WO2021003773A1 - 柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置 - Google Patents

柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置 Download PDF

Info

Publication number
WO2021003773A1
WO2021003773A1 PCT/CN2019/097136 CN2019097136W WO2021003773A1 WO 2021003773 A1 WO2021003773 A1 WO 2021003773A1 CN 2019097136 W CN2019097136 W CN 2019097136W WO 2021003773 A1 WO2021003773 A1 WO 2021003773A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
layer
silver nanowire
array substrate
gate
Prior art date
Application number
PCT/CN2019/097136
Other languages
English (en)
French (fr)
Inventor
李柱辉
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/615,135 priority Critical patent/US11508759B2/en
Publication of WO2021003773A1 publication Critical patent/WO2021003773A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement

Definitions

  • the present invention relates to the field of display technology, in particular to a method for manufacturing a flexible array substrate, a flexible array substrate and a flexible display device.
  • rigid liquid crystal display devices and rigid OLED display devices are more commonly used in daily life.
  • rigid liquid crystal display devices are mainly used in fixed occasions and mobile products
  • rigid OLED display devices are mainly used in mobile products. .
  • Flexible display devices are the direction pursued by the current new generation of display technology. Flexible display devices use flexible substrates instead of traditional glass substrates to achieve the bendability of the panels, bringing consumers a disruptive concept that can enhance user experience and enhance Product competitiveness. Flexible display devices are favored by panel manufacturers and consumers because of their lightness, thinness, flexibility, drop resistance, and foldability. However, flexible display devices have their advantages and disadvantages. At present, the biggest disadvantages of flexible display devices mainly include: low yield, high cost, and complex technology.
  • the low yield rate of flexible display devices is mainly due to the poor performance of the internal wiring of the flexible display device being broken.
  • the reason for the disconnection is that the flexible display device uses ultra-thin flexible lining in order to achieve flexibility.
  • the flexible substrate will expand with heat and contract with heat and deform, and the production process needs to go through processes such as peeling and packaging, which will cause the internal wiring of the flexible display device to break.
  • the wiring materials used for flexible display devices are generally metals, such as aluminum, copper, and molybdenum.
  • the pixel electrodes are generally indium tin oxide. Both metal materials and indium tin oxide have ductility and bending resistance. They are very low, and are prone to disconnection when applied to flexible display devices.
  • the purpose of the present invention is to provide a method for manufacturing a flexible array substrate, which can reduce the disconnection of the flexible array substrate and improve the production yield of the flexible array substrate.
  • the purpose of the present invention is also to provide a flexible array substrate, which can reduce the disconnection of the flexible array substrate and improve the production yield of the flexible array substrate.
  • the object of the present invention is also to provide a flexible display device, which can reduce the disconnection of the flexible display device and improve the production yield of the flexible display device.
  • the present invention provides a method for manufacturing a flexible array substrate, which includes the step of forming a conductive pattern on a flexible substrate using a silver nanowire material.
  • the conductive pattern includes a gate, a source, and a drain
  • the steps of using silver nanowire materials to form conductive patterns on a flexible substrate specifically include:
  • Step S1 forming a first silver nanowire layer on the flexible substrate
  • Step S2 pattern the first silver nanowire layer to form a gate
  • Step S3 forming a gate insulating layer on the flexible substrate and the gate;
  • Step S4 forming a semiconductor layer corresponding to the gate on the gate insulating layer
  • Step S5 forming a second silver nanowire layer on the gate insulating layer
  • Step S6 patterning the second silver nanowire layer to form a source electrode and a drain electrode distributed at intervals, and the source electrode and the drain electrode are respectively in contact with two ends of the semiconductor layer.
  • the conductive pattern further includes a pixel electrode
  • the step of forming a conductive pattern on the flexible substrate using silver nanowire material further includes:
  • Step S7 forming a passivation layer on the gate insulating layer, the semiconductor layer, the source electrode and the drain electrode, and a via hole that penetrates the passivation layer and exposes a part of the drain electrode;
  • Step S8 forming a third silver nanowire layer on the passivation layer
  • Step S9 Pattern the third silver nanowire layer to obtain a pixel electrode, and the pixel electrode is in contact with the drain electrode through the via hole.
  • the step S1 specifically includes: coating a first silver nanowire film on a flexible substrate, and performing pulse light sintering on the first silver nanowire film to obtain a first silver nanowire layer;
  • the step S5 specifically includes: coating a second silver nanowire film on a flexible substrate, and performing pulse light sintering on the first silver nanowire film to obtain a second silver nanowire layer;
  • the step S8 specifically includes: coating a third silver nanowire film on the passivation layer, and performing pulse light sintering on the third silver nanowire film to obtain a third silver nanowire layer.
  • step S1 it also includes the step of providing a rigid substrate and forming a flexible substrate on the rigid substrate.
  • step S9 the step of peeling the flexible substrate from the rigid substrate is further included.
  • the present invention also provides a flexible array substrate, which includes a flexible substrate and a conductive pattern on the flexible substrate, and the conductive pattern is made of silver nanowires.
  • the conductive pattern includes a gate electrode, a source electrode, a drain electrode, and a pixel electrode;
  • the specific structure of the flexible array substrate is: a flexible substrate, a gate provided on the flexible substrate, a gate insulating layer provided on the gate, and a gate insulating layer provided on the gate.
  • the pixel electrode on the passivation layer, the source electrode and the drain electrode are respectively in contact with both ends of the semiconductor layer, and the pixel electrode exposes a part of the via hole and the drain electrode of the drain electrode through the passivation layer. Extreme contact.
  • the present invention also provides a flexible display device, including the above-mentioned flexible array substrate.
  • the present invention provides a manufacturing method of a flexible array substrate, a flexible array substrate and a flexible display device.
  • the manufacturing method of the flexible array substrate adopts silver nanowire materials to form conductive patterns on the flexible substrate, and uses silver nanowires to replace conventional metals and indium tin oxide to form conductive patterns, which can reduce wiring resistance and improve panel penetration , Improve the bending resistance of the flexible array substrate, avoid product disconnection, improve product production yield, and reduce product production costs.
  • FIG. 1 is a schematic diagram of step S1 of the manufacturing method of the flexible array substrate of the present invention.
  • step S2 is a schematic diagram of step S2 of the manufacturing method of the flexible array substrate of the present invention.
  • step S3 is a schematic diagram of step S3 to step S5 of the manufacturing method of the flexible array substrate of the present invention
  • step S6 is a schematic diagram of step S6 of the manufacturing method of the flexible array substrate of the present invention.
  • FIG. 5 is a schematic diagram of steps S7 to S8 of the manufacturing method of the flexible array substrate of the present invention.
  • step S9 is a schematic diagram of step S9 of the manufacturing method of the flexible array substrate of the present invention.
  • FIG. 7 is a schematic diagram of the flexible array substrate of the present invention.
  • the present invention provides a method for manufacturing a flexible array substrate, which includes the step of forming a conductive pattern on the flexible substrate 10 using a silver nanowire material.
  • the conductive pattern includes a gate 21, a source 22, and a drain 23;
  • the step of using silver nanowire material to form a conductive pattern on the flexible substrate 10 specifically includes:
  • Step S1 forming a first silver nanowire layer 20 on the flexible substrate 10.
  • step S1 before the step S1, it further includes a step of providing a rigid substrate 1 and forming a flexible substrate 10 on the rigid substrate 1.
  • the material of the flexible substrate 10 is polyimide
  • the rigid substrate 1 is a glass substrate.
  • the specific process of forming the first silver nanowire layer 20 includes:
  • a first silver nanowire film is coated on the flexible substrate 10, and the first silver nanowire film contains a plurality of overlapping silver nanowire segments; then, pulsed light is applied to the first silver nanowire film. Sintering to obtain the first silver nanowire layer 20. Pulse light sintering is performed on the first silver nanowire film to sinter the overlapping silver nanowire segments together to improve the conductivity and mechanical properties of the silver nanowires, and finally form a network. -Shaped first silver nanowire layer 20.
  • Step S2 as shown in FIG. 2, pattern the first silver nanowire layer 20 to form a gate 21.
  • the step S2 specifically includes forming a photoresist layer on the first silver nanowire layer 20, followed by exposure, development, and etching to obtain the gate 21.
  • Step S3 as shown in FIG. 3, a gate insulating layer 30 is formed on the flexible substrate 10 and the gate 21.
  • the material of the gate insulating layer 30 is one or a combination of silicon nitride and silicon oxide.
  • Step S4 as shown in FIG. 3, a semiconductor layer 31 corresponding to the gate 21 is formed on the gate insulating layer 30;
  • Step S5 as shown in FIG. 3, a second silver nanowire layer 40 is formed on the gate insulating layer 30.
  • the specific process of forming the second silver nanowire layer 40 includes: first, coating a second silver nanowire film on the gate insulating layer 30, and the second silver nanowire film contains a plurality of overlapping silver films. Nanowire segments; Next, pulse light sintering is performed on the second silver nanowire film to obtain a second silver nanowire layer 40, and the overlapping silver nanowire segments are sintered by pulse light sintering on the second silver nanowire film Together, to improve the conductivity and mechanical properties of the silver nanowires, the second silver nanowire layer 40 in a network shape is finally formed.
  • Step S6 As shown in FIG. 4, the second silver nanowire layer 40 is patterned to form a source electrode 22 and a drain electrode 23 distributed at intervals.
  • the source electrode 22 and the drain electrode 23 are connected to the two sides of the semiconductor layer 31, respectively. End contact.
  • the step S6 specifically includes forming a photoresist layer on the second silver nanowire layer 40, followed by exposure, development, and etching to obtain the source electrode 22 and the drain electrode 23.
  • the conductive pattern further includes a pixel electrode 61;
  • the step of using silver nanowire material to form a conductive pattern on the flexible substrate 10 further includes:
  • Step S7 forming a passivation layer 50 on the gate insulating layer 30, the semiconductor layer 31, the source electrode 22 and the drain electrode 23, and a via 51 penetrating the passivation layer 50 exposing a part of the drain electrode 23 .
  • the material of the passivation layer 50 is one or a combination of silicon oxide and silicon nitride.
  • Step S8 forming a third silver nanowire layer 60 on the passivation layer 50.
  • the specific process for forming the third silver nanowire layer 60 includes: first, coating a third silver nanowire film on the passivation layer 50, and the third silver nanowire film contains a plurality of overlapping silver nanowires. Line segment; Next, pulse light sintering is performed on the third silver nanowire film to obtain a third silver nanowire layer 60. By pulse light sintering on the third silver nanowire film, the overlapping silver nanowire segments are sintered in At the same time, in order to improve the conductivity and mechanical properties of the silver nanowires, a third silver nanowire layer 60 in a network shape is finally formed.
  • Step S9 patterning the third silver nanowire layer 60 to obtain a pixel electrode 61, and the pixel electrode 61 contacts the drain electrode 23 through the via hole 51.
  • the step S9 specifically includes forming a photoresist layer on the third silver nanowire layer 60, followed by exposure, development, and etching to obtain the pixel electrode 61.
  • the method further includes peeling the flexible substrate 10 from the rigid substrate 1 to obtain the final flexible array substrate.
  • the present invention is based on the characteristics of simple silver nanowire film forming process, low resistance, low cost, bending resistance, good ductility, high transmittance, low haze, and photolithographic patterning.
  • Nanowires replace the existing metal or indium tin oxide to form a conductive pattern in the flexible array substrate, which can reduce wiring resistance, increase the penetration rate of the panel, improve the bending resistance of the flexible array substrate, avoid product disconnection, and improve Product production yield rate, reducing product production costs.
  • the present invention also provides a flexible array substrate, including a flexible substrate 10 and a conductive pattern on the flexible substrate 10, the material of the conductive pattern is silver nanowires.
  • the conductive pattern includes a gate 21, a source 22, a drain 23, and a pixel electrode 61;
  • the specific structure of the flexible array substrate is: a flexible substrate 10, a gate 21 provided on the flexible substrate 10, a gate insulating layer 30 provided on the gate 21, 21, the semiconductor layer 31 on the gate insulating layer 30, the source electrode 22 and the drain electrode 23 arranged on the gate insulating layer 30 at intervals, the gate insulating layer 30, the semiconductor layer 31,
  • the passivation layer 50 on the source electrode 22 and the drain electrode 23, and the pixel electrode 61 provided on the passivation layer 50, the source electrode 22 and the drain electrode 23 are respectively in contact with both ends of the semiconductor layer 31, the pixel
  • the electrode 61 contacts the drain 23 through a via 51 that penetrates the passivation layer 50 and exposes a part of the drain 23.
  • the material of the flexible substrate 10 is polyimide
  • the rigid substrate 1 is a glass substrate
  • the material of the gate insulating layer 30 is one of silicon nitride and silicon oxide.
  • the material of the passivation layer 50 is one or a combination of silicon oxide and silicon nitride.
  • the present invention uses silver nanowires.
  • the wire replaces the existing metal or indium tin oxide to form a conductive pattern in the flexible array substrate, which can reduce the wiring resistance, increase the penetration rate of the panel, improve the bending resistance of the flexible array substrate, avoid product disconnection, and improve the product Production yield rate, reduce product production cost.
  • the present invention also provides a flexible display device including the above-mentioned flexible array substrate.
  • the present invention provides a manufacturing method of a flexible array substrate, a flexible array substrate and a flexible display device.
  • the manufacturing method of the flexible array substrate adopts silver nanowire materials to form conductive patterns on the flexible substrate, and uses silver nanowires to replace conventional metals and indium tin oxide to form conductive patterns, which can reduce wiring resistance and improve panel penetration , Improve the bending resistance of the flexible array substrate, avoid product disconnection, improve product production yield, and reduce product production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明提供一种柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置。所述柔性阵列基板的制作方法采用银纳米线材料在柔性衬底上形成导电图形,利用银纳米线取代常规的金属及氧化铟锡形成导电图形,能够降低走线电阻,提高面板的穿透率,改善柔性阵列基板的抗弯折性,避免产品断线,提高产品生产良率,降低产品生产成本。

Description

柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置。
背景技术
随着显示技术的发展,平板显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
目前,日常生活中应用的比较多的是刚性液晶显示器件及刚性OLED显示器件,其中,刚性液晶显示器件主要应用在固定式场合及移动类产品上,刚性OLED显示器件主要应用在移动类产品上。
尽管刚性液晶显示器件及刚性OLED显示器件已经可以满足人们的基本需要,但随着生活水平的提高和显示技术的发展,人们对显示器件的性能提出了更高的要求。柔性显示器件是目前新一代显示技术追求的方向,柔性显示器件采用柔性衬底替代传统的玻璃基板以实现面板的可弯曲性,给消费者带来了颠覆性的概念,能够提升用户体验,增强产品竞争力。柔性显示器件因兼具轻薄、可柔、抗摔、可折叠等优点,受到面板生产企业和消费者的热捧。然而,柔性显示器件有它的优点同时也有它的缺点,目前柔性显示器件最大的缺点主要有:良率低、成本高、工艺复杂等。
其中,柔性显示器件良率低主要是由于柔性显示器件的内部的走线出现断线而导致的不良体现,断线的原因,则是由于柔性显示器件为了实现柔性,而采用了超薄柔性衬底,在生产过程中柔性衬底会热胀冷缩而出现形变及生产制程需要经过剥离、封装等工艺,这些都会造成柔性显示器件的内部的走线出现断线。
目前用作柔性显示器件的走线的材料一般为金属,例如铝、铜及钼等,像素电极的材料一般为氧化铟锡,无论是金属材料还是氧化铟锡的其延展性、抗弯折能力都很低,在柔性显示器件上应用时,容易出现断线。
技术问题
本发明的目的在于提供一种柔性阵列基板的制作方法,能够减少柔性阵列基板的断线,提升柔性阵列基板的生产良率。
本发明的目的还在于提供一种柔性阵列基板,能够减少柔性阵列基板的断线,提升柔性阵列基板的生产良率。
本发明的目的还在于提供一种柔性显示装置,能够减少柔性显示装置的断线,提升柔性显示装置的生产良率。
技术解决方案
为实现上述目的,本发明提供一种柔性阵列基板的制作方法,包括采用银纳米线材料在柔性衬底上形成导电图形的步骤。
所述导电图形包括栅极、源极及漏极;
采用银纳米线材料在柔性衬底上形成导电图形的步骤具体包括:
步骤S1、在柔性衬底上形成第一银纳米线层;
步骤S2、图案化所述第一银纳米线层,形成栅极;
步骤S3、在柔性衬底及栅极上形成栅极绝缘层;
步骤S4、在栅极绝缘层上形成对应所述栅极设置的半导体层;
步骤S5、在所述栅极绝缘层上形成第二银纳米线层;
步骤S6、图案化所述的第二银纳米线层,形成间隔分布的源极及漏极,所述源极及漏极分别与半导体层的两端接触。
所述导电图形还包括像素电极;
采用银纳米线材料在柔性衬底上形成导电图形的步骤还包括:
步骤S7、在所述栅极绝缘层、半导体层、源极及漏极上形成钝化层及贯穿所述钝化层暴露出所述漏极的一部分的过孔;
步骤S8、在所述钝化层上形成第三银纳米线层;
步骤S9、图案化所述第三银纳米线层,得到像素电极,所述像素电极通过所述过孔与所述漏极接触。
所述步骤S1具体包括:在柔性衬底上涂布第一银纳米线薄膜,并对所述第一银纳米线薄膜进行脉冲光烧结,得到第一银纳米线层;
所述步骤S5具体包括:在柔性衬底上涂布第二银纳米线薄膜,并对所述第一银纳米线薄膜进行脉冲光烧结,得到第二银纳米线层;
所述步骤S8具体包括:在所述钝化层上涂布第三银纳米线薄膜,并对所述第三银纳米线薄膜进行脉冲光烧结,得到第三银纳米线层。
所述步骤S1之前还包括提供一刚性衬底,并在所述刚性衬底上形成柔性衬底的步骤。
所述步骤S9之后还包括将所述柔性衬底从所述刚性衬底上剥离的步骤。
本发明还提供一种柔性阵列基板,包括柔性衬底及位于所述柔性衬底上的导电图形,所述导电图形的材料为银纳米线。
所述导电图形包括栅极、源极、漏极及像素电极;
所述柔性阵列基板的具体结构为:柔性衬底、设于所述柔性衬底上的栅极、设于所述栅极上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的半导体层、设于所述栅极绝缘层上的间隔分布的源极及漏极、设于所述栅极绝缘层、半导体层、源极及漏极上的钝化层及设于所述钝化层上的像素电极,所述源极及漏极分别与半导体层的两端接触,所述像素电极通过贯穿所述钝化层暴露出所述漏极的一部分的过孔与漏极接触。
本发明还提供一种柔性显示装置,包括上述的柔性阵列基板。
有益效果
本发明的有益效果:本发明提供一种柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置。所述柔性阵列基板的制作方法采用银纳米线材料在柔性衬底上形成导电图形,利用银纳米线取代常规的金属及氧化铟锡形成导电图形,能够降低走线电阻,提高面板的穿透率,改善柔性阵列基板的抗弯折性,避免产品断线,提高产品生产良率,降低产品生产成本。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的柔性阵列基板的制作方法的步骤S1的示意图;
图2为本发明的柔性阵列基板的制作方法的步骤S2的示意图;
图3为本发明的柔性阵列基板的制作方法的步骤S3~步骤S5的示意图;
图4为本发明的柔性阵列基板的制作方法的步骤S6的示意图;
图5为本发明的柔性阵列基板的制作方法的步骤S7~S8的示意图;
图6为本发明的柔性阵列基板的制作方法的步骤S9的示意图;
图7为本发明的柔性阵列基板的示意图。
本发明的实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1至图7,本发明提供一种柔性阵列基板的制作方法,包括采用银纳米线材料在柔性衬底10上形成导电图形的步骤。
具体地,在本发明的优选实施例中,如图1至图4所示,所述导电图形包括栅极21、源极22及漏极23;
相应的,所述采用银纳米线材料在柔性衬底10上形成导电图形的步骤具体包括:
步骤S1、在柔性衬底10上形成第一银纳米线层20。
具体地,如图1所示,所述步骤S1之前还包括提供一刚性衬底1,并在所述刚性衬底1上形成柔性衬底10的步骤。
优选地,所述柔性衬底10的材料为聚酰亚胺,所述刚性衬底1为玻璃衬底。
进一步地,所述形成第一银纳米线层20的具体工艺包括:
首先,在柔性衬底10上涂布第一银纳米线薄膜,在第一银纳米线薄膜中含有多个相互搭接的银纳米线段;接着,对所述第一银纳米线薄膜进行脉冲光烧结,得到第一银纳米线层20,通过对第一银纳米线薄膜进行脉冲光烧结使得搭接在一起的银纳米线段烧结在一起,以提高银纳米线导电性及机械性能,最终形成网状的第一银纳米线层20。
步骤S2、如图2所示,图案化所述第一银纳米线层20,形成栅极21。
具体地,所述步骤S2具体包括在第一银纳米线层20形成光刻胶层,接着进行曝光、显影及蚀刻,得到栅极21。
步骤S3、如图3所示,在柔性衬底10及栅极21上形成栅极绝缘层30。
具体地,所述栅极绝缘层30的材料为氮化硅及氧化硅中的一种或二者的组合。
步骤S4、如图3所示,在栅极绝缘层30上形成对应所述栅极21设置的半导体层31;
步骤S5、如图3所示,在所述栅极绝缘层30上形成第二银纳米线层40。
具体地,形成第二银纳米线层40的具体工艺包括:首先,在栅极绝缘层30上涂布第二银纳米线薄膜,在第二银纳米线薄膜中含有多个相互搭接的银纳米线段;接着,对所述第二银纳米线薄膜进行脉冲光烧结,得到第二银纳米线层40,通过对第二银纳米线薄膜进行脉冲光烧结使得搭接在一起的银纳米线段烧结在一起,以提高银纳米线导电性及机械性能,最终形成网状的第二银纳米线层40。
步骤S6、如图4所示,图案化所述的第二银纳米线层40,形成间隔分布的源极22及漏极23,所述源极22及漏极23分别与半导体层31的两端接触。
具体地,所述步骤S6具体包括在第二银纳米线层40形成光刻胶层,接着进行曝光、显影及蚀刻,得到源极22及漏极23。
进一步地,如图5至图6所示,在本发明的优选实施例中,所述导电图形还包括像素电极61;
采用银纳米线材料在柔性衬底10上形成导电图形的步骤还包括:
步骤S7、在所述栅极绝缘层30、半导体层31、源极22及漏极23上形成钝化层50及贯穿所述钝化层50暴露出所述漏极23的一部分的过孔51。
具体地,所述钝化层50的材料为氧化硅及氮化硅中的一种或二者的组合。
步骤S8、在所述钝化层50上形成第三银纳米线层60。
具体地,形成第三银纳米线层60的具体工艺包括:首先,在钝化层50上涂布第三银纳米线薄膜,在第三银纳米线薄膜中含有多个相互搭接的银纳米线段;接着,对所述第三银纳米线薄膜进行脉冲光烧结,得到第三银纳米线层60,通过对第三银纳米线薄膜进行脉冲光烧结使得搭接在一起的银纳米线段烧结在一起,以提高银纳米线导电性及机械性能,最终形成网状的第三银纳米线层60。
步骤S9、图案化所述第三银纳米线层60,得到像素电极61,所述像素电极61通过所述过孔51与所述漏极23接触。
具体地,所述步骤S9具体包括在第三银纳米线层60形成光刻胶层,接着进行曝光、显影及蚀刻,得到像素电极61。
进一步地,如图7所示,所述步骤S9之后还包括将所述柔性衬底10从所述刚性衬底1上剥离,得到最终的柔性阵列基板。
值得一提的是,本发明基于银纳米线成膜工艺简单、低电阻、低成本、耐弯折、延展性好、高穿透率、低雾度、可光刻图案化的特点,利用银纳米线取代现有的金属或氧化铟锡,形成柔性阵列基板中的导电图案,能够降低走线电阻,提高面板的穿透率,改善柔性阵列基板的抗弯折性,避免产品断线,提高产品生产良率,降低产品生产成本。
请参阅图7,本发明还提供一种柔性阵列基板,包括柔性衬底10及位于所述柔性衬底10上的导电图形,所述导电图形的材料为银纳米线。
具体地,所述导电图形包括栅极21、源极22、漏极23及像素电极61;
所述柔性阵列基板的具体结构为:柔性衬底10、设于所述柔性衬底10上的栅极21、设于所述栅极21上的栅极绝缘层30、设于所述栅极21上的栅极绝缘层30上的半导体层31、设于所述栅极绝缘层30上的间隔分布的源极22及漏极23、设于所述栅极绝缘层30、半导体层31、源极22及漏极23上的钝化层50及设于所述钝化层50上的像素电极61,所述源极22及漏极23分别与半导体层31的两端接触,所述像素电极61通过贯穿所述钝化层50暴露出所述漏极23的一部分的过孔51与漏极23接触。
其中,优选地,所述柔性衬底10的材料为聚酰亚胺,所述刚性衬底1为玻璃衬底,所述栅极绝缘层30的材料为氮化硅及氧化硅中的一种或二者的组合,所述钝化层50的材料为氧化硅及氮化硅中的一种或二者的组合。
需要说明的是,基于银纳米线成膜工艺简单、低电阻、低成本、耐弯折、延展性好、高穿透率、低雾度、可光刻图案化的特点,本发明利用银纳米线取代现有的金属或氧化铟锡,形成柔性阵列基板中的导电图案,能够降低走线电阻,提高面板的穿透率,改善柔性阵列基板的抗弯折性,避免产品断线,提高产品生产良率,降低产品生产成本。
基于上述的柔性阵列基板,本发明还提供一种柔性显示装置,包括上述的柔性阵列基板。
综上所述,本发明提供一种柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置。所述柔性阵列基板的制作方法采用银纳米线材料在柔性衬底上形成导电图形,利用银纳米线取代常规的金属及氧化铟锡形成导电图形,能够降低走线电阻,提高面板的穿透率,改善柔性阵列基板的抗弯折性,避免产品断线,提高产品生产良率,降低产品生产成本。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (11)

  1. 一种柔性阵列基板的制作方法,包括采用银纳米线材料在柔性衬底上形成导电图形的步骤。
  2. 如权利要求1所述的柔性阵列基板的制作方法,其中,所述导电图形包括栅极、源极及漏极;
    采用银纳米线材料在柔性衬底上形成导电图形的步骤具体包括:
    步骤S1、在柔性衬底上形成第一银纳米线层;
    步骤S2、图案化所述第一银纳米线层,形成栅极;
    步骤S3、在柔性衬底及栅极上形成栅极绝缘层;
    步骤S4、在栅极绝缘层上形成对应所述栅极设置的半导体层;
    步骤S5、在所述栅极绝缘层上形成第二银纳米线层;
    步骤S6、图案化所述的第二银纳米线层,形成间隔分布的源极及漏极,所述源极及漏极分别与半导体层的两端接触。
  3. 如权利要求2所述的柔性阵列基板的制作方法,其中,所述导电图形还包括像素电极;
    采用银纳米线材料在柔性衬底上形成导电图形的步骤还包括:
    步骤S7、在所述栅极绝缘层、半导体层、源极及漏极上形成钝化层及贯穿所述钝化层暴露出所述漏极的一部分的过孔
    步骤S8、在所述钝化层上形成第三银纳米线层;
    步骤S9、图案化所述第三银纳米线层,得到像素电极,所述像素电极通过所述过孔与所述漏极接触。
  4. 如权利要求2所述的柔性阵列基板的制作方法,其中,所述步骤S1具体包括:在柔性衬底上涂布第一银纳米线薄膜,并对所述第一银纳米线薄膜进行脉冲光烧结,得到第一银纳米线层;
    所述步骤S5具体包括:在柔性衬底上涂布第二银纳米线薄膜,并对所述第一银纳米线薄膜进行脉冲光烧结,得到第二银纳米线层。
  5. 如权利要求3所述的柔性阵列基板的制作方法,其中,所述步骤S8具体包括:在所述钝化层上涂布第三银纳米线薄膜,并对所述第三银纳米线薄膜进行脉冲光烧结,得到第三银纳米线层。
  6. 如权利要求3所述的柔性阵列基板的制作方法,其中,所述步骤S1之前还包括提供一刚性衬底,并在所述刚性衬底上形成柔性衬底的步骤。
  7. 如权利要求6所述的柔性阵列基板的制作方法,其中,所述步骤S9之后还包括将所述柔性衬底从所述刚性衬底上剥离的步骤。
  8. 一种柔性阵列基板,包括柔性衬底及位于所述柔性衬底上的导电图形,所述导电图形的材料为银纳米线。
  9. 如权利要求8所述的柔性阵列基板,其中,所述导电图形包括栅极、源极、漏极及像素电极;
    所述柔性阵列基板的具体结构为:柔性衬底、设于所述柔性衬底上的栅极、设于所述栅极上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的半导体层、设于所述栅极绝缘层上的间隔分布的源极及漏极、设于所述栅极绝缘层、半导体层、源极及漏极上的钝化层及设于所述钝化层上的像素电极,所述源极及漏极分别与半导体层的两端接触,所述像素电极通过贯穿所述钝化层暴露出所述漏极的一部分的过孔与漏极接触。
  10. 一种柔性显示装置,包括柔性阵列基板;
    所述柔性阵列基板包括柔性衬底及位于所述柔性衬底上的导电图形,所述导电图形的材料为银纳米线。
  11. 如权利要求10所述的柔性显示装置,其中,所述导电图形包括栅极、源极、漏极及像素电极;
    所述柔性阵列基板的具体结构为:柔性衬底、设于所述柔性衬底上的栅极、设于所述栅极上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的半导体层、设于所述栅极绝缘层上的间隔分布的源极及漏极、设于所述栅极绝缘层、半导体层、源极及漏极上的钝化层及设于所述钝化层上的像素电极,所述源极及漏极分别与半导体层的两端接触,所述像素电极通过贯穿所述钝化层暴露出所述漏极的一部分的过孔与漏极接触。
PCT/CN2019/097136 2019-07-10 2019-07-22 柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置 WO2021003773A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/615,135 US11508759B2 (en) 2019-07-10 2019-07-22 Method of manufacturing flexible array substrate, flexible array substrate, and flexible display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910621317.XA CN110400775A (zh) 2019-07-10 2019-07-10 柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置
CN201910621317.X 2019-07-10

Publications (1)

Publication Number Publication Date
WO2021003773A1 true WO2021003773A1 (zh) 2021-01-14

Family

ID=68324439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097136 WO2021003773A1 (zh) 2019-07-10 2019-07-22 柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置

Country Status (3)

Country Link
US (1) US11508759B2 (zh)
CN (1) CN110400775A (zh)
WO (1) WO2021003773A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080002575A (ko) * 2006-06-30 2008-01-04 엘지.필립스 엘시디 주식회사 박막 트랜지스터 및 이의 제조방법, 이를 이용한액정표시장치 및 이의 제조방법
CN103064217A (zh) * 2011-10-20 2013-04-24 三星显示有限公司 液晶显示装置、取向膜和用于制造取向膜的方法
CN105742369A (zh) * 2016-03-25 2016-07-06 电子科技大学 一种新型底栅结构的柔性薄膜晶体管及其制备方法
CN105789246A (zh) * 2014-09-16 2016-07-20 乐金显示有限公司 有机发光显示装置和有机发光显示面板及其制造方法
CN105841849A (zh) * 2016-03-25 2016-08-10 电子科技大学 一种柔性压力传感器与薄膜晶体管的集成器件及制备方法
CN109638158A (zh) * 2018-11-28 2019-04-16 中南大学 一种柔性有机薄膜晶体管及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292362B (zh) * 2005-08-12 2011-06-08 凯博瑞奥斯技术公司 透明导体及其制备方法、层压结构以及显示装置
CN102285635B (zh) * 2011-07-28 2014-07-23 中国科学院理化技术研究所 一种利用激光制作金属微纳结构的系统与方法
US8941095B2 (en) * 2012-12-06 2015-01-27 Hrl Laboratories, Llc Methods for integrating and forming optically transparent devices on surfaces
CN103700673B (zh) * 2013-12-24 2017-07-04 京东方科技集团股份有限公司 一种显示装置、阵列基板及其制作方法
CN104876179B (zh) * 2015-04-16 2017-01-11 华中科技大学 一种非接触式一维纳米材料阵列的大面积组装方法
WO2017025836A1 (en) * 2015-08-07 2017-02-16 Semiconductor Energy Laboratory Co., Ltd. Display panel, data processing device, and method for manufacturing display panel
CN105632652B (zh) * 2016-02-05 2017-07-18 华中科技大学 一种高性能精细化透明导电电极的制备方法
CN105655408A (zh) * 2016-03-14 2016-06-08 京东方科技集团股份有限公司 薄膜晶体管、阵列基板及其制作和驱动方法、显示装置
WO2018122665A1 (en) * 2016-12-27 2018-07-05 Semiconductor Energy Laboratory Co., Ltd. Display panel, display device, input/output device, and data processing device
KR102064997B1 (ko) * 2017-04-27 2020-01-13 한국기계연구원 보호막 조성물의 제조방법 및 투명 전극의 제조방법
US10411222B2 (en) * 2017-05-23 2019-09-10 University Of Maryland, College Park Transparent hybrid substrates, devices employing such substrates, and methods for fabrication and use thereof
CN107170758B (zh) * 2017-05-25 2020-08-14 京东方科技集团股份有限公司 柔性显示基板及其制作方法、显示装置
KR102024559B1 (ko) * 2017-11-08 2019-09-24 한국기술교육대학교 산학협력단 은나노와이어 함유 압력센서 및 이의 제조방법
CN107994129B (zh) * 2017-11-20 2019-11-22 武汉华星光电半导体显示技术有限公司 柔性oled显示面板的制备方法
CN110554789B (zh) * 2018-05-30 2023-09-01 英属维京群岛商天材创新材料科技股份有限公司 双面电极及其图案化方法
CN109037239B (zh) * 2018-07-26 2020-11-17 上海天马微电子有限公司 一种阵列基板及其制备方法、显示面板
US10964731B2 (en) * 2018-12-04 2021-03-30 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Array substrate and manufacturing method thereof and display device
US10804478B2 (en) * 2018-12-10 2020-10-13 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Foldable display panel, manufacturing method thereof and foldable display device
CN109920603B (zh) * 2019-03-05 2021-04-20 中南大学 一种提高银纳米线透明导电膜导电性的装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080002575A (ko) * 2006-06-30 2008-01-04 엘지.필립스 엘시디 주식회사 박막 트랜지스터 및 이의 제조방법, 이를 이용한액정표시장치 및 이의 제조방법
CN103064217A (zh) * 2011-10-20 2013-04-24 三星显示有限公司 液晶显示装置、取向膜和用于制造取向膜的方法
CN105789246A (zh) * 2014-09-16 2016-07-20 乐金显示有限公司 有机发光显示装置和有机发光显示面板及其制造方法
CN105742369A (zh) * 2016-03-25 2016-07-06 电子科技大学 一种新型底栅结构的柔性薄膜晶体管及其制备方法
CN105841849A (zh) * 2016-03-25 2016-08-10 电子科技大学 一种柔性压力传感器与薄膜晶体管的集成器件及制备方法
CN109638158A (zh) * 2018-11-28 2019-04-16 中南大学 一种柔性有机薄膜晶体管及其制备方法

Also Published As

Publication number Publication date
US11508759B2 (en) 2022-11-22
US20220037375A1 (en) 2022-02-03
CN110400775A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2020083104A1 (zh) 显示模组、电子设备和显示模组的制造方法
WO2017147974A1 (zh) 阵列基板的制作方法及制得的阵列基板
US11398505B2 (en) Display substrate and manufacturing method thereof, display panel, and display device
WO2017063292A1 (zh) 薄膜晶体管基板的制作方法及制得的薄膜晶体管基板
JP6521534B2 (ja) 薄膜トランジスタとその作製方法、アレイ基板及び表示装置
CN106887424B (zh) 导电图案结构及其制备方法、阵列基板和显示装置
WO2017041478A1 (zh) 阵列基板及其制备方法、显示面板、显示装置
WO2016155155A1 (zh) 薄膜晶体管的制作方法、薄膜晶体管及使用其的阵列基板和显示装置
WO2015010427A1 (zh) 阵列基板及其制作方法和显示装置
CN105742299B (zh) 一种像素单元及其制作方法、阵列基板及显示装置
WO2017008493A1 (zh) 导电过孔结构、阵列基板和显示装置的制作方法
US20170012059A1 (en) Array substrate and manufacturing method thereof, display apparatus
WO2020093442A1 (zh) 阵列基板的制作方法及阵列基板
US9620729B2 (en) Organic thin film transistor and method of manufacturing the same, array substrate and display device
WO2017147973A1 (zh) 阵列基板的制作方法及制得的阵列基板
WO2017012292A1 (zh) 阵列基板及其制备方法、显示面板、显示装置
WO2024037324A1 (zh) 显示基板、显示装置及显示基板的制备方法
WO2020082494A1 (zh) 显示面板及其制作方法、显示模组
WO2018176880A1 (zh) 一种阵列基板的制作方法
TWI614651B (zh) 觸控面板及其製造方法
WO2021003773A1 (zh) 柔性阵列基板的制作方法及柔性阵列基板和柔性显示装置
WO2020114101A1 (zh) 薄膜晶体管、显示基板及其制备方法、显示装置
WO2017041447A1 (zh) 一种阵列基板及其制作方法、显示装置
WO2018192210A1 (zh) 导电图案结构及其制备方法、阵列基板和显示装置
WO2019104849A1 (zh) 薄膜晶体管的制作方法及阵列基板的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936878

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19936878

Country of ref document: EP

Kind code of ref document: A1