Critical patent/CN113574709B/zh
Priority to EP20843642.8A priority patent/EP4020640A4/en
Priority to JP2021533862A priority patent/JP7555020B2/ja
Publication of WO2021014822A1 publication Critical patent/WO2021014822A1/ja
Priority to US17/551,192 priority patent/US12009558B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/122Corrugated, curved or wave-shaped MEA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell system and a control method for the fuel cell system.
  • SOFC solid oxide fuel cell
  • Oxide ion conductors typified by stabilized zirconia are generally widely used as the electrolyte material of SOFC. Since the ionic conductivity of an oxide ion conductor decreases as the temperature becomes lower, SOFC using stabilized zirconia as an electrolyte material requires, for example, an operating temperature of 700 ° C. or higher. In recent years, SOFCs using an electrolyte material having proton conductivity, which can operate at about 600 ° C., have attracted attention from the viewpoint of chemical stability of members and cost reduction.
  • the fuel cell system according to Patent Document 1 implements stop control in which fuel is continuously supplied to the anode side until the cell voltage drops below a predetermined value while taking out the current to the outside.
  • stop control the fuel cell system according to Patent Document 1 can suppress oxidative deterioration of the anode during the VLC treatment.
  • stop control is performed in which fuel is continuously supplied to the anode side until the cell voltage drops below a predetermined value while taking out the current to the outside.
  • Solid oxide fuel cells that use an electrolyte membrane that conducts protons may be damaged by fuel withering.
  • the present disclosure proposes a fuel cell system that can safely stop a solid oxide fuel cell using an electrolyte membrane that conducts protons without damaging the solid oxide fuel cell.
  • One aspect of the fuel cell system according to the present disclosure is provided on an electrolyte membrane on which protons are conducted, a cathode provided on one main surface of the electrolyte membrane, and the other main surface in order to solve the above-mentioned problems. It is provided with a solid oxide fuel cell and a controller that have a membrane electrode joint composed of a cathode and generate electricity by an electrochemical reaction using fuel and air, and the controller is a fuel cell. In the operation stop process for stopping the operation of the system, it is controlled to supply a flow rate of fuel larger than the flow rate of the fuel consumed by the solid oxide fuel cell in the open circuit state.
  • a proton-conducting electrolyte membrane, a cathode provided on one main surface of the electrolyte membrane, and the other main surface A method for controlling a fuel cell system including a solid oxide fuel cell which has a membrane electrode joint composed of an anode provided in the above and which generates electricity by an electrochemical reaction using fuel and air.
  • the operation stop process for stopping the operation of the fuel cell system includes a step of supplying fuel having a flow rate higher than the flow rate of the fuel consumed by the solid oxide fuel cell in the open circuit state.
  • the present disclosure is configured as described above, and has the effect of being able to safely stop without damaging the solid oxide fuel cell using the electrolyte membrane on which protons are conducted.
  • FIG. 1 is a block diagram schematically showing an example of the configuration of the fuel cell system according to the first embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system shown in FIG.
  • FIG. 3 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system shown in FIG.
  • FIG. 4 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system shown in FIG.
  • FIG. 5 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system shown in FIG.
  • FIG. 6 is a block diagram schematically showing an example of the configuration of the fuel cell system according to the second embodiment of the present disclosure.
  • FIG. 7 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system shown in FIG.
  • An ionic conductor composed of a type composite oxide can be exemplified. This electrolyte material has hole conductivity in addition to proton conductivity.
  • the SOFC using the electrolyte membrane of the oxide ion conductor when the SOFC using the electrolyte membrane of the oxide ion conductor is opened in the open circuit state, there is no path for current to flow between the anode and the cathode, and the amount of current taken out from the external circuit is also zero. Therefore, the SOFC using the electrolyte membrane of the oxide ion conductor has zero fuel consumption in the open circuit state.
  • the open circuit state is a state in which the current is not taken out from the SOFC to the external load.
  • the fuel consumption can be derived from the mathematical formula (2) as shown by the following mathematical formula (3).
  • Fuel consumption [mol / s] (Amount of current taken out from the external circuit [A] + amount of current flowing through the electrolyte membrane [A]) / 2 / F [C / mol] ... (3)
  • the mathematical formula (3) in the case of SOFC using an electrolyte membrane of a proton conductor, even if the extraction current amount is set to 0 in the open circuit state, the electrons generated by the electrochemical reaction form the electrolyte membrane. Since it flows, the fuel consumption does not become zero.
  • an SOFC using an electrolyte membrane of a proton conductor has an operating temperature of 600 ° C., a current density of 0.22 A / cm 2 taken out from the fuel cell stack, and the ratio of fuel consumed during power generation to the amount of fuel supplied. It is assumed that it is set to be 85%. Under this condition, it has been confirmed that the fuel consumption in the SOFC using the electrolyte membrane of the proton conductor in the open circuit state reaches 25% or more of the fuel supply amount.
  • SOFCs that use an electrolyte membrane of proton conductors require distinctive control that is different from SOFCs that use an electrolyte membrane of oxide ion conductors from the viewpoint of preventing fuel withering in the operation stop processing of the fuel cell system. Will be done.
  • SOFCs using such an electrolyte membrane of a proton conductor a fuel cell system that can be stopped without causing damage due to fuel withering has not yet been studied.
  • the present inventors have diligently studied a fuel cell system that can be stopped without damage due to fuel withering in SOFC using an electrolyte membrane of a proton conductor. As a result, the following findings were obtained.
  • the present inventors should not carry out the stop control of the fuel cell system based on the extraction current, but carry out the stop control of the fuel cell system focusing on the fuel consumption amount. For example, they have found that the fuel cell system can be controlled appropriately.
  • the present inventors damage the SOFC due to fuel withering by configuring the fuel cell system to stop while flowing fuel at a flow rate larger than the fuel consumption in the open circuit state to the SOFC. I realized that I could prevent that.
  • the fuel cell system according to the first aspect of the present disclosure is a film composed of an electrolyte membrane on which protons are conducted, a cathode provided on one main surface of the electrolyte membrane, and an anode provided on the other main surface.
  • the flow rate of the fuel consumed in the solid oxide fuel cell in the open circuit state can be said to be the minimum flow rate of the fuel consumed in the solid oxide fuel cell per unit time.
  • the operation stop process is the period from the instruction to stop the fuel cell system from the controller to the state where the fuel cell system including the auxiliary machinery for supplying fuel and air is completely stopped. This is the process to be performed.
  • the controller controls to supply a flow rate of fuel higher than the minimum flow rate of the fuel consumed by the solid oxide fuel cell in the shutdown process. Therefore, it is possible to prevent fuel withering in the solid oxide fuel cell using the electrolyte membrane in which protons are conducted during the operation stop treatment.
  • the fuel cell system according to the first aspect of the present disclosure has an effect that it can be safely stopped without damaging the solid oxide fuel cell using the electrolyte membrane on which protons are conducted.
  • the fuel cell system according to the second aspect of the present disclosure further includes, in the first aspect described above, a fuel supply device that supplies a hydrogen-containing gas as the fuel to the anode of the solid oxide fuel cell.
  • the controller supplies the fuel at a flow rate higher than the flow rate of the fuel consumed by the solid oxide fuel cell in the open circuit state. May be configured to control.
  • the controller supplies a flow rate of fuel higher than the flow rate of the fuel consumed by the solid oxide fuel cell in the open circuit state in the operation stop process for stopping the operation of the fuel cell system.
  • the fuel supply can be controlled. Therefore, it is possible to prevent fuel withering in the solid oxide fuel cell using the electrolyte membrane in which protons are conducted during the operation stop treatment.
  • the fuel cell system according to the third aspect of the present disclosure further includes a temperature detector for detecting the temperature of the solid oxide fuel cell in the second aspect described above, and the controller is the operation stop process. From the flow rate of fuel consumed by the solid oxide fuel cell in the open circuit state until it is determined that the temperature detected by the temperature detector is equal to or lower than the temperature at which hole conduction does not occur in the electrolyte membrane.
  • the fuel supply device may be controlled so as to supply a large amount of fuel.
  • the temperature at which hole conduction does not occur in the electrolyte membrane is, for example, 400 ° C.
  • the electric resistance in the electrolyte membrane becomes large and Hall conduction does not occur.
  • the fuel cell system according to the fourth aspect of the present disclosure further includes a temperature detector for detecting the temperature of the solid oxide fuel cell in the second aspect described above, and the controller is the operation stop process. From the flow rate of fuel consumed by the solid oxide fuel cell in the open circuit state until it is determined that the temperature detected by the temperature detector is equal to or lower than the temperature at which the oxidation-reduction reaction does not occur at the anode.
  • the fuel supply device may be controlled so as to supply a large amount of fuel.
  • the temperature at which the redox reaction does not occur at the anode is 400 ° C., more preferably the temperature in the range of 200 ° C. to 300 ° C. This redox reaction at the anode occurs due to fuel withering at the anode.
  • the flow rate of the solid oxide fuel cell is higher than the flow rate of the fuel consumed by the solid oxide fuel cell in the open circuit state until the temperature of the solid oxide fuel cell becomes equal to or lower than the temperature at which the redox reaction does not occur at the anode. Control the fuel supply to supply fuel. Therefore, the operation of the fuel cell system can be stopped so that the redox reaction of the anode due to fuel withering does not occur.
  • the controller in any one of the second to fourth aspects described above, is in the open circuit state of the solid oxide in the operation stop process.
  • the flow rate of the fuel consumed by the solid oxide fuel cell is higher than the flow rate of the fuel consumed by the solid oxide fuel cell, and the flow rate of the fuel consumed by the solid oxide fuel cell is 90 of the flow rate of the fuel supplied to the solid oxide fuel cell.
  • the fuel supply device may be controlled so as to supply fuel so as to be% or less.
  • solid oxide using a proton-conducting electrolyte membrane is used to control the fuel supply device so as to supply a flow rate higher than the flow rate of the fuel consumed by the solid oxide fuel cell in the open circuit state. It is possible to prevent fuel withering in a physical fuel cell. Further, the fuel is supplied so that the flow rate of the fuel consumed by the solid oxide fuel cell is 90% or less of the flow rate of the fuel supplied to the solid oxide fuel cell. Therefore, even when the fuel flows unevenly and the concentration of the fuel is unevenly generated at the anode, it is possible to prevent the occurrence of local fuel withering.
  • the fuel cell system according to the sixth aspect of the present disclosure further comprises an air supply device for supplying the air to the solid oxide fuel cell in any one of the first to fifth aspects described above.
  • the controller controls the air supply device so as to supply a flow rate of air larger than the flow rate of the air consumed by the solid oxide fuel cell in the open circuit state in the operation stop process. It may be.
  • the flow rate of air consumed in the solid oxide fuel cell in the open circuit state can be said to be the minimum flow rate of air consumed in the fuel cell system per unit time.
  • the controller controls the air supply so as to supply a flow rate of air higher than the minimum flow rate of air consumed in the fuel cell system in the shutdown process. Therefore, in the solid oxide fuel cell using the electrolyte membrane in which protons are conducted during the operation stop treatment, it is possible to prevent fuel withering and prevent air withering.
  • the fuel cell system is a switching unit that switches the solid oxide fuel cell from a closed circuit state to an open circuit state in any one of the second to sixth aspects described above.
  • the controller controls the switching unit so as to switch the solid oxide fuel cell from the closed circuit state to the open circuit state in the operation stop process, and the solid oxide fuel cell in the open circuit state.
  • the fuel supply device may be controlled so as to supply a fuel having a flow rate higher than the flow rate of the fuel consumed by the fuel cell.
  • the solid oxide fuel cell can be switched from the closed circuit state to the open circuit state. Then, in the operation stop process, since the switching unit is controlled so as to switch the solid oxide fuel cell from the closed circuit state to the open circuit state, the amount of current generated in the solid oxide fuel cell can be minimized. .. Therefore, in the operation stop treatment, the heat generation in the solid oxide fuel cell can be reduced. Therefore, in the shutdown process, the temperature inside the fuel cell system can be lowered faster. Further, the solid oxide fuel cell is set to the open circuit state, and the fuel supply device is controlled so as to supply fuel at a flow rate higher than the flow rate of the fuel consumed by the solid oxide fuel cell in the open circuit state. Therefore, it is possible to prevent fuel withering in the solid oxide fuel cell using the electrolyte membrane in which protons are conducted during the operation stop treatment.
  • the proton-conducting electrolyte membrane may contain a proton-conducting oxide. Good.
  • the control method of the fuel cell system according to the ninth aspect of the present disclosure includes an electrolyte membrane on which protons are conducted, a cathode provided on one main surface of the electrolyte membrane, and an anode provided on the other main surface. It is a control method of a fuel cell system including a solid oxide fuel cell which has a membrane electrode junction composed of the above and generates electricity by an electrochemical reaction using fuel and air, and operates the fuel cell system.
  • the operation stop process for stopping includes a step of supplying fuel at a flow rate higher than the flow rate of the fuel consumed by the solid oxide fuel cell in the open circuit state.
  • the flow rate of fuel consumed in the solid oxide fuel cell in the open circuit state can be said to be the minimum flow rate of fuel consumed in the fuel cell system per unit time.
  • the operation stop process is the period from the instruction to stop the fuel cell system from the controller to the state where the fuel cell system including the auxiliary machinery for supplying fuel and air is completely stopped. This is the process to be performed.
  • the operation stop process includes a step of supplying a fuel having a flow rate higher than the minimum flow rate of the fuel consumed in the fuel cell system. Therefore, it is possible to prevent fuel withering in the solid oxide fuel cell using the electrolyte membrane in which protons are conducted during the operation stop treatment.
  • control method of the fuel cell system according to the seventh aspect of the present disclosure has an effect that it can be safely stopped without damaging the solid oxide fuel cell using the electrolyte membrane on which protons are conducted. Play.
  • the fuel cell system 100 according to the first embodiment of the present disclosure is a fuel cell system including a solid oxide fuel cell using an electrolyte membrane in which protons are conducted.
  • the configuration of the fuel cell system 100 according to the first embodiment will be described below with reference to FIG.
  • FIG. 1 is a block diagram schematically showing an example of the configuration of the fuel cell system 100 according to the first embodiment of the present disclosure.
  • the fuel cell system 100 includes a fuel supply device 11, an air supply device 12, an electrolyte membrane 13a composed of a proton conductor, and a cathode 13b provided on one main surface of the electrolyte membrane 13a.
  • SOFC stack 15 solid oxide fuel cell
  • SOFC stack 15 in which a membrane electrode assembly 13 composed of an anode 13c provided on the other main surface and one or more membrane electrode assemblies 13 are laminated and bonded. It is configured to include a current take-out line 16 for extracting current from the outside and a controller 17.
  • the current take-out line 16 has a switching unit for alternately switching between an open circuit state in which the amount of current taken out through the current take-out line 16 is 0 and a closed circuit state in which the current is taken out to the outside. 14 is provided.
  • the switching unit 14 switches the SOFC stack 15 from the closed circuit state to the open circuit state according to the control signal received from the controller 17.
  • the switching unit 14 switches the SOFC stack 15 from the open circuit state to the closed circuit state according to the control signal received from the controller 17.
  • the switching unit 14 may be, for example, a relay that turns the contacts on and off. Note that FIG. 1 shows an open circuit state.
  • the fuel supply device 11 supplies hydrogen-containing gas as fuel to the anode 13c of the membrane electrode assembly 13 constituting the SOFC stack 15 in response to the control signal received from the controller 17.
  • the hydrogen-containing gas may be generated by chemically reacting (that is, reforming) CH 4 or the like with a reformer, or may be generated by water electrolysis.
  • the air supply device 12 supplies air as an oxidant gas to the cathode 13b of the membrane electrode assembly 13 constituting the SOFC stack 15 in response to the control signal received from the controller 17.
  • the electrolyte membrane 13a is composed of an electrolyte material having proton conductivity (that is, a proton conductor).
  • the proton conductor for example BaCe 1-x M x O 3 - ⁇ , BaZr 1-x-y Ce x M y O 3- ⁇ , or BaZr 1-x M x O 3 - ⁇ (M is a trivalent
  • An electrolyte material is used in which the value of the substitution element and x is 0 ⁇ x ⁇ 1, and the value of ⁇ is the oxygen deficiency amount of 0 ⁇ ⁇ 0.5), but this is not the case.
  • the electrolyte membrane 13a has hole conductivity in addition to proton conductivity. A part or an amount of holes corresponding to a part or all of the amount of protons conducted in the electrolyte membrane 13a moves from the higher potential side to the lower potential side in the electrolyte membrane 13a.
  • the cathode 13b is an electrode made of a material having electron conductivity, oxide ion ( O2- ) and proton conductivity, and oxygen reduction activity.
  • a material represented by the composition formula La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 or a mixture of this material and a proton conductor is used. ..
  • the anode 13c is an electrode made of a material having electron conductivity, proton conductivity, and hydrogen oxidation activity.
  • a material having electron conductivity, proton conductivity, and hydrogen oxidation activity for example, a mixture of Ni and a proton conductor is used.
  • the SOFC stack 15 generates electricity by an electrochemical reaction using the fuel supplied from the fuel supply device 11 (for example, hydrogen-containing gas) and the air supplied from the air supply device 12 (in other words, the oxidant gas).
  • a part of the current generated by the SOFC stack 15 flows from the cathode 13b to the anode 13c through the electrolyte membrane 13a due to the hole conductivity of the electrolyte membrane 13a, and the remaining current is taken out through the current take-out line 16. ..
  • protons generated by the electrochemical reaction of hydrogen at the anode 13c are conducted from the anode 13c to the cathode 13b via the electrolyte membrane 13a. Then, at the cathode 13b, protons and air undergo an electrochemical reaction, and a part of the holes generated at this time flows from the cathode 13b to the anode 13c via the electrolyte membrane 13a as an electric current. Further, the remaining electrons are taken out as a current through the current take-out line 16.
  • the SOFC stack 15 is switched from the closed circuit state to the open circuit state by the switching unit 14 according to the control signal received from the controller 17, the cathode 13b undergoes an electrochemical reaction between protons and air. All of the holes generated in the above flow from the cathode 13b to the anode 13c via the electrolyte membrane 13a as an electric current.
  • the controller 17 controls various parts of the fuel cell system 100. For example, the controller 17 controls the fuel supply device 11 to adjust the flow rate of the fuel supplied to the anode 13c, or controls the air supply device 12 to adjust the flow rate of the air supplied to the cathode 13b. Alternatively, the controller 17 controls the switching unit 14 to switch the SOFC stack 15 to either an open circuit state or a closed circuit state.
  • the controller 17 may have any configuration as long as it has a control function.
  • the controller 17 may be configured to include an arithmetic processing unit (not shown) and a storage unit (not shown) for storing the control program.
  • the arithmetic processing unit for example, a configuration including one or more arithmetic circuits can be exemplified. Examples of the arithmetic circuit include an MPU (microprocessor), a CPU, and the like.
  • the storage unit may be exemplified by a configuration including one or more storage circuits. Examples of the storage circuit include a semiconductor memory and the like.
  • the controller 17 may be composed of a single control unit that centrally controls each part of the fuel cell system 100, or may be composed of a plurality of control units that cooperate with each other to perform distributed control. ..
  • FIG. 2 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system 100 shown in FIG.
  • the fuel cell system 100 is instructed to stop, and the operation stop process is started.
  • various controls are performed until the fuel cell system is completely stopped.
  • the following stop control is executed as one of the various controls.
  • the controller 17 calculates the fuel consumption in the SOFC stack 15 in the open circuit state (step S11).
  • the flow rate of fuel consumed in the SOFC stack 15 in the open circuit state can be obtained by performing an experiment using the fuel cell system 100 provided with the SOFC stack 15 in the open circuit state, a calculation by simulation, or the like.
  • the controller 17 sets the fuel supply amount (that is, the fuel supply amount) supplied to the anode 13c by the fuel supply device 11 to be larger than the calculated fuel consumption amount. (Step S12). Then, the controller 17 controls the fuel supply device 11 so as to supply the fuel of the flow rate based on the fuel supply amount set in step S12 to the anode 13c (step S13).
  • the controller 17 sets the flow rate of the fuel supplied to the anode 13c by the fuel supply device 11 to the SOFC stack 15 in the open circuit state, that is, the current take-out line 16. It is controlled so as to be larger than the flow rate of the fuel consumed in the SOFC stack 15 when the current taken out through the is 0.
  • the controller 17 can supply fuel at a flow rate higher than the flow rate of the fuel consumed in the SOFC stack 15 in the open circuit state even in the operation stop process.
  • the flow rate of the fuel consumed in the SOFC stack 15 in the open circuit state is the minimum flow rate of the fuel consumed in the SOFC stack 15 per unit time. Therefore, the controller 17 can control the fuel supply device 11 so as to supply fuel at a flow rate higher than the minimum flow rate of the fuel consumed in the fuel cell system 100 in the operation stop processing. Therefore, it is possible to prevent fuel from running out in the SOFC stack 15 during the operation stop process.
  • the controller 17 may control the fuel supply device 11 so that the flow rate of the fuel supplied to the anode 13c of the SOFC stack 15 satisfies the following conditions.
  • the controller 17 has a flow rate higher than the flow rate of the fuel consumed by the SOFC stack 15 in the open circuit state, and the flow rate of the fuel consumed by the SOFC stack 15 becomes the SOFC stack 15.
  • the fuel supply device 11 is controlled so as to supply the fuel so as to be 90% or less of the flow rate of the supplied fuel.
  • 90% here is a molar base.
  • FIG. 3 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system 100 shown in FIG.
  • the controller 17 controls the switching unit 14 so as to switch the SOFC stack 15 from the closed circuit state to the open circuit state.
  • the switching unit 14 switches the SOFC stack 15 from the closed circuit state to the open circuit state according to the control signal received from the controller 17 (step S21). Since the subsequent processes of steps S22 to S24 are the same as those of steps S11 to S13 shown in FIG. 2, the description thereof will be omitted.
  • step S21 does not necessarily have to be performed in the previous stage of step S22.
  • the process carried out in step S21 may be carried out at least before the fuel supply process carried out in step S24.
  • the switching unit 14 is controlled so as to switch the SOFC stack 15 from the closed circuit state to the open circuit state in the operation stop processing
  • the amount of current generated in the SOFC stack 15 can be minimized. Therefore, in the operation stop process, the heat generation in the SOFC stack 15 can be reduced, and the temperature in the fuel cell system 100 can be lowered more quickly.
  • FIG. 4 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system 100 shown in FIG.
  • the controller 17 calculates the fuel consumption in the SOFC stack 15 in the open circuit state (step S31). Since this step S31 and the following steps S33 and S35 are the same processes as steps S11 to S13 shown in FIG. 2, detailed description thereof will be omitted.
  • the controller 17 calculates the fuel consumption in the SOFC stack 15 in the open circuit state, and then determines the current value (take-out current value) of the current to be taken out from the SOFC stack 15 (step S32). Then, the controller 17 sets the fuel supply amount supplied to the SOFC stack 15 to a value larger than the fuel consumption amount calculated in step S31 (step S33).
  • the stop control is performed while taking out a constant current to the outside. Therefore, the flow rate of fuel (fuel consumption) consumed in the SOFC stack 15 is the flow rate consumed to generate the current taken out to the outside in addition to the flow rate consumed in the SOFC stack 15 in the open circuit state. It becomes. Therefore, in step S33, the controller 17 uses the flow rate of the fuel supplied to the SOFC stack 15 as the flow rate consumed in the SOFC stack 15 in the open circuit state and the flow rate consumed to generate the current taken out to the outside. Set the flow rate to be larger than the sum of the flow rates.
  • the controller 17 controls the fuel supply device 11 so as to supply the SOFC stack 15 with a flow rate of fuel based on the fuel supply amount set in step S33 (step S34). Then, the controller 17 controls so that the current of the current value determined in step S32 is taken out to the outside via the current take-out line 16 (step S35).
  • FIG. 5 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system 100 shown in FIG.
  • the stop control shown in FIG. 5 is executed in parallel with the stop control shown in FIG. 2 after the stop instruction of the fuel cell system 100 is instructed.
  • the controller 17 calculates the air consumption in the SOFC stack 15 in the open circuit state (step S41).
  • the flow rate of air consumed in the SOFC stack 15 in the open circuit state can be obtained by performing an experiment using the fuel cell system 100 provided with the SOFC stack 15 in the open circuit state, a calculation by simulation, or the like.
  • the controller 17 makes the air supply amount (that is, the air supply amount) supplied to the cathode 13b by the air supply device 12 larger than the calculated air consumption amount. (Step S42). Then, the controller 17 controls the air supply device 12 so as to supply the air flow rate based on the air supply amount set in step S42 to the cathode 13b (step S43).
  • the controller 17 sets the flow rate of the air supplied to the cathode 13b by the air supply device 12 to the SOFC stack 15 in the open circuit state, that is, the current take-out line 16. It is controlled so as to be larger than the flow rate of air consumed in the SOFC stack 15 when the current taken out through the is 0.
  • the controller 17 can supply a flow rate of air larger than the flow rate of the air consumed in the SOFC stack 15 in the open circuit state even in the operation stop process.
  • the flow rate of air consumed in the SOFC stack 15 in the open circuit state is the minimum flow rate of air consumed in the SOFC stack 15 per unit time. Therefore, the controller 17 controls the air supply device 12 so as to supply a flow rate of air higher than the minimum flow rate of the air consumed in the fuel cell system 100 in the operation stop process. Therefore, it is possible to prevent air withering in the SOFC stack 15 during the operation stop process.
  • control of the air supply amount by the air supply device 12 may be executed after the SOFC stack 15 is switched to the open circuit state in the operation stop process in the same manner as the control of the fuel supply amount by the fuel supply device 11. Further, the current value taken out from the SOFC stack 15 may be determined, and the current of the determined current value may be taken out to the outside for execution.
  • the controller 17 sets the flow rate of the air supplied to the SOFC stack 15 as the flow rate consumed by the SOFC stack 15 in the open circuit state. Set the flow rate to be larger than the sum of the flow rates consumed to generate the current taken out to the outside.
  • FIG. 6 is a block diagram schematically showing an example of the configuration of the fuel cell system 110 according to the second embodiment of the present disclosure.
  • the fuel cell system 110 according to the second embodiment is configured to further include a temperature detector 21 for detecting the temperature of the SOFC stack 15 in the configuration of the fuel cell system 100 according to the first embodiment.
  • the fuel cell system 110 according to the second embodiment has the same configuration as the fuel cell system 100 according to the first embodiment, except that the temperature detector 21 is further provided. Therefore, among the members included in the fuel cell system 110 according to the second embodiment, the same members as the members included in the fuel cell system 100 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the temperature detector 21 detects the temperature at one or more places in the SOFC stack 15 and outputs the value to the controller 17.
  • the temperature detector 21 may be, for example, a temperature sensor using a thermocouple or the like.
  • the temperature in the SOFC stack 15 can be, for example, the temperature of the anode 13c or the electrolyte membrane 13a.
  • the temperature detector 21 may be configured to directly measure the SOFC stack 15 to obtain the temperature of the SOFC stack 15. Further, the temperature of the SOFC stack 15 may be indirectly obtained by measuring the temperature of another member that correlates with the temperature of the SOFC stack 15. For example, if the temperature of the SOFC stack 15 can be obtained, the temperature of the structures in the vicinity thereof in the fuel cell system 110 may be measured. Alternatively, the temperature of fuel or air flowing through the SOFC stack 15 may be measured.
  • FIG. 7 is a flowchart showing an example of stop control performed in the operation stop process of the fuel cell system 110 shown in FIG.
  • the controller 17 calculates the fuel consumption in the SOFC stack 15 in the open circuit state (step S51).
  • the flow rate of fuel consumed in the SOFC stack 15 in the open circuit state may be obtained by performing an experiment using the fuel cell system 110 provided with the SOFC stack 15 in the open circuit state, a calculation by simulation, or the like.
  • step S51 the controller 17 sets the fuel supply amount supplied to the anode 13c by the fuel supply device 11 to be a value larger than the calculated fuel consumption (step S52). .. Then, the controller 17 controls the fuel supply device 11 so as to supply the fuel of the flow rate based on the fuel supply amount set in step S52 to the anode 13c (step S53).
  • the controller 17 has a flow rate higher than the flow rate of the fuel consumed by the SOFC stack 15 in the open circuit state, and the flow rate of the fuel consumed by the SOFC stack 15 is the flow rate of the fuel supplied to the SOFC stack 15.
  • the fuel supply device 11 may be controlled so as to supply fuel so as to be 90% or less of the flow rate.
  • the controller 17 determines whether or not the temperature of the SOFC stack 15 is equal to or lower than a predetermined temperature based on the temperature value detected by the temperature detector 21 (step S54).
  • the predetermined temperature is a temperature below which hole conduction does not occur in the electrolyte membrane 13a, and can be, for example, 500 ° C. or lower, preferably 400 ° C. or lower.
  • the predetermined temperature may be a temperature at which the redox reaction does not occur at the anode 13c, that is, a temperature at which Ni contained in the anode 13c is not oxidized by the air entering from the cathode 13b side.
  • the temperature at which Ni is not oxidized is 400 ° C., more preferably a temperature in the range of 200 ° C. to 300 ° C.
  • step S54 when the controller 17 determines that the temperature of the SOFC stack 15 is higher than the predetermined temperature (“NO” in step S54), the controller 17 returns to step S51 and repeats the processes from step S51 to step S53. .. On the other hand, when it is determined in the determination of step S54 that the temperature of the SOFC stack 15 is equal to or lower than a predetermined temperature (“YES” in step S54), the controller 17 controls the fuel supply device 11 to supply fuel. Stop (step S55). Then, the fuel cell system 110 ends the stop control.
  • the controller 17 sets the flow rate of the fuel supplied to the anode 13c by the fuel supply device 11 in the operation stop process to be larger than the flow rate of the fuel consumed by the SOFC stack 15 in the open circuit state.
  • the fuel supply device 11 is controlled so as to supply the fuel.
  • the controller 17 controls the fuel supply device 11 so as to supply fuel at a flow rate higher than the minimum flow rate of the fuel consumed by the solid oxide fuel cell. Therefore, it is possible to prevent fuel from dying at the anode 13c of the SOFC stack 15 using the electrolyte membrane in which protons are conducted during the operation stop treatment.
  • the controller 17 controls the fuel supply device 11 so as to continue supplying fuel until the temperature of the SOFC stack 15 becomes equal to or lower than a predetermined temperature.
  • a predetermined temperature is set to a temperature at which hole conduction does not occur, the fuel supply is continued until the temperature at which hole conduction does not occur in the electrolyte membrane 13a. Therefore, since the fuel supply is not stopped in the temperature zone where Hall conduction occurs, it is possible to prevent fuel withering at the anode 13c.
  • the predetermined temperature is set to a temperature at which the redox reaction does not occur at the anode 13c
  • the fuel supply is continued as long as the SOFC stack 15 is in the temperature range where Ni may be oxidized at the anode 13c.
  • the temperature of the SOFC stack 15, when the Ni is in a temperature zone may be oxidized, it is possible to prevent the entering air from the cathode 13b side. Therefore, it is possible to prevent Ni from being oxidized at the anode 13c.
  • the controller 17 controls the switching unit 14 to control the SOFC stack 15 as in the stop control shown in FIG. 3 of the fuel cell system 100 according to the first embodiment.
  • the above-mentioned stop control may be executed by switching from the closed circuit state to the open circuit state. Further, as in the stop control shown in FIG. 4 of the fuel cell system 100 according to the first embodiment, the SOFC stack 15 is left in the closed circuit state, and the above stop control is performed while taking out a certain amount of current to the outside. May be good.
  • the controller 17 is cathodeed by the air supply device 12 in parallel.
  • the flow rate of air supplied to 13b may be controlled to be higher than the flow rate of air consumed in the SOFC stack 15 in the open circuit state.
  • the present disclosure is applicable to a fuel cell system including a solid oxide fuel cell having a proton conductor as an electrolyte membrane.
  • Fuel supply device 12 Air supply device 13: Membrane electrode assembly 13a: Electrolyte membrane 13b: Cathode 13c: Anode 14: Switching unit 15: SOFC stack (solid oxide fuel cell) 16: Current take-out line 17: Controller 21: Temperature detector 100: Fuel cell system 110: Fuel cell system

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本開示の燃料電池システムは、プロトンが伝導する電解質膜と、前記電解質膜の一方の主面に設けられたカソードと、他方の主面に設けられたアノードとからなる膜電極接合体とを有し、燃料と空気とを用いて電気化学反応により発電する固体酸化物形燃料電池と、制御器と、を備え、前記制御器は、燃料電池システムの運転を停止させる運転停止処理において、開回路状態とし、かつ、前記開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように制御する。

Description

燃料電池システムおよび燃料電池システムの制御方法
 本開示は、燃料電池システムおよび燃料電池システムの制御方法に関するものである。
 固体酸化物からなる電解質膜を用いた電気化学デバイスの一つとして、例えば、固体酸化物形燃料電池(以下、SOFCと称する場合がある)が知られている。SOFCの電解質材料には、一般に安定化ジルコニアに代表される酸化物イオン伝導体が広く用いられている。酸化物イオン伝導体は、低温になるほどイオン伝導率が低下するため、安定化ジルコニアを電解質材料に用いたSOFCは、例えば、700℃以上の動作温度を必要としている。近年では、約600℃で動作可能な、プロトン伝導性を有する電解質材料を用いたSOFCが、部材の化学安定性および低コスト化の観点から注目されている。
 ところで、SOFCを備えた燃料電池システムでは、システムを安全に停止させるために、運転停止処理において種々の処理が行われる。この処理の一例として、SOFCからの取り出し電流を所定値に設定して電圧を急速に低下させるVLC(Voltage Limit Control)処理が提案されている(例えば、特許文献1)。
 特許文献1に係る燃料電池システムは、VLC処理において、電流を外部に取り出しつつ、セル電圧が所定値以下に低下するまでの間、アノード側に燃料を供給し続ける停止制御を実施する。この制御により特許文献1に係る燃料電池システムは、VLC処理中におけるアノードの酸化劣化を抑制することができる。
特開2017-111922公報
 しかしながら、特許文献1に係る燃料電池システムのように、電流を外部に取り出しつつ、セル電圧が所定値以下に低下するまでの間、アノード側に燃料を供給し続ける停止制御を実施する構成の場合、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池では、燃料枯れによりダメージを受ける可能性がある。
 本開示は、一例として、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池にダメージを与えることなく安全に停止することができる燃料電池システムを提案する。
 本開示に係る燃料電池システムの一態様は、上記した課題を解決するために、プロトンが伝導する電解質膜と、前記電解質膜の一方の主面に設けられたカソードと、他方の主面に設けられたアノードとからなる膜電極接合体とを有し、燃料と空気とを用いて電気化学反応により発電する固体酸化物形燃料電池と、制御器と、を備え、前記制御器は、燃料電池システムの運転を停止させる運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように制御する。
 また、本開示に係る燃料電池システムの制御方法は、上記した課題を解決するために、プロトンが伝導する電解質膜と、前記電解質膜の一方の主面に設けられたカソードと、他方の主面に設けられたアノードとからなる膜電極接合体とを有し、燃料と空気とを用いて電気化学反応により発電する固体酸化物形燃料電池を備えた燃料電池システムの制御方法であって、前記燃料電池システムの運転を停止させる運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するステップを含む。
 本開示は以上に説明したように構成され、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池にダメージを与えることなく安全に停止することができるという効果を奏する。
図1は、本開示の第1実施形態に係る燃料電池システムの構成の一例を模式的に示すブロック図である。 図2は、図1に示す燃料電池システムの運転停止処理において実施する停止制御の一例を示すフローチャートである。 図3は、図1に示す燃料電池システムの運転停止処理において実施する停止制御の一例を示すフローチャートである。 図4は、図1に示す燃料電池システムの運転停止処理において実施する停止制御の一例を示すフローチャートである。 図5は、図1に示す燃料電池システムの運転停止処理において実施する停止制御の一例を示すフローチャートである。 図6は、本開示の第2実施形態に係る燃料電池システムの構成の一例を模式的に示すブロック図である。 図7は、図6に示す燃料電池システムの運転停止処理において実施する停止制御の一例を示すフローチャートである。
 (本開示の一形態を得るに至った経緯)
 プロトン伝導性を有する電解質材料としては、例えば、酸化物があげられる。具体的には、BaCe1-x3-α、BaZr1-x-yCe3-α、またはBaZr1-x3-α(Mは3価の置換元素、xの値は0<x<1、yの値は0<y<1、(x+y)=1、αは酸素欠損量で0<α<0.5)で表される組成を有したペロブスカイト型複合酸化物からなるイオン伝導体が例示できる。この電解質材料は、プロトン伝導性に加えてホール伝導性を持つ。
 ところで、このようなホール伝導性を持つプロトン伝導体の電解質膜を用いたSOFCでは、発電に伴って発生した電流の一部が、外部に取り出されずに、電解質膜内を流れるといった現象が起こる。一方、安定化ジルコニア等の酸化物イオン伝導体の電解質膜を用いたSOFCでは、この電解質膜はホール伝導性が極めて小さいため、発電に伴って発生した電流はすべて外部に取り出されることとなる。
 このため、プロトン伝導体の電解質膜を用いたSOFCと、酸化物イオン伝導体の電解質膜を用いたSOFCとでは、以下の違いが生じる。すなわち、前者は、SOFCの外部回路を流れる取り出し電流量から計算される燃料消費量と、実際の燃料消費量との間にずれが生じる。一方、後者は、取り出し電流量から計算される燃料消費量と、実際の燃料消費量とが一致する。
 つまり、取り出し電流量と燃料消費量との関係は、酸化物イオン伝導体の電解質膜を用いたSOFCの場合、消費する燃料種を水素とし、ファラデー定数をFとすると、以下の数式(1)により示すことができる。
燃料消費量[mol/s]=取り出し電流量[A]/2/F[C/mol]・・・(1)
 すなわち、酸化物イオン伝導体の電解質膜を用いたSOFCの場合、電解質材料がホール伝導性をほぼ有さない。このため、酸化物イオン伝導体の電解質膜を用いたSOFCにおいて電気化学反応により生じた電子が電解質膜を通過せず、全て外部回路を通じて外部負荷に流れる。それゆえ、取り出し電流量と燃料消費量との関係は、上記した数式(1)に示されるようになる。
 したがって、酸化物イオン伝導体の電解質膜を用いたSOFCを開回路状態にした場合、アノードとカソードとの間において電流が流れるパスが無いうえ、外部回路を流れる取り出し電流量も0となる。それゆえ、酸化物イオン伝導体の電解質膜を用いたSOFCは、開回路状態では燃料消費量が0となる。
 以上より、酸化物イオン伝導体の電解質膜を用いたSOFCの場合、SOFCの外部回路を流れる取り出し電流量を0にすれば燃料消費量が0となる。したがって、電気化学反応以外の要因がない限り、燃料の供給を停止したとしても燃料枯れは起こらない。なお、開回路状態とは、SOFCから電流を外部負荷に取り出さない状態のことである。
 一方、プロトン伝導体の電解質膜を用いたSOFCの場合、電気化学反応で生じた電子の一部が、外部回路だけでなく、電解質膜も流れることができる。このため、電気化学反応により生じた電流量と、外部回路を流れる取り出し電流量と、電解質膜を流れる電流量(すなわち、電子・ホール電流量)との間には次の数式(2)に示す関係が成り立つ。
電気化学反応により生じた電流量[A]=外部回路を流れる取り出し電流量[A]+電解質膜を流れる電流量[A]・・・(2)
また、消費する燃料種を水素とし、ファラデー定数をFとしたとき、数式(2)から、以下の数式(3)で示すように燃料消費量を導き出すことができる。
燃料消費量[mol/s]=(外部回路を流れる取り出し電流量[A]+電解質膜を流れる電流量[A])/2/F[C/mol]・・・(3)
ところで、数式(3)に示すように、プロトン伝導体の電解質膜を用いたSOFCの場合、開回路状態にして取り出し電流量を0にしたとしても、電気化学反応により生じた電子は電解質膜を流れるため、燃料消費量は0とはならない。
 例えば、プロトン伝導体の電解質膜を用いたSOFCが、運転温度600℃、燃料電池スタックから取り出す電流密度が0.22 A/cm、かつ燃料供給量に対し発電時に消費される燃料の割合が85%となるように設定されているとする。この条件下では、開回路状態のプロトン伝導体の電解質膜を用いたSOFCでの燃料消費量は、燃料供給量の25%以上に及ぶことが確認されている。
 このように、プロトン伝導体の電解質膜を用いたSOFCでは、外部への取り出し電流から見積もられる燃料消費量以上に燃料を消費する。このため、プロトン伝導体の電解質膜を用いたSOFCでは、燃料電池システムの運転停止処理において燃料枯れを防ぐ観点から酸化物イオン伝導体の電解質膜を用いたSOFCとは異なる特徴的な制御が要求される。しかしながら、このようなプロトン伝導体の電解質膜を用いたSOFCに関して、燃料枯れによるダメージを与えること無く停止可能な燃料電池システムについては未だ検討されていない。
 そこで、本発明者らは、プロトン伝導体の電解質膜を用いたSOFCにおいて、燃料枯れによるダメージなく停止可能な燃料電池システムに関して鋭意検討を行った。その結果、以下の知見を得た。
 すなわち、プロトン伝導体の電解質膜を用いたSOFCでは、燃料を消費して電気化学反応により生じた電流のうち、取り出し電流として外部回路に流れる割合が酸化物イオン伝導体の電解質膜を用いたSOFCとは異なる。このため、特許文献1のように取り出し電流に基づいて停止制御を実施することは困難となる。そこで本発明者らは、燃料電池システムの運転停止処理において、取り出し電流に基づいて燃料電池システムの停止制御を実施するのではなく、燃料消費量に着目して燃料電池システムの停止制御を実施すれば燃料電池システムを適切に制御できることを見出した。
 つまり、プロトン伝導体の電解質膜を用いたSOFCであっても、外部回路を流れる取り出し電流量が多くなればなるほど、電気化学反応によって消費される燃料の流量が増えていく。この傾向は、酸化物イオン伝導体の電解質膜を用いたSOFCであっても同じである。したがって、SOFCは開回路状態のとき、つまり外部回路を流れる取り出し電流量が0のときが、最も燃料消費量が少なくなる状態であるといえる。
 そこで、本発明者らは、少なくとも、開回路状態時における燃料消費量よりも多い流量の燃料をSOFCに流しながら、燃料電池システムを停止させる構成とすることで、燃料枯れによってSOFCにダメージを与えることを防ぐことができることに気が付いた。
 上記した本発明者らの知見は、これまで明らかにされていなかったものであり、プロトンが伝導する電解質膜を用いたSOFCの停止制御における課題を解決するものである。本開示では、具体的には以下に示す態様を提供する。
 本開示の第1の態様に係る燃料電池システムは、プロトンが伝導する電解質膜と、前記電解質膜の一方の主面に設けられたカソードと、他方の主面に設けられたアノードとからなる膜電極接合体とを有し、燃料と空気とを用いて電気化学反応により発電する固体酸化物形燃料電池と、制御器と、を備え、前記制御器は、燃料電池システムの運転を停止させる運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように制御する。
 ここで、開回路状態の固体酸化物形燃料電池において消費される燃料の流量とは、固体酸化物形燃料電池において消費される燃料の、単位時間あたりの最小の流量といえる。また、運転停止処理とは、制御器から燃料電池システムの停止が指示されてから、例えば、燃料および空気等を供給する補機も含め燃料電池システムが完全に停止した状態に至るまでの期間に行われる処理である。
 上記構成によると、制御器は、運転停止処理において固体酸化物形燃料電池で消費される燃料の最小の流量よりも多い流量の燃料を供給するように制御する。このため、運転停止処理時に、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池において燃料枯れが生じることを防ぐことができる。
 よって、本開示の第1の態様に係る燃料電池システムは、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池にダメージを与えることなく安全に停止することができるという効果を奏する。
 本開示の第2の態様に係る燃料電池システムは、上記した第1の態様において、前記固体酸化物形燃料電池の前記アノードに前記燃料として水素含有ガスを供給する燃料供給器をさらに備え、前記制御器は、燃料電池システムの運転を停止させる運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように前記燃料供給器を制御する構成であってもよい。
 上記構成によると、制御器は、燃料電池システムの運転を停止させる運転停止処理において、開回路状態の固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように燃料供給器を制御することができる。このため、運転停止処理時に、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池において燃料枯れが生じることを防ぐことができる。
 本開示の第3の態様に係る燃料電池システムは、上記した第2の態様において、前記固体酸化物形燃料電池の温度を検出する温度検知器をさらに備え、前記制御器は、前記運転停止処理において、前記温度検知器によって検知された温度が、前記電解質膜においてホール伝導が生じない温度以下となったと判定するまで、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように前記燃料供給器を制御する構成であってもよい。
 ここで電解質膜においてホール伝導が生じない温度とは、例えば、400℃である。固体酸化物形燃料電池の温度が400℃以下となると電解質膜における電気抵抗が大きくなりホール伝導が発生しなくなる。
 上記構成によると、固体酸化物形燃料電池の温度が、ホール伝導が発生しなくなる温度以下となるまで開回路状態の固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように燃料供給器を制御する。このため、より確実に燃料枯れが生じないように燃料電池システムの運転停止処理を実施することができる。
 本開示の第4の態様に係る燃料電池システムは、上記した第2の態様において、前記固体酸化物形燃料電池の温度を検出する温度検知器をさらに備え、前記制御器は、前記運転停止処理において、前記温度検知器によって検知された温度が、前記アノードにおいて酸化還元反応が起きなくなる温度以下となったと判定するまで、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように前記燃料供給器を制御する構成であってもよい。
 ここでアノードにおいて酸化還元反応が起きなくなる温度、特にアノードに含まれるNiが酸化しない温度は400℃、さらに好ましくは、200℃から300℃の範囲の温度である。このアノードにおける酸化還元反応は、アノードにおける燃料枯れに起因して生じる。
 上記構成によると、固体酸化物形燃料電池の温度が、アノードにおいて酸化還元反応が起きなくなる温度以下となるまで開回路状態の固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように燃料供給器を制御する。このため、燃料枯れに起因するアノードの酸化還元反応が生じないように燃料電池システムの運転停止処理を実施することができる。
 本開示の第5の態様に係る燃料電池システムは、上記した第2から第4の態様のいずれか1つの態様において、前記制御器は、前記運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量であり、かつ前記固体酸化物形燃料電池で消費される燃料の流量が、前記固体酸化物形燃料電池に供給される燃料の流量の90%以下となるように燃料を供給するように前記燃料供給器を制御する構成であってもよい。
 上記構成によると、開回路状態の固体酸化物形燃料電池で消費される燃料の流量よりも多い流量を供給するように燃料供給器を制御するため、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池において燃料枯れが生じることを防ぐことができる。さらに、固体酸化物形燃料電池で消費される燃料の流量が、固体酸化物形燃料電池に供給される燃料の流量の90%以下となるように燃料を供給する。したがって、燃料が不均一に流れアノードにおいて燃料の濃度に偏りが生じる場合であっても、局所的な燃料枯れの発生を防ぐことができる。
 本開示の第6の態様に係る燃料電池システムは、上記した第1から第5の態様のいずれか1つの態様において、前記固体酸化物形燃料電池に、前記空気を供給する空気供給器をさらに備え、前記制御器は、前記運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される空気の流量よりも多い流量の空気を供給するように前記空気供給器を制御する構成であってもよい。
 ここで、開回路状態の固体酸化物形燃料電池において消費される空気の流量とは、燃料電池システムにおいて消費される空気の、単位時間あたりの最小の流量といえる。
 上記構成によると、制御器は、運転停止処理において燃料電池システムにおいて消費される空気の最小の流量よりも多い流量の空気を供給するように空気供給器を制御する。このため、運転停止処理時に、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池において、燃料枯れが生じることを防ぐとともに、空気枯れが生じることを防ぐことができる。
 本開示の第7の態様に係る燃料電池システムは、上記した第2から第6の態様のいずれか1つの態様において、前記固体酸化物形燃料電池を閉回路状態から開回路状態に切替える切替え部を備え、前記制御器は、前記運転停止処理において、前記固体酸化物形燃料電池を閉回路状態から開回路状態に切替えるように前記切替え部を制御するとともに、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように前記燃料供給器を制御する構成であってもよい。
 上記構成によると切替え部を備えるため、固体酸化物形燃料電池を閉回路状態から開回路状態へ切替えることができる。そして、運転停止処理において、固体酸化物形燃料電池を閉回路状態から開回路状態に切替えるように切替え部を制御するため、固体酸化物形燃料電池で発生する電流量を最小とすることができる。このため、運転停止処理において、固体酸化物形燃料電池内での発熱を小さくすることができる。それゆえ、運転停止処理において、燃料電池システム内の温度をより早く下げることができる。さらに、固体酸化物形燃料電池を開回路状態として、開回路状態の固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように燃料供給器を制御する。このため、運転停止処理時に、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池において燃料枯れが生じることを防ぐことができる。
 本開示の第8の態様に係る燃料電池システムは、上記した第1から第7の態様のいずれか1つの態様において、プロトンが伝導する電解質膜は、プロトンが伝導する酸化物を含んでいてもよい。
 本開示の第9の態様に係る燃料電池システムの制御方法は、プロトンが伝導する電解質膜と、前記電解質膜の一方の主面に設けられたカソードと、他方の主面に設けられたアノードとからなる膜電極接合体とを有し、燃料と空気とを用いて電気化学反応により発電する固体酸化物形燃料電池を備えた燃料電池システムの制御方法であって、前記燃料電池システムの運転を停止させる運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するステップを含む。
 ここで、開回路状態の固体酸化物形燃料電池において消費される燃料の流量とは、燃料電池システムにおいて消費される燃料の、単位時間あたりの最小の流量といえる。また、運転停止処理とは、制御器から燃料電池システムの停止が指示されてから、例えば、燃料および空気等を供給する補機も含め燃料電池システムが完全に停止した状態に至るまでの期間に行われる処理である。
 上記方法によると、運転停止処理において、燃料電池システムにおいて消費される燃料の最小の流量よりも多い流量の燃料を供給するステップを含む。このため、運転停止処理時に、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池において燃料枯れが生じることを防ぐことができる。
 よって、本開示の第7の態様に係る燃料電池システムの制御方法は、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池にダメージを与えることなく安全に停止することができるという効果を奏する。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下では全ての図を通じて同一または対応する構成部材には同一の参照符号を付してその説明については省略する場合がある。
 [第1実施形態]
 本開示の第1実施形態に係る燃料電池システム100は、プロトンが伝導する電解質膜を用いた固体酸化物形燃料電池を備える燃料電池システムである。第1実施形態に係る燃料電池システム100の構成について図1を参照して以下に説明する。図1は、本開示の第1実施形態に係る燃料電池システム100の構成の一例を模式的に示すブロック図である。
 図1に示すように、燃料電池システム100は、燃料供給器11と、空気供給器12と、プロトン伝導体からなる電解質膜13a、この電解質膜13aの一方の主面に設けられたカソード13b、および他方の主面に設けられたアノード13cからなる膜電極接合体13と、一以上の膜電極接合体13を積層して結合したSOFCスタック15(固体酸化物形燃料電池)と、SOFCスタック15から電流を外部に取り出す電流取り出し線16と、制御器17と、を備えてなる構成である。なお、電流取り出し線16には、この電流取り出し線16を介して外部に取り出される電流量が0となる開回路状態と、外部に電流が取り出される閉回路状態とを交互に切替えるための切替え部14が設けられている。切替え部14は、制御器17から受信した制御信号に応じて、SOFCスタック15を閉回路状態から開回路状態に切替える。あるいは、切替え部14は、制御器17から受信した制御信号に応じて、SOFCスタック15を開回路状態から閉回路状態に切替える。切替え部14は、例えば、接点をON/OFFするリレーが例示できる。なお、図1では、開回路状態を示す。
 燃料供給器11は、制御器17から受信した制御信号に応じて、SOFCスタック15を構成する膜電極接合体13が有するアノード13cに、燃料として水素含有ガスを供給する。なお、水素含有ガスは、CHなどを改質器で化学反応(すなわち、改質反応)させることにより生成されてもよいし、水電解により生成されてもよい。
 空気供給器12は、制御器17から受信した制御信号に応じて、SOFCスタック15を構成する膜電極接合体13が有するカソード13bに、酸化剤ガスとして空気を供給する。
 電解質膜13aは、プロトン伝導性を有する電解質材料(すなわち、プロトン伝導体)により構成される。プロトン伝導体としては、例えばBaCe1-x3-α、BaZr1-x-yCe3-α、またはBaZr1-x3-α(Mは3価の置換元素、xの値は0<x<1、αの値は酸素欠損量で0<α<0.5)で表される電解質材料が使用されるが、この限りではない。電解質膜13aは、プロトン伝導性に加えてホールの伝導性を持つ。電解質膜13a内を伝導するプロトン量の一部、あるいは全てに相当する量のホールが、電解質膜13a中の電位の高い方から低い方に移動する。
 カソード13bは、電子伝導性、酸化物イオン(O2―)およびプロトンの伝導性、および酸素還元活性を有する材料から構成された電極である。カソード13bを構成する材料は、例えば、組成式La0.6Sr0.4Co0.2Fe0.8で表される材料、あるいはこの材料とプロトン伝導体との混合物が使用される。
 アノード13cは電子伝導性、プロトン伝導性、および水素酸化活性を備えた材料から構成された電極である。アノード13cを構成する材料は、例えば、Niとプロトン伝導体との混合物が用いられる。
 SOFCスタック15は、燃料供給器11から供給された燃料(例えば、水素含有ガス)と空気供給器12から供給された空気(言い換えると、酸化剤ガス)とを用いて電気化学反応により発電する。SOFCスタック15で生成された電流は、一部が電解質膜13aの有するホール伝導性によりこの電解質膜13aを介してカソード13bからアノード13cに流れ、残余の電流が電流取り出し線16を通して外部に取り出される。
 すなわち、SOFCスタック15では、アノード13cにおいて水素の電気化学反応により生じたプロトンが、アノード13cから電解質膜13aを介してカソード13bに伝導する。そして、カソード13bにおいて、プロトンと空気とが電気化学反応し、この際に生じたホールの一部が、カソード13bから電解質膜13aを介してアノード13cに電流として流れる。また、残余の電子は、電流として電流取り出し線16を通じて外部に取り出される。なお、制御器17から受信した制御信号に応じて、切替え部14によってSOFCスタック15が閉回路状態から開回路状態に切替えられている場合は、カソード13bにおいてプロトンと空気との電気化学反応の際に生じたホールの全部が、カソード13bから電解質膜13aを介してアノード13cに電流として流れることとなる。
 制御器17は、燃料電池システム100が備える各部の各種制御を行う。制御器17は、例えば、燃料供給器11を制御してアノード13cに供給する燃料の流量を調整したり、空気供給器12を制御してカソード13bに供給する空気の流量を調整したりする。あるいは、制御器17は、切替え部14を制御してSOFCスタック15を開回路状態および閉回路状態のいずれかに切替える。
 制御器17は、制御機能を有するものであればどのような構成であってもよい。例えば、制御器17は、不図示の演算処理部と、制御プログラムを記憶する不図示の記憶部とを備える構成であってもよい。演算処理部としては、例えば、1つ以上の演算回路からなる構成が例示できる。演算回路は、例えば、MPU(マイクロプロセッサ)、またはCPU等が挙げられる。記憶部は、例えば、1つ以上の記憶回路からなる構成が例示できる。記憶回路としては、例えば、半導体メモリ等が挙げられる。制御器17は、燃料電池システム100の各部に対して集中制御を行う単独の制御部で構成されていてもよく、互いに協働して分散制御を行う複数の制御部から構成されていてもよい。
 次に、上記した構成を有する燃料電池システム100における運転停止処理について図2を参照して説明する。図2は、図1に示す燃料電池システム100の運転停止処理において実施する停止制御の一例を示すフローチャートである。
 まず、燃料電池システム100の停止が指示されて運転停止処理が開始される。運転停止処理では燃料電池システムが完全に停止した状態に至るまでに種々の制御が行われる。この種々の制御の1つとして以下の停止制御が実行される。
 運転停止処理において、制御器17は、開回路状態のSOFCスタック15における燃料消費量を算出する(ステップS11)。この開回路状態のSOFCスタック15において消費される燃料の流量は、開回路状態のSOFCスタック15を備えた燃料電池システム100を用いた実験、またはシミュレーションによる計算等を行うことによって求めることができる。
 ステップS11において燃料消費量を算出すると、制御器17は、燃料供給器11によってアノード13cに供給される燃料の供給量(すなわち、燃料供給量)をこの算出した燃料消費量よりも多い値となるように設定する(ステップS12)。そして、制御器17は、ステップS12において設定された燃料供給量に基づく流量の燃料をアノード13cに供給するように燃料供給器11を制御する(ステップS13)。
 以上のように、第1実施形態に係る燃料電池システム100では、制御器17が、燃料供給器11によってアノード13cに供給する燃料の流量を、開回路状態のSOFCスタック15、すなわち電流取り出し線16を介して取り出される電流を0としたときのSOFCスタック15において消費される燃料の流量よりも多くなるように制御する。
 制御器17がこのように燃料供給器11を制御することによって、運転停止処理においても、開回路状態のSOFCスタック15において消費される燃料の流量よりも多い流量の燃料を供給することができる。ここで、開回路状態のSOFCスタック15において消費される燃料の流量とは、SOFCスタック15において消費される燃料の、単位時間あたりの最小の流量となる。したがって、制御器17は、運転停止処理において燃料電池システム100において消費される燃料の最小の流量よりも多い流量の燃料を供給させるように燃料供給器11を制御することができる。このため、運転停止処理時に、SOFCスタック15において燃料枯れが生じることを防ぐことができる。
 また、運転停止処理において、制御器17は、SOFCスタック15のアノード13cに供給する燃料の流量が特に以下の条件を満たすように燃料供給器11を制御してもよい。
 すなわち、制御器17は、運転停止処理において、開回路状態のSOFCスタック15で消費される燃料の流量よりも多い流量であり、かつSOFCスタック15で消費される燃料の流量が、SOFCスタック15に供給される燃料の流量の90%以下となるように燃料を供給するように燃料供給器11を制御する。なお、ここでいう90%とは、モルベースである。
 このように、燃料供給器11が安全マージンを加えた量の燃料を供給することにより、燃料が不均一に流れアノード13cにおいて燃料の濃度に偏りが生じる場合であっても、局所的な燃料枯れの発生を防ぐことができる。
 また、図3に示すようにSOFCスタック15を開回路状態に切替えた上で、運転停止処理において上記した停止制御を行う構成としてもよい。図3は、図1に示す燃料電池システム100の運転停止処理において実施する停止制御の一例を示すフローチャートである。
 運転停止処理において、まず、制御器17は、SOFCスタック15を閉回路状態から開回路状態に切替えるように切替え部14を制御する。切替え部14は、制御器17から受信した制御信号に応じてSOFCスタック15を閉回路状態から開回路状態に切替える(ステップS21)。なお、これ以降のステップS22からステップS24の各処理は図2に示すステップS11からステップS13と同様であるため説明は省略する。
 なお、ステップS21で実施する処理は、必ずしもステップS22の前段で実施する必要はない。ステップS21で実施する処理は、少なくともステップS24にて実施する燃料の供給処理よりも前段で実施すればよい。
 運転停止処理において、SOFCスタック15を閉回路状態から開回路状態に切替えるように切替え部14を制御する構成の場合、SOFCスタック15で発生する電流量を最小とすることができる。このため、運転停止処理において、SOFCスタック15内での発熱を小さくすることができ、燃料電池システム100内の温度をより早く下げることができる。
 また、図4に示すようにSOFCスタック15を閉回路状態のままとし、一定の電流量を外部に取り出しながら停止制御を行う構成としてもよい。図4は、図1に示す燃料電池システム100の運転停止処理において実施する停止制御の一例を示すフローチャートである。
 運転停止処理において、制御器17は、開回路状態のSOFCスタック15における燃料消費量を算出する(ステップS31)。このステップS31ならびに、以下におけるステップS33およびS35は、図2に示すステップS11からS13と同様な処理となるため詳細な説明は省略する。
 制御器17は、開回路状態のSOFCスタック15における燃料消費量を算出すると、次にSOFCスタック15から取り出す電流の電流値(取り出し電流値)を決定する(ステップS32)。そして、制御器17は、SOFCスタック15に供給する燃料供給量を、ステップS31で算出した燃料消費量よりも多い値に設定する(ステップS33)。
 ここで、運転停止処理において、一定の電流を外部に取り出しながら停止制御を行う構成となっている。このため、SOFCスタック15において消費される燃料の流量(燃料消費量)は、開回路状態のSOFCスタック15において消費される流量に加えて、外部に取り出される電流を生成するために消費される流量となる。したがって、制御器17は、ステップS33では、SOFCスタック15に供給する燃料の流量を、開回路状態のSOFCスタック15において消費される流量と、外部に取り出される電流を生成するために消費される流量とを足し合わせた流量よりも多い流量に設定する。
 ついで、制御器17は、ステップS33において設定された燃料供給量に基づく流量の燃料をSOFCスタック15に供給するように燃料供給器11を制御する(ステップS34)。そして、制御器17は、ステップS32において決定した電流値の電流を、電流取り出し線16を介して外部に取り出すように制御する(ステップS35)。
 また、上記した運転停止処理における停止制御では、燃料供給器11による燃料の供給制御について説明した。この燃料の供給制御と同様にして空気供給器12による空気の供給制御を図5に示すように実施してもよい。図5は、図1に示す燃料電池システム100の運転停止処理において実施する停止制御の一例を示すフローチャートである。なお、この図5に示す停止制御は、燃料電池システム100の停止指示後に図2に示す停止制御と並行して実行される。
 運転停止処理において、制御器17は、開回路状態のSOFCスタック15における空気消費量を算出する(ステップS41)。この開回路状態のSOFCスタック15において消費される空気の流量は、開回路状態のSOFCスタック15を備えた燃料電池システム100を用いた実験、またはシミュレーションによる計算等を行うことによって求めることができる。
 ステップS41において空気消費量を算出すると、制御器17は、空気供給器12によってカソード13bに供給される空気の供給量(すなわち、空気供給量)をこの算出した空気消費量よりも多い値となるように設定する(ステップS42)。そして、制御器17は、ステップS42において設定された空気供給量に基づく流量の空気をカソード13bに供給するように空気供給器12を制御する(ステップS43)。
 以上のように、第1実施形態に係る燃料電池システム100では、制御器17が、空気供給器12によってカソード13bに供給する空気の流量を、開回路状態のSOFCスタック15、すなわち電流取り出し線16を介して取り出される電流を0としたときのSOFCスタック15において消費される空気の流量よりも多くなるように制御する。
 制御器17がこのように空気供給器12を制御することによって、運転停止処理においても、開回路状態のSOFCスタック15において消費される空気の流量よりも多い流量の空気を供給することができる。ここで、開回路状態のSOFCスタック15において消費される空気の流量とは、SOFCスタック15において消費される空気の、単位時間あたりの最小の流量となる。したがって、制御器17は、運転停止処理において燃料電池システム100において消費される空気の最小の流量よりも多い流量の空気を供給するように空気供給器12を制御する。このため、運転停止処理時に、SOFCスタック15において空気枯れが生じることを防ぐことができる。
 なお、空気供給器12による空気供給量の制御も、燃料供給器11による燃料供給量の制御と同様に運転停止処理においてSOFCスタック15を開回路状態に切替えてから実行してもよい。また、SOFCスタック15からの取り出し電流値を決定し、この決定した電流値の電流を外部に取り出しながら実行してもよい。このように決定した電流値の電流を外部に取り出しながら停止制御を行う場合、制御器17は、SOFCスタック15に供給する空気の流量を、開回路状態のSOFCスタック15において消費される流量と、外部に取り出される電流を生成するために消費される流量とを足し合わせた流量よりも多い流量に設定する。
 [第2実施形態]
 本開示の第2実施形態に係る燃料電池システム110について図6を参照して説明する。図6は、本開示の第2実施形態に係る燃料電池システム110の構成の一例を模式的に示すブロック図である。
 図6に示すように、第2実施形態に係る燃料電池システム110は、第1実施形態に係る燃料電池システム100の構成においてさらに、SOFCスタック15の温度を検出する温度検知器21を備えた構成である。この温度検知器21をさらに備えた点を除けば、第2実施形態に係る燃料電池システム110は第1実施形態に係る燃料電池システム100と同様の構成となる。このため、第2実施形態に係る燃料電池システム110が備える部材のうち、第1実施形態に係る燃料電池システム100が備える部材と同様な部材には同じ符号を付し、その説明は省略する。
 温度検知器21は、SOFCスタック15内における一か所以上の温度を検知し、その値を制御器17に出力する。温度検知器21は、例えば、熱電対を利用した温度センサ等が例示できる。なお、SOFCスタック15内の温度とは、例えば、アノード13cまたは電解質膜13aの温度とすることができる。
 温度検知器21は、SOFCスタック15を直接、測定してSOFCスタック15の温度を得る構成であってもよい。また、SOFCスタック15の温度と相関する他の部材の温度を測定して間接的にSOFCスタック15の温度を得る構成であってもよい。例えば、SOFCスタック15の温度を得ることができるのであれば、燃料電池システム110内におけるそれら近傍の構造体の温度を測定してもよい。あるいはSOFCスタック15を流れる燃料または空気の温度を測定してもよい。
 次に、上記した構成を有する燃料電池システム110における運転停止処理について図7を参照して説明する。図7は、図6に示す燃料電池システム110の運転停止処理において実施する停止制御の一例を示すフローチャートである。
 運転停止処理において、制御器17は、開回路状態のSOFCスタック15における燃料消費量を算出する(ステップS51)。この開回路状態のSOFCスタック15において消費される燃料の流量は、開回路状態のSOFCスタック15を備えた燃料電池システム110を用いた実験、またはシミュレーションによる計算等を行うことによって求めてもよい。
 ステップS51において燃料消費量を算出すると、制御器17は、燃料供給器11によってアノード13cに供給される燃料供給量をこの算出した燃料消費量よりも多い値となるように設定する(ステップS52)。そして、制御器17は、ステップS52において設定された燃料供給量に基づく流量の燃料をアノード13cに供給するように燃料供給器11を制御する(ステップS53)。
 なお、制御器17は、開回路状態のSOFCスタック15で消費される燃料の流量よりも多い流量であり、かつSOFCスタック15で消費される燃料の流量が、SOFCスタック15に供給される燃料の流量の90%以下となるように燃料を供給するように燃料供給器11を制御していてもよい。
 次に、制御器17は、温度検知器21により検知された温度の値に基づき、SOFCスタック15の温度が所定の温度以下か否か判定する(ステップS54)。ここで所定の温度とは、電解質膜13aにおいてホール伝導が生じない温度以下となる温度であり、例えば、500℃以下、好ましくは400℃以下の温度とすることができる。SOFCスタック15の温度が低くなればなるほど電解質膜13aにおける電気抵抗が大きくなりホール伝導が阻害される。そして、SOFCスタック15の温度が500℃以下、好ましくは400℃以下まで低下すると電解質膜13aにおいてホール伝導が生じなくなることが知られている。
 あるいは、所定の温度とは、アノード13cにおいて酸化還元反応が起きなくなる温度、つまりアノード13cに含まれるNiがカソード13b側から侵入してきた空気により酸化されなくなる温度以下となる温度としてもよい。Niが酸化されなくなる温度とは、400℃、さらに好ましくは、200℃から300℃の範囲の温度である。
 ステップS54の判定において、制御器17は、SOFCスタック15の温度が所定の温度より大きいと判定した場合(ステップS54において「NO」)、ステップS51に戻り、ステップS51からステップS53までの処理を繰り返す。一方、ステップS54の判定において、SOFCスタック15の温度が所定の温度以下であると判定した場合(ステップS54において「YES」)、制御器17は、燃料供給器11を制御して燃料の供給を停止させる(ステップS55)。そして、燃料電池システム110は、停止制御を終了する。
 以上のように、制御器17は、運転停止処理において燃料供給器11によってアノード13cに供給される燃料の流量を、開回路状態のSOFCスタック15で消費される燃料の流量よりも多い流量の燃料を供給するように燃料供給器11を制御する。換言すると制御器17は、固体酸化物形燃料電池で消費される燃料の最小の流量よりも多い流量の燃料を供給するように燃料供給器11を制御する。このため、運転停止処理時に、プロトンが伝導する電解質膜を用いたSOFCスタック15のアノード13cにおいて燃料枯れが生じることを防ぐことができる。
 また、制御器17は、SOFCスタック15の温度が所定の温度以下となるまで燃料の供給を継続するように燃料供給器11を制御する。ここで、所定の温度を、ホール伝導が生じない温度に設定した場合、電解質膜13aにおいてホール伝導が生じない温度となるまでは燃料の供給を継続させることとなる。このため、ホール伝導が生じる温度帯で燃料の供給を停止させることがないため、アノード13cにおいて燃料枯れが生じないようにすることができる。
 一方、所定の温度を、アノード13cにおいて酸化還元反応が起きなくなる温度に設定した場合、アノード13cにおいてNiが酸化する可能性がある温度帯にSOFCスタック15がある間は燃料の供給を継続する。のため、SOFCスタック15の温度が、Niが酸化する可能性がある温度帯にあるときに、カソード13b側から空気が入り込むことを防ぐことができる。それゆえ、アノード13cにおいてNiが酸化することを防ぐことができる。
 なお、第2実施形態に係る燃料電池システム110においても第1実施形態に係る燃料電池システム100の図3に示す停止制御と同様に、制御器17が切替え部14を制御してSOFCスタック15を閉回路状態から開回路状態に切替えて、上記した停止制御を実行してもよい。また、第1実施形態に係る燃料電池システム100の図4に示す停止制御と同様にSOFCスタック15を閉回路状態のままとし、一定の電流量を外部に取り出しながら上記した停止制御を行う構成としてもよい。
 また、第2実施形態に係る燃料電池システム110においても第1実施形態に係る燃料電池システム100の図5に示す停止制御と同様にして、並行して制御器17が、空気供給器12によってカソード13bに供給する空気の流量を、開回路状態のSOFCスタック15において消費される空気の流量よりも多くなるように制御してもよい。
 本開示は、プロトン伝導体を電解質膜とする固体酸化物形燃料電池を備えた燃料電池システムに適応できる。
11  :燃料供給器
12  :空気供給器
13  :膜電極接合体
13a :電解質膜
13b :カソード
13c :アノード
14  :切替え部
15  :SOFCスタック(固体酸化物形燃料電池)
16  :電流取り出し線
17  :制御器
21  :温度検知器
100 :燃料電池システム
110 :燃料電池システム

Claims (9)

  1.  プロトンが伝導する電解質膜と、前記電解質膜の一方の主面に設けられたカソードと、他方の主面に設けられたアノードとからなる膜電極接合体とを有し、燃料と空気とを用いて電気化学反応により発電する固体酸化物形燃料電池と、
     制御器と、を備え、
     前記制御器は、燃料電池システムの運転を停止させる運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように制御する、燃料電池システム。
  2.  前記固体酸化物形燃料電池の前記アノードに前記燃料として水素含有ガスを供給する燃料供給器をさらに備え、
     前記制御器は、燃料電池システムの運転を停止させる運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように前記燃料供給器を制御する、
     請求項1に記載の燃料電池システム。
  3.  前記固体酸化物形燃料電池の温度を検出する温度検知器をさらに備え、
     前記制御器は、
     前記運転停止処理において、前記温度検知器によって検知された温度が、前記電解質膜においてホール伝導が生じない温度以下となったと判定するまで、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように前記燃料供給器を制御する、
     請求項2に記載の燃料電池システム。
  4.  前記固体酸化物形燃料電池の温度を検出する温度検知器をさらに備え、
     前記制御器は、
     前記運転停止処理において、前記温度検知器によって検知された温度が、前記アノードにおいて酸化還元反応が起きなくなる温度以下となったと判定するまで、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように前記燃料供給器を制御する、
     請求項2に記載の燃料電池システム。
  5.  前記制御器は、
     前記運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量であり、かつ前記固体酸化物形燃料電池で消費される燃料の流量が、前記固体酸化物形燃料電池に供給される燃料の流量の90%以下となるように燃料を供給するように前記燃料供給器を制御する、
     請求項2から4のいずれか1項に記載の燃料電池システム。
  6.  前記固体酸化物形燃料電池に、前記空気を供給する空気供給器をさらに備え、
     前記制御器は、
     前記運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される空気の流量よりも多い流量の空気を供給するように前記空気供給器を制御する、
     請求項1から5のいずれか1項に記載の燃料電池システム。
  7.  前記固体酸化物形燃料電池を閉回路状態から開回路状態に切替える切替え部を備え、
     前記制御器は、
     前記運転停止処理において、前記固体酸化物形燃料電池を閉回路状態から開回路状態に切替えるように前記切替え部を制御するとともに、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するように前記燃料供給器を制御する、
    請求項2から6のいずれか1項に記載の燃料電池システム。
  8. 前記プロトンが伝導する電解質膜は、プロトンが伝導する酸化物を含む、
    請求項1から7のいずれか1項に記載の燃料電池システム。
  9.  プロトンが伝導する電解質膜と、前記電解質膜の一方の主面に設けられたカソードと、他方の主面に設けられたアノードとからなる膜電極接合体とを有し、燃料と空気とを用いて電気化学反応により発電する固体酸化物形燃料電池を備えた燃料電池システムの制御方法であって、
     前記燃料電池システムの運転を停止させる運転停止処理において、開回路状態の前記固体酸化物形燃料電池で消費される燃料の流量よりも多い流量の燃料を供給するステップを含む、燃料電池システムの制御方法。
PCT/JP2020/023439 2019-07-19 2020-06-15 燃料電池システムおよび燃料電池システムの制御方法 WO2021014822A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080021782.0A CN113574709B (zh) 2019-07-19 2020-06-15 燃料电池系统和燃料电池系统的控制方法
EP20843642.8A EP4020640A4 (en) 2019-07-19 2020-06-15 FUEL CELL SYSTEM AND METHOD FOR CONTROLLING THE FUEL CELL SYSTEM
JP2021533862A JP7555020B2 (ja) 2019-07-19 2020-06-15 燃料電池システムおよび燃料電池システムの制御方法
US17/551,192 US12009558B2 (en) 2019-07-19 2021-12-15 Fuel cell system and method for controlling fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-133330 2019-07-19
JP2019133330 2019-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/551,192 Continuation US12009558B2 (en) 2019-07-19 2021-12-15 Fuel cell system and method for controlling fuel cell system

Publications (1)

Publication Number Publication Date
WO2021014822A1 true WO2021014822A1 (ja) 2021-01-28

Family

ID=74193174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023439 WO2021014822A1 (ja) 2019-07-19 2020-06-15 燃料電池システムおよび燃料電池システムの制御方法

Country Status (5)

Country Link
US (1) US12009558B2 (ja)
EP (1) EP4020640A4 (ja)
JP (1) JP7555020B2 (ja)
CN (1) CN113574709B (ja)
WO (1) WO2021014822A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222842A (ja) * 2004-02-06 2005-08-18 Toyota Motor Corp 燃料電池
JP2006294508A (ja) * 2005-04-13 2006-10-26 Mitsubishi Materials Corp 燃料電池発電装置および運転停止方法
JP2017111922A (ja) 2015-12-15 2017-06-22 日産自動車株式会社 燃料電池システムの制御方法及び燃料電池システム
JP2017145445A (ja) * 2016-02-16 2017-08-24 国立大学法人九州大学 電気化学セル用電極及び電気化学セル
JP2018170200A (ja) * 2017-03-30 2018-11-01 Toto株式会社 固体酸化物形燃料電池システム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3843766B2 (ja) * 2000-07-04 2006-11-08 日産自動車株式会社 固体電解質型燃料電池
DE60321109D1 (de) * 2002-10-31 2008-07-03 Matsushita Electric Ind Co Ltd Verfahren zum Betrieb eines Brennstoffzellensystems und Brennstoffzellensystem
CN1853304A (zh) * 2003-06-25 2006-10-25 洁能氏公司 燃料电池中的电极被动覆盖
EP1852930B1 (en) 2005-02-22 2012-01-18 Mitsubishi Materials Corporation Solid oxide type fuel cell and operation method thereof
WO2008001119A2 (en) * 2006-06-29 2008-01-03 Ceres Intellectual Property Company Limited Steam reforming method for fuel cells
US9614236B2 (en) * 2006-08-10 2017-04-04 GM Global Technology Operations LLC Method for mitigating cell degradation due to startup and shutdown via cathode re-circulation combined with electrical shorting of stack
JP5274035B2 (ja) * 2007-03-27 2013-08-28 三洋電機株式会社 燃料電池
JP5291915B2 (ja) * 2007-10-25 2013-09-18 Jx日鉱日石エネルギー株式会社 間接内部改質型固体酸化物形燃料電池とその運転方法
JP2009176660A (ja) * 2008-01-28 2009-08-06 Nippon Oil Corp 間接内部改質型固体酸化物形燃料電池の停止方法
JP2010044909A (ja) * 2008-08-11 2010-02-25 Nippon Oil Corp 間接内部改質型固体酸化物形燃料電池の停止方法
JP5307592B2 (ja) * 2009-03-19 2013-10-02 Jx日鉱日石エネルギー株式会社 間接内部改質型固体酸化物形燃料電池システムの運転方法
CN101752585B (zh) * 2010-01-21 2011-11-16 南京工业大学 一种固体氧化物燃料电池系统及其制备方法
FI125987B (fi) * 2011-06-30 2016-05-13 Convion Oy Menetelmä ja järjestely suojakaasujen tarpeen minimoimiseksi
CN103988353A (zh) * 2011-11-09 2014-08-13 吉坤日矿日石能源株式会社 固体氧化物燃料电池系统的停止方法及停止装置
JP6531838B2 (ja) * 2015-12-15 2019-06-19 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
BR112018011451B1 (pt) * 2015-12-15 2023-01-17 Nissan Motor Co., Ltd. Sistema de célula de combustível e método de controle para sistema de célula de combustível
JP6627888B2 (ja) * 2015-12-25 2020-01-08 日産自動車株式会社 固体酸化物型燃料電池システム、固体酸化物型燃料電池システムの制御方法
WO2017110303A1 (ja) * 2015-12-25 2017-06-29 日産自動車株式会社 燃料電池システム及びその制御方法
JP2018014204A (ja) * 2016-07-20 2018-01-25 株式会社デンソー 燃料電池装置
JP7162170B2 (ja) * 2017-12-01 2022-10-28 パナソニックIpマネジメント株式会社 固体酸化物形燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222842A (ja) * 2004-02-06 2005-08-18 Toyota Motor Corp 燃料電池
JP2006294508A (ja) * 2005-04-13 2006-10-26 Mitsubishi Materials Corp 燃料電池発電装置および運転停止方法
JP2017111922A (ja) 2015-12-15 2017-06-22 日産自動車株式会社 燃料電池システムの制御方法及び燃料電池システム
JP2017145445A (ja) * 2016-02-16 2017-08-24 国立大学法人九州大学 電気化学セル用電極及び電気化学セル
JP2018170200A (ja) * 2017-03-30 2018-11-01 Toto株式会社 固体酸化物形燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4020640A4

Also Published As

Publication number Publication date
JPWO2021014822A1 (ja) 2021-01-28
JP7555020B2 (ja) 2024-09-24
CN113574709A (zh) 2021-10-29
US20220109172A1 (en) 2022-04-07
EP4020640A1 (en) 2022-06-29
CN113574709B (zh) 2024-03-08
EP4020640A4 (en) 2024-08-21
US12009558B2 (en) 2024-06-11

Similar Documents

Publication Publication Date Title
KR101753610B1 (ko) 고온 연료 전지 스택을 동작시키는 공정
US20020028362A1 (en) Anode oxidation protection in a high-temperature fuel cell
JP7429720B2 (ja) 燃料電池アセンブリの動作方法
JPH10144334A (ja) 燃料電池発電プラント及びその起動・停止方法
WO2020138338A1 (ja) 燃料電池の活性化方法及び活性化装置
US7709119B2 (en) Method for operating fuel cell
US12009556B2 (en) Fuel cell system and control method for fuel cell system
WO2021014822A1 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JPH05251102A (ja) リン酸型燃料電池発電プラント
KR100698677B1 (ko) 연료전지 하이브리드 시스템의 운전제어 장치
JP2005268091A (ja) 燃料電池の運転方法および燃料電池システム
JP2007265910A (ja) 燃料電池システム及びその運転方法
JP5167660B2 (ja) 燃料電池システム
JP2012009182A (ja) 燃料電池システム、燃料電池の発電方法およびフラッディング判断方法
JP2008147066A (ja) 燃料電池システムの制御方法及び燃料電池システム
JP2006059554A (ja) 燃料電池およびその運転方法
KR100671680B1 (ko) 미반응 연료를 회수하는 연료전지 시스템
JP2014229504A (ja) 2次電池型燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020843642

Country of ref document: EP

Effective date: 20220221