WO2021008076A1 - 血管介入手术装置 - Google Patents

血管介入手术装置 Download PDF

Info

Publication number
WO2021008076A1
WO2021008076A1 PCT/CN2019/125442 CN2019125442W WO2021008076A1 WO 2021008076 A1 WO2021008076 A1 WO 2021008076A1 CN 2019125442 W CN2019125442 W CN 2019125442W WO 2021008076 A1 WO2021008076 A1 WO 2021008076A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
clamping
pair
bearing
guide
Prior art date
Application number
PCT/CN2019/125442
Other languages
English (en)
French (fr)
Inventor
段文科
王磊
李晖
杜文静
韩世鹏
陈静
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2021008076A1 publication Critical patent/WO2021008076A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0116Steering means as part of the catheter or advancing means; Markers for positioning self-propelled, e.g. autonomous robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M25/09041Mechanisms for insertion of guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0001Catheters; Hollow probes for pressure measurement
    • A61M2025/0002Catheters; Hollow probes for pressure measurement with a pressure sensor at the distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3327Measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/12Blood circulatory system

Definitions

  • the invention relates to the technical field of minimally invasive surgery, in particular to a vascular interventional surgery device.
  • Minimally invasive vascular interventional surgery is currently one of the most important methods for the treatment of cardiovascular diseases. Doctors use threaded parts such as guide wires and catheters to deliver drugs to the lesion for treatment. Compared with traditional open surgery, minimally invasive interventional surgery The advantages are small wounds, fast recovery, and high reliability.
  • traditional vascular interventional surgery also has some problems.
  • catheter interventions are performed under the guidance of medical imaging equipment. Doctors are exposed to X-ray radiation for a long time, causing harm to the doctor’s body. ;
  • the second is the high risk of surgery, the operating skills of the operating doctor are high, and it must be performed by a high-level specialist. Therefore, the difficulty is the lack of doctors and the long and costly training of doctors; the third is the operation time Long time, doctors will become fatigued due to long-term operation, and doctors’ physical tremors and misoperations during fatigue will greatly reduce the safety of the operation.
  • Corindus has developed the CorPath 200 vascular interventional device system dedicated to vascular intervention.
  • the device has undergone many clinical trials and achieved success.
  • Yang Xue and Wang Hongbo from Yanshan University in China have developed a set of vascular interventional devices.
  • the device uses three-pronged claws to clamp the guide wire.
  • the twisting motor drives the three-pronged claws to drive the guide wire/catheter to rotate, and the motor drives the screw to reciprocate.
  • the movement realizes the delivery of the guidewire/catheter; Feng Zhenqiu and Hou Zengguang, etc., Beijing Institute of Automation, Chinese Academy of Sciences, proposed a minimally invasive vascular interventional device, which uses a set of friction wheels as a bionic finger, which is driven by different motors. Knead back and forth and up and down to realize the push and twist of the guide wire/catheter; Xie La, Shanghai Jiaotong University, and Zhou Shoujun, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, and others have developed a progressive cardio-cerebrovascular interventional device. The electric clamp tightens the guide wire chuck, and reciprocates through different motors with screw rods to realize the push and pull action and rotation of the guide wire.
  • the above interventional surgical device solutions all realize the manipulation of the guide wire and the catheter.
  • the friction-driven vascular interventional device has a simple driving method, a small overall mechanism and a compact structure, but the friction wheel clamping force is too large. Small size can easily lead to slippage during the guide wire intervention process. Too much clamping force can easily lead to problems of damage to the guide wire and catheter, resulting in poor accuracy of the overall mechanism transmission; the sliding platform reciprocating vascular intervention device uses a screw drive to solve the current friction drive type There are problems such as poor transmission accuracy, but they have the problem of too large device size, no guide wire, catheter resistance feedback, and clamping force measurement mechanism.
  • the purpose of the present invention is to provide a vascular interventional operation device with high transmission accuracy and small overall volume.
  • the present invention provides a vascular interventional surgery device, which includes a bottom plate, a guide mechanism, a fine adjustment mechanism, an electric gripper, a rotating mechanism, a push-pull mechanism, a clamping mechanism, and a feed resistance measuring mechanism;
  • the guide mechanism includes a bottom plate and is installed on the bottom plate.
  • a front support plate and a rear support plate are provided with guide shafts through which the two ends of the linear member pass;
  • the fine adjustment mechanism includes a mounting plate installed on the bottom plate, and a crank connection assembly installed on the mounting plate.
  • the push-pull mechanism includes a power assembly, a front rotating shaft connected to the power assembly, a rear rotating shaft, and a bearing plate for installing the rear rotating shaft; the push-pull mechanism is installed on the bottom plate and is used to drive the The rotating mechanism reciprocates;
  • the clamping mechanism includes a housing, a pair of clamping pressing plates arranged in the housing, an elastic member arranged between the clamping pressing plate and the housing, and one of the clamping pressing plates and Another flexible pressure sensor on the opposite side of the clamping pressure plate;
  • the power assembly is used to drive the front rotation shaft and the rear rotation shaft to rotate to drive the clamping mechanism to rotate;
  • the feed resistance measuring mechanism includes pressure Sensor pressure plate and six-dimensional force sensor; one end of the rear rotating shaft away from the housing passes through the pressure sensing pressure plate and the six-dimensional force sensor and then is rotatably connected to the
  • the feeding direction of the linear member of the present invention is limited to the guide shaft of the guide mechanism to ensure the feeding direction;
  • the fine adjustment mechanism drives the linear member to move away from or close to the bottom plate up and down to realize the fine adjustment of the guide wire and catheter intervention angle;
  • electric clamp The claw is used to clamp the linear part to prevent the vasospasm caused by the disturbance of the linear part when the push-pull mechanism retracts; after the linear part is clamped by the clamping platen, the flexible pressure sensor can measure the clamping force in real time, Adjust the deformation of the elastic member in real time according to the clamping force to ensure that the clamping force on the linear member is at an appropriate level, which can firmly clamp the linear member and not damage the linear member;
  • the rotating mechanism is set on the push-pull mechanism and clamped
  • the mechanism is installed on the front rotating shaft and the rear rotating shaft of the rotating mechanism, making the structure more compact and reducing the overall volume; in addition, when the linear member enters the blood vessel and receives resistance, the clamping mechanism
  • Fig. 1 is a three-dimensional structure diagram of a vascular interventional surgical device provided by the present invention.
  • Fig. 2 is a three-dimensional structural diagram of the fine adjustment mechanism of the vascular interventional surgical device shown in Fig. 1.
  • Fig. 3 is a perspective view of a rotating mechanism and a push-pull mechanism of the fine adjustment mechanism of the vascular interventional surgical device shown in Fig. 1.
  • FIG. 4 and 5 are three-dimensional structural diagrams of the clamping mechanism of the vascular interventional surgical device shown in FIG. 1.
  • Fig. 6 is a three-dimensional cross-sectional view of the guide wire feeding resistance measurement of the fine adjustment mechanism of the vascular interventional surgical device shown in Fig. 1.
  • Fig. 7 is a three-dimensional structural diagram of a catheter guiding mechanism of the fine adjustment mechanism of the vascular interventional surgical device shown in Fig. 1.
  • a vascular interventional surgery device 1000 provided by a preferred embodiment of the present invention includes a bottom plate 12, a guiding mechanism 7, a fine adjustment mechanism 1, an electric gripper 2, a rotating mechanism 3, a push-pull mechanism 4, and a clamping
  • the guide mechanism 7 includes a front support plate 701 and a rear support plate 705 installed on the bottom plate 12 and spaced apart, and the front support plate 701 and the rear support plate 705 Each is provided with a guide shaft 706 through which both ends of the linear member 200 pass;
  • the fine adjustment mechanism 1 includes a mounting plate 100 installed on the bottom plate 12, a crank connecting assembly 20 installed on the mounting plate 100, so The front supporting plate 701 is located between the rear supporting plate 705 and the mounting plate 100, and one end of the linear member 200 passes through the guide shaft 706 of the front supporting plate 701 and the crank connecting assembly 20 in turn,
  • the crank connecting assembly 20 drives the linear member 200 to move away from or close to the bottom plate 12;
  • the feeding resistance measuring mechanism 6 also includes a first bearing 602 and a second bearing 606.
  • the first bearing 602 is rotatably installed in the pressure sensor plate 603, and the second bearing 606 is rotatably installed in the In the bearing plate 309; the end of the rear rotating shaft 306 away from the housing 50 passes through the first bearing in the sensor plate 603, the six-dimensional force sensor 605 and the second bearing 606 in the bearing support plate 309 and It is fixedly connected with the first bearing 602 and the second bearing 606.
  • the first bearing 602 and the second bearing 606 are deep groove ball bearings.
  • the present invention is a vascular interventional surgical device.
  • the linear member used can be a guide wire or a catheter; wherein the feeding direction of the linear member is limited to the guide shaft of the guiding mechanism to ensure the feeding direction; the fine adjustment mechanism drives the wire
  • the shape piece moves up and down away from or close to the bottom plate to realize the micro-adjustment of the guide wire and catheter intervention angle; the electric gripper is used to clamp the thread-like piece to prevent the thread-like piece from being disturbed when the push-pull mechanism is retracted and causing vasospasm during the operation;
  • the flexible pressure sensor can measure the clamping force in real time, and adjust the deformation of the elastic part in real time according to the clamping force to ensure that the clamping force on the linear part is at an appropriate level.
  • the rotating mechanism is arranged on the push-pull mechanism, and the clamping mechanism is installed on the front and rear rotating shafts of the rotating mechanism, making the structure more compact and reducing the overall volume ;
  • the clamping mechanism will obtain a backward force. The force passes through the rear rotating shaft, the first bearing, and the pressure sensor plate is finally transmitted to the pressure detection of the six-dimensional force sensor. At the end, the measurement of the resistance of the linear member is completed.
  • the crank connecting assembly 20 includes a linear stepping motor 101, a mounting seat 102, a main adjustment block 103, a connecting rod 1031, a guide cylinder mounting block 104, a guide cylinder 105, and a slave adjustment Block 106 and hinge pin 107;
  • the mounting plate 100 is L-shaped and vertically mounted on the bottom plate 12, the mounting seat 102 is fixed on the mounting plate 100, and the linear stepping motor 101 is fixedly mounted on the mounting
  • the base 102 is connected to the main adjustment block 103; the end of the main adjustment block 103 away from the linear stepping motor 101 is rotatably connected to the connecting rod 1031 through a hinge pin 107, and the slave adjustment block 106 is fixedly connected At the end of the mounting plate 100 away from the bottom plate 12; the two ends of the guide cylinder mounting block 104 are also rotatably connected to the connecting rod 1031 and the slave adjusting block 106 through hinge pins 107; the guide cylinder 105 is installed on the guide cylinder installation block
  • the linear stepping motor 101 when the linear stepping motor 101 is working, it can drive the main adjustment block 103 to move up and down in a direction away from or close to the bottom plate, and the main adjustment block 103 pushes, the connecting rod 1031 and the guide shaft mounting block 104 make a rotational movement to push the guide
  • the cylinder 105 moves up and down to realize the fine adjustment of the insertion angle of the linear member in the guide cylinder 105.
  • the mounting board 100 and the mounting base 101 may be an integral structure, that is, the linear stepping motor is mounted on the mounting board 100.
  • the electric clamping jaw 2 is installed on the bottom plate 12 and is located between the front support plate 701 and the installation plate 100, and is used to clamp or loosen the linear member 200, so , Make the structure more compact and save the overall space.
  • the electric clamping jaw 2 can also be installed on other elements except the bottom plate.
  • the electric clamping jaw 2 includes an actuator cylinder 21 installed on the bottom plate 12 and a pair of claws 22 connected to the actuator cylinder 21.
  • the actuator cylinder 21 is used to control the pair of claws 22 to clamp or loosen. ⁇ 200 ⁇ Said linear member 200.
  • the push-pull mechanism 4 includes a sliding plate 401, a push-pull motor 402, and a sliding rail 403.
  • the push-pull motor 402 and the slide rail 403 are installed on the bottom plate 12, the slide plate 401 is slidably installed on the slide rail 402, and the push-pull motor 402 is connected to the slide plate 401 and drives all
  • the sliding plate 401 reciprocates along the sliding rail 403;
  • the power assembly 30 includes a driving wheel 300, a driven wheel 302, a timing belt 303, a conductive slip ring 304, a rotary stepping motor 307, a driven wheel support plate 308, and a mounting frame 310
  • the bearing support plate 309 and the mounting frame 310 are mounted on both ends of the sliding plate 401, the rotary stepping motor 307 and the driven wheel support plate 308 are mounted on the mounting frame 310, the driving wheel 302 Connected to the rotating stepping motor 307; one end of the front rotating shaft 305 away from the housing 50 is rotat
  • a bearing sleeved outside the front rotating shaft 305 is installed in the driven wheel support plate 308 to ensure the smooth and reliable rotation of the front rotating shaft 305.
  • the rotating stepping motor 307 rotates, the driving wheel 300 is driven to rotate, and the driven wheel 302 is driven to rotate by the timing belt 303, so that the front rotating shaft 305 and the rear rotating shaft 306 are rotated, thereby being clamped by the clamping mechanism 5
  • the linear member 200 rotates.
  • the linear member 200 clamped by the clamping mechanism 5 can move in the direction of the forward support plate 701 or the rear support plate 705;
  • the design of the conductive slip ring 304 prevents the output wire of the rotary stepping motor from being entangled due to the rotary motion.
  • the rotating mechanism 3 further includes a hexagonal support nut 301, the end of the front rotating shaft 305 away from the housing 50 passes through the driven wheel support plate 308 and then passes through the
  • the driven wheel 302 is threadedly matched with the hexagonal support nut 301 to fix the driven wheel 302 to the end of the front rotating shaft 305 away from the housing 50.
  • the rear rotating shaft 306 and the hexagonal support nut 301 are both provided with a corresponding guide hole 3061 for the linear member 200 to pass through.
  • the guide hole 3061 is connected to the guide shaft 706 and the The guide cylinders 105 correspond to each other to jointly define the feeding direction of the linear member 200.
  • the housing 50 includes a pair of end plates 501, a pair of side plates 502, a rectangular bottom wall 506, and a pair of guide rail sliders 509;
  • the plate 501 is mounted on a pair of opposite sides of the bottom wall 506 and is provided with a limiting hole 5011 for the linear member to pass through; the limiting hole 5011 corresponds to the guide hole 3061
  • the barrel 105 and the guide shaft 706 jointly define the feeding direction of the linear member 200.
  • the end of the front rotating shaft 305 away from the driven wheel 302 is fixedly connected to one of the end plates 501; the end of the rear rotating shaft 306 away from the bearing support plate 309 is fixedly connected to the other end plate 501.
  • the pair of side plates 502 are installed on the other pair of opposite sides of the bottom wall 506 and connected perpendicularly to the end plate 501; the pair of guide rail sliders 509 are fixed to the bottom wall 506 and parallel to each other.
  • the end plate 501; the pair of clamping and pressing plates 508 are slidably arranged on the pair of guide rail sliders 509 and arranged in parallel between the pair of side plates 502; the elastic member 504 is arranged in a corresponding one Between the side plate and a corresponding clamping pressing plate 508.
  • the elastic member 504 is a spring.
  • each clamping and pressing plate 508 also protrudes toward the side of the corresponding side plate to form at least one guide post 503, and each side plate 502 is provided with a corresponding In the matching hole 5021 of the guide post 503, each guide post 503 is sheathed with a spring and one end away from the clamping pressure plate 508 passes through the corresponding matching hole 5021, so that the spring is pressed against the corresponding clamping pressure plate 508 and side Between the boards 502.
  • the clamping plate 508 protrudes to form two guide posts 503, each side plate is provided with two matching holes 5031, the number of the springs is four, and each spring is sleeved on a corresponding guide post 503 outside. In this way, the movement of the pair of clamping and pressing plates 508 is more stable.
  • the housing further includes a top plate 511
  • the clamping mechanism 5 further includes a separation assembly 60.
  • the separation assembly 60 includes a pair of connecting drive blocks 507, a pair of cams 512, a pressing block 513, a linear Drive motor 514 and fixed frame 515.
  • the top plate 511 is connected to the pair of end plates 501 and the pair of side plates 502 and is spaced opposite to the bottom wall 506, so that the top plate 511, the pair of end plates 501 and the pair of side plates 502 are connected to each other.
  • the bottom wall 506 jointly encloses a receiving space 516 for accommodating the clamping pressing plate 508 and the guide rail slider 509;
  • the top plate is provided with a pair of sliding holes 5111, and one end of each connecting driving block 507 corresponds to a clamping pressing plate 508 The other end of the connection passes through a corresponding sliding hole 5111 and protrudes out of the receiving space 516;
  • each cam 512 is rotatably mounted on an end corresponding to a connecting driving block 507 protruding out of the receiving space 516.
  • the fixing frame 515 is installed on the top plate 511 and located outside the receiving space 516, the linear drive motor 514 is fixedly installed on the fixing frame 515, and the pressing block 513 is connected to the linear drive motor 514 and located between the two cams 512 of the two connecting driving blocks 507, the linear drive motor 514 is used to drive the pressing block 513 to move between the two cams 512 of the two connecting driving blocks 507 and to The two cams 512 abut to drive the two cams 512 to move away from each other, so that the pair of clamping and pressing plates 508 move away from each other, so that the clamping and pressing plates 508 loosen the linear member 200.
  • the width of the pressure block 513 gradually decreases from approaching the linear drive motor 514 to the direction away from the linear drive motor 514.
  • the pressure block 513 has a shape of a triangular prism with an isosceles triangle at the bottom; This structure not only ensures the real-time adjustment of the clamping force, but also ensures the high efficiency and high accuracy of the clamping, and the overall structure is compact.
  • the guide wire feed resistance measuring mechanism 6 further includes a bearing pressing plate 601, a first nut 604 and a second nut 607; the bearing pressing plate 601 is sleeved outside the first bearing 602 and embedded in the The pressure sensor pressure plate 603 is on the side facing away from the six-dimensional force sensor 605 for pressing the first bearing 602, and the first nut 604 is located between the bearing mounting plate 309 and the pressure sensor pressure plate 603 and Threaded fit with the external thread of the rear rotating shaft 306; the second nut 607 is located on the side of the bearing mounting plate 309 away from the six-dimensional force sensor 605 and is connected to the external thread of the rear rotating shaft 306 Perform threaded fitting; in this way, the rear rotating shaft 306 can be rotatably installed in the bearing support plate 309. It can be understood that the front rotating shaft 305 is also rotatably installed in the driven wheel support plate 308 through a bearing.
  • the guide mechanism 7 further includes a telescopic rod support block 702, a telescopic rod clamping block 703, and a hollow telescopic rod 704 for the linear member 200 to pass through;
  • the rod support block 702 is mounted on the front support plate 701; one end of the telescopic rod 704 is mounted in the telescopic rod support block 702 and clamped by the telescopic rod clamping block 703, the other end of the telescopic rod 704 is mounted on a hexagonal support nut In 301, lock it with screws.
  • the linear member 200 is a flexible guide wire or catheter, the bending disturbance during the feeding process will not occur due to the restriction of the telescopic rod 704, which ensures the accuracy of the guide wire or catheter.
  • the vascular interventional surgery apparatus 100 further includes a motor controller 8 installed on the bottom plate 12, the motor controller 8 is connected to the linear stepper motor 101, the actuator 21, the rotary stepper motor 307, and push-pull
  • the motor 402 and the linear drive motor 514 are electrically connected to control the corresponding motor movement.
  • the vascular interventional surgery device 100 further includes a controller 9 installed on the bottom plate 12 and electrically connected to the motor controller 8 for sending corresponding control commands to the motor controller 8.
  • the vascular interventional surgery device 100 further includes a power supply 10 installed on the bottom plate 12 and a switch button 11, and the power supply 10 is a 24 volt power supply for supplying power to the vascular interventional surgery device 100.
  • the switch The button 11 is used to turn on or turn off the blood vessel interventional surgical device 100.
  • the working principle of the vascular interventional surgery device 100 is as follows: First, the linear member 200 is passed through the guide shaft 706 of the rear support plate 705 and the guide hole 3061 of the rear rotation shaft 306 from one side of the rear support plate 705 in sequence.
  • the linear member 200 When the linear member 200 needs to be fed, the linear member 200 is clamped by the clamping plate 308, the controller 9 sends a feed command to the motor controller 8, and the motor controller 8 receives the feed After the command, the push-pull motor 402 is controlled to drive the sliding plate 401 to move in the direction of the front support plate 701, and the actuator cylinder 21 of the electric gripping 2 is controlled to be in a released state, thereby driving the linear member 200 Move to the direction of the front support plate 701.
  • the linear member 200 When the linear member needs to be retracted, the linear member 200 is clamped by the clamping plate 308, and the controller 9 sends a retract command to the motor controller 8; the motor controller 8 receives the retract command
  • the push-pull motor 402 is then controlled to drive the sliding plate 401 to move in the direction of the rear support plate 705, and the actuator cylinder 21 of the electric gripping 2 is controlled to be in a clamped state, so as to prevent the push-pull mechanism from driving the linear member when it retracts.
  • the controller 9 sends a rotation command to the motor controller 8, and the motor After receiving the rotation command, the controller 8 controls the rotation stepping motor 307 to drive the front rotation shaft 305 to rotate, thereby driving the clamping mechanism 5 to rotate, that is, to drive the linear member 200 to rotate.
  • the second nut 607 is locked to drive the rear rotating shaft 306 to tighten the six-dimensional force sensor 605.
  • the six-dimensional pressure sensor 605 will have an initial pre-pressure. When linearly enters the blood vessel and receives resistance, the clamping mechanism 5 will obtain a backward force.
  • the force passes through the rear rotating shaft, the first bearing 602, the pressure sensor plate 603, and finally the pressure detection transmitted to the six-dimensional force sensor 605 End, the resistance measurement of the linear member 200 is completed; after the present invention, the pressing force of the rotating shaft 306 is transmitted through the bearing and is not directly installed on the six-dimensional force sensor 605, so this mechanism can complete the rotation without affecting It measures the resistance of the guide wire and the catheter, and the structure is also very compact and reliable.

Abstract

一种血管介入手术装置(1000),包括底板(12)、导向机构(7)、微调机构(1)、电动夹爪(2)、旋转机构(3)、推拉机构(4)、夹紧机构(5)及进给阻力测量机构(6);微调机构(1)包括曲柄连接组件(20),线状件(200)穿过导向机构(7)及曲柄连接组件(20);旋转机构(3)安装于推拉机构(4)上;推拉机构(4)安装于底板(12);夹紧机构(5)包括一对夹紧压板(508)及设置于其中一个夹紧压板(508)的柔性压力传感器(505);动力组件(30)用于带动夹紧机构(5)旋转;进给阻力测量机构(6)包括压力传感器压板(603)及六维力传感器(605);后旋转轴(306)穿过压力传感器压板(603)、六维力传感器(605)后与轴承支撑板(309)转动连接。导向机构(7)保证进给方向;微调机构(1)实现介入角度的微调;电动夹爪(2)防止回退时造成血管痉挛;柔性压力传感器(505)能实时测量出夹紧力的大小;六维力传感器(605)的压力检测端,完成线状件(200)阻力的测定。

Description

血管介入手术装置 技术领域
本发明涉及微创手术技术领域,特别是涉及一种血管介入手术装置。
背景技术
微创血管介入手术是目前治疗心血管疾病最为重要的手段之一,医生通过线状件如导丝、导管将药物送到病灶部位进行治疗,与传统的开放式手术相比,微创介入手术优点是伤口小,恢复快,可靠性高,但是传统的血管介入手术也存在一些问题,首先导管介入手术在医学影像设备的引导下进行,医生长期受到X光的辐射,对医生的身体造成伤害;其次是手术的高危险性,对操作医生的操作技巧要求高,必须是高水平的专科医生才能执行,因此存在的困难是医生的缺乏和医生培训的时间长、代价高;再次是手术时间长,医生会因为长时间操作而疲劳,医生的生理颤抖和疲劳时的误操作都会大大降低手术的安全性。
针对上述存在的问题,科研工作者将越来越成熟的装置技术引入到介入手术当中。Corindus公司开发了专用于血管介入的CorPath 200血管介入装置系统,该装置进行了多次临床试验,并取得成功。国内燕山大学杨雪、王洪波等研制了一套血管介入装置,该装置采用三叉爪进行导丝的夹紧,通过旋捻电机带动三叉爪从而带动导丝/导管旋转,通过电机带动丝杠进行往复运动实现导丝/导管的递送;中国科学院北京自动化研究所奉振球、侯增广等提出了一种微创血管介入装置,该装置采用一组摩擦轮作为仿生手指,通过不同的电机带 动仿生手指实现前后和上下搓动,从而实现导丝/导管的推送和旋捻;上海交通大学谢叻,中国科学院深圳先进技术院周寿军等人开发了一种渐进式的心脑血管介入手术装置,该装置用电动夹将导丝夹头拧紧,通过不同的电机带丝杆进行往复运动,实现导丝的推拉动作和旋转动作。上述介入手术装置方案均实现了对导丝、导管的操控。
目前大部分的血管介入装置主要可分为摩擦驱动型和滑动平台往复型两种,其中摩擦驱动型血管介入装置驱动方式简单,机构整体体积较小,结构紧凑,但是存在摩擦轮夹紧力太小容易导致导丝介入过程打滑,夹紧力太大容易导致损伤导丝、导管的问题,使得整体机构传动的精度较差;滑动平台往复型血管介入装置利用丝杠传动解决了目前摩擦驱动型存在的传输精度较差等问题,但是他们存在装置体积过大,没有导丝、导管阻力反馈、夹紧力测定机构的问题。
发明内容
本发明的目的是提供一种传动精度高、整体体积小的血管介入手术装置。
发明提供一种血管介入手术装置,包括底板、导向机构、微调机构、电动夹爪、旋转机构、推拉机构、夹紧机构及进给阻力测量机构;所述导向机构包括安装于所述底板且均设置有供线状件两端穿过的导向轴的前支撑板及后支撑板;所述微调机构包括安装于所述底板的安装板、安装于所述安装板上的曲柄连接组件,所述线状件的一端依次穿过所述前支撑板的导向轴及所述曲柄连接组件;所述电动夹爪位于所述前支撑板及所述安装板之间;所述旋转机构安装于所述推拉机构上且包括动力组件、与所述动力组件连接的前旋转轴、后旋转轴及用于安装所述后旋转轴的轴承板;所述推拉机构安装于所述底板且用于 带动所述旋转机构往复运动;所述夹紧机构包括壳体、一对设置于所述壳体内的夹紧压板、设置于夹紧压板与壳体之间的弹性件及设置于其中一个夹紧压板且与另一个夹紧压板相对一侧的柔性压力传感器;所述动力组件用于带动所述前旋转轴及所述后旋转轴旋转以带动所述夹紧机构旋转;所述进给阻力测量机构包括压力传感器压板及六维力传感器;所述后旋转轴远离所述壳体的一端穿过所述压力传感压板、所述六维力传感器后与所述轴承支撑板转动连接;所述线状件还穿过所述后旋转轴。
本发明线状件的进给方向限制于导向机构的导向轴内,保证进给方向;微调机构带动线状件向远离或靠近底板上下运动,实现导丝、导管介入角度的微调整;电动夹爪用于夹紧线状件,防止推拉机构回退时带动线状件扰动造成手术中血管痉挛;线状件被夹紧压板夹紧之后,柔性压力传感器能实时测量出夹紧力的大小,根据夹紧力的大小实时调节弹性件的变形量,确保对线状件的夹紧力处于适当大小,既能稳固夹紧不至于损伤线状件;旋转机构设置于推拉机构上,且夹紧机构安装于所述旋转机构的前旋转轴及后旋转轴上,使得结构更为紧凑,减小整体体积;另外,当线状件进入到血管当中受到阻力时,夹紧机构会获得向后的作用力,作用力通过后旋转轴、压力传感器压板最终传导到六维力传感器的压力检测端,完成线状件阻力的测定。
附图说明
图1为本发明提供的血管介入手术装置的立体结构图。
图2为图1所示血管介入手术装置的微调机构的立体结构图。
图3为图1所示血管介入手术装置的微调机构的旋转机构及推拉机构的立体图。
图4及图5为图1所示血管介入手术装置的夹紧机构的立体结构图。
图6图1所示血管介入手术装置的微调机构的导丝进给阻力测量立体剖视图。
图7为图1所示血管介入手术装置的微调机构的导管导向机构立体结构图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人士在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
请参照图1至图7,本发明优选实施方式提供的一种血管介入手术装置1000,包括底板12、导向机构7、微调机构1、电动夹爪2、旋转机构3、推拉机构4、夹紧机构5及进给阻力测量机构6;所述导向机构7包括安装于所述底板12且间隔设置的前支撑板701及后支撑板705,且所述前支撑板701及所述后支撑板705均设置有供线状件200的两端穿过的导向轴706;所述微调机构1包括安装于所述底板12的安装板100、安装于所述安装板100上的曲柄连接组件20,所述前支撑板701位于所述后支撑板705与所述安装板100之间,所述线状件200的一端依次穿过所述前支撑板701的导向轴706及所述曲柄连接组件20,所述曲柄连接组件20带动所述线状件200向远离或靠近所述底板12运动;所述电动夹爪2位于所述前支撑板701及所述安装板100之间,用于夹紧或松开所述线状件200;所述旋转机构3安装于所述推拉机构4上且包括动力组件30、与所述动力组件30连接的前旋转轴305、后旋转轴306及用于安装所述后旋转轴306的轴承板309;所述推拉机构4安装于所述底板12且用于带动所述旋转机构3往复运动;所述夹紧机 构5包括壳体50、一对能够相对靠近或远离运动的设置于所述壳体50内的用于夹紧或松开所述线状件200的夹紧压板508、设置于夹紧压板508与壳体50之间的弹性件504及设置于其中一个夹紧压板508且与另一个夹紧压板508相对一侧的柔性压力传感器505;所述动力组件30用于带动所述前旋转轴305及所述后旋转轴306旋转以带动所述夹紧机构5旋转;所述进给阻力测量机构6包括压力传感器压板603及六维力传感器605;所述六维力传感器605设置于所述压力传感器压板603及所述轴承板309之间;所述后旋转轴306远离所述壳体50的一端穿过传感器压板603、所述六维力传感器605后与所述轴承支撑板309转动连接;所述线状件200还穿过所述后旋转轴306。
所述进给阻力测量机构6还包括第一轴承602及第二轴承606,所述第一轴承602能够转动的安装于压力传感器压板603内,所述第二轴承606能够转动的安装于所述轴承板309内;所述后旋转轴306远离所述壳体50的一端穿过传感器压板603内的第一轴承、所述六维力传感器605及所述轴承支撑板309内第二轴承606并且与所述第一轴承602及第二轴承606固定连接。本实施方式中,所述第一轴承602及第二轴承606为深沟球轴承。
本发明一种血管介入手术装置,其所使用的线状件可以为的导丝或导管;其中线状件的进给方向限制于导向机构的导向轴内,保证进给方向;微调机构带动线状件向远离或靠近底板上下运动,实现导丝、导管介入角度的微调整;电动夹爪用于夹紧线状件,防止推拉机构回退时带动线状件扰动造成手术中血管痉挛;线状件被夹紧压板夹紧之后,柔性压力传感器能实时测量出夹紧力的大小,根据夹紧力的大小实时调节弹性件的变形量,确保对线状件的夹紧力处于适当大小,既能稳固夹紧不至于损伤线状件;旋转机构设置于推拉机构上,且夹紧机构安装于所述旋转机构的前旋转轴及后旋转轴上,使得结构更为紧 凑,减小整体体积;另外,当线状件进入到血管当中受到阻力时,夹紧机构会获得向后的作用力,作用力通过后旋转轴、第一轴承,压力传感器压板最终传导到六维力传感器的压力检测端,完成线状件阻力的测定。
具体的,如图1及图2所示,所述曲柄连接组件20包括直线步进电机101、安装座102、主调整块103、连杆1031、导向筒安装块104、导向筒105、从调整块106及铰链销107;所述安装板100呈L型且垂直安装于所述底板12上,所述安装座102固定于所述安装板100上,所述直线步进电机101固定安装于安装座102上且与所述主调整块103相连;所述主调整块103远离所述直线步进电机101的一端通过铰链销107与所述连杆1031转动连接,所述从调整块106固定连接于所述安装板100远离所述底板12的一端;所述导向筒安装块104的两端还通过铰链销107分别与所述连杆1031及所述从调整块106转动连接;所述导向筒105安装于所述导向筒安装块104上用于供所述线状件200穿过。
如此,所述直线步进电机101工作时,可以带动主调整块103朝远离或靠近底板的方向上下运动,而主调整块103推动、连杆1031、导向轴安装块104做旋转运动,推动导向筒105上下运动,实现导向筒105内的线状件介入角度的微调整。可以理解,在其他实施方式中,所述安装板100及所述安装座101可以为一体结构,即所述直线步进电机安装于所述安装板100上。
请参阅图1,所述电动夹爪2,安装于所述底板12且位于所述前支撑板701及所述安装板100之间,用于夹紧或松开所述线状件200,如此,使结构更为紧凑,可节省整体空间。在其他实施方式中,所述电动夹爪2也可安装于除底板外的其他元件上。所述电动夹爪2包括安装于所述底板12的执行气缸21及连接于执行气缸21上的一对爪部22,所述执行气缸21用于控制一对爪部22夹紧或松开所述线状件200。
请参阅图1及图3,所述推拉机构4包括滑板401、推拉电机402及滑轨403。所述推拉电机402及所述滑轨403安装于所述底板12上,所述滑板401能够滑动的安装于所述滑轨402上,且所述推拉电机402与所述滑板401连接并带动所述滑板401沿所述滑轨403往复运动;所述动力组件30包括主动轮300、从动轮302、同步带303、导电滑环304、旋转步进电机307、从动轮支撑板308及安装架310;所述轴承支撑板309及所述安装架310安装于所述滑板401的两端,所述旋转步进电机307及从动轮支撑板308安装于所述安装架310上,所述主动轮302连接于所述旋转步进电机307;所述前旋转轴305远离所述壳体50的一端能够转动的安装于所述从动轮支撑板308并且穿过从动轮支撑板308后与所述从动轮302固定连接;所述同步带303套于所述主动轮300及所述从动轮302外;所述导电滑环304安装于前旋转轴305上且位于所述从动轮支撑板308与从动轮302相背的一侧。可以理解,所述从动轮支撑板308内安装有套于所述前旋转轴305外的轴承,保证前旋转轴305旋转时的顺畅可靠。当旋转步进电机307旋转时带动主动轮300旋转、由同步带303驱动所述从动轮302转动,使所述前旋转轴305及所述后旋转轴306旋转,从而被夹紧机构5夹紧的线状件200旋转。当所述推拉电机402带动所述滑板401沿所述滑轨403往复运动时,能使被夹紧机构5夹紧的线状件200向前支撑板701或后支撑板705的方向运动;所述导电滑环304的设计使得旋转步进电机中的输出线不会因为回转运动而缠绕起来。
请参阅图1、图3及图6,所述旋转机构3还包括六角支撑螺母301,所述前旋转轴305远离所述壳体50的一端穿过从动轮支撑板308后再穿过所述从动轮302并与所述六角支撑螺母301螺纹配合,以将所述从动轮302固定连接在所述前旋转轴305远离所述壳体50的一端,在本实施方式中,所述前旋转轴305、所述后旋转轴306及所述六角支撑螺母301均开设有供所述线状件200穿过的且相 对应的导向孔3061,所述导向孔3061与所述导向轴706及所述导向筒105相对应,以共同限定所述线状件200的进给方向。
请参阅图3、图4、图5及图7,所述壳体50包括一对端板501,一对侧板502、矩形的底壁506及一对导轨滑块509;所述一对端板501安装于所述底壁506的一对相对的侧边且开设有供所述线状件穿过的限位孔5011;所述限位孔5011对应于所述导向孔3061、所述导向筒105及所述导向轴706,以共同限定所述线状件200的进给方向。所述前旋转轴305远离从动轮302的一端与其中一个端板501固定连接;所述后旋转轴306远离所述轴承支撑板309的一端与另一个端板501固定连接。所述一对侧板502安装于所述底壁506的另一对相对的侧边并与所述端板501垂直相连;所述一对导轨滑块509固定于所述底壁506且平行所述端板501;所述一对夹紧压板508能够滑动的设置于所述一对导轨滑块509上且平行设置于所述一对侧板502之间;所述弹性件504设置于对应一个侧板与对应一个夹紧压板508之间。
本实施方式中,所述弹性件504为弹簧,为了便于安装弹簧,每个夹紧压板508朝向对应一个侧板的一侧还凸起形成至少一个导向柱503,每个侧板502开设有对应于导向柱503的配合孔5021,每个导向柱503外套设一个弹簧且远离夹紧压板508的一端穿过对应一个配合孔5021,以使所述弹簧压紧于对应的夹紧压板508及侧板502之间。本实施方式中,夹紧压板508凸起形成两个导向柱503,每个侧板开设有两个的配合孔5031,所述弹簧的数量为四个,且每个弹簧套于对应一个导向柱503外。如此,使一对夹紧压板508运动时更为稳定。
本实施方式中,所述壳体还包括顶板511,所述夹紧机构5还包括分离组件60,所述分离组件60包括一对连接驱动块507、一对凸轮512,抵压块513、直线驱动电机514及固定架515。所述顶板511与所述一对端板501及一对侧板502 连接并与所述底壁506间隔相对,以此所述顶板511、一对端板501及一对侧板502连接及所述底壁506共同围成收容所述夹紧压板508及所述导轨滑块509的收容空间516;所述顶板开设有一对滑孔5111,每个连接驱动块507一端与对应一个夹紧压板508连接另一端穿过对应一个滑孔5111并伸出于所述收容空间516外;每个凸轮512能够转动的安装于对应一个连接驱动块507伸出所述收容空间516外的一端。所述固定架515安装于所述顶板511上并位于所述收容空间516外,所述直线驱动电机514固定安装于所述固定架515上,所述抵压块513连接于所述直线驱动电机514上并位于两个连接驱动块507的两个凸轮512之间,所述直线驱动电机514用于带动所述抵压块513向两个连接驱动块507的两个凸轮512之间运动并与两个凸轮512相抵接以驱动两个凸轮512朝远离对方的方向运动,如此使得一对夹紧压板508向远离对方的方向运动,以此夹紧压板508松开所述线状件200。所述抵压块513的宽度自靠近直线驱动电机514向远离直线驱动电机514的方向逐渐减小,本实施方式中,所述抵压块513的形状为底面呈等腰三角形的三棱柱;这种结构既保证夹紧力的实时可调,又保证了夹紧的高效,高准确性,整体结构紧凑。
请参阅图6,所述导丝进给阻力测量机构6还包括轴承压板601、第一螺母604及第二螺母607;所述轴承压板601套于所述第一轴承602外并嵌入于所述压力传感器压板603背离所述六维力传感器605的一侧,用于压紧所述第一轴承602,所述第一螺母604位于所述轴承安装板309与所述压力传感器压板603之间并且与所述后旋转轴306的外螺纹进行螺纹配合;所述第二螺母607位于所述轴承安装板309背离所述六维力传感器605的一侧且并且与所述后旋转轴306的外螺纹进行螺纹配合;如此使所述后旋转轴306能够旋转的安装于所述轴承支撑板309内。可以理解的,所述前旋转轴305也通过轴承能够转动的安装于从动轮 支撑板308内。
进一步的,请参照图1及图7,所述导向机构7还包括伸缩杆支撑块702、伸缩杆夹紧块703及中空的供所述线状件200穿过的伸缩杆704;所述伸缩杆支撑块702安装于所述前支撑板701;所述伸缩杆704一端安装在伸缩杆支撑块702中并通伸缩杆夹紧块703夹紧,所述伸缩杆704另一端安装于六角支撑螺母301中,再通过螺钉锁紧。当线状件200为柔软的导丝或导管时,因受到伸缩杆704的限制不会出现进给过程中出现弯曲扰动的现象,保证了导丝或导管的精度。
进一步的,所述血管介入手术装置100还包括安装于所述底板12的电机控制器8,所述电机控制器8与所述直线步进电机101、执行气缸21、旋转步进电机307、推拉电机402及直线驱动电机514电性连接,用于控制对应的电机运动。
进一步的,所述血管介入手术装置100还包括安装于所述底板12的与所述电机控制器8电性连接的控制器9,用于向电机控制器8发出相应的控制命令。
进一步的,所述血管介入手术装置100还包括安装于所述底板12的电源10及开关按钮11,所述电源10为24伏电源,用于为所述血管介入手术装置100供电,所述开关按钮11用于开启或关闭种血管介入手术装置100。
所述血管介入手术装置100的工作原理如下:先将线状件200自所述后支撑板705的一侧依次穿过后支撑板705的导向轴706、所述后旋转轴306的导向孔3061、所述壳体50的一对端板501的限位孔5011、所述前旋转轴305及所述六角螺母301的导向孔3061、所述伸缩杆704及所述前支撑板701的导向轴706、以及所述微调机构1的导向筒105。当需要进给线状件200时,通过夹紧压板308夹紧所述线状件200,所述控制器9向所述电机控制器8发出进给命令,所述电机控制器8接收进给命令后控制所述推拉电机402带动所述滑板401向所述前支撑板701的方向运动、并控制所述电动夹抓2的执行气缸21为松开状态,以此带动所 述线状件200向所述前支撑板701的方向运动。当需要回退线状件时,通过夹紧压板308夹紧所述线状件200,所述控制器9向所述电机控制器8发出回退命令;所述电机控制器8接收回退命令后控制所述推拉电机402带动所述滑板401向所述后支撑板705的方向运动、并控制所述电动夹抓2的执行气缸21为夹紧状态,防止推拉机构回退时带动线状件200扰动造成手术中血管痉挛;当需要旋转线状件200时,通过夹紧压板308夹紧所述线状件200,所述控制器9向所述电机控制器8发出旋转命令,所述电机控制器8接收旋转命令后控制所述旋转步进电机307带动所述前旋转轴305旋转,以此带动所述夹紧机构5旋转,即带动线状件200旋转。在夹紧机构5夹紧的线状件进入血管前,通过锁紧第二螺母607,带动后旋转轴306对六维力传感器605拉紧,六维压力传感器605会有一个初始预压力,当线状进入到血管当中受到阻力时,夹紧机构5会获得向后的作用力,作用力通过后旋转轴,第一轴承602、压力传感器压板603、最终传导到六维力传感器605的压力检测端,完成线状件200阻力的测定;本发明后旋转轴306的压紧作用力是通过轴承传导,不是直接安装在六维力传感器605上,所以此机构既能完成旋转动作,也不影响其测量导丝、导管的阻力,结构也非常的紧凑和可靠。
以上所述实施方式仅表达了本发明的一种或几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出多个变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种血管介入手术装置,其特征在于,包括底板、导向机构、微调机构、电动夹爪、旋转机构、推拉机构、夹紧机构及进给阻力测量机构;所述导向机构包括安装于所述底板且均设置有供线状件两端穿过的导向轴的前支撑板及后支撑板;所述微调机构包括安装于所述底板的安装板、安装于所述安装板上的曲柄连接组件,所述线状件的一端依次穿过所述前支撑板的导向轴及所述曲柄连接组件;所述电动夹爪位于所述前支撑板及所述安装板之间;所述旋转机构安装于所述推拉机构上且包括动力组件、与所述动力组件连接的前旋转轴、后旋转轴及用于安装所述后旋转轴的轴承板;所述推拉机构安装于所述底板且用于带动所述旋转机构往复运动;所述夹紧机构包括壳体、一对设置于所述壳体内的夹紧压板、设置于夹紧压板与壳体之间的弹性件及设置于其中一个夹紧压板且与另一个夹紧压板相对一侧的柔性压力传感器;所述动力组件用于带动所述夹紧机构旋转;所述进给阻力测量机构包括压力传感器压板及六维力传感器;所述后旋转轴远离所述壳体的一端穿过所述压力传感压板、所述六维力传感器后与所述轴承支撑板转动连接;所述线状件还穿过所述后旋转轴。
  2. 根据权利要求1所述的血管介入手术装置,其特征在于,所述进给阻力测量机构还包括第一轴承及第二轴承,所述第一轴承能够转动的安装于压力传感器压板内,所述第二轴承能够转动的安装于所述轴承板内;所述后旋转轴远离所述壳体的一端穿过传感器压板内的第一轴承、所述六维力传感器及所述轴承支撑板内第二轴承并且与所述第一轴承及第二轴承固定连接。
  3. 根据权利要求1所述的血管介入手术装置,其特征在于,所述曲柄连接组件包括直线步进电机、安装座、主调整块、连杆、导向筒安装块、导向筒、 从调整块及铰链销;所述安装板呈L型且垂直安装于所述底板上,所述安装座固定于所述安装板上,所述直线步进电机固定安装于安装座上且与所述主调整块相连;所述主调整块远离所述直线步进电机的一端通过铰链销与所述连杆转动连接,所述从调整块固定连接于所述安装板远离所述底板的一端;所述导向筒安装块的两端还通过铰链销分别与所述连杆及所述从调整块转动连接;所述导向筒安装于所述导向筒安装块上用于供所述线状件穿过。
  4. 根据权利要求1所述的血管介入手术装置,其特征在于,所述电动夹爪包括安装于所述底板的执行气缸及连接于执行气缸上的一对爪部,所述执行气缸用于控制一对爪部夹紧或松开所述线状件。
  5. 根据权利要求2所述的血管介入手术装置,其特征在于,所述推拉机构包括滑板、推拉电机及滑轨;所述推拉电机及所述滑轨安装于所述底板上,所述滑板能够滑动的安装于所述滑轨上,且所述推拉电机与所述滑板连接并带动所述滑板沿所述滑轨往复运动;所述动力组件包括主动轮、从动轮、同步带、导电滑环、旋转步进电机、从动轮支撑板及安装架;所述轴承支撑板及所述安装架安装于所述滑板的两端,所述旋转步进电机及从动轮支撑板安装于所述安装架上,所述主动轮连接于所述旋转步进电机;所述前旋转轴远离所述壳体的一端能够转动的安装于所述从动轮支撑板并且穿过从动轮支撑板后与所述从动轮固定连接;所述同步带套于所述主动轮及所述从动轮外;所述导电滑环安装于前旋转轴上且位于所述从动轮支撑板与从动轮相背的一侧。
  6. 根据权利要求5所述的血管介入手术装置,其特征在于,所述旋转机构还包括六角支撑螺母,所述前旋转轴远离所述壳体的一端穿过从动轮支撑板后再穿过所述从动轮并与所述六角支撑螺母螺纹配合,以将所述从动轮固定连接在所述前旋转轴远离所述壳体的一端;所述前旋转轴、所述后旋转轴及所述六 角支撑螺母均开设有供所述线状件穿过的且相对应的导向孔,所述导向孔与所述导向轴及所述导向筒相对应。
  7. 根据权利要求6所述的血管介入手术装置,其特征在于,所述壳体包括一对端板,一对侧板、矩形的底壁及一对导轨滑块;所述一对端板安装于所述底壁的一对相对的侧边且开设有供所述线状件穿过的限位孔;所述限位孔对应于所述导向孔、所述导向筒及所述导向轴;所述前旋转轴远离从动轮的一端与其中一个端板固定连接;所述后旋转轴远离所述轴承支撑板的一端与另一个端板固定连接;所述一对侧板安装于所述底壁的另一对相对的侧边并与所述端板垂直相连;所述一对导轨滑块固定于所述底壁且平行所述端板;所述一对夹紧压板能够滑动的设置于所述一对导轨滑块上且平行设置于所述一对侧板之间;所述弹性件设置于对应一个侧板与对应一个夹紧压板之间。
  8. 根据权利要求7所述的血管介入手术装置,其特征在于,所述弹性件为弹簧,每个夹紧压板朝向对应一个侧板的一侧还凸起形成至少一个导向柱,每个侧板开设有对应于导向柱的配合孔,每个导向柱外套设一个弹簧且远离夹紧压板的一端穿过对应一个配合孔,以使所述弹簧压紧于对应的夹紧压板及侧板之间。
  9. 根据权利要求7所述的血管介入手术装置,其特征在于,。所述壳体还包括顶板,所述夹紧机构还包括分离组件,所述分离组件包括一对连接驱动块、一对凸轮,抵压块、直线驱动电机及固定架;所述顶板与所述一对端板及一对侧板连接并与所述底壁间隔相对,所述顶板、一对端板及一对侧板连接及所述底壁共同围成收容所述夹紧压板及所述导轨滑块的收容空间;所述顶板开设有一对滑孔,每个连接驱动块一端与对应一个夹紧压板连接、另一端穿过对应一个滑孔并伸出于所述收容空间外;每个凸轮能够转动的安装于对应一个连接驱 动块伸出所述收容空间外的一端;所述固定架安装于所述顶板上并位于所述收容空间外,所述直线驱动电机固定安装于所述固定架上,所述抵压块连接于所述直线驱动电机上并位于两个连接驱动块的两个凸轮之间,所述直线驱动电机用于带动所述抵压块向两个连接驱动块的两个凸轮之间运动并与两个凸轮相抵接以驱动两个凸轮朝远离对方的方向运动。
  10. 根据权利要求5所述的血管介入手术装置,其特征在于,所述导向机构还包括伸缩杆支撑块、伸缩杆夹紧块及中空供所述线状件穿过的伸缩杆;所述伸缩杆支撑块安装于所述前支撑板;所述伸缩杆一端安装在伸缩杆支撑块中并通过伸缩杆夹紧块夹紧,所述伸缩杆另一端安装于所述六角支撑螺母中,再通过螺钉锁紧。
  11. 根据权利要求2所述的血管介入手术装置,其特征在于,所述导丝进给阻力测量机构还包括轴承压板、第一螺母及第二螺母;所述轴承压板套于所述第一轴承外并嵌入于所述压力传感器压板背离所述六维力传感器的一侧,用于压紧所述第一轴承,所述第一螺母位于所述轴承安装板与所述压力传感器压板之间并且与所述后旋转轴的外螺纹进行螺纹配合;所述第二螺母位于所述轴承安装板背离所述六维力传感器的一侧且并且与所述后旋转轴的外螺纹进行螺纹配合。
  12. 根据权利要求1所述的血管介入手术装置,其特征在于,所述血管介入手术装置还包括安装于所述底板、电机控制器、控制器、电源及开关按钮,所述电机控制器与所述直线步进电机、执行气缸、旋转步进电机、推拉电机及直线驱动电性连接;所述电机控制器电性连接所述控制器。
PCT/CN2019/125442 2019-07-12 2019-12-14 血管介入手术装置 WO2021008076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910628211.2A CN110269999B (zh) 2019-07-12 2019-07-12 血管介入手术装置
CN201910628211.2 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021008076A1 true WO2021008076A1 (zh) 2021-01-21

Family

ID=67964434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125442 WO2021008076A1 (zh) 2019-07-12 2019-12-14 血管介入手术装置

Country Status (2)

Country Link
CN (1) CN110269999B (zh)
WO (1) WO2021008076A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113208737A (zh) * 2021-06-08 2021-08-06 山东大学 一种可用于单孔手术机器人的受限连续体
CN113663204A (zh) * 2021-08-03 2021-11-19 青岛大学附属医院 介入手术导管推送装置
CN113823161A (zh) * 2021-09-22 2021-12-21 山东静禾医疗科技有限公司 双通道式介入手术模拟装置及模拟控制方法
CN113951946A (zh) * 2021-10-22 2022-01-21 中国科学院自动化研究所 血管介入器械推送装置及方法
CN114191082A (zh) * 2021-12-14 2022-03-18 复旦大学 一种血管介入手术机器人导丝夹持与导丝阻力测定装置
CN114343853A (zh) * 2022-02-07 2022-04-15 深圳睿心智能医疗科技有限公司 夹持旋捻装置、递送装置、介入手术机器人
CN114377274A (zh) * 2022-01-07 2022-04-22 易度河北机器人科技有限公司 一种用于神经外科全脑动脉造影的手术机器人系统
CN114533295A (zh) * 2022-01-26 2022-05-27 湖南朗开医疗科技有限公司 一种基于电磁导航的肺部辅助诊断装置
CN114886709A (zh) * 2022-05-24 2022-08-12 河北工业大学 一种用于血管介入手术床辅加设备快速拆装的夹持装置
CN114984419A (zh) * 2022-05-24 2022-09-02 王斌 一种神经外科用临床介入治疗装置
CN115211972A (zh) * 2022-07-04 2022-10-21 上海神玑医疗科技有限公司 一种升降机构及血管介入手术辅助机器人
CN115252135A (zh) * 2022-07-08 2022-11-01 上海神玑医疗科技有限公司 一种用于导管导丝的介入固定装置及手术机器人
CN115282442A (zh) * 2022-08-05 2022-11-04 山东威高医疗科技有限公司 血管介入手术机器人的导丝输送装置
CN115317125A (zh) * 2022-08-16 2022-11-11 文皓(武汉)科技有限责任公司 一种准分子激光导管输送装置
CN115364336A (zh) * 2022-08-17 2022-11-22 上海神玑医疗科技有限公司 导管输送装置及血管介入手术机器人
CN115429608A (zh) * 2022-09-22 2022-12-06 深圳市爱博医疗机器人有限公司 手臂托板及用于血管介入手术的装置
CN116898493A (zh) * 2023-09-07 2023-10-20 江西中医药大学附属医院 一种可增加精确度的肾脏穿刺取样器
CN117398581A (zh) * 2023-12-15 2024-01-16 杭州脉流科技有限公司 导丝推送装置及血管介入手术机器人

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110269999B (zh) * 2019-07-12 2020-06-16 中国科学院深圳先进技术研究院 血管介入手术装置
CN110859672B (zh) * 2019-11-07 2021-05-25 北京唯迈医疗设备有限公司 介入手术机器人自动交替夹紧松开导丝装置
CN113133833A (zh) * 2020-01-20 2021-07-20 上海奥朋医疗科技有限公司 一种带导丝导管推进阻力反馈的血管介入机器人操作手柄
CN111672013B (zh) * 2020-06-17 2021-11-23 清华大学 用于介入手术送丝系统的多动作集成末端执行器
CN111672011B (zh) * 2020-06-17 2021-07-09 清华大学 具有多维力感知的多动作协同介入手术操作器
WO2022232993A1 (zh) * 2021-05-06 2022-11-10 深圳高性能医疗器械国家研究院有限公司 一种血管介入手术辅助执行装置
CN113451042B (zh) * 2021-07-22 2024-04-26 东莞市泰威科技有限公司 一种自动夹持稳定的余线夹持机构
CN113577508A (zh) * 2021-07-30 2021-11-02 天津大学 一种用于肿瘤介入治疗手术的自动操控装置
CN113648515A (zh) * 2021-08-20 2021-11-16 科亚医疗科技股份有限公司 导丝输送装置及具有其的介入设备
CN113712668B (zh) * 2021-09-01 2023-03-21 深圳睿心智能医疗科技有限公司 手指模块、递送装置及介入手术机器人
CN113729801A (zh) * 2021-09-13 2021-12-03 科亚医疗科技股份有限公司 输送装置、输送系统和介入设备
CN113749776B (zh) * 2021-10-08 2023-04-11 深圳睿心智能医疗科技有限公司 夹持旋转装置及介入手术机器人
CN115040760A (zh) * 2022-07-14 2022-09-13 深圳微美机器人有限公司 运动控制装置的控制方法、运动控制装置及输送系统
CN116942996A (zh) * 2022-10-27 2023-10-27 珠海市人民医院 一种针对脑血管植入器械的双段式操控装置
CN116139390A (zh) * 2022-12-09 2023-05-23 山东大学 一种面向血管介入手术的主动导丝操纵装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080058650A1 (en) * 2006-09-01 2008-03-06 Voyage Medical, Inc. Coronary sinus cannulation
CN104042259A (zh) * 2014-05-16 2014-09-17 天津理工大学 一种主从微创血管介入手术辅助系统从操作器装置
CN108523969A (zh) * 2018-02-28 2018-09-14 张涛 一种新型的心血管介入装置
CN109821137A (zh) * 2019-01-29 2019-05-31 燕山大学 微创血管介入手术机器人导管和导丝捻旋推进机构
CN110269999A (zh) * 2019-07-12 2019-09-24 中国科学院深圳先进技术研究院 血管介入手术装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006268156B2 (en) * 2005-07-11 2012-04-19 Catheter Precision, Inc. Remotely controlled catheter insertion system
KR101712733B1 (ko) * 2015-06-23 2017-03-06 한양대학교 에리카산학협력단 혈관중재시술로봇 및 혈관중재시술시스템
CN208876745U (zh) * 2017-08-31 2019-05-21 首都医科大学附属北京天坛医院 一种导丝控制器
CN208893426U (zh) * 2017-08-31 2019-05-24 首都医科大学附属北京天坛医院 一种导丝辅助夹紧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080058650A1 (en) * 2006-09-01 2008-03-06 Voyage Medical, Inc. Coronary sinus cannulation
CN104042259A (zh) * 2014-05-16 2014-09-17 天津理工大学 一种主从微创血管介入手术辅助系统从操作器装置
CN108523969A (zh) * 2018-02-28 2018-09-14 张涛 一种新型的心血管介入装置
CN109821137A (zh) * 2019-01-29 2019-05-31 燕山大学 微创血管介入手术机器人导管和导丝捻旋推进机构
CN110269999A (zh) * 2019-07-12 2019-09-24 中国科学院深圳先进技术研究院 血管介入手术装置

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113208737A (zh) * 2021-06-08 2021-08-06 山东大学 一种可用于单孔手术机器人的受限连续体
CN113663204A (zh) * 2021-08-03 2021-11-19 青岛大学附属医院 介入手术导管推送装置
CN113663204B (zh) * 2021-08-03 2023-03-10 青岛大学附属医院 介入手术导管推送装置
CN113823161A (zh) * 2021-09-22 2021-12-21 山东静禾医疗科技有限公司 双通道式介入手术模拟装置及模拟控制方法
CN113823161B (zh) * 2021-09-22 2023-02-28 山东静禾医疗科技有限公司 双通道式介入手术模拟装置及模拟控制方法
CN113951946A (zh) * 2021-10-22 2022-01-21 中国科学院自动化研究所 血管介入器械推送装置及方法
CN113951946B (zh) * 2021-10-22 2023-11-17 中国科学院自动化研究所 血管介入器械推送装置及方法
CN114191082B (zh) * 2021-12-14 2023-11-24 复旦大学 一种血管介入手术机器人导丝夹持与导丝阻力测定装置
CN114191082A (zh) * 2021-12-14 2022-03-18 复旦大学 一种血管介入手术机器人导丝夹持与导丝阻力测定装置
CN114377274A (zh) * 2022-01-07 2022-04-22 易度河北机器人科技有限公司 一种用于神经外科全脑动脉造影的手术机器人系统
CN114377274B (zh) * 2022-01-07 2023-05-12 易度河北机器人科技有限公司 一种用于神经外科全脑动脉造影的手术机器人系统
CN114533295A (zh) * 2022-01-26 2022-05-27 湖南朗开医疗科技有限公司 一种基于电磁导航的肺部辅助诊断装置
CN114533295B (zh) * 2022-01-26 2022-11-11 湖南朗开医疗科技有限公司 一种基于电磁导航的肺部辅助诊断装置
CN114343853B (zh) * 2022-02-07 2024-01-26 深圳睿心智能医疗科技有限公司 夹持旋捻装置、递送装置、介入手术机器人
CN114343853A (zh) * 2022-02-07 2022-04-15 深圳睿心智能医疗科技有限公司 夹持旋捻装置、递送装置、介入手术机器人
CN114886709A (zh) * 2022-05-24 2022-08-12 河北工业大学 一种用于血管介入手术床辅加设备快速拆装的夹持装置
CN114984419B (zh) * 2022-05-24 2024-03-15 王斌 一种神经外科用临床介入治疗装置
CN114886709B (zh) * 2022-05-24 2024-01-26 河北工业大学 一种用于血管介入手术床辅加设备快速拆装的夹持装置
CN114984419A (zh) * 2022-05-24 2022-09-02 王斌 一种神经外科用临床介入治疗装置
CN115211972A (zh) * 2022-07-04 2022-10-21 上海神玑医疗科技有限公司 一种升降机构及血管介入手术辅助机器人
CN115252135B (zh) * 2022-07-08 2023-06-27 上海神玑医疗科技有限公司 一种用于导管导丝的介入固定装置及手术机器人
CN115252135A (zh) * 2022-07-08 2022-11-01 上海神玑医疗科技有限公司 一种用于导管导丝的介入固定装置及手术机器人
CN115282442B (zh) * 2022-08-05 2023-07-11 山东威高医疗科技有限公司 血管介入手术机器人的导丝输送装置
CN115282442A (zh) * 2022-08-05 2022-11-04 山东威高医疗科技有限公司 血管介入手术机器人的导丝输送装置
CN115317125A (zh) * 2022-08-16 2022-11-11 文皓(武汉)科技有限责任公司 一种准分子激光导管输送装置
CN115364336B (zh) * 2022-08-17 2023-09-12 上海神玑医疗科技有限公司 导管输送装置及血管介入手术机器人
CN115364336A (zh) * 2022-08-17 2022-11-22 上海神玑医疗科技有限公司 导管输送装置及血管介入手术机器人
CN115429608A (zh) * 2022-09-22 2022-12-06 深圳市爱博医疗机器人有限公司 手臂托板及用于血管介入手术的装置
CN115429608B (zh) * 2022-09-22 2024-04-19 深圳爱博合创医疗机器人有限公司 手臂托板及用于血管介入手术的装置
CN116898493A (zh) * 2023-09-07 2023-10-20 江西中医药大学附属医院 一种可增加精确度的肾脏穿刺取样器
CN116898493B (zh) * 2023-09-07 2023-12-12 江西中医药大学附属医院 一种可增加精确度的肾脏穿刺取样器
CN117398581A (zh) * 2023-12-15 2024-01-16 杭州脉流科技有限公司 导丝推送装置及血管介入手术机器人
CN117398581B (zh) * 2023-12-15 2024-03-12 杭州脉流科技有限公司 导丝推送装置及血管介入手术机器人

Also Published As

Publication number Publication date
CN110269999B (zh) 2020-06-16
CN110269999A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2021008076A1 (zh) 血管介入手术装置
CN107106155B (zh) 血管介入手术机器人的导管推送控制方法及导管推送设备
CN108514448B (zh) 血管介入手术机器人导丝、导管操控装置
CN107374739B (zh) 一种介入手术机器人从端装置及其控制方法
CN110548218B (zh) 放射粒子植入穿刺机器人
CN113208735B (zh) 一种用于机械臂末端的柔性针穿刺机构
CN108309370A (zh) 一种渐进式的心脑血管介入手术机器人
WO2024031840A1 (zh) 介入手术机器人从端驱动装置及细长型医疗器械递送方法
CN113995940A (zh) 一种微创血管介入手术机器人执行装置
CN113749776B (zh) 夹持旋转装置及介入手术机器人
CN115517769A (zh) 一种用于肝癌治疗的微创介入手术机器人执行装置
CN114082081A (zh) 一种摩擦轮旋转式的血管介入手术机器人
CN114343853B (zh) 夹持旋捻装置、递送装置、介入手术机器人
CN203935213U (zh) 一种主从微创血管介入手术辅助系统从操作器装置
CN207661335U (zh) 一种医疗器械固定夹
CN209977586U (zh) 用于加速器的电动调节支架
CN113633385B (zh) 一种微创手术机器人末端装置
CN114377274B (zh) 一种用于神经外科全脑动脉造影的手术机器人系统
WO2019113867A1 (zh) 血管介入手术机器人导丝、导管操控装置
CN106404257A (zh) 一种柔性针穿刺力测量装置
CN113827342A (zh) 一种微创血管介入手术机器人导丝递送旋捻装置
CN207850666U (zh) 一种用于检测驱动杆耐疲劳性的装置
WO2014079013A1 (zh) 具有球囊/支架递送功能的微创血管介入手术送管送丝装置
CN204261173U (zh) 介入导管输送操作装置
CN114343850B (zh) 夹持旋捻装置、递送装置及介入手术机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937447

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.08.2022)